Примечание 1. Время аварии – это время, прошедшее с момента подачи питания на ОМ-310до момента возникновения аварии. Измеряется в минутах.
Примечание 2. При поставке ОМ-310 или после установки заводских параметров (п.2.2.4) в журнал аварии записан код ошибки 40 и значение параметра 10000.
2.4.4.7 Обработка ошибок связи
В случае возникновения ошибочной ситуации при принятии кадра (ошибка паритета, ошибка кадра, ошибка контрольной суммы) ОМ-310 ответ не возвращает.
В случае возникновения ошибки в формате или значении передаваемых данных (неподдерживаемый код функции и т. д.) ОМ-310 принимает кадр запроса и формирует ответ с признаком и кодом ошибки. Признаком ошибки является установленный в единицу старший бит в поле функции. Под код ошибки отводится отдельное поле в ответе. Пример ответа приведен на рис. 2.5. Коды ошибок приведены в таблице 2.6.
Рис. 2.5. Пример ответа после возникновения ошибки.
Таблица 2.6
-
Код ошибки
Название
Описание 01h ILLEGAL FUNCTION Принятый код функции не может быть обработан ОМ-310 02h ILLEGAL DATA ADDRESS Адрес данных, указанный в запросе, не доступен данному подчиненному 03h ILLEGAL DATA VALUE Величина, содержащаяся в поле данных запроса, является не допустимой величиной для ОМ-310 04h SLAVE DEVICE FAILURE Пока ОМ-310 пытался выполнить затребованное действие, произошла невосстанавливаемая ошибка 05h ACKNOWLEDGE ОМ-310 принял запрос и обрабатывает его, но это требует много времени. Этот ответ предохраняет ведущего от генерации ошибки таймаута 06h SLAVE DEVICE BUSY ОМ-310 занят обработкой команды. Ведущий должен повторить сообщение позже, когда ведомый освободится 07h NEGATIVE ACKNOWLEDGE ОМ-310 не может выполнить программную функцию, принятую в запросе
2.4.5 Дистанционное управление включением/выключением нагрузки по интерфейсу RS-232/RS-485.
Работа ОМ-310 в режиме дистанционного управления определяется параметром dUd.
При dUd=0 дистанционное управление включением/выключением нагрузки запрещено.
При dUd=1 ОМ-310 после подачи питания работает так же, как и при выключенном дистанционном управлении (нормальная работа устройства), но разрешается запись в регистр команд R_COMMAND.
При dUd=2 ОМ-310 подключит нагрузку только после поступления соответствующей команды по интерфейсу RS-232/RS-485.
Значение R_COMMAND учитывается алгоритмом работы ОМ-310 при dUd=1, dUd=2. Если dUd=0 и пользователь устанавливает dUd=1 или dUd=2, то в R_COMMAND будет записан 0.
Перечень возможных установок регистра команд приведен в табл.2.7
Таблица 2.7.
-
Регистр команд R_COMMAND Адрес = 202
Выполняемые действия 0 Отключить нагрузку. Если нагрузка отключена, то до поступления команды ДУ на включение, нагрузка не включится. Если нагрузка включена, то нагрузка будет отключена. 1 Нормальная работа устройства. Если нагрузка была отключена по команде дистанционного управления или одновременным нажатием кнопок DOWN, UP (при ACd=3) или при возникновении аварии, после которой возможно АПВ, то включение нагрузки при записи 1 в R_COMMAND произойдет через время АПВ с момента ее отключения.
2 Досрочное включение нагрузки. Запись 2 приведет к включению нагрузки до истечения времени АПВ. После включения нагрузки R_COMMAND =1.
Если dUd=1, то после включения питания в регистр команд будет записана 1 (нормальная работа устройства).
Если dUd=2, то после включения питания в регистр команд будет записан 0 (нагрузка отключена до поступления команды на включение).
При аварийном выключении нагрузки одновременным нажатием кнопок DOWN, UP (при ACd=2, ACd=3), регистр команд будет сброшен в 0.
2.4.6 Управление включением/выключением нагрузки дистанционным выключателем.
Работа ОМ-310 в режиме дистанционного управления определяется параметром dUс.
При dUс=0 управление включением/выключением нагрузки дистанционным выключателем запрещено.
При dUc=1 ОМ-310 при разомкнутом контакте дистанционного выключателя S1 рис.2.1 работает так же, как при нормальной работе устройства. При замкнутом контакте дистанционного выключателя отключается реле нагрузки (при rrS=2 кроме реле нагрузки выключится и функциональное реле).
При dUc=2 ОМ-310 при замкнутом контакте дистанционного выключателя S1 рис.2.1 работает так же, как при нормальной работе устройства. При разомкнутом контакте дистанционного выключателя отключается реле нагрузки (при rrS=2 кроме реле нагрузки выключится и функциональное реле).
Дистанционное управление включением/выключением нагрузки по интерфейсу RS-232/RS-485 и управление включением/выключением нагрузки дистанционным выключателем не могут работать одновременно.
2.4.7 Система аварийных состояний
При возникновении аварийного состояния ОМ-310:
— на индикатор мнемоники выводится код аварии в соответствии с таблицей 2.8;
— на индикатор значения выводится значение параметра, по которому возникло аварийное состояние (если данное аварийное состояние не имеет численного значения, на индикатор выводится “—“) ;
-загорается красный светодиод АВАРИЯ (постоянным светом, если АПВ не будет и мигающим, если ожидается АПВ);
-реле нагрузки выключается;
- функциональное реле включается (при rrS=0).
Если ОМ-310 определяет несколько различных типов аварий одновременно, то коды аварий и значения параметров выводятся последовательно, один за другим.
Если разрешено АПВ, то на индикатор выводятся коды аварий и время, оставшееся до АПВ.
Коды аварий
Таблица 2.8
-
Наименование аварии Мнемоника аварии Значение параметра Адрес регистра значения параметра Код аварии
Адрес регистра N бита
Отключение по превышению основного порога AP = Значение основного порога 300 0 241:0 максимальная токовая в фазах Ai = максимальный ток по фазе 301 1 241:1 от замыкания на землю (по току нулевой последовательности) Ai_ ток нулевой последовательности 302 2 241:2 по порядку чередования фаз AUЧ 3 241:3 по наличию токов при отключенном реле нагрузки (авария контактора) ACo ток 304 4 241:4 по минимальному линейному напряжению AU = напряжение 305 5 241:5 по максимальному линейному напряжению AU = напряжение 306 6 241:6 по перекосу фаз AU П перекос 307 7 241:7 по аварии канала дистанционного управления Adu 8 241:8 аварийное отключение нагрузки без возможности повторного включения EAd 9 241:9 аварийное отключение нагрузки с возможностью повторного пуска одновременным нажатием кнопок ВВЕРХ и ВНИЗ EOd 10 241:10
2.4.8 Журнал аварийных состояний
При отключении реле нагрузки в случае аварии, ОМ-310 записывает в свою память код этой аварии, значение параметра, по которому произошла авария и время ее возникновения.
