Что такое программная ошибка

A software bug is an error, flaw or fault in the design, development, or operation of computer software that causes it to produce an incorrect or unexpected result, or to behave in unintended ways. The process of finding and correcting bugs is termed "debugging" and often uses formal techniques or tools to pinpoint bugs. Since the 1950s, some computer systems have been designed to deter, detect or auto-correct various computer bugs during operations.

A software bug is an error, flaw or fault in the design, development, or operation of computer software that causes it to produce an incorrect or unexpected result, or to behave in unintended ways. The process of finding and correcting bugs is termed «debugging» and often uses formal techniques or tools to pinpoint bugs. Since the 1950s, some computer systems have been designed to deter, detect or auto-correct various computer bugs during operations.

Bugs in software can arise from mistakes and errors made in interpreting and extracting users’ requirements, planning a program’s design, writing its source code, and from interaction with humans, hardware and programs, such as operating systems or libraries. A program with many, or serious, bugs is often described as buggy. Bugs can trigger errors that may have ripple effects. The effects of bugs may be subtle, such as unintended text formatting, through to more obvious effects such as causing a program to crash, freezing the computer, or causing damage to hardware. Other bugs qualify as security bugs and might, for example, enable a malicious user to bypass access controls in order to obtain unauthorized privileges.[1]

Some software bugs have been linked to disasters. Bugs in code that controlled the Therac-25 radiation therapy machine were directly responsible for patient deaths in the 1980s. In 1996, the European Space Agency’s US$1 billion prototype Ariane 5 rocket was destroyed less than a minute after launch due to a bug in the on-board guidance computer program.[2] In 1994, an RAF Chinook helicopter crashed, killing 29; this was initially blamed on pilot error, but was later thought to have been caused by a software bug in the engine-control computer.[3] Buggy software caused the early 21st century British Post Office scandal, the most widespread miscarriage of justice in British legal history.[4]

In 2002, a study commissioned by the US Department of Commerce’s National Institute of Standards and Technology concluded that «software bugs, or errors, are so prevalent and so detrimental that they cost the US economy an estimated $59 billion annually, or about 0.6 percent of the gross domestic product».[5]

History[edit]

The Middle English word bugge is the basis for the terms «bugbear» and «bugaboo» as terms used for a monster.[6]

The term «bug» to describe defects has been a part of engineering jargon since the 1870s[7] and predates electronics and computers; it may have originally been used in hardware engineering to describe mechanical malfunctions. For instance, Thomas Edison wrote in a letter to an associate in 1878:[8]

… difficulties arise—this thing gives out and [it is] then that «Bugs»—as such little faults and difficulties are called—show themselves[9]

Baffle Ball, the first mechanical pinball game, was advertised as being «free of bugs» in 1931.[10] Problems with military gear during World War II were referred to as bugs (or glitches).[11] In a book published in 1942, Louise Dickinson Rich, speaking of a powered ice cutting machine, said, «Ice sawing was suspended until the creator could be brought in to take the bugs out of his darling.»[12]

Isaac Asimov used the term «bug» to relate to issues with a robot in his short story «Catch That Rabbit», published in 1944.

A page from the Harvard Mark II electromechanical computer’s log, featuring a dead moth that was removed from the device.

The term «bug» was used in an account by computer pioneer Grace Hopper, who publicized the cause of a malfunction in an early electromechanical computer.[13] A typical version of the story is:

In 1946, when Hopper was released from active duty, she joined the Harvard Faculty at the Computation Laboratory where she continued her work on the Mark II and Mark III. Operators traced an error in the Mark II to a moth trapped in a relay, coining the term bug. This bug was carefully removed and taped to the log book. Stemming from the first bug, today we call errors or glitches in a program a bug.[14]

Hopper was not present when the bug was found, but it became one of her favorite stories.[15] The date in the log book was September 9, 1947.[16][17][18] The operators who found it, including William «Bill» Burke, later of the Naval Weapons Laboratory, Dahlgren, Virginia,[19] were familiar with the engineering term and amusedly kept the insect with the notation «First actual case of bug being found.» This log book, complete with attached moth, is part of the collection of the Smithsonian National Museum of American History.[17]

The related term «debug» also appears to predate its usage in computing: the Oxford English Dictionarys etymology of the word contains an attestation from 1945, in the context of aircraft engines.[20]

The concept that software might contain errors dates back to Ada Lovelace’s 1843 notes on the analytical engine, in which she speaks of the possibility of program «cards» for Charles Babbage’s analytical engine being erroneous:

… an analysing process must equally have been performed in order to furnish the Analytical Engine with the necessary operative data; and that herein may also lie a possible source of error. Granted that the actual mechanism is unerring in its processes, the cards may give it wrong orders.

«Bugs in the System» report[edit]

The Open Technology Institute, run by the group, New America,[21] released a report «Bugs in the System» in August 2016 stating that U.S. policymakers should make reforms to help researchers identify and address software bugs. The report «highlights the need for reform in the field of software vulnerability discovery and disclosure.»[22] One of the report’s authors said that Congress has not done enough to address cyber software vulnerability, even though Congress has passed a number of bills to combat the larger issue of cyber security.[22]

Government researchers, companies, and cyber security experts are the people who typically discover software flaws. The report calls for reforming computer crime and copyright laws.[22]

The Computer Fraud and Abuse Act, the Digital Millennium Copyright Act and the Electronic Communications Privacy Act criminalize and create civil penalties for actions that security researchers routinely engage in while conducting legitimate security research, the report said.[22]

Terminology[edit]

While the use of the term «bug» to describe software errors is common, many have suggested that it should be abandoned. One argument is that the word «bug» is divorced from a sense that a human being caused the problem, and instead implies that the defect arose on its own, leading to a push to abandon the term «bug» in favor of terms such as «defect», with limited success.[23] Since the 1970s Gary Kildall somewhat humorously suggested to use the term «blunder».[24][25]

In software engineering, mistake metamorphism (from Greek meta = «change», morph = «form») refers to the evolution of a defect in the final stage of software deployment. Transformation of a «mistake» committed by an analyst in the early stages of the software development lifecycle, which leads to a «defect» in the final stage of the cycle has been called ‘mistake metamorphism’.[26]

Different stages of a «mistake» in the entire cycle may be described as «mistakes», «anomalies», «faults», «failures», «errors», «exceptions», «crashes», «glitches», «bugs», «defects», «incidents», or «side effects».[26]

Prevention[edit]

The software industry has put much effort into reducing bug counts.[27][28] These include:

Typographical errors[edit]

Bugs usually appear when the programmer makes a logic error. Various innovations in programming style and defensive programming are designed to make these bugs less likely, or easier to spot. Some typos, especially of symbols or logical/mathematical operators, allow the program to operate incorrectly, while others such as a missing symbol or misspelled name may prevent the program from operating. Compiled languages can reveal some typos when the source code is compiled.

Development methodologies[edit]

Several schemes assist managing programmer activity so that fewer bugs are produced. Software engineering (which addresses software design issues as well) applies many techniques to prevent defects. For example, formal program specifications state the exact behavior of programs so that design bugs may be eliminated. Unfortunately, formal specifications are impractical for anything but the shortest programs, because of problems of combinatorial explosion and indeterminacy.

Unit testing involves writing a test for every function (unit) that a program is to perform.

In test-driven development unit tests are written before the code and the code is not considered complete until all tests complete successfully.

