Чем выше доверительная вероятность ошибки выборки тем

Статья о размере выборки и статистической ошибке измерений. Подробно с примерами.

Один из первых шагов при планировании количественного маркетингового исследования – определение объема выборки.

Калькулятор для расчета достаточного объема выборки
Калькулятор ошибки выборки для доли признака
Калькулятор ошибки выборки для среднего значения
Калькулятор значимости различий долей
Калькулятор значимости различий средних

1. Формула (даже две)

Бытует заблуждение, что чем больше объем генеральной совокупности, тем больше должен быть объем выборки маркетингового исследования. Это отчасти так, когда объем выборки сопоставим с размером генеральной совокупности. Например, при опросах организаций (B2B).

Если речь идет об исследовании жителей городов, то не важно, Москва это или Рязань – оптимальный объем выборки будет одинаков в обоих городах. Этот принцип следует из закона больших чисел и применим, только если выборка простая случайная.

На рис.1. пример выборки 15000 человек (!) при опросе в муниципальном районе. Возможно, от численности населения взяли 10%?
Размер выборки никогда не рассчитывается как процент от генеральной совокупности!

пример неправильного размера выборки, как опеределить размер выборки

Рис.1. Размер выборки 15000 человек, как реальный пример некомпетентности (или хуже).

В таких случаях для расчета объема выборки используется следующая формула:

SampleSize_formula_1.png

где 

n – объем выборки,
Z – коэффициент, зависящий от выбранного исследователем доверительного уровня,
p – доля респондентов с наличием исследуемого признака,
q = 1 – p – доля респондентов, у которых исследуемый признак отсутствует,
∆ – предельная ошибка выборки.

Доверительный уровень – это вероятность того, что реальная доля лежит в границах полученного доверительного интервала: выборочная доля (p) ± ошибка выборки (Δ). Доверительный уровень устанавливает сам исследователь в соответствии со своими требованиями к надежности полученных результатов. Чаще всего применяются доверительные уровни, равные 0,95 или 0,99. В маркетинговых исследованиях, как правило, выбирается доверительный уровень, равный 0,95. При этом уровне коэффициент Z равен 1,96.

Значения p и q чаще всего неизвестны до проведения исследования и принимаются за 0,5. При этом значении размер ошибки выборки максимален.

Допустимая предельная ошибка выборки выбирается исследователем в зависимости от целей исследования. Считается, что для принятия бизнес-решений ошибка выборки должна быть не больше 4%. Этому значению соответствует объем выборки 500-600 респондентов. Для важных стратегических решений целесообразно минимизировать ошибку выборки.

Рассмотрим кривую зависимости ошибки выборки от ее объема (Рис.2).

SampleSize_img1.png

Рис.2. Зависимость ошибки выборки от ее объема при 95% доверительном уровне

Как видно из диаграммы, с ростом объема выборки значение ошибки уменьшается все медленнее. Так, при объеме выборки 1500 человек предельная ошибка выборки составит ±2,5%, а при объеме 2000 человек – ±2,2%. То есть, при определенном объеме выборки дальнейшее его увеличение не дает значительного выигрыша в ее точности.

ШПАРГАЛКА (скопируйте  ссылку или текст)

Подходы к решению проблемы:


Случай 1. Генеральная совокупность значительно больше выборки:

SampleSize_formula_2.png

Случай 2. Генеральная совокупность сопоставима с объемом выборки: (см. раздел исследований B2B)

SampleSize_formula_3.png

где 
n – объем выборки,

N – объем генеральной совокупности, 


Z – коэффициент, зависящий от выбранного исследователем доверительного уровня,


p – доля респондентов с наличием исследуемого признака,


q = 1 – p – доля респондентов, у которых исследуемый признак отсутствует, (значения p и q обычно принимаются за 0,5, поскольку точно неизвестны до проведения исследования) 


∆ – предельная ошибка выборки.

Например,

рассчитаем ошибку выборки объемом 
1000 человек при 95% доверительном уровне, если генеральная совокупность значительно больше объема выборки: 

Ошибка выборки = 1,96 * КОРЕНЬ(0,5*0,5/1000) = 0,031 = ±3,1%

При расчете объема выборки следует также учитывать стоимость проведения исследования. Например, при цене за 1 анкету 200 рублей стоимость опроса 1000 человек составит 200 000 рублей, а опрос 1500 человек будет стоить 300 000 рублей. Увеличение затрат в полтора раза сократит ошибку выборки всего на 0,6%, что обычно неоправданно экономически.

2. Причины «раздувать» выборку

Анализ полученных данных обычно включает в себя и анализ подвыборок, объемы которых меньше основной выборки. Поэтому ошибка для выводов по подвыборкам больше, чем ошибка по выборке в целом. Если планируется анализ подгрупп / сегментов, объем выборки должен быть увеличен (в разумных пределах).

Рис.3 демонстрирует данную ситуацию. Если для исследования авиапассажиров используется выборка численностью 500 человек, то для выводов по выборке в целом ошибка составляет 4,4%, что вполне приемлемо для принятия бизнес-решений. Но при делении выборки на подгруппы в зависимости от цели поездки, выводы по каждой подгруппе уже недостаточно точны. Если мы захотим узнать какие-либо количественные характеристики группы пассажиров, совершающих бизнес-поездку и покупавших билет самостоятельно, ошибка полученных показателей будет достаточно велика. Даже увеличение выборки до 2000 человек не обеспечит приемлемой точности выводов по этой подвыборке.


