Bit error rate это

From Wikipedia, the free encyclopedia

From Wikipedia, the free encyclopedia

In digital transmission, the number of bit errors is the number of received bits of a data stream over a communication channel that have been altered due to noise, interference, distortion or bit synchronization errors.

The bit error rate (BER) is the number of bit errors per unit time. The bit error ratio (also BER) is the number of bit errors divided by the total number of transferred bits during a studied time interval. Bit error ratio is a unitless performance measure, often expressed as a percentage.[1]

The bit error probability pe is the expected value of the bit error ratio. The bit error ratio can be considered as an approximate estimate of the bit error probability. This estimate is accurate for a long time interval and a high number of bit errors.

Example[edit]

As an example, assume this transmitted bit sequence:

1 1 0 0 0 1 0 1 1

and the following received bit sequence:

0 1 0 1 0 1 0 0 1,

The number of bit errors (the underlined bits) is, in this case, 3. The BER is 3 incorrect bits divided by 9 transferred bits, resulting in a BER of 0.333 or 33.3%.

Packet error ratio[edit]

The packet error ratio (PER) is the number of incorrectly received data packets divided by the total number of received packets. A packet is declared incorrect if at least one bit is erroneous. The expectation value of the PER is denoted packet error probability pp, which for a data packet length of N bits can be expressed as

{displaystyle p_{p}=1-(1-p_{e})^{N}=1-e^{Nln(1-p_{e})}},

assuming that the bit errors are independent of each other. For small bit error probabilities and large data packets, this is approximately

p_{p}approx p_{e}N.

Similar measurements can be carried out for the transmission of frames, blocks, or symbols.

The above expression can be rearranged to express the corresponding BER (pe) as a function of the PER (pp) and the data packet length N in bits:

{displaystyle p_{e}=1-{sqrt[{N}]{(1-p_{p})}}}

Factors affecting the BER[edit]

In a communication system, the receiver side BER may be affected by transmission channel noise, interference, distortion, bit synchronization problems, attenuation, wireless multipath fading, etc.

The BER may be improved by choosing a strong signal strength (unless this causes cross-talk and more bit errors), by choosing a slow and robust modulation scheme or line coding scheme, and by applying channel coding schemes such as redundant forward error correction codes.

The transmission BER is the number of detected bits that are incorrect before error correction, divided by the total number of transferred bits (including redundant error codes). The information BER, approximately equal to the decoding error probability, is the number of decoded bits that remain incorrect after the error correction, divided by the total number of decoded bits (the useful information). Normally the transmission BER is larger than the information BER. The information BER is affected by the strength of the forward error correction code.

Analysis of the BER[edit]

The BER may be evaluated using stochastic (Monte Carlo) computer simulations. If a simple transmission channel model and data source model is assumed, the BER may also be calculated analytically. An example of such a data source model is the Bernoulli source.

Examples of simple channel models used in information theory are:

  • Binary symmetric channel (used in analysis of decoding error probability in case of non-bursty bit errors on the transmission channel)
  • Additive white Gaussian noise (AWGN) channel without fading.

A worst-case scenario is a completely random channel, where noise totally dominates over the useful signal. This results in a transmission BER of 50% (provided that a Bernoulli binary data source and a binary symmetrical channel are assumed, see below).

Bit-error rate curves for BPSK, QPSK, 8-PSK and 16-PSK, AWGN channel.

In a noisy channel, the BER is often expressed as a function of the normalized carrier-to-noise ratio measure denoted Eb/N0, (energy per bit to noise power spectral density ratio), or Es/N0 (energy per modulation symbol to noise spectral density).

For example, in the case of QPSK modulation and AWGN channel, the BER as function of the Eb/N0 is given by:
operatorname {BER}={frac  {1}{2}}operatorname {erfc}({sqrt  {E_{b}/N_{0}}}).[2]

People usually plot the BER curves to describe the performance of a digital communication system. In optical communication, BER(dB) vs. Received Power(dBm) is usually used; while in wireless communication, BER(dB) vs. SNR(dB) is used.

Measuring the bit error ratio helps people choose the appropriate forward error correction codes. Since most such codes correct only bit-flips, but not bit-insertions or bit-deletions, the Hamming distance metric is the appropriate way to measure the number of bit errors. Many FEC coders also continuously measure the current BER.

A more general way of measuring the number of bit errors is the Levenshtein distance.
The Levenshtein distance measurement is more appropriate for measuring raw channel performance before frame synchronization, and when using error correction codes designed to correct bit-insertions and bit-deletions, such as Marker Codes and Watermark Codes.[3]

Mathematical draft[edit]

The BER is the likelihood of a bit misinterpretation due to electrical noise w(t). Considering a bipolar NRZ transmission, we have

x_{1}(t)=A+w(t) for a «1» and x_{0}(t)=-A+w(t) for a «0». Each of x_{1}(t) and x_0(t) has a period of T.

Knowing that the noise has a bilateral spectral density {frac  {N_{0}}{2}},

x_{1}(t) is {mathcal  {N}}left(A,{frac  {N_{0}}{2T}}right)

and x_0(t) is {mathcal  {N}}left(-A,{frac  {N_{0}}{2T}}right).

Returning to BER, we have the likelihood of a bit misinterpretation p_{e}=p(0|1)p_{1}+p(1|0)p_{0}.

p(1|0)=0.5,operatorname {erfc}left({frac  {A+lambda }{{sqrt  {N_{o}/T}}}}right) and p(0|1)=0.5,operatorname {erfc}left({frac  {A-lambda }{{sqrt  {N_{o}/T}}}}right)

where lambda is the threshold of decision, set to 0 when p_{1}=p_{0}=0.5.

We can use the average energy of the signal E=A^{2}T to find the final expression :

p_{e}=0.5,operatorname {erfc}left({sqrt  {{frac  {E}{N_{o}}}}}right).
±§

Bit error rate test[edit]

BERT or bit error rate test is a testing method for digital communication circuits that uses predetermined stress patterns consisting of a sequence of logical ones and zeros generated by a test pattern generator.

A BERT typically consists of a test pattern generator and a receiver that can be set to the same pattern. They can be used in pairs, with one at either end of a transmission link, or singularly at one end with a loopback at the remote end. BERTs are typically stand-alone specialised instruments, but can be personal computer–based. In use, the number of errors, if any, are counted and presented as a ratio such as 1 in 1,000,000, or 1 in 1e06.

Common types of BERT stress patterns[edit]

  • PRBS (pseudorandom binary sequence) – A pseudorandom binary sequencer of N Bits. These pattern sequences are used to measure jitter and eye mask of TX-Data in electrical and optical data links.
  • QRSS (quasi random signal source) – A pseudorandom binary sequencer which generates every combination of a 20-bit word, repeats every 1,048,575 words, and suppresses consecutive zeros to no more than 14. It contains high-density sequences, low-density sequences, and sequences that change from low to high and vice versa. This pattern is also the standard pattern used to measure jitter.
  • 3 in 24 – Pattern contains the longest string of consecutive zeros (15) with the lowest ones density (12.5%). This pattern simultaneously stresses minimum ones density and the maximum number of consecutive zeros. The D4 frame format of 3 in 24 may cause a D4 yellow alarm for frame circuits depending on the alignment of one bits to a frame.
  • 1:7 – Also referred to as 1 in 8. It has only a single one in an eight-bit repeating sequence. This pattern stresses the minimum ones density of 12.5% and should be used when testing facilities set for B8ZS coding as the 3 in 24 pattern increases to 29.5% when converted to B8ZS.
  • Min/max – Pattern rapid sequence changes from low density to high density. Most useful when stressing the repeater’s ALBO feature.
  • All ones (or mark) – A pattern composed of ones only. This pattern causes the repeater to consume the maximum amount of power. If DC to the repeater is regulated properly, the repeater will have no trouble transmitting the long ones sequence. This pattern should be used when measuring span power regulation. An unframed all ones pattern is used to indicate an AIS (also known as a blue alarm).
  • All zeros – A pattern composed of zeros only. It is effective in finding equipment misoptioned for AMI, such as fiber/radio multiplex low-speed inputs.
  • Alternating 0s and 1s — A pattern composed of alternating ones and zeroes.
  • 2 in 8 – Pattern contains a maximum of four consecutive zeros. It will not invoke a B8ZS sequence because eight consecutive zeros are required to cause a B8ZS substitution. The pattern is effective in finding equipment misoptioned for B8ZS.
  • Bridgetap — Bridge taps within a span can be detected by employing a number of test patterns with a variety of ones and zeros densities. This test generates 21 test patterns and runs for 15 minutes. If a signal error occurs, the span may have one or more bridge taps. This pattern is only effective for T1 spans that transmit the signal raw. Modulation used in HDSL spans negates the bridgetap patterns’ ability to uncover bridge taps.
  • Multipat — This test generates five commonly used test patterns to allow DS1 span testing without having to select each test pattern individually. Patterns are: all ones, 1:7, 2 in 8, 3 in 24, and QRSS.
  • T1-DALY and 55 OCTET — Each of these patterns contain fifty-five (55), eight bit octets of data in a sequence that changes rapidly between low and high density. These patterns are used primarily to stress the ALBO and equalizer circuitry but they will also stress timing recovery. 55 OCTET has fifteen (15) consecutive zeroes and can only be used unframed without violating one’s density requirements. For framed signals, the T1-DALY pattern should be used. Both patterns will force a B8ZS code in circuits optioned for B8ZS.

Bit error rate tester[edit]

A bit error rate tester (BERT), also known as a «bit error ratio tester»[4] or bit error rate test solution (BERTs) is electronic test equipment used to test the quality of signal transmission of single components or complete systems.