Agile software development involves frequent software releases with relatively small changes. Defects are revealed by user feedback.

Open source development allows anyone to examine source code. A school of thought popularized by Eric S. Raymond as Linus’s law says that popular open-source software has more chance of having few or no bugs than other software, because «given enough eyeballs, all bugs are shallow».[29] This assertion has been disputed, however: computer security specialist Elias Levy wrote that «it is easy to hide vulnerabilities in complex, little understood and undocumented source code,» because, «even if people are reviewing the code, that doesn’t mean they’re qualified to do so.»[30] An example of an open-source software bug was the 2008 OpenSSL vulnerability in Debian.

Programming language support[edit]

Programming languages include features to help prevent bugs, such as static type systems, restricted namespaces and modular programming. For example, when a programmer writes (pseudocode) LET REAL_VALUE PI = "THREE AND A BIT", although this may be syntactically correct, the code fails a type check. Compiled languages catch this without having to run the program. Interpreted languages catch such errors at runtime. Some languages deliberately exclude features that easily lead to bugs, at the expense of slower performance: the general principle being that, it is almost always better to write simpler, slower code than inscrutable code that runs slightly faster, especially considering that maintenance cost is substantial. For example, the Java programming language does not support pointer arithmetic; implementations of some languages such as Pascal and scripting languages often have runtime bounds checking of arrays, at least in a debugging build.

Code analysis[edit]

Tools for code analysis help developers by inspecting the program text beyond the compiler’s capabilities to spot potential problems. Although in general the problem of finding all programming errors given a specification is not solvable (see halting problem), these tools exploit the fact that human programmers tend to make certain kinds of simple mistakes often when writing software.

Instrumentation[edit]

Tools to monitor the performance of the software as it is running, either specifically to find problems such as bottlenecks or to give assurance as to correct working, may be embedded in the code explicitly (perhaps as simple as a statement saying PRINT "I AM HERE"), or provided as tools. It is often a surprise to find where most of the time is taken by a piece of code, and this removal of assumptions might cause the code to be rewritten.

Testing[edit]

Software testers are people whose primary task is to find bugs, or write code to support testing. On some projects, more resources may be spent on testing than in developing the program.

Measurements during testing can provide an estimate of the number of likely bugs remaining; this becomes more reliable the longer a product is tested and developed.[citation needed]

Debugging[edit]

The typical bug history (GNU Classpath project data). A new bug submitted by the user is unconfirmed. Once it has been reproduced by a developer, it is a confirmed bug. The confirmed bugs are later fixed. Bugs belonging to other categories (unreproducible, will not be fixed, etc.) are usually in the minority

Finding and fixing bugs, or debugging, is a major part of computer programming. Maurice Wilkes, an early computing pioneer, described his realization in the late 1940s that much of the rest of his life would be spent finding mistakes in his own programs.[31]

Usually, the most difficult part of debugging is finding the bug. Once it is found, correcting it is usually relatively easy. Programs known as debuggers help programmers locate bugs by executing code line by line, watching variable values, and other features to observe program behavior. Without a debugger, code may be added so that messages or values may be written to a console or to a window or log file to trace program execution or show values.

However, even with the aid of a debugger, locating bugs is something of an art. It is not uncommon for a bug in one section of a program to cause failures in a completely different section,[citation needed] thus making it especially difficult to track (for example, an error in a graphics rendering routine causing a file I/O routine to fail), in an apparently unrelated part of the system.

Sometimes, a bug is not an isolated flaw, but represents an error of thinking or planning on the part of the programmer. Such logic errors require a section of the program to be overhauled or rewritten. As a part of code review, stepping through the code and imagining or transcribing the execution process may often find errors without ever reproducing the bug as such.

More typically, the first step in locating a bug is to reproduce it reliably. Once the bug is reproducible, the programmer may use a debugger or other tool while reproducing the error to find the point at which the program went astray.

Some bugs are revealed by inputs that may be difficult for the programmer to re-create. One cause of the Therac-25 radiation machine deaths was a bug (specifically, a race condition) that occurred only when the machine operator very rapidly entered a treatment plan; it took days of practice to become able to do this, so the bug did not manifest in testing or when the manufacturer attempted to duplicate it. Other bugs may stop occurring whenever the setup is augmented to help find the bug, such as running the program with a debugger; these are called heisenbugs (humorously named after the Heisenberg uncertainty principle).

Since the 1990s, particularly following the Ariane 5 Flight 501 disaster, interest in automated aids to debugging rose, such as static code analysis by abstract interpretation.[32]

Some classes of bugs have nothing to do with the code. Faulty documentation or hardware may lead to problems in system use, even though the code matches the documentation. In some cases, changes to the code eliminate the problem even though the code then no longer matches the documentation. Embedded systems frequently work around hardware bugs, since to make a new version of a ROM is much cheaper than remanufacturing the hardware, especially if they are commodity items.

Benchmark of bugs[edit]

To facilitate reproducible research on testing and debugging, researchers use curated benchmarks of bugs:

  • the Siemens benchmark
  • ManyBugs[33] is a benchmark of 185 C bugs in nine open-source programs.
  • Defects4J[34] is a benchmark of 341 Java bugs from 5 open-source projects. It contains the corresponding patches, which cover a variety of patch type.

Bug management[edit]

Bug management includes the process of documenting, categorizing, assigning, reproducing, correcting and releasing the corrected code. Proposed changes to software – bugs as well as enhancement requests and even entire releases – are commonly tracked and managed using bug tracking systems or issue tracking systems.[35] The items added may be called defects, tickets, issues, or, following the agile development paradigm, stories and epics. Categories may be objective, subjective or a combination, such as version number, area of the software, severity and priority, as well as what type of issue it is, such as a feature request or a bug.

A bug triage reviews bugs and decides whether and when to fix them. The decision is based on the bug’s priority, and factors such as project schedules. The triage is not meant to investigate the cause of bugs, but rather the cost of fixing them. The triage happens regularly, and goes through bugs opened or reopened since the previous meeting. The attendees of the triage process typically are the project manager, development manager, test manager, build manager, and technical experts.[36][37]

Severity[edit]

Severity is the intensity of the impact the bug has on system operation.[38] This impact may be data loss, financial, loss of goodwill and wasted effort. Severity levels are not standardized. Impacts differ across industry. A crash in a video game has a totally different impact than a crash in a web browser, or real time monitoring system. For example, bug severity levels might be «crash or hang», «no workaround» (meaning there is no way the customer can accomplish a given task), «has workaround» (meaning the user can still accomplish the task), «visual defect» (for example, a missing image or displaced button or form element), or «documentation error». Some software publishers use more qualified severities such as «critical», «high», «low», «blocker» or «trivial».[39] The severity of a bug may be a separate category to its priority for fixing, and the two may be quantified and managed separately.

Priority[edit]

Priority controls where a bug falls on the list of planned changes. The priority is decided by each software producer. Priorities may be numerical, such as 1 through 5, or named, such as «critical», «high», «low», or «deferred». These rating scales may be similar or even identical to severity ratings, but are evaluated as a combination of the bug’s severity with its estimated effort to fix; a bug with low severity but easy to fix may get a higher priority than a bug with moderate severity that requires excessive effort to fix. Priority ratings may be aligned with product releases, such as «critical» priority indicating all the bugs that must be fixed before the next software release.