Рис.3. Проектирование объема выборки с учетом необходимости анализа подвыборок

Другой пример – анализ подгрупп потребителей услуг торгово-развлекательного центра (Рис.4).


Рис.4. Потенциальный спрос на услуги торгово-развлекательного центра

При объеме выборки в 1000 человек выводы по каждой отдельной услуге (например, социально-демографический профиль, частота пользования, средний чек и др.) будут недостаточно точными для использования в бизнес планировании. Особенно это касается наименее популярных услуг (Таблица 1).

Таблица 1. Ошибка по подвыборкам потенциальных потребителей услуг торгово-развлекательного центра при выборке 1000 чел.

Чтобы ошибка в самой малочисленной подвыборке «Ночной клуб» составила меньше 5%, объем выборки исследования должен составлять около 4000 человек. Но это будет означать 4-кратное удорожание проекта. В таких случаях возможно компромиссное решение:

    • увеличение выборки до 1800 человек, что даст достаточную точность для 6 самых популярных видов услуг (от кинотеатра до парка аттракционов);
    • добор 200-300 пользователей менее популярных услуг с опросом по укороченной анкете (см. Таблицу 2).

Таблица 2. Разница в ошибке выборки по подвыборкам при разных объемах выборки.

При обсуждении с исследовательским агентством точности результатов планируемого исследования рекомендуется принимать во внимание бюджет, требования к точности результатов в целом по выборке и в разрезе подгрупп. Если бюджет не позволяет получить информацию с приемлемой ошибкой, лучше пока отложить проект (или поторговаться).


КАЛЬКУЛЯТОРЫ ДЛЯ РАСЧЕТА СТАТИСТИЧЕСКИХ ПОКАЗАТЕЛЕЙ И ОПРЕДЕЛЕНИЯ ЗНАЧИМОСТИ РАЗЛИЧИЙ:

КАЛЬКУЛЯТОР ДЛЯ РАСЧЕТА
ДОСТАТОЧНОГО ОБЪЁМА ВЫБОРКИ

Доверительный уровень:

Ошибка выборки (?):
%

Объём генеральной совокупности (N):
(можно пропустить, если больше 100 000)

РЕЗУЛЬТАТ

Один из важных вопросов, на которые нужно ответить при планировании исследования, — это оптимальный объем выборки. Слишком маленькая выборка не сможет обеспечить приемлемую точность результатов опроса, а слишком большая приведет к лишним расходам. 

Онлайн-калькулятор объема выборки поможет рассчитать оптимальный размер выборки, исходя из максимально приемлемого для исследователя размера ошибки выборки.

Все дальнейшие формулы и расчеты относятся только к простой случайной выборке!
Формулы для других типов выборки отличаются.

Объем выборки рассчитывается по следующим формулам

1) если объем выборки значительно меньше генеральной совокупности:

SampleSize_formula_1.png(в данной формуле не используется показатель объема генеральной совокупности N)

2) если объем выборки сопоставим с объемом генеральной совокупности:

SampleSize_formula_4.png

В приведенных формулах:

Z – коэффициент, зависящий от выбранного исследователем доверительного уровня. Доверительный уровень (или доверительная вероятность) – это вероятность того, что реальное значение измеряемого показателя (по всей генеральной совокупности) находится в пределах доверительного интервала, полученного в исследовании. Доверительный уровень выбирает сам исследователь, исходя из требований к надежности результатов исследования. В маркетинговых исследованиях обычно применяется 95%-й доверительный уровень. Ему соответствует значение Z = 1,96.

N – объем генеральной совокупности. Генеральная совокупность – это все люди, которые изучаются в исследовании (например, все покупатели соков и нектаров, постоянно проживающие в Москве и Московской области). Если генеральная совокупность значительно больше объема выборки (в сотни и более раз), ее размером можно пренебречь (формула 1).

p – доля респондентов с наличием исследуемого признака. Например, если 20% опрошенных заинтересованы в новом продукте, то p = 0,2.

q = 1 — p – доля респондентов, у которых исследуемый признак отсутствует. Значения p и q обычно принимаются за 0,5, поскольку точно неизвестны до проведения исследования. При этом значении размер ошибки выборки максимален. В данном калькуляторе значения p и q по умолчанию равны 0,5.

Δ– предельная ошибка выборки (для доли признака), приемлемая для исследователя. Считается, что для принятия бизнес-решений ошибка выборки не должна превышать 4%.

n – объем выборки. Объем выборки – это количество людей, которые опрашиваются в исследовании.

ПРИМЕР РАСЧЕТА ОБЪЕМА ВЫБОРКИ:

Допустим, мы хотим рассчитать объем выборки, предельная ошибка которой составит 4%. Мы принимаем доверительный уровень, равный 95%. Генеральная совокупность значительно больше выборки. Тогда объем выборки составит:

n = 1,96 * 1,96 * 0,5 * 0,5 / (0,04 * 0,04) = 600,25 ≈ 600 человек

Таким образом, если мы хотим получить результаты с предельной ошибкой 4%, нам нужно опросить 600 человек. 


