Hi I am using pandas to convert a column to month.
When I read my data they are objects:
Date object
dtype: object
So I am first making them to date time and then try to make them as months:
import pandas as pd
file = '/pathtocsv.csv'
df = pd.read_csv(file, sep = ',', encoding='utf-8-sig', usecols= ['Date', 'ids'])
df['Date'] = pd.to_datetime(df['Date'])
df['Month'] = df['Date'].dt.month
Also if that helps:
In [10]: df['Date'].dtype
Out[10]: dtype('O')
So, the error I get is like this:
/Library/Frameworks/Python.framework/Versions/2.7/bin/User/lib/python2.7/site-packages/pandas/core/series.pyc in _make_dt_accessor(self)
2526 return maybe_to_datetimelike(self)
2527 except Exception:
-> 2528 raise AttributeError("Can only use .dt accessor with datetimelike "
2529 "values")
2530
AttributeError: Can only use .dt accessor with datetimelike values
EDITED:
Date columns are like this:
0 2014-01-01
1 2014-01-01
2 2014-01-01
3 2014-01-01
4 2014-01-03
5 2014-01-03
6 2014-01-03
7 2014-01-07
8 2014-01-08
9 2014-01-09
Do you have any ideas?
Thank you very much!
Hi I am using pandas to convert a column to month.
When I read my data they are objects:
Date object
dtype: object
So I am first making them to date time and then try to make them as months:
import pandas as pd
file = '/pathtocsv.csv'
df = pd.read_csv(file, sep = ',', encoding='utf-8-sig', usecols= ['Date', 'ids'])
df['Date'] = pd.to_datetime(df['Date'])
df['Month'] = df['Date'].dt.month
Also if that helps:
In [10]: df['Date'].dtype
Out[10]: dtype('O')
So, the error I get is like this:
/Library/Frameworks/Python.framework/Versions/2.7/bin/User/lib/python2.7/site-packages/pandas/core/series.pyc in _make_dt_accessor(self)
2526 return maybe_to_datetimelike(self)
2527 except Exception:
-> 2528 raise AttributeError("Can only use .dt accessor with datetimelike "
2529 "values")
2530
AttributeError: Can only use .dt accessor with datetimelike values
EDITED:
Date columns are like this:
0 2014-01-01
1 2014-01-01
2 2014-01-01
3 2014-01-01
4 2014-01-03
5 2014-01-03
6 2014-01-03
7 2014-01-07
8 2014-01-08
9 2014-01-09
Do you have any ideas?
Thank you very much!
Hi I am using pandas to convert a column to month.
When I read my data they are objects:
Date object
dtype: object
So I am first making them to date time and then try to make them as months:
import pandas as pd
file = '/pathtocsv.csv'
df = pd.read_csv(file, sep = ',', encoding='utf-8-sig', usecols= ['Date', 'ids'])
df['Date'] = pd.to_datetime(df['Date'])
df['Month'] = df['Date'].dt.month
Also if that helps:
In [10]: df['Date'].dtype
Out[10]: dtype('O')
So, the error I get is like this:
/Library/Frameworks/Python.framework/Versions/2.7/bin/User/lib/python2.7/site-packages/pandas/core/series.pyc in _make_dt_accessor(self)
2526 return maybe_to_datetimelike(self)
2527 except Exception:
-> 2528 raise AttributeError("Can only use .dt accessor with datetimelike "
2529 "values")
2530
AttributeError: Can only use .dt accessor with datetimelike values
EDITED:
Date columns are like this:
0 2014-01-01
1 2014-01-01
2 2014-01-01
3 2014-01-01
4 2014-01-03
5 2014-01-03
6 2014-01-03
7 2014-01-07
8 2014-01-08
9 2014-01-09
Do you have any ideas?
Thank you very much!
#python-3.x #pandas #datetime
#python-3.x #панды #datetime
Вопрос:
Я пытаюсь преобразовать формат строки даты в числовой, но я получаю некоторую ошибку, мой столбец даты выглядит следующим образом :
train['AVERAGE_ACCT_AGE'].head(6)
0 0yrs 0mon
1 1yrs 11mon
2 0yrs 0mon
3 0yrs 8mon
4 0yrs 0mon
5 1yrs 9mon
Name: AVERAGE_ACCT_AGE, dtype: object
Я попробовал этот код, чтобы добавить формат даты и времени к этой переменной.