The main building blocks of a BERT are:

  • Pattern generator, which transmits a defined test pattern to the DUT or test system
  • Error detector connected to the DUT or test system, to count the errors generated by the DUT or test system
  • Clock signal generator to synchronize the pattern generator and the error detector
  • Digital communication analyser is optional to display the transmitted or received signal
  • Electrical-optical converter and optical-electrical converter for testing optical communication signals

See also[edit]

  • Burst error
  • Error correction code
  • Errored second
  • Pseudo bit error ratio
  • Viterbi Error Rate

References[edit]

  1. ^ Jit Lim (14 December 2010). «Is BER the bit error ratio or the bit error rate?». EDN. Retrieved 2015-02-16.
  2. ^
    Digital Communications, John Proakis, Massoud Salehi, McGraw-Hill Education, Nov 6, 2007
  3. ^
    «Keyboards and Covert Channels»
    by Gaurav Shah, Andres Molina, and Matt Blaze (2006?)
  4. ^ «Bit Error Rate Testing: BER Test BERT » Electronics Notes». www.electronics-notes.com. Retrieved 2020-04-11.

Public Domain This article incorporates public domain material from Federal Standard 1037C. General Services Administration. (in support of MIL-STD-188).

External links[edit]

  • QPSK BER for AWGN channel – online experiment

From Wikipedia, the free encyclopedia

In digital transmission, the number of bit errors is the number of received bits of a data stream over a communication channel that have been altered due to noise, interference, distortion or bit synchronization errors.

The bit error rate (BER) is the number of bit errors per unit time. The bit error ratio (also BER) is the number of bit errors divided by the total number of transferred bits during a studied time interval. Bit error ratio is a unitless performance measure, often expressed as a percentage.[1]

The bit error probability pe is the expected value of the bit error ratio. The bit error ratio can be considered as an approximate estimate of the bit error probability. This estimate is accurate for a long time interval and a high number of bit errors.

Example[edit]

As an example, assume this transmitted bit sequence:

1 1 0 0 0 1 0 1 1

and the following received bit sequence:

0 1 0 1 0 1 0 0 1,

The number of bit errors (the underlined bits) is, in this case, 3. The BER is 3 incorrect bits divided by 9 transferred bits, resulting in a BER of 0.333 or 33.3%.

Packet error ratio[edit]

The packet error ratio (PER) is the number of incorrectly received data packets divided by the total number of received packets. A packet is declared incorrect if at least one bit is erroneous. The expectation value of the PER is denoted packet error probability pp, which for a data packet length of N bits can be expressed as

{displaystyle p_{p}=1-(1-p_{e})^{N}=1-e^{Nln(1-p_{e})}},

assuming that the bit errors are independent of each other. For small bit error probabilities and large data packets, this is approximately

p_{p}approx p_{e}N.

Similar measurements can be carried out for the transmission of frames, blocks, or symbols.

The above expression can be rearranged to express the corresponding BER (pe) as a function of the PER (pp) and the data packet length N in bits:

{displaystyle p_{e}=1-{sqrt[{N}]{(1-p_{p})}}}

Factors affecting the BER[edit]

In a communication system, the receiver side BER may be affected by transmission channel noise, interference, distortion, bit synchronization problems, attenuation, wireless multipath fading, etc.

The BER may be improved by choosing a strong signal strength (unless this causes cross-talk and more bit errors), by choosing a slow and robust modulation scheme or line coding scheme, and by applying channel coding schemes such as redundant forward error correction codes.

The transmission BER is the number of detected bits that are incorrect before error correction, divided by the total number of transferred bits (including redundant error codes). The information BER, approximately equal to the decoding error probability, is the number of decoded bits that remain incorrect after the error correction, divided by the total number of decoded bits (the useful information). Normally the transmission BER is larger than the information BER. The information BER is affected by the strength of the forward error correction code.

Analysis of the BER[edit]

The BER may be evaluated using stochastic (Monte Carlo) computer simulations. If a simple transmission channel model and data source model is assumed, the BER may also be calculated analytically. An example of such a data source model is the Bernoulli source.

Examples of simple channel models used in information theory are:

  • Binary symmetric channel (used in analysis of decoding error probability in case of non-bursty bit errors on the transmission channel)
  • Additive white Gaussian noise (AWGN) channel without fading.

A worst-case scenario is a completely random channel, where noise totally dominates over the useful signal. This results in a transmission BER of 50% (provided that a Bernoulli binary data source and a binary symmetrical channel are assumed, see below).

Bit-error rate curves for BPSK, QPSK, 8-PSK and 16-PSK, AWGN channel.

In a noisy channel, the BER is often expressed as a function of the normalized carrier-to-noise ratio measure denoted Eb/N0, (energy per bit to noise power spectral density ratio), or Es/N0 (energy per modulation symbol to noise spectral density).

For example, in the case of QPSK modulation and AWGN channel, the BER as function of the Eb/N0 is given by:
operatorname {BER}={frac  {1}{2}}operatorname {erfc}({sqrt  {E_{b}/N_{0}}}).[2]

People usually plot the BER curves to describe the performance of a digital communication system. In optical communication, BER(dB) vs. Received Power(dBm) is usually used; while in wireless communication, BER(dB) vs. SNR(dB) is used.

Measuring the bit error ratio helps people choose the appropriate forward error correction codes. Since most such codes correct only bit-flips, but not bit-insertions or bit-deletions, the Hamming distance metric is the appropriate way to measure the number of bit errors. Many FEC coders also continuously measure the current BER.

A more general way of measuring the number of bit errors is the Levenshtein distance.
The Levenshtein distance measurement is more appropriate for measuring raw channel performance before frame synchronization, and when using error correction codes designed to correct bit-insertions and bit-deletions, such as Marker Codes and Watermark Codes.[3]

Mathematical draft[edit]

The BER is the likelihood of a bit misinterpretation due to electrical noise w(t). Considering a bipolar NRZ transmission, we have

x_{1}(t)=A+w(t) for a «1» and x_{0}(t)=-A+w(t) for a «0». Each of x_{1}(t) and x_0(t) has a period of T.

Knowing that the noise has a bilateral spectral density {frac  {N_{0}}{2}},

x_{1}(t) is {mathcal  {N}}left(A,{frac  {N_{0}}{2T}}right)

and x_0(t) is {mathcal  {N}}left(-A,{frac  {N_{0}}{2T}}right).

Returning to BER, we have the likelihood of a bit misinterpretation p_{e}=p(0|1)p_{1}+p(1|0)p_{0}.

p(1|0)=0.5,operatorname {erfc}left({frac  {A+lambda }{{sqrt  {N_{o}/T}}}}right) and p(0|1)=0.5,operatorname {erfc}left({frac  {A-lambda }{{sqrt  {N_{o}/T}}}}right)

where lambda is the threshold of decision, set to 0 when p_{1}=p_{0}=0.5.

We can use the average energy of the signal E=A^{2}T to find the final expression :

p_{e}=0.5,operatorname {erfc}left({sqrt  {{frac  {E}{N_{o}}}}}right).
±§

Bit error rate test[edit]

BERT or bit error rate test is a testing method for digital communication circuits that uses predetermined stress patterns consisting of a sequence of logical ones and zeros generated by a test pattern generator.

A BERT typically consists of a test pattern generator and a receiver that can be set to the same pattern. They can be used in pairs, with one at either end of a transmission link, or singularly at one end with a loopback at the remote end. BERTs are typically stand-alone specialised instruments, but can be personal computer–based. In use, the number of errors, if any, are counted and presented as a ratio such as 1 in 1,000,000, or 1 in 1e06.

Common types of BERT stress patterns[edit]

  • PRBS (pseudorandom binary sequence) – A pseudorandom binary sequencer of N Bits. These pattern sequences are used to measure jitter and eye mask of TX-Data in electrical and optical data links.
  • QRSS (quasi random signal source) – A pseudorandom binary sequencer which generates every combination of a 20-bit word, repeats every 1,048,575 words, and suppresses consecutive zeros to no more than 14. It contains high-density sequences, low-density sequences, and sequences that change from low to high and vice versa. This pattern is also the standard pattern used to measure jitter.
  • 3 in 24 – Pattern contains the longest string of consecutive zeros (15) with the lowest ones density (12.5%). This pattern simultaneously stresses minimum ones density and the maximum number of consecutive zeros. The D4 frame format of 3 in 24 may cause a D4 yellow alarm for frame circuits depending on the alignment of one bits to a frame.
  • 1:7 – Also referred to as 1 in 8. It has only a single one in an eight-bit repeating sequence. This pattern stresses the minimum ones density of 12.5% and should be used when testing facilities set for B8ZS coding as the 3 in 24 pattern increases to 29.5% when converted to B8ZS.
  • Min/max – Pattern rapid sequence changes from low density to high density. Most useful when stressing the repeater’s ALBO feature.
  • All ones (or mark) – A pattern composed of ones only. This pattern causes the repeater to consume the maximum amount of power. If DC to the repeater is regulated properly, the repeater will have no trouble transmitting the long ones sequence. This pattern should be used when measuring span power regulation. An unframed all ones pattern is used to indicate an AIS (also known as a blue alarm).
  • All zeros – A pattern composed of zeros only. It is effective in finding equipment misoptioned for AMI, such as fiber/radio multiplex low-speed inputs.
  • Alternating 0s and 1s — A pattern composed of alternating ones and zeroes.
  • 2 in 8 – Pattern contains a maximum of four consecutive zeros. It will not invoke a B8ZS sequence because eight consecutive zeros are required to cause a B8ZS substitution. The pattern is effective in finding equipment misoptioned for B8ZS.
  • Bridgetap — Bridge taps within a span can be detected by employing a number of test patterns with a variety of ones and zeros densities. This test generates 21 test patterns and runs for 15 minutes. If a signal error occurs, the span may have one or more bridge taps. This pattern is only effective for T1 spans that transmit the signal raw. Modulation used in HDSL spans negates the bridgetap patterns’ ability to uncover bridge taps.
  • Multipat — This test generates five commonly used test patterns to allow DS1 span testing without having to select each test pattern individually. Patterns are: all ones, 1:7, 2 in 8, 3 in 24, and QRSS.
  • T1-DALY and 55 OCTET — Each of these patterns contain fifty-five (55), eight bit octets of data in a sequence that changes rapidly between low and high density. These patterns are used primarily to stress the ALBO and equalizer circuitry but they will also stress timing recovery. 55 OCTET has fifteen (15) consecutive zeroes and can only be used unframed without violating one’s density requirements. For framed signals, the T1-DALY pattern should be used. Both patterns will force a B8ZS code in circuits optioned for B8ZS.