Примечание. Время аварии определяется по внутренним часам ОМ. Так как ОМ-310 не имеет встроенного источника питания, то время, в течение которого на ОМ-310 не было питания, не учитывается.
Число одновременно сохраняемых кодов аварий — пять. При возникновении последующих аварий, информация об аварии записывается на место самой давней по времени аварии.
Для просмотра журнала необходимо нажать кнопку ЗАП/СБР/ВЫБ.
Светодиод УСТАНОВКА загорится в мигающем режиме, а на индикаторы ОМ-310 будет выведена первая строка из табл.2.8. Просмотр журнала осуществляется нажатием кнопок ВВЕРХ и ВНИЗ.
Для выхода из режима просмотра журнала необходимо нажать кнопку ЗАП/СБР/ВЫБ или выход произойдет автоматически через 30с после последнего нажатия на какую-либо кнопку.
Информация об аварии выводится на индикаторы ОМ-310 в виде, приведенном в табл. 2.9.
Таблица 2.9
-
Выводится на индикатор мнемоники Выводится на индикатор значения “Adi” номер записи в журнале (1-последняя запись по времени) XXX – мнемоника аварии по табл. 2.8 YYY — значение параметра по табл. 2.8 (если значение параметра нет — выводится “—“)
XXX – часы, прошедшие с момента аварии YY — минуты, прошедшие с момента аварии
2.4.9 Управление включением/выключением нагрузки с лицевой панели ОМ-310
В зависимости от значения параметра ACd , возможно управление реле нагрузки ОМ-310 одновременным нажатием кнопок ВВЕРХ и ВНИЗ (если ОМ-310 не находится в режиме блокирования клавиатуры):
ACd=0 — нет реакции;
ACd=1 (разрешено включение нагрузки) — реле нагрузки включится, если время АПВ не истекло;
ACd=2 ( аварийное выключение нагрузки) -реле нагрузки выключится с выдачей кода аварии “AAd”). Повторное включение нагрузки возможно только после обесточивания и повторной подачи питания на ОМ;
ACd=3 (разрешено включение и выключение нагрузки) — реле нагрузки отключается с выдачей кода “AOd”. Для включения необходимо повторное нажатие кнопок ВВЕРХ и ВНИЗ.
Примечание. При выборе параметра “APd=0” (после подачи питания включение нагрузки вручную с лицевой панели ОМ-310) и “ACd=0” (управление вручную включением нагрузки запрещено) реле нагрузки не включится.
3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ
3.1. Меры безопасности
При проведении технического обслуживания ОМ-310 питание должно быть отключено.
3.2 Порядок технического обслуживания
Рекомендуемая периодичность технического обслуживания — каждые шесть месяцев.
Техническое обслуживание состоит из визуального осмотра, в ходе которого проверяется надежность подсоединения проводов к клеммам ОМ-310, отсутствие сколов и трещин на его корпусе.
4. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ
ОМ-310 в упаковке производителя должны храниться в закрытых помещениях с температурой от минус 45°C до +75°C и относительной влажностью не более 80% при отсутствии в воздухе паров, вредно действующих на упаковку и материалы устройства. При транспортировании ОМ-310 потребитель должен обеспечить защиту устройства от механических повреждений.
5. СРОКИ СЛУЖБЫ, ХРАНЕНИЯ И ГАРАНТИИ ИЗГОТОВИТЕЛЯ
Срок службы ОМ-310 10 лет. По истечении срока службы обратиться к изготовителю.
Предприятие-изготовитель гарантирует безотказную работу ОМ-310 в течение трех лет после даты продажи, при условии:
— правильности подключения;
— целостности пломбы ОТК изготовителя;
- целостности корпуса, отсутствии следов вскрытия, трещин, сколов, прочее.
6. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ
Ограничитель мощности ОМ-310 ЗАВОДСКОЙ номер _____________
изготовлен и принят в соответствии с обязательными требованиями государственных стандартов,
действующей технической документации и признан годным для эксплуатации.
ДАТА ИЗГОТОВЛЕНИЯ ________________________________
НАЧАЛЬНИК ОТК ____________________
ПОДПИСЬ
ШТАМП ОТК
ДАТА ПРОДАЖИ _______________________________________
Приложение 1. Защиты по току с зависимой выдержкой времени
Данное описание аварий, неисправностей предназначено для преобразователей частоты серии Altivar 71 фирмы Schneider Electric Altivar 71.
Обнаружение ошибок осуществляется для предупреждения повреждения преобразователя частоты. Чтобы работать с ошибками частотника шнайдер фирмы Schneider Electric Altivar, в первую очередь, нужно знать назначение индикаторов терминала.
Индикация неисправностей и состояний
Коды состояний преобразователя
Коды ошибок частотников шнайдер
Сбрасываемые неисправности с функцией автоматического повторного пуска исчезновения причины их возникновения
Неисправности (предупреждения), которые сбрасываются после исчезновения их причины
Сброс ошибки частотника
Сброс неисправностей с помощью дискретного входа или кнопки
Сброс с помощью параметра
Автоматический сброс и функция [АВТОМАТИЧЕСКИЙ ПОВТОРНЫЙ ПУСК]
Заключение
Индикация неисправностей и состояний
Преобразователь оснащён выносным графическим терминалом, который монтируется поверх терминала с 7-сегментными индикаторами. Экран отображает состояние ПЧ в момент появления выбранной неисправности.
При снятом терминале на его месте видны два светодиода:
-
Зеленый светодиод: ЗПТ под напряжением.
-
Красный светодиод: неисправность.
1 – строка индикации. Первое значение в этой строке обозначает нормальное или аварийное состояние преобразователя частоты. Например, RDY обозначает готовность преобразователя к пуску. Как только появится сигнал запуска, двигатель начнет вращаться с заданной скоростью.
2 – строка меню.
3 – отображение меню, подменю, параметров, значений, барографов и т. д.
4 – отображение функций.
5 – текущее окно не продолжается вниз.
6 – текущее окно не продолжается вверх.
Если частотник выдаёт предупреждение, показывает ошибку или сигнализирует об аварии, — это ещё не значит, что причина в самом преобразователе. Неисправности могут быть связаны с выходным напряжением, температурой силового агрегата, нагрузкой или с другими характеристиками, которые контролируются логикой устройства. Самые частые аварии ПЧ связаны с перегрузкой по току, превышением или понижением напряжения.
Коды состояний преобразователя
Коды состояния преобразователя частоты это неаварийные состояния, которые могут помочь нам определить, что происходит в данный момент с преобразоватлем.
— 43.0: отображение выбранного параметра в меню SUP (по умолчанию: заданная частота)
— ACC: разгон(ускорение)
— CLI: ограничение тока
— CtL: контролируемая остановка при обрыве торможения
— dCb: динамическое торможение активно
— DEC: торможение(замедление)
— FLU: намагничивание двигателя активно
— FSt: быстрая остановка
— nSt: остановка на выбеге
— Obr: автоматическая адаптация темпа
— PrA: защитная функция блокировки ПЧ (Power Removal). Если отображается это состояние, это значит, что напряжения 24В на клемме PWR отсутствует. Имеет приоритет над любой командой пуска.