КАЛЬКУЛЯТОР ОШИБКИ ВЫБОРКИ ДЛЯ ДОЛИ ПРИЗНАКА

Доверительный уровень:

Объём выборки (n):

Объём генеральной совокупности (N):
(можно пропустить, если больше 100 000)

Доля признака (p):
%

РЕЗУЛЬТАТ

Зная объем выборки исследования, можно рассчитать значение ошибки выборки (или, другими словами, погрешность выборки).

Если бы в ходе исследования мы могли опросить абсолютно всех интересующих нас людей, мы могли бы быть на 100% уверены в полученном результате. Но ввиду экономической нецелесообразности сплошного опроса применяют выборочный подход, когда опрашивается только часть генеральной совокупности. Выборочный метод не гарантирует 100%-й точности измерения, но, тем не менее, вероятность ошибки может быть сведена к приемлемому минимуму.

Все дальнейшие формулы и расчеты относятся только к простой случайной выборке! Формулы для других типов выборки отличаются.

Ошибка выборки для доли признака рассчитывается по следующим формулам.

1) если объем выборки значительно меньше генеральной совокупности:
SampleSize_formula_2.png

 (в данной формуле не используется показатель объема генеральной совокупности N)

2) если объем выборки сопоставим с объемом генеральной совокупности:

SampleSize_formula_3.png

В приведенных формулах:

Z – коэффициент, зависящий от выбранного исследователем доверительного уровня. Доверительный уровень (или доверительная вероятность) – это вероятность того, что реальное значение измеряемого показателя (по всей генеральной совокупности) находится в пределах доверительного интервала, полученного в исследовании. Доверительный уровень выбирает сам исследователь, исходя из требований к надежности результатов исследования. В маркетинговых исследованиях обычно применяется 95%-й доверительный уровень. Ему соответствует значение Z = 1,96.

N – объем генеральной совокупности. Генеральная совокупность – это все люди, которые изучаются в исследовании (например, все покупатели шоколада, постоянно проживающие в Москве). Если генеральная совокупность значительно больше объема выборки (в сотни и более раз), ее размером можно пренебречь (формула 1).

n – объем выборки. Объем выборки – это количество людей, которые опрашиваются в исследовании. Существует заблуждение, что чем больше объем генеральной совокупности, тем больше должен быть и объем выборки маркетингового исследования. Это отчасти так, когда объем выборки сопоставим с объемом генеральной совокупности. Например, при опросах организаций (B2B). Если же речь идет об исследовании жителей городов, то не важно, Москва это или Рязань – оптимальный объем выборки будет одинаков в обоих городах. Этот принцип следует из закона больших чисел и применим, только если выборка простая случайная. ВАЖНО: если предполагается сравнивать какие-то группы внутри города, например, жителей разных районов, то выборку следует рассчитывать для каждой такой группы.

p – доля респондентов с наличием исследуемого признака. Например, если 20% опрошенных заинтересованы в новом продукте, то p = 0,2.

q = 1 — p – доля респондентов, у которых исследуемый признак отсутствует. Значения p и q обычно принимаются за 0,5, поскольку точно неизвестны до проведения исследования. При этом значении размер ошибки выборки максимален.

Δ– предельная ошибка выборки.

Таким образом, зная объем выборки исследования, мы можем заранее оценить показатель ее ошибки.
А получив значение p, мы можем рассчитать доверительный интервал для доли признака: (p — ∆; p + ∆)

ПРИМЕР РАСЧЕТА ОШИБКИ ВЫБОРКИ ДЛЯ ДОЛИ ПРИЗНАКА:

Например, в ходе исследования были опрошены 1000 человек (n=1000). 20% из них заинтересовались новым продуктом (p=0,2). Рассчитаем показатель ошибки выборки по формуле 1 (выберем доверительный уровень, равный 95%):

∆ = 1,96 * КОРЕНЬ (0,2*0,8/1000) = 0,0248 = ±2,48%

Рассчитаем доверительный интервал:

(p — ∆; p + ∆) = (20% — 2,48%; 20% + 2,48%) = (17,52%; 22,48%)

Таким образом, с вероятностью 95% мы можем быть уверены, что реальная доля заинтересованных в новом продукте (среди всей генеральной совокупности) находится в пределах полученного диапазона (17,52%; 22,48%).

Если бы мы выбрали доверительный уровень, равный 99%, то для тех же значений p и n ошибка выборки была бы больше, а доверительный интервал – шире. Это логично, поскольку, если мы хотим быть более уверены в том, что наш доверительный интервал «накроет» реальное значение признака, то интервал должен быть более широким.


КАЛЬКУЛЯТОР ОШИБКИ ВЫБОРКИ ДЛЯ СРЕДНЕГО ЗНАЧЕНИЯ

Доверительный уровень:

Объём выборки (n):

Объём генеральной совокупности (N):
(можно пропустить, если больше 100 000)

Среднее значение (x̄):

Стандартное отклонение (s):

РЕЗУЛЬТАТ

Зная объем выборки исследования, можно рассчитать значение ошибки выборки (или, другими словами, погрешность выборки).

Если бы в ходе исследования мы могли опросить абсолютно всех интересующих нас людей, мы могли бы быть на 100% уверены в полученном результате. Но ввиду экономической нецелесообразности сплошного опроса применяют выборочный подход, когда опрашивается только часть генеральной совокупности. Выборочный метод не гарантирует 100%-й точности измерения, но, тем не менее, вероятность ошибки может быть сведена к приемлемому минимуму.