Bit error rate tester[edit]

A bit error rate tester (BERT), also known as a «bit error ratio tester»[4] or bit error rate test solution (BERTs) is electronic test equipment used to test the quality of signal transmission of single components or complete systems.

The main building blocks of a BERT are:

  • Pattern generator, which transmits a defined test pattern to the DUT or test system
  • Error detector connected to the DUT or test system, to count the errors generated by the DUT or test system
  • Clock signal generator to synchronize the pattern generator and the error detector
  • Digital communication analyser is optional to display the transmitted or received signal
  • Electrical-optical converter and optical-electrical converter for testing optical communication signals

See also[edit]

  • Burst error
  • Error correction code
  • Errored second
  • Pseudo bit error ratio
  • Viterbi Error Rate

References[edit]

  1. ^ Jit Lim (14 December 2010). «Is BER the bit error ratio or the bit error rate?». EDN. Retrieved 2015-02-16.
  2. ^
    Digital Communications, John Proakis, Massoud Salehi, McGraw-Hill Education, Nov 6, 2007
  3. ^
    «Keyboards and Covert Channels»
    by Gaurav Shah, Andres Molina, and Matt Blaze (2006?)
  4. ^ «Bit Error Rate Testing: BER Test BERT » Electronics Notes». www.electronics-notes.com. Retrieved 2020-04-11.

Public Domain This article incorporates public domain material from Federal Standard 1037C. General Services Administration. (in support of MIL-STD-188).

External links[edit]

  • QPSK BER for AWGN channel – online experiment

Качество сетей передачи данных. Транспорт

Время прочтения
8 мин

Просмотры 28K

image
В предыдущей статье были затронуты базовые метрики качества сетей и систем передачи данных. Также было обещано написать про то, как все работает изнутри. И намеренно не было упомянуто про качество среды передачи данных и ее характеристиках. Надеюсь, что новая статья даст ответы на эти вопросы.

Среда передачи

Начну, пожалуй, с последнего пункта — качества среды передачи. Как уже написано выше, про нее ничего не говорилось в предыдущем повествовании, поскольку само по себе количество сред и их характеристики очень сильно различаются и зависят от просто колоссального множества факторов. Разбираться во всем этом многообразии задача соответствующих специалистов. Всем очевидно использование радио-эфира в качестве среды передачи данных. Я же помню в конце 90-х начале 00-х особой популярностью у операторов связи стали пользоваться такие экзотические способы передачи, как лазерные атмосферные передатчики. image Выглядели они, в зависимости от производителя и конфигурации примерно как на картинке слева (да, почти такой себе светотелефон из радиолюбительского детства). Преимущество их было в том, что не надо было получать разрешение ГРКЧ, да и скорости, по сравнению с радиомостом были несколько больше, кроме того существовали модификации для организации каналов с временным разделением (E1 и т.п.), а подобное оборудование радио-доступа стоило непомерно дорого. Почему не оптический кабель? Потому что в те счастливые времена дикого провайдинга оптика еще была довольно дорогой, а за конвертер интерфейса или активное оборудование, способное принять оптический линк напрямую давали небольшой (а кто-то и большой) брусок золота. Были еще спутниковые каналы, но это вообще из области фантастики и позволить их себе могли разве что компании нефтяного сектора и прочего национального благосостояния. Но работа канала через спутник сводится к использованию радио-эфира, со всеми вытекающими и внесением огромной задержки.

Соответственно погружаясь в вопрос в результате будем иметь множество сред и ни одной обобщенной характеристики. Тем не менее для нас среда это всего лишь транспорт, передающий информацию из точки А в точку Б. А для транспорта (даже общественного) характеристикой отражающей его качество будет доставка всех битов (ну или пассажиров) без искажений и потерь (не хотелось бы лишиться части тела при перевозке, согласитесь). Т.е. мы приходим к такой обобщенной метрике качества транспорта как количество битовых ошибок, или BER (Bit error rate). В чисто пакетных сетях она практически не используется, поскольку ошибки передачи выявляются на уровне пакета, например подсчетом контрольных сумм: FCS (Frame check sequence) для L2 или сhecksum IP для L3. Если контрольная сумма не совпадает, то пакет целиком отбрасывается как невалидный. Если же рассмотреть гетерогенные сети, те в которых транспортом может служить непакетная сеть, а, например, один из вариантов описанных выше, либо вообще используется транзит через ATM, PDH, SDH и подобное без непосредственной (но с восстановлением) передачи пакета, то битовые ошибки транспорта могут значительно влиять, конечно в зависимости от технологии. Рассмотрим инкапсуляцию и передачу Ethernet-фрейма в HDLC. Другие технологии используют практически такую же технику.

image

Схема читается слева-направо (взята здесь).

  1. Какой-то узел сети А отправляет пакет в сторону какого-то узла сети Б
  2. Транспорт между сетями построен на сети PDH
  3. Узел на границе выхода сети А вырезает из Ethernet-фрейма область полезной нагрузки (поля от DestinationAddress до FCS включительно), оборачивает в HDLC заголовки, и отправляет на граничный узел входа сети Б
  4. Граничный узел входа сети Б выделяет область полезной нагрузки и восстанавливает Ethernet-фрейм
  5. Фрейм с граничного узла отправляется получателю

Как можно видеть, в данном случае контрольная передается корректно и в случае повреждения битового потока в процессе передачи восстановленный пакет с неверной FCS будет отброшен получателем. В данном случае механизм обнаружения ошибки налицо.

Но не всегда используется надстройка инкапсуляции, либо передается вообще не полноценный фрейм, а лишь поле payload. Т.е. вырезается область, оборачивается во внутренний протокол, а на другой стороне восстанавливаются недостающие данные, включая отсутствующие заголовки L2. Соответственно пропадает и FCS — она просто рассчитывается заново. Таким образом получается, если данные были повреждены, а FCS рассчитан на основании “испорченных” данных, то получатель принимает совсем не тот пакет, который ему отправляли. Это довольно часто встречается в спутниковой связи, чтобы повысить полезную утилизацию канала, избегая передачи условно “лишней” информации. Резюмируя, получается что метрика BER может быть интересна в случаях когда:

  • необходимо проверить стабильность физического канала, например для оптики это 10E-12 (упоминается в IEEE802.3)
  • Ethernet-фреймы упаковывают в SDH(GFP), PDH, ATM и другие транспортные сети.
  • используются технологии xHSL, PPP протоколы в которые упаковывают IP пакеты

BER тест

Метрика известна — это отношение количество битовых ошибок к общему числу переданных битов. Методика измерения для сетей TDM известна как спецификация ITU-T G.821. Классически для проверки каналов используется BERT (BER Test) первого уровня, но с учетом специфики работы протоколов инкапсуляции пакетных сетей и самого принципа работы пакетных сетей необходимо иметь возможность проводить тесты на L1-L4. Немного далее будет рассмотрено подробнее. Ну а сейчас следует определиться что проверять и как проверять. На вопрос:” Что проверять?” Отвечает ITU-T 0.150. В его пункте 5 рассмотрены типы ПСП (псевдослучайных последовательностей), из которых просто берутся данные для формирования пакета. Т.е. нужно просто взять и заполнить соответствующий уровень пакета данными выбранной ПСП. У нас в приборах используются следующие ПСП:

  • ПСП 2е9 (ITU-T 0.150 пункт 5.1)
  • ПСП 2е11 (ITU-T 0.150 пункт 5.2)
  • ПСП 2е15 (ITU-T 0.150 пункт 5.3)
  • ПСП 2е23 (ITU-T 0.150 пункт 5.6)
  • ПСП 2е31 (ITU-T 0.150 пункт 5.8)
  • пользовательская последовательность (32 бита)
  • все нули
  • все единицы
  • альтернативная последовательность (01010101)

Пользовательская последовательность введена для совместимости с приборами, которые существуют на рынке, т.е можно задать любую последовательность и проводить совместный тест.

Вопрос как проверять пока что открыт, попробуем разобраться. Допустим мы умеем генерировать определенные пакеты. Если отправить такой пакет на другой конец транспорта, то как понять, что он не изменился (следует абстрагироваться от пакетного принципа, поскольку у нас может не быть FCS и других типов контроля, как описано ранее)? Самый простой вариант — завернуть пакет обратно (в TDM называется “сделать петлю”, в Ethernet — установить шлейф). Заворот, во многих случаях, можно сделать на выходе канала без изменения среды передачи, т.е. реально поставить петлю на выходе E1 и все будет работать. Но т.к. данные проделывают двойной путь, то вероятность возникновения ошибки также возрастает в 2 раза. Да и каналы могут быть асимметричными или однонаправленными. Соответственно идеальным было бы иметь возможность обладать информацией о корректном следовании и сравнивать приходящие пакеты с уже известной информацией. Первый, и наиболее простой вариант, применимый когда оба выхода канала располагаются рядом (например такое возможно при TDM коммутации, или тестировании оптического “кольца”) заключается в том, что один порт прибора генерирует тестовый трафик, а другой порт этого же прибора его получает и сравнивает, а т.к. сравнение происходит в том же узле, что и генерация, то проблем со сравнением данных последовательности не возникает. Второй вариант предполагает восстановление первоначальной последовательности и сравнение ее с приходящими данными. В случае с полностью случайной последовательностью реализовать такое не представляется возможным, а вот если последовательность псевдослучайная, то вполне. Какое-то время затрачивается на синхронизацию в самом начале теста, но затем сравнение не представляет сложности. Поскольку ПСП первого прибора и ПСП второго известны и одинаковы, синхронизация сводится к поиску места начала сравнения в ПСП второго прибора. Таким образом существуют следующие топологии:

  1. «сам на себя» 1 — один прибор на одном порту, на другом конце транспорта стоит шлейф
  2. «сам на себя» 2 — один прибор с одного порта своего порта на другой свой порт
  3. с одного прибора на другой прибор, с синхронизацией

Еще раз стоит отметить, что тест BER не рекомендуется использовать на сетях лишь с пакетной коммутацией. Приведу пример. Допустим, уже идет тестовый поток и приборы синхронизированы (топология 3). В какой-то момент времени происходит следующее:

  1. формируется Ethernet-фрейм, содержащий данные ПСП
  2. для такого фрейма рассчитывается FCS и он укладывается в выходной буфер
  3. фрейм отправляется по сети на другой прибор
  4. по каким-то причинам происходит изменение всего одного бита внутри пакета
  5. получатель принимает пакет
  6. FCS принятого пакета не соответствует содержимому
  7. пакет отбрасывается (если между отправителем и получателем есть, например, коммутатор, то “кривой” пакет вообще не дойдет до получателя, т.к. будет уничтожен до него)
  8. отправитель формирует следующий пакет (все начинается с п.1)

В приведенном примере на шаге 8 произойдет срыв синхронизации на стороне получателя. Произойдет это потому, что отправитель возьмет следующий блок ПСП, а получатель будет сравнивать с тем блоком, который потерялся в предыдущем цикле (он ведь ничего не знает о потере). Срыв синхронизации приведет к необоснованно большому росту битовых ошибок, т.к. все вновь идущие блоки абсолютно не совпадают, что приведет к тому, что за один пакет число битовых ошибок будет увеличиваться на размер фрейма. Через какое-то время будет предпринята попытка восстановления синхронизации, но количество накопленных битовых ошибок будет сильно не соответствовать действительности.

А как в железе?

Как у других не знаю, но у наших приборов Беркут (ET, ETX, ETL, B100, а также модуль B5-GBE для MMT) дела обстоят следующим образом. Помня принцип о генерации и анализе трафика как можно ближе к физическому сегменту из первой статьи, все подобные задачи были возложены на FPGA. Упрощенная структурная схема выглядит так:

image

MAC ядро представлено двумя блоками: один на прием, другой на передачу. Это позволяет независимо принимать и отправлять пакеты, т.е. нет взаимовлияния очереди отправки на очередь приема и наоборот. Также с двух независимых блоков возможно вести общую статистику по полученному и отправленному трафику независимо от типа теста. Данные с блока передачи поступают на трансмиттер и отправляются в сеть, а входящие данные с трансивера поступают в блок приема.
Поскольку для некоторых топологий тестов необходим функционал шлейфа (loopback, петля), то он реализован отдельным блоком. Возможно установить шлейф уровня L1-L4:

  • L1 — просто заворачивает трафик обратно (происходит это еще в трансивере)
  • L2 — меняет DstMAC<->SrcMAC местами, пересчитывает FCS
  • L3 — меняет DstMAC<->SrcMAC и DstIP<->SrcIP местами, пересчитывает FCS
  • L4 — меняет DstMAC<->SrcMAC, DstIP<->SrcIP и DstPort<->SrcPort, пересчитывает FCS

Статистика по пакетам ведется и для режима шлейфа тоже, что позволяет грубо оценить соотношение отправленных и принятых пакетов.

Модуль генератора для каждого типа теста свой, для BERT он содержит генератор ПСП всех заявленных типов.
Работает это следующим образом. От генератора ПСП поступают данные на мультиплексор (проще говоря коммутатор), который, если не включен какой-то другой канал в данный момент, направляет поток в MAC tx модуль. MAC tx модуль, в соответствии с настройками теста (уровень BERT, размер пакета, данные полей) формирует из ПСП валидный Ethernet-фрейм и отправляет его в трансивер, который в свою очередь отправляет его в сеть. В зависимости от топологии теста фрейм либо заворачивается удаленной стороной, либо анализируется. В любом случае первичная обработка пакета не отличается. Фрейм попадает на MAC rx ядро, которое отправляет его на мультиплексор. Мультиплексор в зависимости от режима работы прибора направляет пакет либо в Loopback модуль, откуда после обработки он сразу же направляется в MAC tx для отправки, либо в модуль обработки и статистики теста, где, если потребуется, будет проведена попытка синхронизации ПСП и выполнено сравнение исходной последовательности с полученной. Результаты обработки отдаются в модуль вывода статистики.
Использование FPGA или ASIC позволяет все операции проводить параллельно, что не вносит какие либо задержки на обработку и исключает взаимовлияние модулей обработки.

Заключение

Несмотря на всю кажущуюся простоту алгоритмов и методик, за ними стоит много лет серьезных исследований. Огромное число факторов до сих пор влияет как на точность измерений, так и на стоимость приборов (прецизионные элементы, высокоскоростные ПЛИС). Например, приведенный выше BER тест не отличается значительной сложностью в общем алгоритмическом плане, но требует знаний в области математики, информатики и теории информации для разработки жизнеспособной модели. Модификация BER теста для пакетных сетей (поддержка уровней L2-L4) требует глубокого понимания принципов коммутации и маршрутизации. Надеюсь, что подобного рода статьи интересны и приносят пользу. В следующих публикациях планирую написать про сертифицированные тесты, генераторы трафика, фильтры и аналитические комплексы. Ведь как сказал Джон Фицджеральд Кеннеди на выступлении перед гражданами США перед стартом Лунной программы:

“И мы сделаем это. Не потому, что это легко, а потому что трудно.”

PS. Задавайте вопросы и предлагайте темы, в рамках нашей компетенции готовы на все :)

Содержание

  1. Возникновение битовых ошибок и их влияние на параметры цифровой передачи
  2. Качество сетей передачи данных. Транспорт
  3. Среда передачи
  4. BER тест
  5. А как в железе?
  6. Заключение

Возникновение битовых ошибок и их влияние на параметры цифровой передачи

^ Цель:изучить причины возникновения битовых ошибок при цифровой передаче сигнала

Характер битовых ошибок в цифровом канале

В цифровых системах передачи различные воздействия на цифровой канал приводят к снижению основного качественного параметра — параметра ошибки в цифровом канале. Причины возникновения ошибок имеют аналоговую природу, так как связаны с интерференцией, затуханием в линии и различными аддитивными шумами

^ Основные источники ошибок в цифровом канале:искажения в канале, наличие импульсных помех, аддитивный шум в канале,затухание в линии. Как видно из рисунка 11, наличие искажений в канале может быть связано как с затуханием, так и с отражением сиг­нала.

Рисунок 11 – Основные источники ошибок в цифровом канале

^ Первый источник шумов — физически разрушенный кабель (например, разбитая пара), слишком малое поперечное сечение, большая распределенная емкость в кабеле

^ Второй источник шумов —интерферирующие импульсы или импульсные помехи в канале.

Источниками ошибок могут явиться силовые кабели, проложенные в непосредственной близости от линии связи, нарушение обвязки кабелей, наличие сигнализации по постоянному току.

^ Третий источник шумов— наличие аддитивных шумов различной природы

Источниками ошибки здесь могут быть нарушения балансировки кабеля, параметра скручивания витой пары, интерференция с различными радиочастотными и СВЧ-сигналами, сигналы вызова, нарушения полярности кабеля (перепутанные жилы, короткое замыкание между жилами и т.д.) Высокий уровень шумов может привести к значительному увеличению параметра ошибки.

^ Четвертый источник шумов — затухание в кабелях и линиях передачи, причем не только высокий уровень затухания, но и его неравномерная характеристика, которая приводит к появлению субгармоник, вносящих дополнительный аддитивный шум.

^ Внутренние источники ошибок в ЦСП:

  • различные нестабильности во внутренних цепях синхронизации цифровых устройств, дрейф в системе внутренней синхронизации устройства;
  • нестабильности, связанные с измерением характеристик компонентов со временем;
  • перекрестные помехи в цепях устройств;
  • нарушения в работе эквалайзеров и в процессах, связанных с неравномерностью АЧХ;
  • повышение порога по шуму, связанное с изменением параметров модулей устройств со временем.

Внешние источники ошибок в ЦСП

  • перекрестные помехи в каналах передачи;
  • джиттер в системе передачи;
  • электромагнитная интерференция (от машин, флуоресцентных ламп и т.д.);
  • вариации питания устройств;
  • импульсные шумы в канале;
  • механические повреждения, воздействие вибрации, плохие контакты;
  • деградация качественных параметров среды передачи (электрического или оптического кабеля, радиочастотного канала и т.д.);
  • глобальные нарушения, связанные с разрушением канала цифровой передачи

^ Основные параметры, измеряемые в бинарном цифровом канале

1. AS — availability seconds время готовности канала (с) — вторичный параметр, равный разности между общей длительностью теста и временем неготовности канала.

^ 2. AS (%) — availability seconds относительное время готовности канала — параметр, характеризующий готовность канала, выраженный в процентах. В отличие от AS, AS (%) является первичным параметром и входит в число основных параметров рекомендации G.821.

^ 3. ВВЕ — background block error блок с фоновой ошибкой — блок с ошибками, не являющийся частью SES, применяется при анализе ошибок по блокам. Является важным параметром, вошедшим в рекомендацию ITU-T G.826.

^ 5. ЕВ — error block число ошибочных блоков — параметр, используемый при анализе канала на наличие блоковых ошибок. Подсчитывается только во время пребывания канала в состоянии готовности.

^ 6. BBER — background block error rate , коэффициент ошибок по блокам с фоновыми ошибками — отношение числа блоков с фоновыми ошибками ко всему количеству блоков в течение времени готовности канала за исключением всех блоков в течении SES. Является важным параметром, вошедшим в рекомендацию ITU-T G.826.