A bug severe enough to delay or halt the release of the product is called a «show stopper»[40] or «showstopper bug».[41] It is named so because it «stops the show» – causes unacceptable product failure.[41]

Software releases[edit]

It is common practice to release software with known, low-priority bugs. Bugs of sufficiently high priority may warrant a special release of part of the code containing only modules with those fixes. These are known as patches. Most releases include a mixture of behavior changes and multiple bug fixes. Releases that emphasize bug fixes are known as maintenance releases, to differentiate it from major releases that emphasize feature additions or changes.

Reasons that a software publisher opts not to patch or even fix a particular bug include:

  • A deadline must be met and resources are insufficient to fix all bugs by the deadline.[42]
  • The bug is already fixed in an upcoming release, and it is not of high priority.
  • The changes required to fix the bug are too costly or affect too many other components, requiring a major testing activity.
  • It may be suspected, or known, that some users are relying on the existing buggy behavior; a proposed fix may introduce a breaking change.
  • The problem is in an area that will be obsolete with an upcoming release; fixing it is unnecessary.
  • «It’s not a bug, it’s a feature».[43] A misunderstanding has arisen between expected and perceived behavior or undocumented feature.

Types[edit]

In software development projects, a mistake or error may be introduced at any stage. Bugs arise from oversight or misunderstanding by a software team during specification, design, coding, configuration, data entry or documentation. For example, a relatively simple program to alphabetize a list of words, the design might fail to consider what should happen when a word contains a hyphen. Or when converting an abstract design into code, the coder might inadvertently create an off-by-one error which can be a «<» where «<=» was intended, and fail to sort the last word in a list.

Another category of bug is called a race condition that may occur when programs have multiple components executing at the same time. If the components interact in a different order than the developer intended, they could interfere with each other and stop the program from completing its tasks. These bugs may be difficult to detect or anticipate, since they may not occur during every execution of a program.

Conceptual errors are a developer’s misunderstanding of what the software must do. The resulting software may perform according to the developer’s understanding, but not what is really needed. Other types:

Arithmetic[edit]

In operations on numerical values, problems can arise that result in unexpected output, slowing of a process, or crashing.[44] These can be from a lack of awareness of the qualities of the data storage such as a loss of precision due to rounding, numerically unstable algorithms, arithmetic overflow and underflow, or from lack of awareness of how calculations are handled by different software coding languages such as division by zero which in some languages may throw an exception, and in others may return a special value such as NaN or infinity.

Control flow[edit]

Control flow bugs are those found in processes with valid logic, but that lead to unintended results, such as infinite loops and infinite recursion, incorrect comparisons for conditional statements such as using the incorrect comparison operator, and off-by-one errors (counting one too many or one too few iterations when looping).

Interfacing[edit]

  • Incorrect API usage.
  • Incorrect protocol implementation.
  • Incorrect hardware handling.
  • Incorrect assumptions of a particular platform.
  • Incompatible systems. A new API or communications protocol may seem to work when two systems use different versions, but errors may occur when a function or feature implemented in one version is changed or missing in another. In production systems which must run continually, shutting down the entire system for a major update may not be possible, such as in the telecommunication industry[45] or the internet.[46][47][48] In this case, smaller segments of a large system are upgraded individually, to minimize disruption to a large network. However, some sections could be overlooked and not upgraded, and cause compatibility errors which may be difficult to find and repair.
  • Incorrect code annotations.

Concurrency[edit]

  • Deadlock, where task A cannot continue until task B finishes, but at the same time, task B cannot continue until task A finishes.
  • Race condition, where the computer does not perform tasks in the order the programmer intended.
  • Concurrency errors in critical sections, mutual exclusions and other features of concurrent processing. Time-of-check-to-time-of-use (TOCTOU) is a form of unprotected critical section.

Resourcing[edit]

  • Null pointer dereference.
  • Using an uninitialized variable.
  • Using an otherwise valid instruction on the wrong data type (see packed decimal/binary-coded decimal).
  • Access violations.
  • Resource leaks, where a finite system resource (such as memory or file handles) become exhausted by repeated allocation without release.
  • Buffer overflow, in which a program tries to store data past the end of allocated storage. This may or may not lead to an access violation or storage violation. These are frequently security bugs.
  • Excessive recursion which—though logically valid—causes stack overflow.
  • Use-after-free error, where a pointer is used after the system has freed the memory it references.
  • Double free error.

Syntax[edit]

  • Use of the wrong token, such as performing assignment instead of equality test. For example, in some languages x=5 will set the value of x to 5 while x==5 will check whether x is currently 5 or some other number. Interpreted languages allow such code to fail. Compiled languages can catch such errors before testing begins.

Teamwork[edit]

  • Unpropagated updates; e.g. programmer changes «myAdd» but forgets to change «mySubtract», which uses the same algorithm. These errors are mitigated by the Don’t Repeat Yourself philosophy.
  • Comments out of date or incorrect: many programmers assume the comments accurately describe the code.
  • Differences between documentation and product.

Implications[edit]

The amount and type of damage a software bug may cause naturally affects decision-making, processes and policy regarding software quality. In applications such as human spaceflight, aviation, nuclear power, health care, public transport or automotive safety, since software flaws have the potential to cause human injury or even death, such software will have far more scrutiny and quality control than, for example, an online shopping website. In applications such as banking, where software flaws have the potential to cause serious financial damage to a bank or its customers, quality control is also more important than, say, a photo editing application.

Other than the damage caused by bugs, some of their cost is due to the effort invested in fixing them. In 1978, Lientz et al. showed that the median of projects invest 17 percent of the development effort in bug fixing.[49] In 2020, research on GitHub repositories showed the median is 20%.[50]

Residual bugs in delivered product[edit]

In 1994, NASA’s Goddard Space Flight Center managed to reduce their average number of errors from 4.5 per 1000 lines of code (SLOC) down to 1 per 1000 SLOC.[51]

Another study in 1990 reported that exceptionally good software development processes can achieve deployment failure rates as low as 0.1 per 1000 SLOC.[52] This figure is iterated in literature such as Code Complete by Steve McConnell,[53] and the NASA study on Flight Software Complexity.[54] Some projects even attained zero defects: the firmware in the IBM Wheelwriter typewriter which consists of 63,000 SLOC, and the Space Shuttle software with 500,000 SLOC.[52]

Well-known bugs[edit]

A number of software bugs have become well-known, usually due to their severity: examples include various space and military aircraft crashes. Possibly the most famous bug is the Year 2000 problem or Y2K bug, which caused many programs written long before the transition from 19xx to 20xx dates to malfunction, for example treating a date such as «25 Dec 04» as being in 1904, displaying «19100» instead of «2000», and so on. A huge effort at the end of the 20th century resolved the most severe problems, and there were no major consequences.

The 2012 stock trading disruption involved one such incompatibility between the old API and a new API.