Все дальнейшие формулы и расчеты относятся только к простой случайной выборке! Формулы для других типов выборки отличаются.

Ошибка выборки для среднего значения рассчитывается по следующим формулам.

1) если объем выборки значительно меньше генеральной совокупности:

SampleSize_formula_5.png

(в данной формуле не используется показатель объема генеральной совокупности N)

2) если объем выборки сопоставим с объемом генеральной совокупности:

SampleSize_formula_6.png

В приведенных формулах:

Z – коэффициент, зависящий от выбранного исследователем доверительного уровня. Доверительный уровень (или доверительная вероятность) – это вероятность того, что реальное значение измеряемого показателя (по всей генеральной совокупности) находится в пределах доверительного интервала, полученного в исследовании. Доверительный уровень выбирает сам исследователь, исходя из требований к надежности результатов исследования. В маркетинговых исследованиях обычно применяется 95%-й доверительный уровень. Ему соответствует значение Z = 1,96

N – объем генеральной совокупности. Генеральная совокупность – это все люди, которые изучаются в исследовании (например, все покупатели мороженого, постоянно проживающие в Москве). Если генеральная совокупность значительно больше объема выборки (в сотни и более раз), ее размером можно пренебречь (формула 1).

n – объем выборки. Объем выборки – это количество людей, которые опрашиваются в исследовании. Существует заблуждение, что чем больше объем генеральной совокупности, тем больше должен быть и объем выборки маркетингового исследования. Это отчасти так, когда объем выборки сопоставим с объемом генеральной совокупности. Например, при опросах организаций (B2B). Если же речь идет об исследовании жителей городов, то не важно, Москва это или Рязань – оптимальный объем выборки будет одинаков в обоих городах. Этот принцип следует из закона больших чисел и применим, только если выборка простая случайная. ВАЖНО: если предполагается сравнивать какие-то группы внутри города, например, жителей разных районов, то выборку следует рассчитывать для каждой такой группы.

s — выборочное стандартное отклонение измеряемого показателя. В идеале на месте этого аргумента должно быть стандартное отклонение показателя в генеральной совокупности (σ), но так как обычно оно неизвестно, используется выборочное стандартное отклонение, рассчитываемое по следующей формуле:

SampleSize_formula_7.png

где, x ̅ – среднее арифметическое показателя, xi– значение i-го показателя, n – объем выборки

Δ– предельная ошибка выборки.

Зная среднее значение показателя x ̅ и ошибку ∆, мы можем рассчитать доверительный интервал для среднего значения:(x ̅ — ∆; x ̅ + ∆)

ПРИМЕР РАСЧЕТА ОШИБКИ ВЫБОРКИ ДЛЯ СРЕДНЕГО ЗНАЧЕНИЯ:

Например, в ходе исследования были опрошены 1000 человек (n=1000). Каждого из них попросили указать их примерную среднюю сумму покупки (средний чек) в известной сети магазинов. Среднее арифметическое всех ответов составило 500 руб. (x ̅=500), а стандартное отклонение составило 120 руб. (s=120). Рассчитаем показатель ошибки выборки по формуле 1 (выберем доверительный уровень, равный 95%):

∆ = 1,96 * 120 / КОРЕНЬ (1000) = 7,44

Рассчитаем доверительный интервал:

(x ̅ — ∆; x ̅ + ∆) = (500 – 7,44; 500 + 7,44) = (492,56; 507,44)

Таким образом, с вероятностью 95% мы можем быть уверены, что значение среднего чека по всей генеральной совокупности находится в границах полученного диапазона: от 492,56 руб. до 507,44 руб.


КАЛЬКУЛЯТОР ЗНАЧИМОСТИ РАЗЛИЧИЙ ДОЛЕЙ

Доверительный уровень:

Измерение 1 Измерение 2
Доля признака (p): % %
Объём выборки (n):

РЕЗУЛЬТАТ

Если в прошлогоднем исследовании вашу марку вспомнили 10% респондентов, а в исследовании текущего года – 15%, не спешите открывать шампанское, пока не воспользуетесь нашим онлайн-калькулятором для оценки статистической значимости различий.

Сравнивая два разных значения, полученные на двух независимых выборках, исследователь должен убедиться, что различия статистически значимы, прежде чем делать выводы.

Как известно, выборочные исследования не обеспечивают 100%-й точности измерения (для этого пришлось бы опрашивать всю целевую аудиторию поголовно, что слишком дорого). Тем не менее, благодаря методам математической статистики, мы можем оценить точность результатов любого количественного исследования и учесть ее в выводах.

В приведенном здесь калькуляторе используется двухвыборочный z-тест для долей. Для его применения должны соблюдаться следующие условия:

    • Обе выборки – простые случайные 
    • Выборки независимы (между значениями двух выборок нет закономерной связи) 
    • Генеральные совокупности значительно больше выборок 
    • Произведения n*p и n*(1-p), где n=размер выборки а p=доля признака, – не меньше 5.

В калькуляторе используются следующие вводные данные:

Доверительный уровень (или доверительная вероятность) – это вероятность того, что реальное значение измеряемого показателя (по всей генеральной совокупности) находится в пределах доверительного интервала, полученного в исследовании. Доверительный уровень выбирает сам исследователь, исходя из требований к надежности результатов исследования. В маркетинговых исследованиях обычно применяется 95%-й доверительный уровень.