4. BIT или BIT ERR- bit errors число ошибочных битов — параметр, используемый при анализе канала на наличие битовых ошибок. Подсчитывается только во время пребывания канала в состоянии готовности.

7. BER или RATE — bit error rate частота битовых ошибок, коэффициент ошибок по битам -основной параметр в системах цифровой передачи, равный отношению числа битовых ошибок к общему числу бит, переданных за время проведения теста по каналу, находящемуся в состоянии готовности. При обнаружении десяти последовательных секундных интервалов, сильно пораженных ошибками (SES), анализатор переключается на подсчет времени неготовности канала. Измерения параметра BER универсальны в том смысле, что не требуют наличия цикловой и сверхцикловой структуры в измеряемом потоке, однако требуют передачи специальной тестовой последовательности и могут быть проведены только в случае полного или частичного отключения цифрового канала от полезной нагрузки.

^ 8. BLER — block error rate частота блоковых ошибок, коэффициент ошибок по блокам — редко применяемый на практике параметр, равный отношению числа ошибочных блоков данных к общему числу переданных блоков. Под блоком понимается заданное количество битов. Ошибочным блоком считается блок, содержащий хотя бы один ошибочный бит. Его целесообразно измерять только в тех сетях передачи данных, где информация передается блоками фиксированного размера, а параметр BLER является важной характеристикой канала с учетом кадровой (цикловой) структуры передачи.

^ 9. CLKSLIP или SLIP — clock slips число тактовых проскальзываний — параметр, характеризующийся числом синхронных управляемых проскальзываний, появившихся с момента начала теста. Проскальзыванием называется повторение или исключение группы символов в синхронной или плезиохронной последовательности двоичных символов в результате различия между скоростями считывания и записи в буферной памяти. Поскольку проскальзывание ведет к потери части информации, что в свою очередь ведет к потери цикловой синхронизации, на практике используются эластичные управляемые буферы с возможностью управления проскальзываниями. В этом случае проскальзывания называются управляемыми

10. CRC ERRCRC errors число ошибок CRC — параметр ошибки, измеренный с использованием циклового избыточного кода (CRC), распространенный параметр определения ошибок реально работающего канала без его отключения и без передачи тестовой последовательности. Необходимым условием измерения параметра CRC является наличие механизма формирования кода в аппаратуре передачи

^ 11.CRC RATE — CRC errors rate частота ошибок CRC — показывает среднюю частоту ошибок CRC.

12.DGRM — degraded minutes число минут деградации качества — несколько временных интервалов продолжительностью 60 с каждый, когда канал находится в состоянии готовности, но BER=10

6. Ошибки во время неготовности канала не считаются, а интервалы по 60 с в состоянии готовности канала, пораженные ошибками несколько раз, суммируются.

^ 13. DGRM (%) — degraded minutes процент минут деградации качества — число минут деграда­ции качества, выраженное в процентах по отношению ко времени, прошедшему с момента начала тестирования.

14. EFSerror free seconds время, свободное от ошибок (с) — один из первичных параметров, входящих в рекомендации G.821 и М.2100/М.550. Отражает время, в течение которого сигнал был правильно синхронизирован, а ошибки отсутствовали, т.е. общее время пребывания канала в со­стоянии безошибочной работы.

15.EFS (%) — error free seconds процент времени, свободного от ошибок (с) — то же, что и предыдущий параметр, только выраженный в процентах по отношению к общему времени с мо­мента начала тестирования.

^ 16. ES — errors seconds длительность поражения сигнала ошибками, количество секунд с ошибками (с)

параметр показывает интервал времени поражения всеми видами ошибок в канале, находящемся в состоянии готовности.

^ Организация измерений с отключением канала

Для организации измерений с отключением канала используется генератор и анализатор тестовой последовательности, подключенные к разным концам цифрового канала (рис.12). Между генератором и анализатором тестовой последовательности существует синхронизация по тестовой последовательности, т.е. процедура, в результате которой анализатор имеет возможность предсказания следующего значения каждого принимаемого бита.

В практике используются два типа тестовых последовательностей — фиксированные и псевдослучайные последовательности (ПСП, PRBS — Pseudorandom Binary Sequence).

Фиксированными последовательностями являются последовательности чередующихся повторяемых комбинаций битов.

Рисунок 12 — Генератор псевдослучайной последовательности

Источник

Качество сетей передачи данных. Транспорт


В предыдущей статье были затронуты базовые метрики качества сетей и систем передачи данных. Также было обещано написать про то, как все работает изнутри. И намеренно не было упомянуто про качество среды передачи данных и ее характеристиках. Надеюсь, что новая статья даст ответы на эти вопросы.

Среда передачи

Начну, пожалуй, с последнего пункта — качества среды передачи. Как уже написано выше, про нее ничего не говорилось в предыдущем повествовании, поскольку само по себе количество сред и их характеристики очень сильно различаются и зависят от просто колоссального множества факторов. Разбираться во всем этом многообразии задача соответствующих специалистов. Всем очевидно использование радио-эфира в качестве среды передачи данных. Я же помню в конце 90-х начале 00-х особой популярностью у операторов связи стали пользоваться такие экзотические способы передачи, как лазерные атмосферные передатчики. Выглядели они, в зависимости от производителя и конфигурации примерно как на картинке слева (да, почти такой себе светотелефон из радиолюбительского детства). Преимущество их было в том, что не надо было получать разрешение ГРКЧ, да и скорости, по сравнению с радиомостом были несколько больше, кроме того существовали модификации для организации каналов с временным разделением (E1 и т.п.), а подобное оборудование радио-доступа стоило непомерно дорого. Почему не оптический кабель? Потому что в те счастливые времена дикого провайдинга оптика еще была довольно дорогой, а за конвертер интерфейса или активное оборудование, способное принять оптический линк напрямую давали небольшой (а кто-то и большой) брусок золота. Были еще спутниковые каналы, но это вообще из области фантастики и позволить их себе могли разве что компании нефтяного сектора и прочего национального благосостояния. Но работа канала через спутник сводится к использованию радио-эфира, со всеми вытекающими и внесением огромной задержки.

Соответственно погружаясь в вопрос в результате будем иметь множество сред и ни одной обобщенной характеристики. Тем не менее для нас среда это всего лишь транспорт, передающий информацию из точки А в точку Б. А для транспорта (даже общественного) характеристикой отражающей его качество будет доставка всех битов (ну или пассажиров) без искажений и потерь (не хотелось бы лишиться части тела при перевозке, согласитесь). Т.е. мы приходим к такой обобщенной метрике качества транспорта как количество битовых ошибок, или BER (Bit error rate). В чисто пакетных сетях она практически не используется, поскольку ошибки передачи выявляются на уровне пакета, например подсчетом контрольных сумм: FCS (Frame check sequence) для L2 или сhecksum IP для L3. Если контрольная сумма не совпадает, то пакет целиком отбрасывается как невалидный. Если же рассмотреть гетерогенные сети, те в которых транспортом может служить непакетная сеть, а, например, один из вариантов описанных выше, либо вообще используется транзит через ATM, PDH, SDH и подобное без непосредственной (но с восстановлением) передачи пакета, то битовые ошибки транспорта могут значительно влиять, конечно в зависимости от технологии. Рассмотрим инкапсуляцию и передачу Ethernet-фрейма в HDLC. Другие технологии используют практически такую же технику.

Схема читается слева-направо (взята здесь).

  1. Какой-то узел сети А отправляет пакет в сторону какого-то узла сети Б
  2. Транспорт между сетями построен на сети PDH
  3. Узел на границе выхода сети А вырезает из Ethernet-фрейма область полезной нагрузки (поля от DestinationAddress до FCS включительно), оборачивает в HDLC заголовки, и отправляет на граничный узел входа сети Б
  4. Граничный узел входа сети Б выделяет область полезной нагрузки и восстанавливает Ethernet-фрейм
  5. Фрейм с граничного узла отправляется получателю

Как можно видеть, в данном случае контрольная передается корректно и в случае повреждения битового потока в процессе передачи восстановленный пакет с неверной FCS будет отброшен получателем. В данном случае механизм обнаружения ошибки налицо.

Но не всегда используется надстройка инкапсуляции, либо передается вообще не полноценный фрейм, а лишь поле payload. Т.е. вырезается область, оборачивается во внутренний протокол, а на другой стороне восстанавливаются недостающие данные, включая отсутствующие заголовки L2. Соответственно пропадает и FCS — она просто рассчитывается заново. Таким образом получается, если данные были повреждены, а FCS рассчитан на основании “испорченных” данных, то получатель принимает совсем не тот пакет, который ему отправляли. Это довольно часто встречается в спутниковой связи, чтобы повысить полезную утилизацию канала, избегая передачи условно “лишней” информации. Резюмируя, получается что метрика BER может быть интересна в случаях когда:

  • необходимо проверить стабильность физического канала, например для оптики это 10E-12 (упоминается в IEEE802.3)
  • Ethernet-фреймы упаковывают в SDH(GFP), PDH, ATM и другие транспортные сети.
  • используются технологии xHSL, PPP протоколы в которые упаковывают IP пакеты

BER тест

Метрика известна — это отношение количество битовых ошибок к общему числу переданных битов. Методика измерения для сетей TDM известна как спецификация ITU-T G.821. Классически для проверки каналов используется BERT (BER Test) первого уровня, но с учетом специфики работы протоколов инкапсуляции пакетных сетей и самого принципа работы пакетных сетей необходимо иметь возможность проводить тесты на L1-L4. Немного далее будет рассмотрено подробнее. Ну а сейчас следует определиться что проверять и как проверять. На вопрос:” Что проверять?” Отвечает ITU-T 0.150. В его пункте 5 рассмотрены типы ПСП (псевдослучайных последовательностей), из которых просто берутся данные для формирования пакета. Т.е. нужно просто взять и заполнить соответствующий уровень пакета данными выбранной ПСП. У нас в приборах используются следующие ПСП:

  • ПСП 2е9 (ITU-T 0.150 пункт 5.1)
  • ПСП 2е11 (ITU-T 0.150 пункт 5.2)
  • ПСП 2е15 (ITU-T 0.150 пункт 5.3)
  • ПСП 2е23 (ITU-T 0.150 пункт 5.6)
  • ПСП 2е31 (ITU-T 0.150 пункт 5.8)
  • пользовательская последовательность (32 бита)
  • все нули
  • все единицы
  • альтернативная последовательность (01010101)

Пользовательская последовательность введена для совместимости с приборами, которые существуют на рынке, т.е можно задать любую последовательность и проводить совместный тест.