In popular culture[edit]

  • In both the 1968 novel 2001: A Space Odyssey and the corresponding 1968 film 2001: A Space Odyssey, a spaceship’s onboard computer, HAL 9000, attempts to kill all its crew members. In the follow-up 1982 novel, 2010: Odyssey Two, and the accompanying 1984 film, 2010, it is revealed that this action was caused by the computer having been programmed with two conflicting objectives: to fully disclose all its information, and to keep the true purpose of the flight secret from the crew; this conflict caused HAL to become paranoid and eventually homicidal.
  • In the English version of the Nena 1983 song 99 Luftballons (99 Red Balloons) as a result of «bugs in the software», a release of a group of 99 red balloons are mistaken for an enemy nuclear missile launch, requiring an equivalent launch response, resulting in catastrophe.
  • In the 1999 American comedy Office Space, three employees attempt (unsuccessfully) to exploit their company’s preoccupation with the Y2K computer bug using a computer virus that sends rounded-off fractions of a penny to their bank account—a long-known technique described as salami slicing.
  • The 2004 novel The Bug, by Ellen Ullman, is about a programmer’s attempt to find an elusive bug in a database application.[55]
  • The 2008 Canadian film Control Alt Delete is about a computer programmer at the end of 1999 struggling to fix bugs at his company related to the year 2000 problem.

See also[edit]

  • Anti-pattern
  • Bug bounty program
  • Glitch removal
  • Hardware bug
  • ISO/IEC 9126, which classifies a bug as either a defect or a nonconformity
  • Orthogonal Defect Classification
  • Racetrack problem
  • RISKS Digest
  • Software defect indicator
  • Software regression
  • Software rot
  • Automatic bug fixing

References[edit]

  1. ^ Mittal, Varun; Aditya, Shivam (January 1, 2015). «Recent Developments in the Field of Bug Fixing». Procedia Computer Science. International Conference on Computer, Communication and Convergence (ICCC 2015). 48: 288–297. doi:10.1016/j.procs.2015.04.184. ISSN 1877-0509.
  2. ^ «Ariane 501 — Presentation of Inquiry Board report». www.esa.int. Retrieved January 29, 2022.
  3. ^ Prof. Simon Rogerson. «The Chinook Helicopter Disaster». Ccsr.cse.dmu.ac.uk. Archived from the original on July 17, 2012. Retrieved September 24, 2012.
  4. ^ «Post Office scandal ruined lives, inquiry hears». BBC News. February 14, 2022.
  5. ^ «Software bugs cost US economy dear». June 10, 2009. Archived from the original on June 10, 2009. Retrieved September 24, 2012.{{cite web}}: CS1 maint: unfit URL (link)
  6. ^ Computerworld staff (September 3, 2011). «Moth in the machine: Debugging the origins of ‘bug’«. Computerworld. Archived from the original on August 25, 2015.
  7. ^ «bug». Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.) 5a
  8. ^ «Did You Know? Edison Coined the Term «Bug»«. August 1, 2013. Retrieved July 19, 2019.
  9. ^ Edison to Puskas, 13 November 1878, Edison papers, Edison National Laboratory, U.S. National Park Service, West Orange, N.J., cited in Hughes, Thomas Parke (1989). American Genesis: A Century of Invention and Technological Enthusiasm, 1870-1970. Penguin Books. p. 75. ISBN 978-0-14-009741-2.
  10. ^ «Baffle Ball». Internet Pinball Database. (See image of advertisement in reference entry)
  11. ^ «Modern Aircraft Carriers are Result of 20 Years of Smart Experimentation». Life. June 29, 1942. p. 25. Archived from the original on June 4, 2013. Retrieved November 17, 2011.
  12. ^ Dickinson Rich, Louise (1942), We Took to the Woods, JB Lippincott Co, p. 93, LCCN 42024308, OCLC 405243, archived from the original on March 16, 2017.
  13. ^ FCAT NRT Test, Harcourt, March 18, 2008
  14. ^ «Danis, Sharron Ann: «Rear Admiral Grace Murray Hopper»«. ei.cs.vt.edu. February 16, 1997. Retrieved January 31, 2010.
  15. ^ James S. Huggins. «First Computer Bug». Jamesshuggins.com. Archived from the original on August 16, 2000. Retrieved September 24, 2012.
  16. ^ «Bug Archived March 23, 2017, at the Wayback Machine», The Jargon File, ver. 4.4.7. Retrieved June 3, 2010.
  17. ^ a b «Log Book With Computer Bug Archived March 23, 2017, at the Wayback Machine», National Museum of American History, Smithsonian Institution.
  18. ^ «The First «Computer Bug», Naval Historical Center. But note the Harvard Mark II computer was not complete until the summer of 1947.
  19. ^ IEEE Annals of the History of Computing, Vol 22 Issue 1, 2000
  20. ^ Journal of the Royal Aeronautical Society. 49, 183/2, 1945 «It ranged … through the stage of type test and flight test and ‘debugging’ …»
  21. ^ Wilson, Andi; Schulman, Ross; Bankston, Kevin; Herr, Trey. «Bugs in the System» (PDF). Open Policy Institute. Archived (PDF) from the original on September 21, 2016. Retrieved August 22, 2016.
  22. ^ a b c d Rozens, Tracy (August 12, 2016). «Cyber reforms needed to strengthen software bug discovery and disclosure: New America report – Homeland Preparedness News». Retrieved August 23, 2016.
  23. ^ «News at SEI 1999 Archive». cmu.edu. Archived from the original on May 26, 2013.
  24. ^ Shustek, Len (August 2, 2016). «In His Own Words: Gary Kildall». Remarkable People. Computer History Museum. Archived from the original on December 17, 2016.
  25. ^ Kildall, Gary Arlen (August 2, 2016) [1993]. Kildall, Scott; Kildall, Kristin (eds.). «Computer Connections: People, Places, and Events in the Evolution of the Personal Computer Industry» (Manuscript, part 1). Kildall Family: 14–15. Archived from the original on November 17, 2016. Retrieved November 17, 2016.
  26. ^ a b «Testing experience : te : the magazine for professional testers». Testing Experience. Germany: testingexperience: 42. March 2012. ISSN 1866-5705. (subscription required)
  27. ^ Huizinga, Dorota; Kolawa, Adam (2007). Automated Defect Prevention: Best Practices in Software Management. Wiley-IEEE Computer Society Press. p. 426. ISBN 978-0-470-04212-0. Archived from the original on April 25, 2012.
  28. ^ McDonald, Marc; Musson, Robert; Smith, Ross (2007). The Practical Guide to Defect Prevention. Microsoft Press. p. 480. ISBN 978-0-7356-2253-1.
  29. ^ «Release Early, Release Often» Archived May 14, 2011, at the Wayback Machine, Eric S. Raymond, The Cathedral and the Bazaar
  30. ^ «Wide Open Source» Archived September 29, 2007, at the Wayback Machine, Elias Levy, SecurityFocus, April 17, 2000
  31. ^ Maurice Wilkes Quotes
  32. ^ «PolySpace Technologies history». christele.faure.pagesperso-orange.fr. Retrieved August 1, 2019.
  33. ^ Le Goues, Claire; Holtschulte, Neal; Smith, Edward K.; Brun, Yuriy; Devanbu, Premkumar; Forrest, Stephanie; Weimer, Westley (2015). «The ManyBugs and IntroClass Benchmarks for Automated Repair of C Programs». IEEE Transactions on Software Engineering. 41 (12): 1236–1256. doi:10.1109/TSE.2015.2454513. ISSN 0098-5589.
  34. ^ Just, René; Jalali, Darioush; Ernst, Michael D. (2014). «Defects4J: a database of existing faults to enable controlled testing studies for Java programs». Proceedings of the 2014 International Symposium on Software Testing and Analysis — ISSTA 2014. pp. 437–440. CiteSeerX 10.1.1.646.3086. doi:10.1145/2610384.2628055. ISBN 9781450326452. S2CID 12796895.
  35. ^ Allen, Mitch (May–June 2002). «Bug Tracking Basics: A beginner’s guide to reporting and tracking defects». Software Testing & Quality Engineering Magazine. Vol. 4, no. 3. pp. 20–24. Retrieved December 19, 2017.
  36. ^ Rex Black (2002). Managing The Testing Process (2Nd Ed.). Wiley India Pvt. Limited. p. 139. ISBN 9788126503131. Retrieved June 19, 2021.
  37. ^ Chris Vander Mey (August 24, 2012). Shipping Greatness — Practical Lessons on Building and Launching Outstanding Software, Learned on the Job at Google and Amazon. O’Reilly Media. pp. 79–81. ISBN 9781449336608.
  38. ^ Soleimani Neysiani, Behzad; Babamir, Seyed Morteza; Aritsugi, Masayoshi (October 1, 2020). «Efficient feature extraction model for validation performance improvement of duplicate bug report detection in software bug triage systems». Information and Software Technology. 126: 106344. doi:10.1016/j.infsof.2020.106344. S2CID 219733047.
  39. ^ «5.3. Anatomy of a Bug». bugzilla.org. Archived from the original on May 23, 2013.
  40. ^ Jones, Wilbur D. Jr., ed. (1989). «Show stopper». Glossary: defense acquisition acronyms and terms (4 ed.). Fort Belvoir, Virginia, USA: Department of Defense, Defense Systems Management College. p. 123. hdl:2027/mdp.39015061290758 – via Hathitrust.
  41. ^ a b Zachary, G. Pascal (1994). Show-stopper!: the breakneck race to create Windows NT and the next generation at Microsoft. New York: The Free Press. p. 158. ISBN 0029356717 – via archive.org.
  42. ^ «The Next Generation 1996 Lexicon A to Z: Slipstream Release». Next Generation. No. 15. March 1996. p. 41.
  43. ^ Carr, Nicholas (2018). «‘It’s Not a Bug, It’s a Feature.’ Trite—or Just Right?». wired.com.
  44. ^ Di Franco, Anthony; Guo, Hui; Cindy, Rubio-González. «A Comprehensive Study of Real-World Numerical Bug Characteristics» (PDF). Archived (PDF) from the original on October 9, 2022.
  45. ^ Kimbler, K. (1998). Feature Interactions in Telecommunications and Software Systems V. IOS Press. p. 8. ISBN 978-90-5199-431-5.
  46. ^ Syed, Mahbubur Rahman (July 1, 2001). Multimedia Networking: Technology, Management and Applications: Technology, Management and Applications. Idea Group Inc (IGI). p. 398. ISBN 978-1-59140-005-9.
  47. ^ Wu, Chwan-Hwa (John); Irwin, J. David (April 19, 2016). Introduction to Computer Networks and Cybersecurity. CRC Press. p. 500. ISBN 978-1-4665-7214-0.
  48. ^ RFC 1263: «TCP Extensions Considered Harmful» quote: «the time to distribute the new version of the protocol to all hosts can be quite long (forever in fact). … If there is the slightest incompatibly between old and new versions, chaos can result.»
  49. ^ Lientz, B. P.; Swanson, E. B.; Tompkins, G. E. (1978). «Characteristics of Application Software Maintenance». Communications of the ACM. 21 (6): 466–471. doi:10.1145/359511.359522. S2CID 14950091.
  50. ^ Amit, Idan; Feitelson, Dror G. (2020). «The Corrective Commit Probability Code Quality Metric». arXiv:2007.10912 [cs.SE].
  51. ^ An overview of the Software Engineering Laboratory (PDF) (Report). Maryland, USA: Goddard Space Flight Center, NASA. December 1, 1994. pp41–42 Figure 18; pp43–44 Figure 21. CR-189410; SEL-94-005. Archived (PDF) from the original on November 22, 2022. Retrieved November 22, 2022. (bibliography: An overview of the Software Engineering Laboratory)
  52. ^ a b Cobb, Richard H.; Mills, Harlan D. (1990). «Engineering software under statistical quality control». IEEE Software. 7 (6): 46. doi:10.1109/52.60601. ISSN 1937-4194. S2CID 538311 – via University of Tennessee – Harlan D. Mills Collection.
  53. ^ McConnell, Steven C. (1993). Code Complete. Redmond, Washington, USA: Microsoft Press. p. 611. ISBN 9781556154843 – via archive.org. (Cobb and Mills 1990)
  54. ^ Holzmann, Gerard (March 6, 2009). «Appendix D – Software Complexity» (PDF). In Dvorak, Daniel L. (ed.). NASA Study on Flight Software Complexity (Report). NASA. pdf frame 109/264. Appendix D p.2. Archived (PDF) from the original on March 8, 2022. Retrieved November 22, 2022. (under NASA Office of the Chief Engineer Technical Excellence Initiative)
  55. ^ Ullman, Ellen (2004). The Bug. Picador. ISBN 978-1-250-00249-5.