Доля признака (p) – доля респондентов с наличием исследуемого признака. Например, если 20% опрошенных заинтересованы в новом продукте, то p = 0,2.

Объем выборки (n) – это количество людей, которые опрашиваются в исследовании.

Результат расчетов – вывод о статистической значимости или незначимости различий двух измерений.


КАЛЬКУЛЯТОР ЗНАЧИМОСТИ РАЗЛИЧИЙ СРЕДНИХ

Доверительный уровень:

Измерение 1 Измерение 2
Среднее значение (x̄):
Стандартное отклонение (s):
Объём выборки (n):

РЕЗУЛЬТАТ

 

Допустим, выборочный опрос посетителей двух разных ТРЦ показал, что средний чек в одном из них равен 1000 рублей, а в другом – 1200 рублей. Следует ли отсюда вывод, что суммы среднего чека в двух этих ТРЦ действительно отличаются?

Сравнивая два разных значения, полученные на двух независимых выборках, исследователь должен убедиться, что различия статистически значимы, прежде чем делать выводы.

Как известно, выборочные исследования не обеспечивают 100%-й точности измерения (для этого пришлось бы опрашивать всю целевую аудиторию поголовно, что слишком дорого). Тем не менее, благодаря методам математической статистики, мы можем оценить точность результатов любого количественного исследования и учесть ее в выводах.

В приведенном здесь калькуляторе используется двухвыборочный z-тест для средних значений. Для его применения должны соблюдаться следующие условия:

    • Обе выборки – простые случайные 
    • Выборки независимы (между значениями двух выборок нет закономерной связи)
    • Генеральные совокупности значительно больше выборок 
    • Распределения значений в выборках близки к нормальному распределению.

В калькуляторе используются следующие вводные данные:

Доверительный уровень (или доверительная вероятность) – это вероятность того, что реальное значение измеряемого показателя (по всей генеральной совокупности) находится в пределах доверительного интервала, полученного в исследовании. Доверительный уровень выбирает сам исследователь, исходя из требований к надежности результатов исследования. В маркетинговых исследованиях обычно применяется 95%-й доверительный уровень.

Среднее значение ( ̅x) – среднее арифметическое показателя.

Стандартное отклонение (s) – выборочное стандартное отклонение измеряемого показателя. В идеале на месте этого аргумента должно быть стандартное отклонение показателя в генеральной совокупности (σ), но так как обычно оно неизвестно, используется выборочное стандартное отклонение, рассчитываемое по следующей формуле:
SampleSize_formula_7.png
где, x ̅ – среднее арифметическое показателя, xi– значение i-го показателя, n – объем выборки

Объем выборки (n) – это количество людей, которые опрашиваются в исследовании.

Результат расчетов – вывод о статистической значимости или незначимости различий двух измерений.

Вы можете подписаться на уведомления о новых материалах СканМаркет

      1. Доверительная значимость, доверительная вероятность, доверительный интервал, доверительный предел.

Оценки,
рассмотренные выше, являются точечными.
В связи с этим возникает вопрос: можно
ли по результатам точечной оценки одной
лишь выборки судить о свойствах всей
генеральной совокупности. На первый
взгляд кажется, что нельзя. На приведенном
примере (Таблица 97) видно, что выборочные
средние не совпадают с генеральным
средним. Однако каждый результат,
полученный в отдельной выборке, можно
рассматривать как случайную величину.
Соответственно, при увеличении числа
выборок, распределение точечных оценок
будет принимать характер нормального
распределения. Это значит, что в случае
средних арифметических относительные
отклонения выборочных средних от
генерального среднего (то есть
характеристик непосредственно генеральной
совокупности) распределяются так же,
как относительные отклонения нормально
распределенных вариант от среднего
арифметического вариационного ряда.

Отсюда
в частности следует, что 68,3% всех
выборочных средних находятся в пределах
=Мm.
Иными словами имеется вероятность 0,683
, что выборочное среднее отличается от
генерального не более, чем на m
. В этой формуле
— предельная ошибка выборки,М
среднее выборочное,
m
— стандартное
отклонение среднего значения (по аналогии
со стандартным отклонением вариант от
среднего вариационного ряда). В
медико-биологической литературе параметр
m
принято называть «стандартная
ошибка
среднего»
или «ошибка
среднего
»,.
Вычисляется этот параметр в случае
повторного отбора по формуле

, где 
— среднеквадратическое отклонение
выборки , n
число наблюдений в выборке (объем
выборки), или
,
гдеD=2
дисперсия.

Если
выборка, объем которой известен (n),
сформирована из генеральной совокупности
бесповторным отбором, то в формулу
вводится поправочный множитель, и она
приобретает вид
.
Очевидно, что при большой генеральной
совокупности, когдаN
, этот множитель стремится к единице.

При
определении ошибки выборочной доли
(например :
0,25 или 0,47) используется формула
.
В случаях, когда доля выражена в %
(например :
25% или 47%),
.
Указанным способом ошибки доли
определяются, если число наблюдений
достаточно велико. Необходимую величину
выборки в этом случае можно найти из
неравенстваPn>500,
то есть
произведение
доли (в %) на число наблюдений не должно
быть меньше 500. Кроме того, чтобы
использовать указанную формулу сами
выборочные доли не должны намного
отличаться от 0,5 (50%). В случае, когда доля
меньше 0,2 (20%) или больше 0,8 (80%) , следует
использовать другую методику.