Вопрос как проверять пока что открыт, попробуем разобраться. Допустим мы умеем генерировать определенные пакеты. Если отправить такой пакет на другой конец транспорта, то как понять, что он не изменился (следует абстрагироваться от пакетного принципа, поскольку у нас может не быть FCS и других типов контроля, как описано ранее)? Самый простой вариант — завернуть пакет обратно (в TDM называется “сделать петлю”, в Ethernet — установить шлейф). Заворот, во многих случаях, можно сделать на выходе канала без изменения среды передачи, т.е. реально поставить петлю на выходе E1 и все будет работать. Но т.к. данные проделывают двойной путь, то вероятность возникновения ошибки также возрастает в 2 раза. Да и каналы могут быть асимметричными или однонаправленными. Соответственно идеальным было бы иметь возможность обладать информацией о корректном следовании и сравнивать приходящие пакеты с уже известной информацией. Первый, и наиболее простой вариант, применимый когда оба выхода канала располагаются рядом (например такое возможно при TDM коммутации, или тестировании оптического “кольца”) заключается в том, что один порт прибора генерирует тестовый трафик, а другой порт этого же прибора его получает и сравнивает, а т.к. сравнение происходит в том же узле, что и генерация, то проблем со сравнением данных последовательности не возникает. Второй вариант предполагает восстановление первоначальной последовательности и сравнение ее с приходящими данными. В случае с полностью случайной последовательностью реализовать такое не представляется возможным, а вот если последовательность псевдослучайная, то вполне. Какое-то время затрачивается на синхронизацию в самом начале теста, но затем сравнение не представляет сложности. Поскольку ПСП первого прибора и ПСП второго известны и одинаковы, синхронизация сводится к поиску места начала сравнения в ПСП второго прибора. Таким образом существуют следующие топологии:

  1. «сам на себя» 1 — один прибор на одном порту, на другом конце транспорта стоит шлейф
  2. «сам на себя» 2 — один прибор с одного порта своего порта на другой свой порт
  3. с одного прибора на другой прибор, с синхронизацией

Еще раз стоит отметить, что тест BER не рекомендуется использовать на сетях лишь с пакетной коммутацией. Приведу пример. Допустим, уже идет тестовый поток и приборы синхронизированы (топология 3). В какой-то момент времени происходит следующее:

  1. формируется Ethernet-фрейм, содержащий данные ПСП
  2. для такого фрейма рассчитывается FCS и он укладывается в выходной буфер
  3. фрейм отправляется по сети на другой прибор
  4. по каким-то причинам происходит изменение всего одного бита внутри пакета
  5. получатель принимает пакет
  6. FCS принятого пакета не соответствует содержимому
  7. пакет отбрасывается (если между отправителем и получателем есть, например, коммутатор, то “кривой” пакет вообще не дойдет до получателя, т.к. будет уничтожен до него)
  8. отправитель формирует следующий пакет (все начинается с п.1)

В приведенном примере на шаге 8 произойдет срыв синхронизации на стороне получателя. Произойдет это потому, что отправитель возьмет следующий блок ПСП, а получатель будет сравнивать с тем блоком, который потерялся в предыдущем цикле (он ведь ничего не знает о потере). Срыв синхронизации приведет к необоснованно большому росту битовых ошибок, т.к. все вновь идущие блоки абсолютно не совпадают, что приведет к тому, что за один пакет число битовых ошибок будет увеличиваться на размер фрейма. Через какое-то время будет предпринята попытка восстановления синхронизации, но количество накопленных битовых ошибок будет сильно не соответствовать действительности.

А как в железе?

Как у других не знаю, но у наших приборов Беркут (ET, ETX, ETL, B100, а также модуль B5-GBE для MMT) дела обстоят следующим образом. Помня принцип о генерации и анализе трафика как можно ближе к физическому сегменту из первой статьи, все подобные задачи были возложены на FPGA. Упрощенная структурная схема выглядит так:

MAC ядро представлено двумя блоками: один на прием, другой на передачу. Это позволяет независимо принимать и отправлять пакеты, т.е. нет взаимовлияния очереди отправки на очередь приема и наоборот. Также с двух независимых блоков возможно вести общую статистику по полученному и отправленному трафику независимо от типа теста. Данные с блока передачи поступают на трансмиттер и отправляются в сеть, а входящие данные с трансивера поступают в блок приема.
Поскольку для некоторых топологий тестов необходим функционал шлейфа (loopback, петля), то он реализован отдельным блоком. Возможно установить шлейф уровня L1-L4:

  • L1 — просто заворачивает трафик обратно (происходит это еще в трансивере)
  • L2 — меняет DstMAC SrcMAC местами, пересчитывает FCS
  • L3 — меняет DstMAC SrcMAC и DstIP SrcIP местами, пересчитывает FCS
  • L4 — меняет DstMAC SrcMAC, DstIP SrcIP и DstPort SrcPort, пересчитывает FCS

Статистика по пакетам ведется и для режима шлейфа тоже, что позволяет грубо оценить соотношение отправленных и принятых пакетов.

Модуль генератора для каждого типа теста свой, для BERT он содержит генератор ПСП всех заявленных типов.
Работает это следующим образом. От генератора ПСП поступают данные на мультиплексор (проще говоря коммутатор), который, если не включен какой-то другой канал в данный момент, направляет поток в MAC tx модуль. MAC tx модуль, в соответствии с настройками теста (уровень BERT, размер пакета, данные полей) формирует из ПСП валидный Ethernet-фрейм и отправляет его в трансивер, который в свою очередь отправляет его в сеть. В зависимости от топологии теста фрейм либо заворачивается удаленной стороной, либо анализируется. В любом случае первичная обработка пакета не отличается. Фрейм попадает на MAC rx ядро, которое отправляет его на мультиплексор. Мультиплексор в зависимости от режима работы прибора направляет пакет либо в Loopback модуль, откуда после обработки он сразу же направляется в MAC tx для отправки, либо в модуль обработки и статистики теста, где, если потребуется, будет проведена попытка синхронизации ПСП и выполнено сравнение исходной последовательности с полученной. Результаты обработки отдаются в модуль вывода статистики.
Использование FPGA или ASIC позволяет все операции проводить параллельно, что не вносит какие либо задержки на обработку и исключает взаимовлияние модулей обработки.

Заключение

“И мы сделаем это. Не потому, что это легко, а потому что трудно.”

PS. Задавайте вопросы и предлагайте темы, в рамках нашей компетенции готовы на все 🙂

Источник

In digital transmission, the number of bit errors is the number of received bits of a data stream over a communication channel that have been altered due to noise, interference, distortion or bit synchronization errors.

The bit error rate (BER) is the number of bit errors per unit time. The bit error ratio (also BER) is the number of bit errors divided by the total number of transferred bits during a studied time interval. Bit error ratio is a unitless performance measure, often expressed as a percentage.[1]

The bit error probability pe is the expected value of the bit error ratio. The bit error ratio can be considered as an approximate estimate of the bit error probability. This estimate is accurate for a long time interval and a high number of bit errors.

ExampleEdit

As an example, assume this transmitted bit sequence:

1 1 0 0 0 1 0 1 1

and the following received bit sequence:

0 1 0 1 0 1 0 0 1,

The number of bit errors (the underlined bits) is, in this case, 3. The BER is 3 incorrect bits divided by 9 transferred bits, resulting in a BER of 0.333 or 33.3%.

Packet error ratioEdit

The packet error ratio (PER) is the number of incorrectly received data packets divided by the total number of received packets. A packet is declared incorrect if at least one bit is erroneous. The expectation value of the PER is denoted packet error probability pp, which for a data packet length of N bits can be expressed as

 ,

assuming that the bit errors are independent of each other. For small bit error probabilities and large data packets, this is approximately

 

Similar measurements can be carried out for the transmission of frames, blocks, or symbols.

The above expression can be rearranged to express the corresponding BER (pe) as a function of the PER (pp) and the data packet length N in bits:

 

Factors affecting the BEREdit

In a communication system, the receiver side BER may be affected by transmission channel noise, interference, distortion, bit synchronization problems, attenuation, wireless multipath fading, etc.

The BER may be improved by choosing a strong signal strength (unless this causes cross-talk and more bit errors), by choosing a slow and robust modulation scheme or line coding scheme, and by applying channel coding schemes such as redundant forward error correction codes.

The transmission BER is the number of detected bits that are incorrect before error correction, divided by the total number of transferred bits (including redundant error codes). The information BER, approximately equal to the decoding error probability, is the number of decoded bits that remain incorrect after the error correction, divided by the total number of decoded bits (the useful information). Normally the transmission BER is larger than the information BER. The information BER is affected by the strength of the forward error correction code.

Analysis of the BEREdit

The BER may be evaluated using stochastic (Monte Carlo) computer simulations. If a simple transmission channel model and data source model is assumed, the BER may also be calculated analytically. An example of such a data source model is the Bernoulli source.

Examples of simple channel models used in information theory are:

  • Binary symmetric channel (used in analysis of decoding error probability in case of non-bursty bit errors on the transmission channel)
  • Additive white Gaussian noise (AWGN) channel without fading.