— rdY: готовность преобразователя. Преобразователь исправен и готов к работе.
— SOC: контроль обрыва на выходе ПЧ активен
— tUn: автоподстройка активна
— USA: сигнализация пониженного напряжения
— nLP: отсутствие сетевого питания (нет напряжения на клеммах L1,L2,L3). Если напряжение присутствует, то проверьте подключение дросселя постоянного тока (он должен быть подключен к клеммам РО и РА+). Если дросселя нет, то проверьте подключение перемычки между клеммами РО и РА+. Если дроссель или перемычка установлены, то это значит, что преобразователь частоты неисправен и необходим его ремонт.
Невозможно запустить преобразователь частоты без отображения неисправности.
Если у вас не получается запустить преобразователь частоты в работу, но при этом никакой аварийной сигнализации нету, возможно частотник находится в одном из следующих состояний:
-
Не подано напряжение на силовые клеммы. При отсутствии индикации нужно убедиться в том, что ПЧ действительно запитан.
-
Не подан сигнал на дискретных входах, которые назначены на специализированные функции. Назначение функций «Быстрая остановка» или «Остановка на выбеге» делает невозможным пуск привода если сигнал на соответствующих дискретных входах отсутствует. Преобразователь ATV71 отображает [NST] (nSt) при назначенной остановке на выбеге. Состояние [FST] (FSt) отображается при быстрой остановке. Это нормальное поведение ПЧ, т.к. данные функции активны в нуле для получения безопасной остановки привода в случае обрыва провода.
-
Подключение цепей управления сделано не в соответствии с настроенными параметрами. Убедитесь, что вход или входы управления пуском приводятся в действие в соответствии с выбранным режимом управления (параметры [2/3-проводное управление] (tCC) и [Тип 2-проводного управления] (tCt)).
-
Настроена функция «Управление окончанием хода» или «Позиционирование по конечным выключателям». Если один из входов назначен на функцию Окончание хода (LAF, LAr, SAF, SAr) и находится в состоянии 0, то пуск привода возможен только при подаче команды на вращение в противоположном направлении.
-
Настроено управление по интерфейсу. Если канал управления или задания назначен на коммуникационную связь, то при подаче сетевого питания ПЧ отображает [NST] (nSt) и остается заблокированным до прихода команды по сети.
При возникновении неисправности на дисплее отображается мигающий код.
Коды ошибок частотников шнайдер
Ниже приведен обзор ошибок, возможные причины и процедуры проверки:
-
AI2F – неиспр. входа AI2. Возможная причина: несогласованный сигнал на входе AI2. Процедура проверки: проверьте подключение аналогового входа AI2 и величину сигнала
-
AnF – вращение в обратном направлении. Возможная причина: нет соответствия между сигналом импульсного датчика и задающим сигналом. Процедура проверки: проверьте параметры двигателя, усиление и устойчивость. Добавьте тормозное сопротивление. Проверьте выбор системы ПЧ-двигатель-нагрузка. Проверьте механическое соединение импульсного датчика и его подключение
-
bOF – перегрузка тормозного сопротивления. Возможная причина: Чрезмерная нагрузка тормозного сопротивления. Процедура проверки: Проверьте выбор тормозного сопротивления и дождитесь его охлаждения. Проверьте параметры [Мощность тормозного сопротивления] (brP) и [Величина тормозного сопротивления] (brU), стр. 231
-
brF – неисправность тормоза. Возможная причина: Состояние контакта тормоза не соответствует команде управления тормозом, двигатель не останавливается достаточно быстро при наложении тормоза (контроль измерения скорости на импульсном входе Процедура проверки: Проверьте цепи обратной связи и управления тормозом. Проверьте механическое состояние тормоза. Проверьте тормозные колодки
-
bUF – короткое замыкание тормозного модуля. Возможная причина: Короткое замыкание на выходе тормозного модуля. Тормозной модуль не подключен. Процедура проверки: Проверьте подключение тормозного модуля и сопротивления. Проверьте тормозное сопротивление. Контроль этой неисправности должен быть отключен параметром [Защита тормозного модуля] (bUb), стр. 231, если тормозное сопротивление или тормозной модуль не подключены к ПЧ мощностью свыше 55 кВт для ATV71pppM3X и свыше 90 кВт для ATV71pppN4
-
CrF1 – неисправность работы цепи предварительного заряда. Возможная причина: Неисправность управления зарядного реле или повреждение сопротивления. Процедура проверки: Отключите и вновь включите ПЧ. Проверьте внутренние соединения. Осмотрите/отремонтируйте ПЧ
-
CrF2 – неисправность зарядного теристора. Возможная причина: Неисправность тиристорной цепи заряда ЗПТ. Процедура проверки: Отключите и вновь включите ПЧ. Проверьте внутренние соединения. Осмотрите/отремонтируйте ПЧ
-
ECF – повреждение механического соединения датчика. Возможная причина: Повреждение механического соединения датчика. Процедура проверки: Проверьте механическое соединение датчика.
-
EEF1 – ошибка EEPROM управления. Возможная причина: Неисправность внутренней
-
памяти карты управления. Процедура проверки: Проверьте окружение (ЭМС). Отключите и включите питание, возвратитесь к заводской настройке EEF2. Осмотрите/отремонтируйте ПЧ.
-
EEF2 – ошибка EEPROM мощности. Возможная причина: Неисправность внутренней памяти силовой карты. Процедура проверки: Проверьте окружение (ЭМС). Отключите и включите питание, возвратитесь к заводской настройке EEF2. Осмотрите/отремонтируйте ПЧ
-
EnF – неисправность датчика. Возможная причина: Неисправность обратной связи импульсного датчика. Процедура проверки: Проверьте параметры [Число импульсов] (PGI) и [Тип датчика] (EnS), стр. 75. Проверьте механическое и электрическое соединение датчика, его питание и подключение. Проверьте и при необходимости измените направление вращения двигателя, параметр ([Порядок чередования фаз] (PHr), стр. 68) или сигналы датчика
-
FCF1 – выходной контактор залип. Возможная причина: Выходной контактор остается включенным, когда условия для его отключения выполнены. Процедура проверки: Проверьте контактор и его подключение. Проверьте его цепь обратной связи
-
HdF – недонасыщение IGBT. Возможная причина: Короткое замыкание или
-
замыкание на землю на выходе ПЧ. Процедура проверки: Проверьте соединительные кабели между ПЧ и двигателем и изоляцию двигателя. Проведите диагностику с помощью меню [1.10 ДИАГНОСТИКА]
-
ILF – ошибка внутренней связи 1. Возможная причина: Коммуникационная неисправность
-
между дополнительной картой и ПЧ. Процедура проверки: Проверьте окружение (ЭМС). Проверьте подключения. Убедитесь, что установлено не более 2 дополнительных карт в ПЧ (макс. разрешенное количество). Замените дополнительную карту. Осмотрите/отремонтируйте ПЧ.
-
InF1 – силовая карта отличается от той, что была раннее сохранена. Возможная причина: Силовая карта отличается от той, которая была сохранена. Процедура проверки: Проверьте каталожный номер силовой карты.