train['AVERAGE_ACCT_AGE']=pd.to_datetime(train['AVERAGE.ACCT.AGE'], format='%Y%m')
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~Anaconda3libsite-packagespandascoretoolsdatetimes.py in _convert_listlike(arg, box, format, name, tz)
376 try:
--> 377 values, tz = conversion.datetime_to_datetime64(arg)
378 return DatetimeIndex._simple_new(values, name=name, tz=tz)
pandas_libstslibsconversion.pyx in pandas._libs.tslibs.conversion.datetime_to_datetime64()
TypeError: Unrecognized value type: <class 'str'>
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-49-13f5c298f460> in <module>()
----> 1 train['AVERAGE_ACCT_AGE']=pd.to_datetime(train['AVERAGE.ACCT.AGE'], format='%Y-%m')
~Anaconda3libsite-packagespandascoretoolsdatetimes.py in to_datetime(arg, errors, dayfirst, yearfirst, utc, box, format, exact, unit, infer_datetime_format, origin, cache)
449 else:
450 from pandas import Series
--> 451 values = _convert_listlike(arg._values, True, format)
452 result = Series(values, index=arg.index, name=arg.name)
453 elif isinstance(arg, (ABCDataFrame, MutableMapping)):
~Anaconda3libsite-packagespandascoretoolsdatetimes.py in _convert_listlike(arg, box, format, name, tz)
378 return DatetimeIndex._simple_new(values, name=name, tz=tz)
379 except (ValueError, TypeError):
--> 380 raise e
381
382 if arg is None:
~Anaconda3libsite-packagespandascoretoolsdatetimes.py in _convert_listlike(arg, box, format, name, tz)
366 dayfirst=dayfirst,
367 yearfirst=yearfirst,
--> 368 require_iso8601=require_iso8601
369 )
370
pandas_libstslib.pyx in pandas._libs.tslib.array_to_datetime()
pandas_libstslib.pyx in pandas._libs.tslib.array_to_datetime()
ValueError: time data 0yrs 0mon doesn't match format specified
После этого я попробовал этот код, чтобы добавить игнорирование ошибки в столбец.
train['AVERAGE_ACCT_AGE']=pd.to_datetime(train['AVERAGE.ACCT.AGE'], format='%Y%m',errors='ignore',infer_datetime_format=True)
Его добавленный формат даты и времени, затем я этот код
train['yrs']=train['AVERAGE_ACCT_AGE'].dt.year
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-50-39b8c6e07f77> in <module>()
----> 1 train['yrs']=train['AVERAGE_ACCT_AGE'].dt.year
~Anaconda3libsite-packagespandascoregeneric.py in __getattr__(self, name)
4366 if (name in self._internal_names_set or name in self._metadata or
4367 name in self._accessors):
-> 4368 return object.__getattribute__(self, name)
4369 else:
4370 if self._info_axis._can_hold_identifiers_and_holds_name(name):
~Anaconda3libsite-packagespandascoreaccessor.py in __get__(self, obj, cls)
130 # we're accessing the attribute of the class, i.e., Dataset.geo
131 return self._accessor
--> 132 accessor_obj = self._accessor(obj)
133 # Replace the property with the accessor object. Inspired by:
134 # http://www.pydanny.com/cached-property.html
~Anaconda3libsite-packagespandascoreindexesaccessors.py in __new__(cls, data)
323 pass # we raise an attribute error anyway
324
--> 325 raise AttributeError("Can only use .dt accessor with datetimelike "
326 "values")
пожалуйста, помогите мне, как преобразовать тип объекта в числовой тип. Мне нужны столбцы по годам и месяцам отдельно.
AttributeError: Can only use .dt accessor with datetimelike values
Комментарии:
1. Числовой? Вам нужен столбец с количеством лет, а другой с месяцами или месяцами, преобразованными в годы, в столбце years?
2. Мне нужны годы и месяцы столбцов отдельно.
3. Может помочь подумать о том, чего вы на самом деле хотите. 1 год и 11 месяцев — это не дата, это промежуток времени. Вы хотите отслеживать эту длину? Или получить дату задолго до настоящего времени? Или что-то еще?
4. да, ArKF я хочу, чтобы время представления
Ответ №1:
Столбец не Datetime
имеет формата.
Вот быстрый способ перевести его в числовое значение. Я использую больше строк, чем необходимо.
# doing this so we can have it in string format
train['AVERAGE_ACCT_AGE'] = train['AVERAGE_ACCT_AGE'].astype(str)
#Now remove the trailing or any such spaces
train['AVERAGE_ACCT_AGE'] = train['AVERAGE_ACCT_AGE'].map(lambda x: x.strip())
#Next we split and expand the column into 2 columns:
train[['yrs','months']] = train['AVERAGE_ACCT_AGE'].str.split(' ',n=1,expand=True)
#remove characters from new columns,
#I am assuming the characters remain the same
train['yrs'] = train['yrs'].str.replace('yrs','')
train['months'] = train['months'].str.replace('mon','')
# Convert yrs to float
train['yrs'] = train['yrs'].astype('float')
# Convert months to float
train['months'] = train['yrs'].astype('float')
Надеюсь, это поможет.