A worst-case scenario is a completely random channel, where noise totally dominates over the useful signal. This results in a transmission BER of 50% (provided that a Bernoulli binary data source and a binary symmetrical channel are assumed, see below).

Bit-error rate curves for BPSK, QPSK, 8-PSK and 16-PSK, AWGN channel.

In a noisy channel, the BER is often expressed as a function of the normalized carrier-to-noise ratio measure denoted Eb/N0, (energy per bit to noise power spectral density ratio), or Es/N0 (energy per modulation symbol to noise spectral density).

For example, in the case of QPSK modulation and AWGN channel, the BER as function of the Eb/N0 is given by:
 .[2]

People usually plot the BER curves to describe the performance of a digital communication system. In optical communication, BER(dB) vs. Received Power(dBm) is usually used; while in wireless communication, BER(dB) vs. SNR(dB) is used.

Measuring the bit error ratio helps people choose the appropriate forward error correction codes. Since most such codes correct only bit-flips, but not bit-insertions or bit-deletions, the Hamming distance metric is the appropriate way to measure the number of bit errors. Many FEC coders also continuously measure the current BER.

A more general way of measuring the number of bit errors is the Levenshtein distance.
The Levenshtein distance measurement is more appropriate for measuring raw channel performance before frame synchronization, and when using error correction codes designed to correct bit-insertions and bit-deletions, such as Marker Codes and Watermark Codes.[3]

Mathematical draftEdit

The BER is the likelihood of a bit misinterpretation due to electrical noise  . Considering a bipolar NRZ transmission, we have

  for a «1» and   for a «0». Each of   and   has a period of  .

Knowing that the noise has a bilateral spectral density  ,

  is  

and   is  .

Returning to BER, we have the likelihood of a bit misinterpretation  .

  and  

where   is the threshold of decision, set to 0 when  .

We can use the average energy of the signal   to find the final expression :

 
±§

Bit error rate testEdit

BERT or bit error rate test is a testing method for digital communication circuits that uses predetermined stress patterns consisting of a sequence of logical ones and zeros generated by a test pattern generator.

A BERT typically consists of a test pattern generator and a receiver that can be set to the same pattern. They can be used in pairs, with one at either end of a transmission link, or singularly at one end with a loopback at the remote end. BERTs are typically stand-alone specialised instruments, but can be personal computer–based. In use, the number of errors, if any, are counted and presented as a ratio such as 1 in 1,000,000, or 1 in 1e06.

Common types of BERT stress patternsEdit

  • PRBS (pseudorandom binary sequence) – A pseudorandom binary sequencer of N Bits. These pattern sequences are used to measure jitter and eye mask of TX-Data in electrical and optical data links.
  • QRSS (quasi random signal source) – A pseudorandom binary sequencer which generates every combination of a 20-bit word, repeats every 1,048,575 words, and suppresses consecutive zeros to no more than 14. It contains high-density sequences, low-density sequences, and sequences that change from low to high and vice versa. This pattern is also the standard pattern used to measure jitter.
  • 3 in 24 – Pattern contains the longest string of consecutive zeros (15) with the lowest ones density (12.5%). This pattern simultaneously stresses minimum ones density and the maximum number of consecutive zeros. The D4 frame format of 3 in 24 may cause a D4 yellow alarm for frame circuits depending on the alignment of one bits to a frame.
  • 1:7 – Also referred to as 1 in 8. It has only a single one in an eight-bit repeating sequence. This pattern stresses the minimum ones density of 12.5% and should be used when testing facilities set for B8ZS coding as the 3 in 24 pattern increases to 29.5% when converted to B8ZS.
  • Min/max – Pattern rapid sequence changes from low density to high density. Most useful when stressing the repeater’s ALBO feature.
  • All ones (or mark) – A pattern composed of ones only. This pattern causes the repeater to consume the maximum amount of power. If DC to the repeater is regulated properly, the repeater will have no trouble transmitting the long ones sequence. This pattern should be used when measuring span power regulation. An unframed all ones pattern is used to indicate an AIS (also known as a blue alarm).
  • All zeros – A pattern composed of zeros only. It is effective in finding equipment misoptioned for AMI, such as fiber/radio multiplex low-speed inputs.
  • Alternating 0s and 1s — A pattern composed of alternating ones and zeroes.
  • 2 in 8 – Pattern contains a maximum of four consecutive zeros. It will not invoke a B8ZS sequence because eight consecutive zeros are required to cause a B8ZS substitution. The pattern is effective in finding equipment misoptioned for B8ZS.
  • Bridgetap — Bridge taps within a span can be detected by employing a number of test patterns with a variety of ones and zeros densities. This test generates 21 test patterns and runs for 15 minutes. If a signal error occurs, the span may have one or more bridge taps. This pattern is only effective for T1 spans that transmit the signal raw. Modulation used in HDSL spans negates the bridgetap patterns’ ability to uncover bridge taps.
  • Multipat — This test generates five commonly used test patterns to allow DS1 span testing without having to select each test pattern individually. Patterns are: all ones, 1:7, 2 in 8, 3 in 24, and QRSS.
  • T1-DALY and 55 OCTET — Each of these patterns contain fifty-five (55), eight bit octets of data in a sequence that changes rapidly between low and high density. These patterns are used primarily to stress the ALBO and equalizer circuitry but they will also stress timing recovery. 55 OCTET has fifteen (15) consecutive zeroes and can only be used unframed without violating one’s density requirements. For framed signals, the T1-DALY pattern should be used. Both patterns will force a B8ZS code in circuits optioned for B8ZS.

Bit error rate testerEdit

A bit error rate tester (BERT), also known as a «bit error ratio tester»[4] or bit error rate test solution (BERTs) is electronic test equipment used to test the quality of signal transmission of single components or complete systems.

The main building blocks of a BERT are:

  • Pattern generator, which transmits a defined test pattern to the DUT or test system
  • Error detector connected to the DUT or test system, to count the errors generated by the DUT or test system
  • Clock signal generator to synchronize the pattern generator and the error detector
  • Digital communication analyser is optional to display the transmitted or received signal
  • Electrical-optical converter and optical-electrical converter for testing optical communication signals

See alsoEdit

  • Burst error
  • Error correction code
  • Errored second
  • Pseudo bit error ratio
  • Viterbi Error Rate

ReferencesEdit

  1. ^ Jit Lim (14 December 2010). «Is BER the bit error ratio or the bit error rate?». EDN. Retrieved 2015-02-16.
  2. ^
    Digital Communications, John Proakis, Massoud Salehi, McGraw-Hill Education, Nov 6, 2007
  3. ^
    «Keyboards and Covert Channels»
    by Gaurav Shah, Andres Molina, and Matt Blaze (2006?)
  4. ^ «Bit Error Rate Testing: BER Test BERT » Electronics Notes». www.electronics-notes.com. Retrieved 2020-04-11.

  This article incorporates public domain material from Federal Standard 1037C. General Services Administration. (in support of MIL-STD-188).

External linksEdit

  • QPSK BER for AWGN channel – online experiment

В цифровой передаче, количество битовых ошибок является количеством принятых бит одного потока данных над каналом связи, которые были изменены из — за шум, помехи, искажений или битой синхронизацию ошибок.

Коэффициент битовых ошибок ( BER ) — это количество битовых ошибок в единицу времени. Коэффициент битовых ошибок (также BER ) — это количество битовых ошибок, деленное на общее количество переданных битов за исследуемый интервал времени. Коэффициент битовых ошибок — это безразмерная мера производительности, часто выражаемая в процентах .

Бита вероятность ошибка р е является ожидаемым значением коэффициента ошибок по битам. Коэффициент битовых ошибок можно рассматривать как приблизительную оценку вероятности битовых ошибок. Эта оценка точна для длительного интервала времени и большого количества битовых ошибок.

Пример

В качестве примера предположим, что эта переданная битовая последовательность:

0 1 1 0 0 0 1 0 1 1

и следующая полученная битовая последовательность:

0 0 1 0 1 0 1 0 0 1,

Количество битовых ошибок (подчеркнутые биты) в этом случае равно 3. BER — это 3 неверных бита, разделенных на 10 переданных битов, в результате чего BER составляет 0,3 или 30%.

Коэффициент ошибок пакета

Коэффициент ошибок пакетов (PER) — это количество неправильно принятых пакетов данных, деленное на общее количество принятых пакетов. Пакет объявляется некорректным, если хотя бы один бит ошибочен. Ожидаемое значение PER обозначается вероятностью ошибки пакета p p, которая для длины пакета данных N бит может быть выражена как

{ displaystyle p_ {p} = 1- (1-p_ {e}) ^ {N} = 1-e ^ {N  ln (1-p_ {e})}},

предполагая, что битовые ошибки не зависят друг от друга. Для малых вероятностей битовых ошибок и больших пакетов данных это примерно

p_ {p}  приблизительно p_ {e} N.

Подобные измерения могут быть выполнены для передачи кадров, блоков или символов .

Факторы, влияющие на BER

В системе связи на BER на стороне приемника могут влиять шум канала передачи, помехи, искажения, проблемы битовой синхронизации, затухание, замирания из-за многолучевого распространения беспроводной связи и т. Д.

BER может быть улучшен путем выбора сильного уровня сигнала (если это не вызывает перекрестных помех и большего количества битовых ошибок), путем выбора медленной и надежной схемы модуляции или схемы линейного кодирования, а также путем применения схем канального кодирования, таких как избыточные коды прямого исправления ошибок. .

КОБ передачи является количество обнаруженных битов, которые являются неправильными до коррекции ошибок, разделенных на общее количество переданных битов ( в том числе избыточных кодов ошибок). Информация КОБ, примерно равна вероятности ошибки декодирования, это число декодированных битов, которые остаются неправильно после коррекции ошибок, деленное на общее число декодированных битов (полезная информация). Обычно BER передачи больше, чем BER информации. На информационный BER влияет сила кода прямого исправления ошибок.