External links[edit]

  • «Common Weakness Enumeration» – an expert webpage focus on bugs, at NIST.gov
  • BUG type of Jim Gray – another Bug type
  • Picture of the «first computer bug» at the Wayback Machine (archived January 12, 2015)
  • «The First Computer Bug!» – an email from 1981 about Adm. Hopper’s bug
  • «Toward Understanding Compiler Bugs in GCC and LLVM». A 2016 study of bugs in compilers

A software bug is an error, flaw or fault in the design, development, or operation of computer software that causes it to produce an incorrect or unexpected result, or to behave in unintended ways. The process of finding and correcting bugs is termed «debugging» and often uses formal techniques or tools to pinpoint bugs. Since the 1950s, some computer systems have been designed to deter, detect or auto-correct various computer bugs during operations.

Bugs in software can arise from mistakes and errors made in interpreting and extracting users’ requirements, planning a program’s design, writing its source code, and from interaction with humans, hardware and programs, such as operating systems or libraries. A program with many, or serious, bugs is often described as buggy. Bugs can trigger errors that may have ripple effects. The effects of bugs may be subtle, such as unintended text formatting, through to more obvious effects such as causing a program to crash, freezing the computer, or causing damage to hardware. Other bugs qualify as security bugs and might, for example, enable a malicious user to bypass access controls in order to obtain unauthorized privileges.[1]

Some software bugs have been linked to disasters. Bugs in code that controlled the Therac-25 radiation therapy machine were directly responsible for patient deaths in the 1980s. In 1996, the European Space Agency’s US$1 billion prototype Ariane 5 rocket was destroyed less than a minute after launch due to a bug in the on-board guidance computer program.[2] In 1994, an RAF Chinook helicopter crashed, killing 29; this was initially blamed on pilot error, but was later thought to have been caused by a software bug in the engine-control computer.[3] Buggy software caused the early 21st century British Post Office scandal, the most widespread miscarriage of justice in British legal history.[4]

In 2002, a study commissioned by the US Department of Commerce’s National Institute of Standards and Technology concluded that «software bugs, or errors, are so prevalent and so detrimental that they cost the US economy an estimated $59 billion annually, or about 0.6 percent of the gross domestic product».[5]

History[edit]

The Middle English word bugge is the basis for the terms «bugbear» and «bugaboo» as terms used for a monster.[6]

The term «bug» to describe defects has been a part of engineering jargon since the 1870s[7] and predates electronics and computers; it may have originally been used in hardware engineering to describe mechanical malfunctions. For instance, Thomas Edison wrote in a letter to an associate in 1878:[8]

… difficulties arise—this thing gives out and [it is] then that «Bugs»—as such little faults and difficulties are called—show themselves[9]

Baffle Ball, the first mechanical pinball game, was advertised as being «free of bugs» in 1931.[10] Problems with military gear during World War II were referred to as bugs (or glitches).[11] In a book published in 1942, Louise Dickinson Rich, speaking of a powered ice cutting machine, said, «Ice sawing was suspended until the creator could be brought in to take the bugs out of his darling.»[12]

Isaac Asimov used the term «bug» to relate to issues with a robot in his short story «Catch That Rabbit», published in 1944.