-
InF2 – несовместимость карт. Возможная причина: Силовая карта несовместима с
-
картой управления. Процедура проверки: Проверьте каталожный номер силовой карты и ее совместимость.
-
InF3 – ошибка внутренней связи 2. Возможная причина: коммуникационная неисправность между внутренними картами. Процедура проверки: Проверьте внутренние соединения. Осмотрите/отремонтируйте ПЧ
-
InF4 – внутренняя неисправность. Возможная причина: Несовпадение внутренних данных. Процедура проверки: Перекалибруйте ПЧ (обратитесь в сервисную службу SE)
-
InF6 – внутренняя карта. Возможная причина: Установленное дополнительное оборудование не идентифицируется. Процедура проверки: Проверьте каталожный номер и совместимость оборудования
-
InF7 – внутренняя инициализация. Возможная причина: Неполная инициализация привода. Процедура проверки: Отключите и включите питание
-
InF8 – внутреннее питание управления. Возможная причина: неверное питание цепей управления. Процедура проверки: проверьте питание цепей управления
-
InF9 – внутреннее измерение тока. Возможная причина: Неверное измерение тока. Процедура проверки: Замените датчики тока или силовую карту. Осмотрите/отремонтируйте ПЧ
-
InFA – внутреннее питание. Возможная причина: Входной каскад работает неверно. Процедура проверки: Проведите диагностику с помощью меню [1.10 ДИАГНОСТИКА]. Осмотрите/отремонтируйте ПЧ
-
InFb – датчик температуры. Возможная причина: Датчик температуры ПЧ работает неверно. Датчик температуры тормозного модуля работает неверно. Процедура проверки: Замените датчик температуры ПЧ. Осмотрите/отремонтируйте ПЧ. Замените датчик температуры тормозного модуля. Осмотрите/отремонтируйте тормозной модуль. Контроль этой неисправности должен быть отключен параметром [Защита тормозного модуля] (bUb), стр. 231, если тормозной модуль не подключен к ПЧ
-
InFC – неисправность таймера. Возможная причина: Аппаратная неисправность
-
измерения времени. Процедура проверки: Осмотрите/отремонтируйте ПЧ.
-
InFE – неисправность микропроцессора. Возможная причина: Неисправность внутреннего
-
Микропроцессора. Процедура проверки: Отключите и включите питание. Осмотрите/отремонтируйте ПЧ
-
OCF – перегрузка. Возможная причина: Неверные параметры в меню [НАСТРОЙКА] (SEt-) и [1.4 ПРИВОД] (drC-). Слишком большая нагрузка или момент инерции. Механическая блокировка. Процедура проверки: Проверьте параметры, проверьте выбор системы ПЧ-двигатель-нагрузка, проверьте механическое соединение.
-
PrF – неисправность защитной функции. Возможная причина: Неисправность защитной функции блокировки ПЧ. Процедура проверки: Осмотрите/отремонтируйте ПЧ.
-
SCF1 – короткое замыкание (К.З) на выходе ПЧ. Возможная причина: Короткое замыкание или замыкание на землю на выходе ПЧ. Процедура проверки: Проверьте соединительные кабели между ПЧ и двигателем и изоляцию двигателя. Проведите диагностику с помощью меню [1.10 ДИАГНОСТИКА]. Уменьшите частоту коммутации. Добавьте индуктивность последовательно с двигателем
-
SCF2 – К.З. двигателя. Возможная причина: Короткое замыкание или замыкание на землю на выходе ПЧ. Процедура проверки: Проверьте соединительные кабели между ПЧ и двигателем и изоляцию двигателя. Проведите диагностику с помощью меню [1.10 ДИАГНОСТИКА]. Уменьшите частоту коммутации. Добавьте индуктивность последовательно с двигателем
-
SCF3 – К.З. на землю. Возможная причина: Большой ток утечки на землю на выходе ПЧ при параллельном подключении нескольких двигателей. Процедура проверки: Проверьте соединительные кабели между ПЧ и двигателем и изоляцию двигателя. Проведите диагностику с помощью меню [1.10 ДИАГНОСТИКА]. Уменьшите частоту коммутации. Добавьте индуктивность последовательно с двигателем
-
SOF – Превышение скорости. Возможная причина: Неустойчивость или слишком большая приводная нагрузка. Процедура проверки: проверьте наличие двигателя при автоподстройке. При использовании выходного контактора замкните его при проведении автоподстройки. Проверьте соответствие системы ПЧ-двигатель. Проверьте настройку функции [ЧАСТОТОМЕР] (FqF-),стр. 228, если она сконфигурирована
-
SPF – обрыв обратной связи по скорости. Возможная причина: Нет сигнала импульсного датчика; отсутствие сигнала на импульсном входе при его использовании для измерения скорости. Процедура проверки: проверьте соединение между импульсным датчиком и преобразователем; проверьте импульсный датчик; проверьте соединение между входом и используемым датчиком
-
tnF – ошибка автоподстройки. Возможная причина: Двигатель не подключен, специальный двигатель или мощность двигателя не соответствует мощности ПЧ. Процедура проверки: проверьте наличие двигателя при автоподстройке; при использовании выходного контактора замкните его при проведении автоподстройки; проверьте соответствие системы ПЧ-двигатель
Сбрасываемые неисправности с функцией автоматического повторного пуска исчезновения причины их возникновения:
-
APF – [APPLICATION FAULT]. Возможная причина: неисправность карты ПЛК. Процедура проверки: См. документацию, поставляемую с картой ПЛК.
-
bLF – [BRAKE CONTROL]. Возможная причина: Ток снятия тормоза не достигнут: параметры управления тормозом не настроены при активной функции управления тормозом. Процедура проверки: проверьте подключение системы ПЧ-двигатель; проверьте обмотки двигателя; Выполните рекомендуемые настройки (см. документацию на компакт-диске, поставляемом с ПЧ).