Поскольку
параметр m
характеризует ошибку утверждения
(ошибку прогноза) о том, что выборочное
среднее равно генеральному среднему,
то чем выше требование к вероятности
этого вывода, тем шире должен быть
обеспечивающий точность такого прогноза
интервал, называемый «доверительный
интервал».

Статистическая
оценка, которая определяется двумя
числами — концами интервала, называется
интервальной оценкой.

Величина
доверительного интервала задается
вероятностью безошибочного прогноза,
эту вероятность принято называть
«доверительная
вероятность»
или
вероятностью безошибочного прогноза,
а иногда надежностью. Величина
доверительной вероятности может
задаваться доверительным параметрическим
коэффициентом t
— коэффициентом Стьюдента (псевдоним
английского химика У.Госсета, 1908).

При
достаточно большом числе наблюдений
(n>30),
значения
доверительного коэффициента t
и доверительной вероятности соотносятся
следующим образом:

Таблица
98

Соотношение
статистических критериев достоверности

выборочных
характеристик

Доверительный

критерий
t

Доверительная
вероятность (%)

Уровень

значимости
(Р)

1

68,3

0,32

2

95,5

0,05

3

99,7

0,01

При
малых числах наблюдений значения
коэффициента Стьюдента с учетом уровня
доверительной вероятности можно
установить по специальным таблицам.

Выбор
того или иного уровня значимости или ,
соответственно, доверительной вероятности
в общем является произвольным. В
медико-биологических исследованиях
допускается доверительная вероятность
не менее 95,5%. В этом случае доверительный
интервал для средних при достаточно
большом числе наблюдений (n>30),
равен 2m.
Предельная
ошибка выборки
=
М
2m
.
При
доверительной вероятности 99,7% доверительный
интервал составит 3m,
=М3m.
В целом, чем больше доверительная
вероятность, тем больше доверительный
интервал и предельная ошибка.

Граничные
точки доверительного интервала называются
доверительными
пределами.

Каждому
значению доверительной вероятности
соответствует свой уровень
значимости (
Р).
Уровень значимости выражает вероятность
нулевой гипотезы, то есть вероятность
того, что выборочная и генеральные
средние не отличаются друг от друга.
Иначе говоря, чем выше уровень значимости,
тем меньше можно доверять утверждению,
что различия существуют. Для доверительной
вероятности 0,95 (95%),
например
,
уровень значимости Р=1-0,95=0,05.

Таблица
99

Интервальная
оценка среднего арифметического

М=25,2.
m=3,1
n=50

Критерий
Стьюдента t

1

2

3

Доверительная
вероятность

68,3%

95,5%

99,7%

Уровень
значимости Р

0,32

0,05

0,01

Доверительный
интервал
t
m

3,1

6,2

9,3

Предельная
ошибка выборки

25,23,1

25,26,2

25,29,3

Доверительные
пределы М+
t
m

М- t
m

28,322,1

31,419,0

34,515,9

Если
выборки небольшие по объему, то
распределение вероятностей не следует
точно нормальному закону распределения.
В этом случае для определения величины
доверительного коэффициента соответствующей
определенному значению доверительной
вероятности или уровню значимости
пользуются специальными таблицами.
Очевидно, что в реальных исследованиях
желательно иметь как можно меньший
доверительный интервал при достаточно
высокой доверительной вероятности.

Таким
образом, статистическая значимость
выборочных характеристик представляет
собой меру уверенности в их «истинности».
Уровень значимости находится в убывающей
зависимости от надежности результата.
Более высокая статистическая значимость
соответствует более низкому уровню
доверия к найденной в выборке
характеристике. Именно уровень значимости
представляет собой вероятность ошибки,
связанной с распространением наблюдаемого
результата на всю генеральную совокупность.

Выбор
порога уровня значимости, выше которого
результаты отвергаются как статистически
не подтвержденные, во многом произвольный.
Как правило, окончательное решение
обычно зависит от традиций и накопленного
практического опыта в данной области
исследований. Верхняя граница Р<0,05
статистической значимости содержит
довольно большую вероятность ошибки
(5%). Поэтому в тех случаях, когда требуется
особая уверенность в достоверности
полученных результатов, принимается
значимость Р<0,01
или даже Р<0,001.

В
практике медико-биологических исследований
наиболее часто используются следующие
значения показателей значимости 0,1;
0,05; 0,01; 0,001. Традиционная интерпретация
уровней значимости, принятая в этих
исследованиях представлена в таблице.

Таблица
100

Интерпретация
уровней значимости
(Р)

Показатели
значимости
(Р)

Интерпретация

 0,1

Данные
согласуются с нулевой гипотезой Но

 0,05

Есть
сомнения в истинности как нулевой Но,
так и альтернативной гипотезН1.

 0,05

Нулевая
гипотеза может быть отвергнута Но

 0,01

Нулевая
гипотеза (Но)может
быть отвергнута. Сильный довод

 0,001

Нулевая
гипотеза (Но) почти
наверняка не подтверждается. Очень
сильный довод.

Из
формулы стандартной ошибки среднего
(m),
от которой во многом зависит величина
интервала, следует, что эта ошибка
зависит как от числа наблюдений в выборке
(n),
так и от однородности выборки.