A page from the Harvard Mark II electromechanical computer’s log, featuring a dead moth that was removed from the device.

The term «bug» was used in an account by computer pioneer Grace Hopper, who publicized the cause of a malfunction in an early electromechanical computer.[13] A typical version of the story is:

In 1946, when Hopper was released from active duty, she joined the Harvard Faculty at the Computation Laboratory where she continued her work on the Mark II and Mark III. Operators traced an error in the Mark II to a moth trapped in a relay, coining the term bug. This bug was carefully removed and taped to the log book. Stemming from the first bug, today we call errors or glitches in a program a bug.[14]

Hopper was not present when the bug was found, but it became one of her favorite stories.[15] The date in the log book was September 9, 1947.[16][17][18] The operators who found it, including William «Bill» Burke, later of the Naval Weapons Laboratory, Dahlgren, Virginia,[19] were familiar with the engineering term and amusedly kept the insect with the notation «First actual case of bug being found.» This log book, complete with attached moth, is part of the collection of the Smithsonian National Museum of American History.[17]

The related term «debug» also appears to predate its usage in computing: the Oxford English Dictionarys etymology of the word contains an attestation from 1945, in the context of aircraft engines.[20]

The concept that software might contain errors dates back to Ada Lovelace’s 1843 notes on the analytical engine, in which she speaks of the possibility of program «cards» for Charles Babbage’s analytical engine being erroneous:

… an analysing process must equally have been performed in order to furnish the Analytical Engine with the necessary operative data; and that herein may also lie a possible source of error. Granted that the actual mechanism is unerring in its processes, the cards may give it wrong orders.

«Bugs in the System» report[edit]

The Open Technology Institute, run by the group, New America,[21] released a report «Bugs in the System» in August 2016 stating that U.S. policymakers should make reforms to help researchers identify and address software bugs. The report «highlights the need for reform in the field of software vulnerability discovery and disclosure.»[22] One of the report’s authors said that Congress has not done enough to address cyber software vulnerability, even though Congress has passed a number of bills to combat the larger issue of cyber security.[22]

Government researchers, companies, and cyber security experts are the people who typically discover software flaws. The report calls for reforming computer crime and copyright laws.[22]

The Computer Fraud and Abuse Act, the Digital Millennium Copyright Act and the Electronic Communications Privacy Act criminalize and create civil penalties for actions that security researchers routinely engage in while conducting legitimate security research, the report said.[22]

Terminology[edit]

While the use of the term «bug» to describe software errors is common, many have suggested that it should be abandoned. One argument is that the word «bug» is divorced from a sense that a human being caused the problem, and instead implies that the defect arose on its own, leading to a push to abandon the term «bug» in favor of terms such as «defect», with limited success.[23] Since the 1970s Gary Kildall somewhat humorously suggested to use the term «blunder».[24][25]

In software engineering, mistake metamorphism (from Greek meta = «change», morph = «form») refers to the evolution of a defect in the final stage of software deployment. Transformation of a «mistake» committed by an analyst in the early stages of the software development lifecycle, which leads to a «defect» in the final stage of the cycle has been called ‘mistake metamorphism’.[26]

Different stages of a «mistake» in the entire cycle may be described as «mistakes», «anomalies», «faults», «failures», «errors», «exceptions», «crashes», «glitches», «bugs», «defects», «incidents», or «side effects».[26]

Prevention[edit]

The software industry has put much effort into reducing bug counts.[27][28] These include:

Typographical errors[edit]

Bugs usually appear when the programmer makes a logic error. Various innovations in programming style and defensive programming are designed to make these bugs less likely, or easier to spot. Some typos, especially of symbols or logical/mathematical operators, allow the program to operate incorrectly, while others such as a missing symbol or misspelled name may prevent the program from operating. Compiled languages can reveal some typos when the source code is compiled.

Development methodologies[edit]

Several schemes assist managing programmer activity so that fewer bugs are produced. Software engineering (which addresses software design issues as well) applies many techniques to prevent defects. For example, formal program specifications state the exact behavior of programs so that design bugs may be eliminated. Unfortunately, formal specifications are impractical for anything but the shortest programs, because of problems of combinatorial explosion and indeterminacy.

Unit testing involves writing a test for every function (unit) that a program is to perform.

In test-driven development unit tests are written before the code and the code is not considered complete until all tests complete successfully.

Agile software development involves frequent software releases with relatively small changes. Defects are revealed by user feedback.

Open source development allows anyone to examine source code. A school of thought popularized by Eric S. Raymond as Linus’s law says that popular open-source software has more chance of having few or no bugs than other software, because «given enough eyeballs, all bugs are shallow».[29] This assertion has been disputed, however: computer security specialist Elias Levy wrote that «it is easy to hide vulnerabilities in complex, little understood and undocumented source code,» because, «even if people are reviewing the code, that doesn’t mean they’re qualified to do so.»[30] An example of an open-source software bug was the 2008 OpenSSL vulnerability in Debian.

Programming language support[edit]

Programming languages include features to help prevent bugs, such as static type systems, restricted namespaces and modular programming. For example, when a programmer writes (pseudocode) LET REAL_VALUE PI = "THREE AND A BIT", although this may be syntactically correct, the code fails a type check. Compiled languages catch this without having to run the program. Interpreted languages catch such errors at runtime. Some languages deliberately exclude features that easily lead to bugs, at the expense of slower performance: the general principle being that, it is almost always better to write simpler, slower code than inscrutable code that runs slightly faster, especially considering that maintenance cost is substantial. For example, the Java programming language does not support pointer arithmetic; implementations of some languages such as Pascal and scripting languages often have runtime bounds checking of arrays, at least in a debugging build.

Code analysis[edit]

Tools for code analysis help developers by inspecting the program text beyond the compiler’s capabilities to spot potential problems. Although in general the problem of finding all programming errors given a specification is not solvable (see halting problem), these tools exploit the fact that human programmers tend to make certain kinds of simple mistakes often when writing software.

Instrumentation[edit]

Tools to monitor the performance of the software as it is running, either specifically to find problems such as bottlenecks or to give assurance as to correct working, may be embedded in the code explicitly (perhaps as simple as a statement saying PRINT "I AM HERE"), or provided as tools. It is often a surprise to find where most of the time is taken by a piece of code, and this removal of assumptions might cause the code to be rewritten.

Testing[edit]

Software testers are people whose primary task is to find bugs, or write code to support testing. On some projects, more resources may be spent on testing than in developing the program.