-
CnF – [NETWORK FAULT]. Возможная причина: неисправность связи с коммуникационной картой. Процедура проверки: проверьте окружение (ЭМС); проверьте обмотки двигателя; проверьте тайм-аут; замените дополнительную карту; осмотрите/отремонтируйте ПЧ
-
COF – [CANopen FAULT]. Возможная причина: обрыв связи по шине CANopen. Процедура проверки: проверьте коммуникационную линию; проверьте тайм-аут; обратитесь к специальной документации
-
EPF1 – [EXTERNAL FAULT LI]. Возможная причина: неисправность, вызываемая внешним устройством, зависящим от применения. Процедура проверки: проверьте устройство, вызывающее неисправность, и перезапустите ПЧ
-
EPF2 – [EXTERNAL FAULT NET]. Возможная причина: неисправность, вызываемая по сети
-
Процедура проверки: проверьте причину неисправности и перезапустите ПЧ
-
FCF2 – [OUT. CONTACT.OPEN]. Возможная причина: выходной контактор остаётся отключенным, когда условия для его включения выполнены. Процедура проверки: проверьте контактор и его подключение; проверьте его цепь обратной связи
-
LCF – [INPUT CONTACTOR]. Возможная причина: ПЧ не под напряжением, когда контактор уже управляется. Процедура проверки: проверьте контактор и его подключение; проверьте тайм-аут (см. документацию на компакт-диске, поставляемом с ПЧ); проверьте подключение сеть контактор-ПЧ
-
LFF2 – [4-20 mA LOSS AI2], LFF3 [4-20 mA LOSS AI3], LFF4 [4-20 mA LOSS AI4]. Обрыв задания 4-20 мA
-
на входах AI2, AI3 или AI4. Процедура проверки: проверьте подключение на входах
-
ObF – [OVERBRAKING]. Возможная причина: Слишком быстрое торможение или активная приводная нагрузка. Процедура проверки: увеличьте время торможения; подключите, если это необходимо, тормозной модуль и сопротивление; активизируйте функцию [Адаптация темпа торможения] (brA), если она совместима с применением, см. документацию на компакт-диске, поставляемом с ПЧ
-
OHF – [DRIVE OVERHEAT]. Возможная причина: слишком высокая температура преобразователя. Процедура проверки: проверьте нагрузку двигателя, вентиляцию ПЧ, его окружение и дождитесь его охлаждения для перезапуска
-
OLF – [MOTOR OVERLOAD]. Возможная причина: срабатывание тепловой защиты из-за
-
длительной перегрузки. Процедура проверки: проверьте настройку тепловой защиты, нагрузку двигателя и дождитесь его охлаждения для перезапуска.
-
OPF1 – [1 MOTOR PHASE LOSS]. Возможная причина: обрыв фазы на выходе ПЧ. Процедура проверки: проверьте подключение ПЧ к двигателю.
-
OPF2 – [3 MOTOR PHASE LOSS]. Возможная причина: Двигатель не подключен или слишком низкое напряжение; выходной контактор отключен; динамические колебания тока двигателя. Процедура проверки: Проверьте подключение ПЧ к двигателю; в случае использования выходного контактора см. документацию на компакт-диске, поставляемом с ПЧ; тестирование с двигателем небольшой мощности или без него: при заводской настройке контроль обрыва выходной фазы активен [Обрыв выходной фазы] (OPL) = [Yes] (YES). Для проверки ПЧ при тестировании или обслуживании без необходимости использования двигателя требуемой мощности (в особенности для ПЧ большой мощности) отключите контроль обрыва фазы двигателя [Обрыв выходной фазы] (OPL) = [No] (nO), см. документацию на компакт-диске, поставляемом с ПЧ; Проверьте и оптимизируйте параметры: [Ном. напряжение двигателя] (UnS), [Ном. ток двигателя] (nCr) и [Автоподстройка] (tUn)
-
OSF – [MAINS OVERVOLTAGE]. Возможная причина: очень высокое напряжение питания, сетевые возмущения. Процедура проверки: проверьте напряжение сети
-
OtF1 – [PTC 1 OVERHEAT]. Возможная причина: Обнаружен перегрев терморезисторов PTC1. Процедура проверки: Проверьте нагрузку и выбор двигателя, проверьте вентиляцию двигателя, дождитесь охлаждения двигателя перед повторным пуском, проверьте тип и состояние терморезисторов PTC.
-
OtF2 – [PTC 2 OVERHEAT]. Возможная причина: обнаружен перегрев терморезисторов PTC2. Процедура проверки – такая же, как в OtF1
-
OtFL – [PTC=LI6 OVERHEAT]. Возможная причина: обнаружен перегрев терморезисторов PTC/LI6. Процедура проверки – такая же, как в OtF1
-
PtF1 – [PTC1 FAILURE]. Возможная причина: Терморезисторы PTC1, обрыв или к.з. Процедура проверки: Проверьте терморезисторы PTC и их подключение к ПЧ и двигателю
-
PtF2 – [PTC2 FAILURE]. Возможная причина: терморезисторы PTC2, обрыв или к.з. Проверьте терморезисторы PTC и их подключение к ПЧ и двигателю
-
PtFL – [PTC=LI6 FAILURE]. Возможная причина: терморезисторы PTC/ LI6, обрыв или к.з. Проверьте терморезисторы PTC и их подключение к ПЧ и двигателю
-
SCF4 – [IGBT SHORT CIRCUIT]. Возможная причина: Неисправность силового модуля • Процедура проверки: Осмотрите/отремонтируйте ПЧ
-
SCF5 – [LOAD SHORT CIRCUIT]. Возможная причина: Короткое замыкание или замыкание на выходе ПЧ. Процедура проверки: Проверьте соединительные кабели между ПЧ и двигателем и изоляцию двигателя, осмотрите/отремонтируйте ПЧ
-
SLF1 – [MODBUS COMS FAULT] Возможная причина: Обрыв связи по шине Modbus. Процедура проверки: проверьте коммуникационную линию, проверьте тайм-аут, обратитесь к специальной документации
-
SLF2 – Ошибка PowerSuite. Возможная причина: Неисправность связи с PowerSuite. Процедура проверки: Проверьте соединительный кабель PowerSuite. Проверьте тайм-аут.
-
SLF3 – Ошибка Modbus Терминал. Возможная причина: Неисправность связи с графическим терминалом. Процедура проверки: Проверьте подключение терминала. Проверьте тайм-аут
-
SrF – Тайм-аут момента. Возможная причина: Тайм-аут функции контроля
-
достижения момента. Процедура проверки: Проверьте настройку функции. Проверьте состояние механизма.
-
SSF – Ошибка ограничения. Возможная причина: Переход к ограничению момента. Процедура проверки: Проверьте возможное наличие проблем с механизмом • Проверьте параметры [ОГРАНИЧЕНИЕ МОМЕНТА] (tLA-) стр. 182 и параметры неисправности [Контроль ограничения тока/момента] (tId-), стр. 226).
-
tJF – Перегрев IGBT. Возможная причина: Перегрузка ПЧ. Процедура проверки: Проверьте выбор системы Нагрузка-двигатель-ПЧ. Уменьшите частоту коммутации. Дождитесь охлаждения двигателя перед повторным пуском
Неисправности (предупреждения), которые сбрасываются после исчезновения их причины:
-
CFF – неправильная конфигурация. Возможная причина: Текущая конфигурация неправильна (ошибка, вызванная заменой карты). Процедура проверки: Проверьте карту; возвратитесь к заводским настройкам или загрузите ранее сохраненную подходящую конфигурацию. См. документацию на компакт-диске, поставляемом с ПЧ
-
CFI – неработоспособная конфигурация. Возможная причина: Ошибочная конфигурация; Загруженная по сети конфигурация не соответствует ПЧ. Процедура проверки: Проверьте ранее загруженную конфигурацию; Загрузите подходящую конфигурацию
-
dLF – изменение нагрузки. Возможная причина: Аварийное изменение нагрузки. Процедура проверки: убедитесь, что груз не заблокирован преградой; сброс осуществляется снятием команды пуска
-
HCF – блокировка карт. Возможная причина: функция [Блокировка карт] (PPI-), стр. 232, была сконфигурирована и одна из карт была заменена. Процедура проверки: убедитесь, что груз не заблокирован преградой; сброс осуществляется снятием команды пуска
-
PHF – обрыв входной фазы. Возможная причина: неверное питание или сгоревшие предохранители; Обрыв одной фазы; Использование однофазного питания для трехфазного ПЧ ATV71; Несбалансированная нагрузка. Эта защита действует только при нагрузке. Процедура проверки: проверьте подключение, питание и предохранители; Приведите в исходное состояние; Используйте трехфазное питание; Заблокируйте неисправность [Обрыв входной фазы] (IPL) = [No] (nO), стр. 20
-
USF – недонапряжение. Возможная причина: слишком слабая сеть; кратковременное снижение питания; неисправность зарядного сопротивления. Процедура проверки: проверьте напряжение сети и настройку параметра ном. напряжения UnS; замените сопротивление предварительного заряда; осмотрите/отремонтируйте ПЧ
Для подробного описания ошибок воспользуйтесь документацией «Руководство по программированию» раздел «Неисправности, причины и способы устранения», стр. 261-166).