Интервальные
оценки коэффициентов асимметрии,
эксцесса и коэффициента вариации
проводятся на основе стандартных ошибок
этих коэффициентов.

Ошибка
показателя асимметрии при очень малых
объемах выборки может производиться
по формуле
. Ошибка показателя эксцесса. Ошибка коэффициента вариации.

В
медико-биологических исследованиях
объекты наблюдения, как правило, весьма
вариабельны и не поддаются регулированию.
Поэтому там, где это возможно, желательно
брать выборки большего объема, что к
сожалению в большинстве исследований
весьма трудно или вообще невозможно.
Поэтому значение выборочных статистических
оценок в медико-биологических исследованиях
не может быть определено с высокой
точностью. Это в свою очередь делает
бессмысленным точное измерение исходных
данных. Поэтому при планировании
исследований указанное обстоятельство
необходимо обязательно учитывать, что
позволит избежать ненужных материальных
затрат (чем точнее измерения, тем они
дороже) и неоправданных потерь времени
при сборе данных.

Иногда
при статистических расчетах необходимо
вычислять сумму, разность, произведение
и частное от деления средних величин.
В этих ситуациях необходимо соответствующим
образом оперировать и с ошибками средних.

Для
определения суммарной ошибки суммы
средних М1,+М2,+
… +М
n
можно
использовать формулу:
.
Следует иметь в виду, что более точный
результат суммарной ошибки получается
при пересчете объединенного массива
исходных данных (всех вариант), а указанной
формулой следует пользоваться в случае
невозможности такого перерасчета.

Формула
ошибка разности средних арифметических
М1,-М2,-
… -М
n
вычисляется
аналогично:
.

Ошибка
деления средних арифметических:

Ошибка
произведения средних арифметических:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Выборка. Типы выборок. Расчет ошибки выборки

Калькуляторы

Калькулятор расчета ошибки и размера выборки
Калькулятор расчета статистической значимости различий

Генеральная совокупность

Суммарная численность объектов наблюдения (люди, домохозяйства, предприятия, населенные пункты и т.д.), обладающих
определенным набором признаков (пол, возраст, доход, численность, оборот и т.д.), ограниченная в пространстве и
времени. Примеры генеральных совокупностей

  • Все жители Москвы (10,6 млн. человек по данным переписи 2002 года)
  • Мужчины-Москвичи (4,9 млн. человек по данным переписи 2002 года) 
  • Юридические лица России (2,2 млн. на начало 2005 года)
  • Розничные торговые точки, осуществляющие продажу продуктов питания (20 тысяч на начало 2008 года) и
    т.д. 

Выборка (Выборочная совокупность)

Часть объектов из генеральной совокупности, отобранных для изучения, с тем чтобы сделать заключение обо всей
генеральной совокупности. Для того чтобы заключение, полученное путем изучения выборки, можно было распространить на
всю генеральную совокупность, выборка должна обладать свойством репрезентативности. 

Репрезентативность выборки

Свойство выборки корректно отражать генеральную совокупность. Одна и та же выборка может быть репрезентативной и
нерепрезентативной для разных генеральных совокупностей.
Пример:

  • Выборка, целиком состоящая из москвичей, владеющих автомобилем, не репрезентирует все население
    Москвы. 
  • Выборка из российских предприятий численностью до 100 человек не репрезентирует все предприятия России.
  • Выборка из москвичей, совершающих покупки на рынке, не репрезентирует покупательское поведение всех москвичей.

В то же время, указанные выборки (при соблюдении прочих условий) могут отлично репрезентировать
москвичей-автовладельцев, небольшие и средние российские предприятия и покупателей, совершающих покупки на рынках
соответственно.
Важно понимать, что репрезентативность выборки и ошибка выборки – разные явления. Репрезентативность, в отличие от
ошибки никак не зависит от размера выборки.
Пример:
Как бы мы не увеличивали количество опрошенных москвичей-автовладельцев, мы не сможем репрезентировать этой выборкой
всех москвичей.

Ошибка выборки (доверительный интервал)

Отклонение результатов, полученных с помощью выборочного наблюдения от истинных данных генеральной совокупности.
Ошибка выборки бывает двух видов – статистическая и систематическая. Статистическая ошибка зависит от размера
выборки. Чем больше размер выборки, тем она ниже.
Пример:
Для простой случайной выборки размером 400 единиц максимальная статистическая ошибка (с 95% доверительной
вероятностью) составляет 5%, для выборки в 600 единиц – 4%, для выборки в 1100 единиц – 3% Обычно, когда говорят об
ошибке выборки, подразумевают именно статистическую ошибку.
Систематическая ошибка зависит от различных факторов, оказывающих постоянное воздействие на исследование и смещающих
результаты исследования в определенную сторону.
Пример:

  • Использование любых вероятностных выборок занижает долю людей с высоким доходом, ведущих активный образ жизни.
    Происходит это в силу того, что таких людей гораздо сложней застать в каком-либо определенном месте (например,
    дома).
  • Проблема респондентов, отказывающихся отвечать на вопросы 
    анкеты (доля «отказников» в Москве, для разных опросов,
    колеблется от 50% до 80%)

В некоторых случаях, когда известны истинные распределения, систематическую ошибку можно нивелировать введением квот
или перевзвешиванием данных, но в большинстве реальных исследований даже оценить ее бывает достаточно проблематично.  