Measurements during testing can provide an estimate of the number of likely bugs remaining; this becomes more reliable the longer a product is tested and developed.[citation needed]

Debugging[edit]

The typical bug history (GNU Classpath project data). A new bug submitted by the user is unconfirmed. Once it has been reproduced by a developer, it is a confirmed bug. The confirmed bugs are later fixed. Bugs belonging to other categories (unreproducible, will not be fixed, etc.) are usually in the minority

Finding and fixing bugs, or debugging, is a major part of computer programming. Maurice Wilkes, an early computing pioneer, described his realization in the late 1940s that much of the rest of his life would be spent finding mistakes in his own programs.[31]

Usually, the most difficult part of debugging is finding the bug. Once it is found, correcting it is usually relatively easy. Programs known as debuggers help programmers locate bugs by executing code line by line, watching variable values, and other features to observe program behavior. Without a debugger, code may be added so that messages or values may be written to a console or to a window or log file to trace program execution or show values.

However, even with the aid of a debugger, locating bugs is something of an art. It is not uncommon for a bug in one section of a program to cause failures in a completely different section,[citation needed] thus making it especially difficult to track (for example, an error in a graphics rendering routine causing a file I/O routine to fail), in an apparently unrelated part of the system.

Sometimes, a bug is not an isolated flaw, but represents an error of thinking or planning on the part of the programmer. Such logic errors require a section of the program to be overhauled or rewritten. As a part of code review, stepping through the code and imagining or transcribing the execution process may often find errors without ever reproducing the bug as such.

More typically, the first step in locating a bug is to reproduce it reliably. Once the bug is reproducible, the programmer may use a debugger or other tool while reproducing the error to find the point at which the program went astray.

Some bugs are revealed by inputs that may be difficult for the programmer to re-create. One cause of the Therac-25 radiation machine deaths was a bug (specifically, a race condition) that occurred only when the machine operator very rapidly entered a treatment plan; it took days of practice to become able to do this, so the bug did not manifest in testing or when the manufacturer attempted to duplicate it. Other bugs may stop occurring whenever the setup is augmented to help find the bug, such as running the program with a debugger; these are called heisenbugs (humorously named after the Heisenberg uncertainty principle).

Since the 1990s, particularly following the Ariane 5 Flight 501 disaster, interest in automated aids to debugging rose, such as static code analysis by abstract interpretation.[32]

Some classes of bugs have nothing to do with the code. Faulty documentation or hardware may lead to problems in system use, even though the code matches the documentation. In some cases, changes to the code eliminate the problem even though the code then no longer matches the documentation. Embedded systems frequently work around hardware bugs, since to make a new version of a ROM is much cheaper than remanufacturing the hardware, especially if they are commodity items.

Benchmark of bugs[edit]

To facilitate reproducible research on testing and debugging, researchers use curated benchmarks of bugs:

  • the Siemens benchmark
  • ManyBugs[33] is a benchmark of 185 C bugs in nine open-source programs.
  • Defects4J[34] is a benchmark of 341 Java bugs from 5 open-source projects. It contains the corresponding patches, which cover a variety of patch type.

Bug management[edit]

Bug management includes the process of documenting, categorizing, assigning, reproducing, correcting and releasing the corrected code. Proposed changes to software – bugs as well as enhancement requests and even entire releases – are commonly tracked and managed using bug tracking systems or issue tracking systems.[35] The items added may be called defects, tickets, issues, or, following the agile development paradigm, stories and epics. Categories may be objective, subjective or a combination, such as version number, area of the software, severity and priority, as well as what type of issue it is, such as a feature request or a bug.

A bug triage reviews bugs and decides whether and when to fix them. The decision is based on the bug’s priority, and factors such as project schedules. The triage is not meant to investigate the cause of bugs, but rather the cost of fixing them. The triage happens regularly, and goes through bugs opened or reopened since the previous meeting. The attendees of the triage process typically are the project manager, development manager, test manager, build manager, and technical experts.[36][37]

Severity[edit]

Severity is the intensity of the impact the bug has on system operation.[38] This impact may be data loss, financial, loss of goodwill and wasted effort. Severity levels are not standardized. Impacts differ across industry. A crash in a video game has a totally different impact than a crash in a web browser, or real time monitoring system. For example, bug severity levels might be «crash or hang», «no workaround» (meaning there is no way the customer can accomplish a given task), «has workaround» (meaning the user can still accomplish the task), «visual defect» (for example, a missing image or displaced button or form element), or «documentation error». Some software publishers use more qualified severities such as «critical», «high», «low», «blocker» or «trivial».[39] The severity of a bug may be a separate category to its priority for fixing, and the two may be quantified and managed separately.

Priority[edit]

Priority controls where a bug falls on the list of planned changes. The priority is decided by each software producer. Priorities may be numerical, such as 1 through 5, or named, such as «critical», «high», «low», or «deferred». These rating scales may be similar or even identical to severity ratings, but are evaluated as a combination of the bug’s severity with its estimated effort to fix; a bug with low severity but easy to fix may get a higher priority than a bug with moderate severity that requires excessive effort to fix. Priority ratings may be aligned with product releases, such as «critical» priority indicating all the bugs that must be fixed before the next software release.

A bug severe enough to delay or halt the release of the product is called a «show stopper»[40] or «showstopper bug».[41] It is named so because it «stops the show» – causes unacceptable product failure.[41]

Software releases[edit]

It is common practice to release software with known, low-priority bugs. Bugs of sufficiently high priority may warrant a special release of part of the code containing only modules with those fixes. These are known as patches. Most releases include a mixture of behavior changes and multiple bug fixes. Releases that emphasize bug fixes are known as maintenance releases, to differentiate it from major releases that emphasize feature additions or changes.

Reasons that a software publisher opts not to patch or even fix a particular bug include:

  • A deadline must be met and resources are insufficient to fix all bugs by the deadline.[42]
  • The bug is already fixed in an upcoming release, and it is not of high priority.
  • The changes required to fix the bug are too costly or affect too many other components, requiring a major testing activity.
  • It may be suspected, or known, that some users are relying on the existing buggy behavior; a proposed fix may introduce a breaking change.
  • The problem is in an area that will be obsolete with an upcoming release; fixing it is unnecessary.
  • «It’s not a bug, it’s a feature».[43] A misunderstanding has arisen between expected and perceived behavior or undocumented feature.

Types[edit]

In software development projects, a mistake or error may be introduced at any stage. Bugs arise from oversight or misunderstanding by a software team during specification, design, coding, configuration, data entry or documentation. For example, a relatively simple program to alphabetize a list of words, the design might fail to consider what should happen when a word contains a hyphen. Or when converting an abstract design into code, the coder might inadvertently create an off-by-one error which can be a «<» where «<=» was intended, and fail to sort the last word in a list.

Another category of bug is called a race condition that may occur when programs have multiple components executing at the same time. If the components interact in a different order than the developer intended, they could interfere with each other and stop the program from completing its tasks. These bugs may be difficult to detect or anticipate, since they may not occur during every execution of a program.

Conceptual errors are a developer’s misunderstanding of what the software must do. The resulting software may perform according to the developer’s understanding, but not what is really needed. Other types:

Arithmetic[edit]

In operations on numerical values, problems can arise that result in unexpected output, slowing of a process, or crashing.[44] These can be from a lack of awareness of the qualities of the data storage such as a loss of precision due to rounding, numerically unstable algorithms, arithmetic overflow and underflow, or from lack of awareness of how calculations are handled by different software coding languages such as division by zero which in some languages may throw an exception, and in others may return a special value such as NaN or infinity.