Сброс ошибки частотника
Отключите ПЧ от сети в случае неустранимой неисправности. Дождитесь полного погасания дисплея. Найдите причину неисправности и устраните ее.
Разблокировка ПЧ после исчезновения причины неисправности осуществляется следующими способами:
-
путем отключения ПЧ до полного погасания экрана и повторного включения питания;
-
автоматически в случаях, описанных в функции [АВТОМАТИЧЕСКИЙ ПОВТОРНЫЙ ПУСК] (Atr-);
-
с помощью дискретного входа или бита управления, назначенного для функции [СБРОС НЕИСПРАВНОСТЕЙ] (rSt-);
-
нажатием на клавишу STOP/RESET на графическом терминале.
Сброс неисправностей с помощью дискретного входа или кнопки
Неисправности сбрасываются при переходе назначенного дискретного входа или бита в состояние 1, если причина неисправности исчезла. Клавиша STOP/RESET на графическом терминале выполняет эту же функцию. См. перечень неисправностей, сбрасываемых вручную в главе «коды ошибок».
Сброс с помощью параметра
Параметр [Сброс устройства] (rP) доступен только при назначении параметра [УРОВЕНЬ ДОСТУПА] = [Экспертный]. Позволяет сбросить все неисправности без выключения преобразователя/
ВНИМАНИЕ! Убедитесь, что причина неисправности, которая привела к блокировке ПЧ, устранена перед приведением ПЧ в исходное состояние. При несоблюдении этого предупреждения возможен выход оборудования из строя.
Автоматический сброс и функция [АВТОМАТИЧЕСКИЙ ПОВТОРНЫЙ ПУСК]
Функция позволяет осуществить автоматический повторный пуск при исчезновении неисправности, если другие условия работы обеспечивают такую возможность. Повторный пуск осуществляется автоматически последовательной серией попыток. Подробнее читайте в руководстве по программированию, функция [АВТОМАТИЧЕСКИЙ ПОВТОРНЫЙ ПУСК] (Atr-)
Заключение
Для более быстрой диагностики неисправности зафиксируйте следующую информацию:
-
при каких событиях произошла неисправность
-
коды состояний и аварий, которые отображаются на дисплее
-
как часто появляются эти аварийные сообщения
Неквалифицированные действия могут привести к выходу из строя преобразователя частоты или увеличить стоимость и сроки ремонта.
Обратитесь в наш сервисный центр, если не удалось самостоятельно разобраться с проблемой. Проконсультируем по телефону бесплатно. Диагностику проводим бесплатно от 1 дня.
Ошибки частотного преобразователя Шнайдер
Частотные преобразователи относятся к сложной промышленной электронике достаточно дорогой и в тоже время широко распространенной по всему миру. На сегодняшний день трудно себе даже представить какое-либо производство, на котором бы не работало данное промышленное оборудование.
К сожалению, в процессе эксплуатации выходит из строя даже самое надежное промышленное оборудование. В данной статье мы разберем частотный преобразователь Шнайдер, точнее ошибки частотного преобразователя Schneider ATV320, коды ошибок и их расшифровка. Частотники в наше время нашли широкое применения в абсолютно всех сферах промышленности управляя как мини моторами в оргтехнике, так и гигантскими двигателями в горнодобывающей промышленности.
Для простоты общения со столь сложной электроникой все частотные преобразователи оснащены небольшими дисплеями с помощью которых выводятся информационные сообщения с кодами ошибок, расшифровав которые можно сразу же узнать причину ее возникновения. Если учесть распространенность данной промышленной электроники, то появляется острая нужда в расшифровке кодов ошибок частотных преобразователей.
Существует несколько видов ошибок, некоторые из них можно устранить автоматически, а некоторые возможно исправить только, обратившись в специализированный сервисный центр.
Ниже приведены все возможные ошибки частотного преобразователя Schneider ATV320 и их расшифровка.
Коды ошибок частотного преобразователя Schneider и их расшифровка.
В таблицах ниже приведены все коды ошибок частотного преобразователя Schneider и их расшифровка, то есть причина по которой возникла та или иная ошибка.
Коды ошибок частотного преобразователя Schneider ATV320, приведенные в таблице ниже, сбрасываются путем отключения питания.
Внимание, для предотвращения рецидива необходимо устранить причину сбоя и только после этого выключить, и заново включить преобразователь частоты.
Обнаруженная ошибка | Название | Вероятная причина | Средство |
---|---|---|---|
AnF |
[Load slipping] |
|
|
ASF |
[Angle Error] |
|
|
brF |
[Brake feedback] |
|
|
CrF1 |
[Precharge] |
|
|
EEF1 |
[Control Eeprom] |
|
|
EEF2 |
[Power Eeprom] |
|
|
FCF1 |
[Out. contact. stuck] |
|
|
HdF |
[IGBT desaturation] |
|
|
ILF |
[internal com. link] |
|
|
InF1 |
[Rating error] |
|
|
InF2 |
[Incompatible PB] |
|
|
InF3 |
[Internal serial link] |
|
|
InF4 |
[Internal-mftg zone] |
|
|
InF6 |
[Internal — fault option] |
|
|
InF9 |
[Internal- I measure] |
|
|
InFA |
[Internal-mains circuit] |
|
|
InFb |
[Internal- th. sensor] |
|
|
InFE |
[internal- CPU ] |
|
|
SAFF |
[Safety fault] |
|
|
SOF |
[Overspeed] |
|
|
SPF |
[Speed fdback loss] |
|
|
Коды ошибок частотного преобразователя Schneider ATV320, которые после устранения причины можно сбросить при помощи функции автоматического перезапуска.