Анализ BER

BER можно оценить с помощью стохастического ( Монте-Карло ) компьютерного моделирования. Если предполагается простая модель канала передачи и модель источника данных, BER также может быть вычислен аналитически. Примером такой модели источника данных является источник Бернулли .

Примеры простых моделей каналов, используемых в теории информации :

  • Двоичный симметричный канал (используется при анализе вероятности ошибки декодирования в случае непакетных битовых ошибок в канале передачи)
  • Канал аддитивного белого гауссова шума (AWGN) без замирания.

Наихудший сценарий — это полностью случайный канал, в котором шум полностью преобладает над полезным сигналом. Это приводит к BER передачи 50% (при условии, что предполагается источник двоичных данных Бернулли и двоичный симметричный канал, см. Ниже).

В канале с шумом BER часто выражается как функция нормированного показателя отношения несущей к шуму, обозначаемого Eb / N0 (отношение энергии на бит к спектральной плотности мощности шума) или Es / N0 (энергия на символ модуляции для спектральная плотность шума).

Например, в случае QPSK модуляции и канал АБГШ, КОБ в зависимости от Eb / N0 определяется по формуле:
.
 operatorname {BER} = { frac {1} {2}}  operatorname {erfc} ({ sqrt {E_ {b} / N_ {0}}})

Люди обычно строят кривые BER для описания производительности цифровой системы связи. В оптической связи обычно используется зависимость BER (дБ) от принимаемой мощности (дБм); в то время как в беспроводной связи используется BER (дБ) по сравнению с SNR (дБ).

Измерение коэффициента ошибок по битам помогает людям выбрать подходящие коды прямого исправления ошибок. Поскольку большинство таких кодов исправляют только перевороты битов, но не вставки или удаления битов, метрика расстояния Хэмминга является подходящим способом измерения количества битовых ошибок. Многие кодеры FEC также непрерывно измеряют текущий BER.

Более общий способ измерения количества битовых ошибок — это расстояние Левенштейна . Измерение расстояния Левенштейна больше подходит для измерения характеристик сырого канала перед кадровой синхронизацией, а также при использовании кодов коррекции ошибок, предназначенных для исправления вставки и удаления битов, таких как коды маркеров и коды водяных знаков.

Математический проект

BER — это вероятность неправильной интерпретации из-за электрического шума . Рассматривая биполярную передачу NRZ, мы имеем
ш (т)

х_ {1} (t) = A + w (t)для «1» и для «0». Каждый из и имеет период .
х_ {0} (t) = - A + w (t)x_ {1} (т)x_0 (т)Т

Зная, что шум имеет двустороннюю спектральную плотность ,
{ frac {N_ {0}} {2}}

x_ {1} (т) является { mathcal {N}}  left (A, { frac {N_ {0}} {2T}}  right)

и есть .
x_0 (т){ mathcal {N}}  left (-A, { frac {N_ {0}} {2T}}  right)

Возвращаясь к BER, у нас есть вероятность неправильного толкования .
p_ {e} = p (0 | 1) p_ {1} + p (1 | 0) p_ {0}

p (1 | 0) = 0,5 ,  operatorname {erfc}  left ({ frac {A +  lambda} {{ sqrt {N_ {o} / T}}}}  right) и p (0 | 1) = 0,5 ,  operatorname {erfc}  left ({ frac {A-  lambda} {{ sqrt {N_ {o} / T}}}}  right)

где — порог принятия решения, установленный в 0, когда .
 lambda p_ {1} = p_ {0} = 0,5

Мы можем использовать среднюю энергию сигнала, чтобы найти окончательное выражение:
E = A ^ {2} T

p_ {e} = 0,5 ,  operatorname {erfc}  left ({ sqrt {{ frac {E} {N_ {o}}}}}  right).
± §

Проверка коэффициента битовых ошибок

BERT или тест на частоту ошибок по битам — это метод тестирования схем цифровой связи, в котором используются заранее определенные шаблоны нагрузки, состоящие из последовательности логических единиц и нулей, сгенерированных генератором тестовых шаблонов.

BERT обычно состоит из генератора тестовых шаблонов и приемника, который может быть настроен на один и тот же шаблон. Их можно использовать парами, по одному на любом конце линии передачи, или по отдельности на одном конце с кольцевой проверкой на удаленном конце. BERT обычно представляют собой автономные специализированные инструменты, но могут быть основаны на персональном компьютере . При использовании количество ошибок, если таковые имеются, подсчитывается и представляется в виде отношения, например 1 на 1 000 000 или 1 на 1e06.

Распространенные типы стресс-паттернов BERT

  • PRBS ( псевдослучайная двоичная последовательность ) — псевдослучайный двоичный секвенсор из N бит. Эти последовательности шаблонов используются для измерения джиттера и глаз-маски TX-данных в электрических и оптических каналах передачи данных.
  • QRSS (квазислучайный источник сигнала) — псевдослучайный двоичный секвенсор, который генерирует каждую комбинацию 20-битного слова, повторяет каждые 1048 575 слов и подавляет последовательные нули не более чем до 14. Он содержит последовательности с высокой плотностью, последовательности с низкой плотностью, и последовательности, которые меняются от низкого к высокому и наоборот. Этот шаблон также является стандартным шаблоном, используемым для измерения джиттера.
  • 3 из 24 — шаблон содержит самую длинную строку последовательных нулей (15) с самой низкой плотностью (12,5%). Этот шаблон одновременно подчеркивает минимальную плотность единиц и максимальное количество последовательных нулей. Формат кадра D4 3 из 24 может вызвать желтый аварийный сигнал D4 для цепей кадра в зависимости от выравнивания одного бита с кадром.
  • 1: 7 — Также упоминается как 1 из 8 . Он имеет только один в восьмибитной повторяющейся последовательности. Этот шаблон подчеркивает минимальную плотность 12,5% и должен использоваться при тестировании средств, установленных для кодирования B8ZS, поскольку шаблон 3 из 24 увеличивается до 29,5% при преобразовании в B8ZS.
  • Мин. / Макс. — последовательность быстрого перехода узора с низкой плотности на высокую. Наиболее полезно при усилении функции ALBO ретранслятора .
  • Все единицы (или отметка) — шаблон, состоящий только из единиц. Этот шаблон заставляет повторитель потреблять максимальное количество энергии. Если постоянный ток к ретранслятору отрегулирован должным образом, ретранслятор не будет иметь проблем с передачей длинной последовательности. Этот образец следует использовать при измерении регулирования мощности диапазона. Шаблон «все единицы без рамки» используется для обозначения AIS (также известного как синий сигнал тревоги ).
  • Все нули — шаблон, состоящий только из нулей. Это эффективно при поиске оборудования, неправильно настроенного для AMI, такого как низкоскоростные входы мультиплексного волокна / радио.
  • Чередование нулей и единиц — шаблон, состоящий из чередующихся единиц и нулей.
  • 2 из 8 — шаблон содержит не более четырех последовательных нулей. Он не вызовет последовательность B8ZS, потому что для подстановки B8ZS требуется восемь последовательных нулей. Схема эффективна при поиске оборудования, не использованного для B8ZS.
  • Bridgetapразветвления моста в пределах пролета можно обнаружить с помощью ряда тестовых шаблонов с различной плотностью единиц и нулей. Этот тест генерирует 21 тестовую таблицу и длится 15 минут. Если возникает ошибка сигнала, на участке может быть один или несколько ответвлений моста. Этот шаблон эффективен только для участков T1, которые передают необработанный сигнал. Модуляция, используемая в пролетах HDSL, сводит на нет способность шаблонов моста обнаруживать ответвления моста.
  • Multipat — этот тест генерирует пять часто используемых тестовых шаблонов, позволяющих проводить тестирование диапазона DS1 без необходимости выбирать каждый тестовый шаблон отдельно. Шаблоны: все единицы, 1: 7, 2 из 8, 3 из 24 и QRSS.
  • T1-DALY и 55 OCTET — Каждый из этих шаблонов содержит пятьдесят пять (55) восьмибитовых октетов данных в последовательности, которая быстро изменяется между низкой и высокой плотностью. Эти паттерны используются в основном для нагрузки на схему ALBO и эквалайзера, но они также усиливают восстановление синхронизации. 55 OCTET имеет пятнадцать (15) последовательных нулей и может использоваться только без рамки без нарушения требований к плотности. Для сигналов с фреймами следует использовать шаблон T1-DALY. Оба шаблона вызовут код B8ZS в схемах с опцией для B8ZS.

Тестер коэффициента битовых ошибок

Тестер коэффициента ошибок по битам (BERT), также известный как «тестер коэффициента ошибок по битам» или решение для тестирования коэффициента ошибок по битам (BERT), представляет собой электронное испытательное оборудование, используемое для проверки качества передачи сигнала отдельных компонентов или целых систем.

Основные строительные блоки BERT:

  • Генератор шаблонов, который передает определенный тестовый шаблон в ИУ или тестовую систему.
  • Детектор ошибок, подключенный к DUT или тестовой системе, для подсчета ошибок, генерируемых DUT или тестовой системой.
  • Генератор тактовых сигналов для синхронизации генератора шаблонов и детектора ошибок
  • Анализатор цифровой связи не является обязательным для отображения переданного или принятого сигнала.
  • Электрооптический преобразователь и оптико-электрический преобразователь для проверки сигналов оптической связи.

Смотрите также

  • Пакетная ошибка
  • Код исправления ошибок
  • Секунда с ошибкой
  • Частота ошибок Витерби

использованная литература

Всеобщее достояние Эта статья включает  материалы, являющиеся общественным достоянием, из документа Управления общих служб : «Федеральный стандарт 1037C» .(в поддержку MIL-STD-188 )

внешние ссылки

  • QPSK BER для канала AWGN — онлайн-эксперимент

Понравилась статья? Поделить с друзьями:
  • Bit error rate testing
  • Bit error rate test
  • Bit error rate snr
  • Bit error rate ethernet
  • Bit error rate analysis tool matlab