Типы выборок

Выборки делятся на два типа:

  • вероятностные
  • невероятностные 

1. Вероятностные выборки
1.1 Случайная выборка (простой случайный отбор)
Такая выборка предполагает однородность генеральной совокупности, одинаковую вероятность доступности всех элементов,
наличие полного списка всех элементов. При отборе элементов, как правило, используется таблица случайных чисел. 
1.2 Механическая (систематическая) выборка
Разновидность случайной выборки, упорядоченная по какому-либо признаку (алфавитный порядок, номер телефона, дата
рождения и т.д.). Первый элемент отбирается случайно, затем, с шагом ‘n’ отбирается каждый ‘k’-ый элемент. Размер
генеральной совокупности, при этом – N=n*k 
1.3 Стратифицированная (районированная)
Применяется в случае неоднородности генеральной совокупности. Генеральная совокупность разбивается на группы
(страты). В каждой страте отбор осуществляется случайным или механическим образом. 
1.4 Серийная (гнездовая или кластерная) выборка
При серийной выборке единицами отбора выступают не сами объекты, а группы (кластеры или гнёзда). Группы отбираются
случайным образом. Объекты внутри групп обследуются сплошняком. 

2.Невероятностные выборки
Отбор в такой выборке осуществляется не по принципам случайности, а по субъективным критериям – доступности,
типичности, равного представительства и т.д.. 
2.1. Квотная выборка
Изначально выделяется некоторое количество групп объектов (например, мужчины в возрасте 20-30 лет, 31-45 лет и 46-60
лет; лица с доходом до 30 тысяч рублей, с доходом от 30 до 60 тысяч рублей и с доходом свыше 60 тысяч рублей) Для
каждой группы задается количество объектов, которые должны быть обследованы. Количество объектов, которые должны
попасть в каждую из групп, задается, чаще всего, либо пропорционально заранее известной доле группы в генеральной
совокупности, либо одинаковым для каждой группы. Внутри групп объекты отбираются произвольно. Квотные выборки
используются в маркетинговых исследованиях достаточно
часто. 
2.2. Метод снежного кома
Выборка строится следующим образом. У каждого респондента, начиная с первого, просятся контакты его друзей, коллег,
знакомых, которые подходили бы под условия отбора и могли бы принять участие в исследовании. Таким образом, за
исключением первого шага, выборка формируется с участием самих объектов исследования. Метод часто применяется, когда
необходимо найти и опросить труднодоступные группы респондентов (например, респондентов, имеющих высокий доход,
респондентов, принадлежащих к одной профессиональной группе, респондентов, имеющих какие-либо схожие хобби/увлечения
и т.д.) 
2.3 Стихийная выборка
Опрашиваются наиболее доступные респонденты. Типичные примеры стихийных выборок – опросы в газетах/журналах, анкеты, отданные респондентам на самозаполнение, большинство
интернет-опросов. Размер и состав стихийных выборок заранее не известен, и определяется только одним параметром –
активностью респондентов. 
2.4 Выборка типичных случаев
Отбираются единицы генеральной совокупности, обладающие средним (типичным) значением признака. При этом возникает
проблема выбора признака и определения его типичного значения. 

Курс лекций по теории статистики

Более подробную информацию по выборочным наблюдениям можно получить просмотрев видеокурс по теории статистики:
Выборочное наблюдение Способы формирование выборки
Специальные виды отбора

Калькулятор расчета ошибки и размера выборки (для простой случайной выборки)

Пояснения к полям:
Доверительная вероятность
Вероятность того, что доверительный интервал накроет неизвестное истинное значение параметра, оцениваемого по
выборочным данным. В практике исследований чаще всего используют 95%-ую доверительную вероятность
Ошибка выборки (доверительный интервал)
Интервал, вычисленный по выборочным данным, который с заданной вероятностью (доверительной) накрывает неизвестное
истинное значение оцениваемого параметра распределения.
Доля признака
Ожидаемая доля признака, для которого рассчитывается ошибка. В случае, если данные о доле признака отсутствуют,
необходимо использовать значение равное 50, при котором достигается максимальная ошибка.

Калькулятор расчета статистической значимости различий

Калькулятор позволяет проверить есть ли статистически значимая разница между долями признака, полученными из
независимых выборок. 
Например, если до начала рекламной кампании марку знали 55% респондентов, а по окончании – 60% — есть ли между этими
долями статистически значимая разница, или же эта разница укладывается в ошибку выборки? 
Примечание. Эта процедура может законно использоваться, только если обе выборки удовлетворяют следующему условию:
произведения n*p и n*(1-p), где n=размер выборки а p=доля признака, должны быть не меньше 5. 

Оставить свои комментарии по затронутой теме Вы можете на наших страницах в Facebook и Вконтакте.


При перепечатке материалов ссылка на маркетинговое агентство обязательна

FDF Group © 2023
Разработка сайта — Монохром

Понравилась статья? Поделить с друзьями:
  • Чем вызваны ошибки при употреблении числительных
  • Чем вызвано сообщение об ошибке загрузки файла windows system32 config system
  • Чек распечатывается на весь лист как исправить
  • Чем вызвано следующее сообщение об ошибке загрузки bootmgr is missing
  • Чек пробит позже как исправить