Обнаруженная ошибка | Название | Вероятная причина | Средство |
---|---|---|---|
bLF |
[Brake control] |
|
|
CnF |
[Com. network] |
|
|
COF |
[CANopen com.] |
|
|
EPF1 |
[External flt-LI/Bit] |
|
|
EPF2 |
[External fault com.] |
|
|
FbES |
[FB stop flt.] |
|
|
FCF2 |
[Out. contact. open.] |
|
|
LCF |
[input contactor] |
|
|
LFF3 |
[AI3 4-20mA loss] |
|
|
ObF |
[Overbraking] |
|
|
OCF |
[Overcurrent] |
|
|
OHF |
[Drive overheat] |
|
|
OLC |
[Proc. overload flt] |
|
|
OLF |
[Motor overload] |
|
|
OPF1 |
[1 output phase loss] |
|
|
OPF2 |
[3 motor phase loss] |
|
|
OSF |
[Mains overvoltage] |
|
|
OtFL |
[LI6=PTC overheat] |
|
|
PtFL |
[LI6=PTC probe] |
|
|
SCF1 |
[Motor short circuit] |
|
|
SCF3 |
[Ground short circuit] |
|
|
SCF4 |
[IGBT short circuit] |
|
|
SCF5 |
[Motor short circuit] |
|
|
SLF1 |
[Modbus com.] |
|
|
SLF2 |
[PC com.] |
|
|
SLF3 |
[HMI com.] |
|
|
SSF |
[Torque/current lim] |
|
|
tJF |
[IGBT overheat] |
|
|
tnF |
[Auto-tuning] |
|
|
ULF |
[Proc. underload Flt] |
|
|
Коды ошибок частотного преобразователя Schneider ATV320, которые очищаются автоматически, сразу после исчезновения причины их появления.
Обнаруженная ошибка | Название | Вероятная причина | Средство |
---|---|---|---|
CFF |
[Incorrect config.] |
|
|
CFI CFI2 |
[Invalid config.] |
|
|
CSF |
[Ch. Sw. fault] |
|
|
dLF |
[Dynamic load fault] |
|
|
FbE |
[FB fault] |
|
|
HCF |
[Cards pairing] |
|
|
PHF |
[Input phase loss] |
|
|
USF |
[Undervoltage] |
|
|
Коды ошибок частотного преобразователя Schneider ATV320, отображаемых на удаленном терминале дисплея.
Код | Название | Описание |
---|---|---|
InIt |
[Initialization in progress] |
Инициализация микроконтроллера. Выполняется поиск конфигурации связи. |
COM.E |
[Communication error] |
Время обнаружения неисправности (50 мс). Это сообщение отображается после 20 попыток связи. |
A-17 |
[Alarm button] |
Клавиша удерживается более 10 секунд. Клавиатура отключена. Клавиатура просыпается при нажатии клавиши. |
CLr |
[Confirmation of detected fault reset] |
Это отображается, когда кнопка STOP нажимается один раз, если активный командный канал является удаленным терминалом дисплея. |
dEU.E |
[Drive disparity] |
Марка ПЧ не соответствует названию удаленного терминала дисплея. |
rOM.E |
[ROM anomaly] |
Терминал удаленного терминала обнаруживает аномалию ПЗУ на основе расчета контрольной суммы. |
rAM.E |
[RAM anomaly] |
Терминал удаленного терминала обнаруживает аномалию RAM. |
CPU.E |
[Other detected faults] |
Другие обнаруженные неисправности. |
Сброс ошибок и Ремонт частотников в сервисном центре
Компания «Кернел» производит ремонт промышленной электроники и оборудования с 2002 года. За это время мы накопили колоссальный опыт в том числе опыт в ремонте частотных преобразователей Schneider ATV320. Ремонт подобной промышленной электроники ответственное и сложное занятие, требующие максимальной отдачи, профессионализма и максимально полной материальной базе.
Специалисты нашего сервисного центра уделяют максимальное внимание к качеству исполнения ремонта, программирования и настройке промышленного преобразователя частоты, не зависимо от производителя данного промышленного оборудования. Именно поэтому мы смело даем гарантию на все выполненные работы шесть месяцев.
Ремонт промышленной электроники производится исключительно с использованием оригинальных запасных частей, на компонентном уровне с применением высокотехнологичного оборудования, квалифицированным персоналом с инженерным образованием.
Если на вашем производстве появились проблемы с частотным преобразователем, которые вы не можете решить самостоятельно, мы всегда рады вам помочь. Обращайтесь в сервисный центр «Кернел». Специалисты нашей компании в минимальные сроки проведут глубокую диагностику и последующий ремонт частотного преобразователя. Оставьте заказ на ремонт оборудования используя форму на сайте, либо свяжетесь с нашими менеджерами, сделать это очень просто.
Как с нами связаться
У вас остались вопросы, связанные с ремонтом, программированием и настройкой частотного преобразователя Schneider ATV320? Задайте их нашим менеджерам. Связаться с ними можно несколькими способами:
- Заказав обратный звонок (кнопка в правом нижнем углу сайта)
- Посредством чата (кнопка расположена с левой стороны сайта)
- Либо позвонив по номеру: +7(8482) 79-78-54; +7(917) 121-53-01
- Написав на электронную почту: 89171215301@mail.ru
Далеко не полный список производителей промышленной электроники и оборудования, ремонтируемой в нашей компании.
Особенности конструкции приводов Danfoss Drives гарантируют безопасную эксплуатацию оборудования и механизмов. Частотные преобразователи марки VLT используют новейшее программное обеспечение и датчики для мониторинга состояния компонентов системы и контроля эффективности выполняемых задач.
Возможности оповещения и реагирования
При любом отклонении от заложенных параметров и алгоритмов появляется аварийное сообщение в виде кода ошибки. Предупреждающий сигнал отражается на дисплее. При подключении устройств к системе диспетчеризации на панели оператора появляется дублирующее оповещение.
Светодиод красного цвета дополнительно укажет на незначительное происшествие. Чтобы снять такое предупреждение, достаточно нажать клавишу Reset. Критические аварийные ситуации отмечаются двумя цветами – желтым и красным. Сообщения с блокировкой сбрасываются лишь перезапуском питания. Чтобы сбросить предупредительный сигнал, предусмотрены ручной и автоматический режимы. Функциональные возможности устройства допускают программный сброс.
Часто обслуживающий персонал либо неверно интерпретирует аварийные сообщения, либо игнорирует их вовсе. Распространено мнение, что если частотный преобразователь продолжает работать, то риски аварии преувеличены. Тем более что предусмотрен механизм сброса таких сообщений. Но производитель рекомендует прежде установить причину и устранить ее, а потом сбрасывать.
Что такое коды ошибок?
Чтобы оператору было удобно воспринимать ошибки, возникающие проблемы сгруппированы и пронумерованы. Именно номера появляются при формировании аварийных сообщений. Таких кодов существует несколько десятков, и описание каждого есть в инструкции по эксплуатации с объяснением причин и методов их устранения.
Частотные преобразователи сохраняют в аварийном журнале время оповещения. К тому же они фиксируют основные параметры в режиме реального времени: установку, напряжение по шине DC, частоту, ток и другие.
Рассмотрим примеры кодов основных ошибок, которые влияют на работоспособность частотных преобразователей и электродвигателей, а также возможности устранения проблем с ними.
Код «14» – пробой в заземлении
Наиболее распространенное сообщение об аварийной ситуации – превышение токов утечки на «землю». Обозначается кодом «14». Алгоритм распознавания формируется по показателям из 3 датчиков тока на выходе. Если заземление установлено верно, сумма этих значений с учетом фаз должна равняться нулю. Эта математическая модель допускает небольшое отклонение из-за смещения нуля у прибора. Если же превышение составит 25–30 % от номинального тока (с учетом мощности), система оповестит об этом.
Причин проблем с заземлением может быть множество, и быстро определить, что произошло, сложно. Зачастую это связано с попаданием пыли и влаги в датчик тока. У датчика может случиться смещение нуля до 10 % от номинальных значений: чтобы его откалибровать, в выключенном состоянии следует одновременно нажать клавиши «Меню», «ОК» и «Статус», после чего подать питание. Если неисправность не устраняется, обратитесь в ближайший сервисный центр.
Токи утечки могут возникать и в моторном кабеле. Например, экранированный провод обязательно заземляют, даже в нескольких местах (в зависимости от длины). Частой причиной утечек являются большие значения сопротивления заземления, реже – поломки самого преобразователя частоты. Нужно проверить, не отходят ли разъемы у шлейфа или кабеля. Целостность изоляции можно проконтролировать при помощи мегомметра.
Если самостоятельно выполнить работу невозможно, обратитесь к сервисным партнерам «Данфосс».
Код «29» – перегрев
Одним из критичных аварийных сообщений является код «29», когда превышается температура радиатора. Различные модели частотных преобразователей имеют собственный порог перегрева, что указано в технической документации. Максимальное рабочее значение – 105 °C. Температурные датчики расположены на радиаторе или встроены в IGBT-модули. Если имеются подозрения на неисправность датчиков, проверьте сигнал и качество контактов.
В тяжелых условиях эксплуатации радиатор и фильтры засоряются, что приводит к снижению КПД системы охлаждения. Кроме того, перегрев может быть вызван банальным отказом вентилятора. Исправят ситуацию очистка и замена вентилятора.
Часто при монтаже остаются незаделанными отверстия входа кабелей или вообще отсутствует нижняя крышка, в результате чего нарушаются охлаждающие воздушные потоки. Чтобы все это быстро исправить, следует выполнить герметизацию вводов и поставить на место панель.
Сложнее, когда неправильно рассчитано отведение тепла из шкафа автоматики. Разработчики Danfoss Drives составили специальные таблицы для помощи проектировщикам с информацией по каждому габариту привода. Если температура превысит 130 °C, тест внутреннего источника питания покажет, что лимиты по напряжению превышены. У частотных преобразователей от 110 кВт это может быть связано с отсутствием соответствующей перемычки на силовой плате или плохим контактом.
Другие ошибки:
- Код «04» – обрыв фазы питания. Эту ошибку устройство выдает при больших или малых колебаниях на шине постоянного тока. На протяжении каждых 300 мс привод измеряет колебания напряжения, если они превышают 50 В, то специальный счетчик устраняет это.
- Код «07» – превышение значений DC-шины. Повышенное входное напряжение опасно при увеличении генераторных нагрузок на привод. Проблема решается тормозными резисторами, «рассеивающими» лишнюю энергию.
- Код «08» – малое напряжение. Это может быть связано с низким входным напряжением либо отказом контура зарядки привода.
- Код «13» – перегрузки по току. Сигнал поступает, когда номинальный ток достигает 200 %. Это связано с отсутствием настроек с номиналами на электродвигателе. Кроме того, перегрузку могут вызвать резкие всплески или провалы напряжения на входе.
- Код «01» – снижение напряжения источника до 10 В. Во время проектирования или монтажа иногда допускают, что внутренний источник питания у преобразователя очень большой. Поэтому могут подключать дополнительное оборудование, например, ту же электрическую лампочку. Однако преобразователь рассчитан на питание только собственных элементов, поэтому следует определить непредусмотренных потребителей и снизить нагрузку.
- Код «09» – температура инвертора. Привод рассчитывает нагрузку на транзисторы, считает математическую модель и проверяет ее на соответствие стандартной. Если температура превысит заданные значения, произойдет оповещение.
- Код «10» – температура двигателя. Перегрев может происходить при повышении нагрузки и несоответствии задач параметрам мотора.
- Код «12» – предел по моменту. Нужно проверить параметры электродвигателя, зафиксированные при настройках, а также механическую нагрузку.
- Код «45» – пробой на землю, возникающий после команды «Старт». Обычно происходит при подключении не к тем клеммам моторного и питающего кабеля.
- Коды «50-58» – свидетельствуют о наличии проблем с автоматической адаптацией к двигателю (ААД).
- Код «38» – внутренние неисправности. Часто они связаны с картой управления или силовой картой.
На платах управления нового поколения имеются современные процессоры и появился новый сервис – Service Log, записывающий аварии с интервалом в 5 секунд. Сервис формирует записи для основных аварий по 24 кодам.
Компания образована в результате продажи бизнеса Schneider Electric в РФ и Беларуси локальному руководству
Добро пожаловать на сайт российской производственной компании Систэм Электрик
Узнавайте первыми о запусках новинок!
SystemeOne — экосистема решений
для энергетики, промышленности и IT
Вертикальная технологическая компания с единой экосистемой на базе российского программного обеспечения.
Кто мы
Мы производим и поставляем оборудование и комплексные решения для проектов по передаче и распределению электроэнергии.
Мы интегрируем лучшие технологии в области управления электроэнергией, автоматизации в режиме реального времени, услуг и решений для объектов гражданского и жилищного строительства, центров обработки данных, инфраструктуры и промышленности.
В Группу компаний Систэм Электрик входят заводы «Потенциал» (г. Козьмодемьянск), Завод ЭлектроМоноблок («СЭЗЭМ», г. Коммунар), НТЦ «Механотроника» (г. Санкт-Петербург), Инженерно-Сервисный Центр (г. Москва) и Центр Инноваций (г. Иннополис). Компания образована в 2022 году в результате продажи бизнеса Schneider Electric в РФ и Беларуси локальному руководству.
Работая под слоганом «Энергия. Технологии. Надежность» Систэм Электрик делает процессы и энергосистемы безопасными, эффективными и технологичными.
О компании в цифрах
Крупнейший в отрасли инженерно-сервисный центр
Локальное производство и сервис
Региональных логистических центра
Офисов в крупнейших городах России и Беларуси
«Опираясь на сплоченную команду профессионалов, мы продолжим поддерживать высокий уровень качества выпускаемой продукции и предоставляемых услуг. Мы с уверенностью смотрим в будущее и видим перспективы для развития и дальнейшего роста компании на российском рынке. Наступило время вызовов и вместе с тем больших возможностей»
Продукция Систэм Электрик
-
14 — 17 февраля
«ГОРОД СВЕТА» В РАМКАХ СИБИРСКОЙ СТРОИТЕЛЬНОЙ НЕДЕЛИ
г. Новосибирск
Компания Systеme Electric принимает участие в международном форуме-выставке в области строительства и дизайна «Сибирская строительная неделя/Siberian Building Week». На мероприятии мы представим стенд с продуктовыми новинками, выступим спикерами по ключевым вопросам развития бизнеса на трансформирующемся рынке электротехники.
Участие бесплатное! Регистрация открыта.