Control flow[edit]

Control flow bugs are those found in processes with valid logic, but that lead to unintended results, such as infinite loops and infinite recursion, incorrect comparisons for conditional statements such as using the incorrect comparison operator, and off-by-one errors (counting one too many or one too few iterations when looping).

Interfacing[edit]

  • Incorrect API usage.
  • Incorrect protocol implementation.
  • Incorrect hardware handling.
  • Incorrect assumptions of a particular platform.
  • Incompatible systems. A new API or communications protocol may seem to work when two systems use different versions, but errors may occur when a function or feature implemented in one version is changed or missing in another. In production systems which must run continually, shutting down the entire system for a major update may not be possible, such as in the telecommunication industry[45] or the internet.[46][47][48] In this case, smaller segments of a large system are upgraded individually, to minimize disruption to a large network. However, some sections could be overlooked and not upgraded, and cause compatibility errors which may be difficult to find and repair.
  • Incorrect code annotations.

Concurrency[edit]

  • Deadlock, where task A cannot continue until task B finishes, but at the same time, task B cannot continue until task A finishes.
  • Race condition, where the computer does not perform tasks in the order the programmer intended.
  • Concurrency errors in critical sections, mutual exclusions and other features of concurrent processing. Time-of-check-to-time-of-use (TOCTOU) is a form of unprotected critical section.

Resourcing[edit]

  • Null pointer dereference.
  • Using an uninitialized variable.
  • Using an otherwise valid instruction on the wrong data type (see packed decimal/binary-coded decimal).
  • Access violations.
  • Resource leaks, where a finite system resource (such as memory or file handles) become exhausted by repeated allocation without release.
  • Buffer overflow, in which a program tries to store data past the end of allocated storage. This may or may not lead to an access violation or storage violation. These are frequently security bugs.
  • Excessive recursion which—though logically valid—causes stack overflow.
  • Use-after-free error, where a pointer is used after the system has freed the memory it references.
  • Double free error.

Syntax[edit]

  • Use of the wrong token, such as performing assignment instead of equality test. For example, in some languages x=5 will set the value of x to 5 while x==5 will check whether x is currently 5 or some other number. Interpreted languages allow such code to fail. Compiled languages can catch such errors before testing begins.

Teamwork[edit]

  • Unpropagated updates; e.g. programmer changes «myAdd» but forgets to change «mySubtract», which uses the same algorithm. These errors are mitigated by the Don’t Repeat Yourself philosophy.
  • Comments out of date or incorrect: many programmers assume the comments accurately describe the code.
  • Differences between documentation and product.

Implications[edit]

The amount and type of damage a software bug may cause naturally affects decision-making, processes and policy regarding software quality. In applications such as human spaceflight, aviation, nuclear power, health care, public transport or automotive safety, since software flaws have the potential to cause human injury or even death, such software will have far more scrutiny and quality control than, for example, an online shopping website. In applications such as banking, where software flaws have the potential to cause serious financial damage to a bank or its customers, quality control is also more important than, say, a photo editing application.

Other than the damage caused by bugs, some of their cost is due to the effort invested in fixing them. In 1978, Lientz et al. showed that the median of projects invest 17 percent of the development effort in bug fixing.[49] In 2020, research on GitHub repositories showed the median is 20%.[50]

Residual bugs in delivered product[edit]

In 1994, NASA’s Goddard Space Flight Center managed to reduce their average number of errors from 4.5 per 1000 lines of code (SLOC) down to 1 per 1000 SLOC.[51]

Another study in 1990 reported that exceptionally good software development processes can achieve deployment failure rates as low as 0.1 per 1000 SLOC.[52] This figure is iterated in literature such as Code Complete by Steve McConnell,[53] and the NASA study on Flight Software Complexity.[54] Some projects even attained zero defects: the firmware in the IBM Wheelwriter typewriter which consists of 63,000 SLOC, and the Space Shuttle software with 500,000 SLOC.[52]

Well-known bugs[edit]

A number of software bugs have become well-known, usually due to their severity: examples include various space and military aircraft crashes. Possibly the most famous bug is the Year 2000 problem or Y2K bug, which caused many programs written long before the transition from 19xx to 20xx dates to malfunction, for example treating a date such as «25 Dec 04» as being in 1904, displaying «19100» instead of «2000», and so on. A huge effort at the end of the 20th century resolved the most severe problems, and there were no major consequences.

The 2012 stock trading disruption involved one such incompatibility between the old API and a new API.

In popular culture[edit]

  • In both the 1968 novel 2001: A Space Odyssey and the corresponding 1968 film 2001: A Space Odyssey, a spaceship’s onboard computer, HAL 9000, attempts to kill all its crew members. In the follow-up 1982 novel, 2010: Odyssey Two, and the accompanying 1984 film, 2010, it is revealed that this action was caused by the computer having been programmed with two conflicting objectives: to fully disclose all its information, and to keep the true purpose of the flight secret from the crew; this conflict caused HAL to become paranoid and eventually homicidal.
  • In the English version of the Nena 1983 song 99 Luftballons (99 Red Balloons) as a result of «bugs in the software», a release of a group of 99 red balloons are mistaken for an enemy nuclear missile launch, requiring an equivalent launch response, resulting in catastrophe.
  • In the 1999 American comedy Office Space, three employees attempt (unsuccessfully) to exploit their company’s preoccupation with the Y2K computer bug using a computer virus that sends rounded-off fractions of a penny to their bank account—a long-known technique described as salami slicing.
  • The 2004 novel The Bug, by Ellen Ullman, is about a programmer’s attempt to find an elusive bug in a database application.[55]
  • The 2008 Canadian film Control Alt Delete is about a computer programmer at the end of 1999 struggling to fix bugs at his company related to the year 2000 problem.

See also[edit]

  • Anti-pattern
  • Bug bounty program
  • Glitch removal
  • Hardware bug
  • ISO/IEC 9126, which classifies a bug as either a defect or a nonconformity
  • Orthogonal Defect Classification
  • Racetrack problem
  • RISKS Digest
  • Software defect indicator
  • Software regression
  • Software rot
  • Automatic bug fixing

References[edit]

  1. ^ Mittal, Varun; Aditya, Shivam (January 1, 2015). «Recent Developments in the Field of Bug Fixing». Procedia Computer Science. International Conference on Computer, Communication and Convergence (ICCC 2015). 48: 288–297. doi:10.1016/j.procs.2015.04.184. ISSN 1877-0509.
  2. ^ «Ariane 501 — Presentation of Inquiry Board report». www.esa.int. Retrieved January 29, 2022.
  3. ^ Prof. Simon Rogerson. «The Chinook Helicopter Disaster». Ccsr.cse.dmu.ac.uk. Archived from the original on July 17, 2012. Retrieved September 24, 2012.
  4. ^ «Post Office scandal ruined lives, inquiry hears». BBC News. February 14, 2022.
  5. ^ «Software bugs cost US economy dear». June 10, 2009. Archived from the original on June 10, 2009. Retrieved September 24, 2012.{{cite web}}: CS1 maint: unfit URL (link)
  6. ^ Computerworld staff (September 3, 2011). «Moth in the machine: Debugging the origins of ‘bug’«. Computerworld. Archived from the original on August 25, 2015.
  7. ^ «bug». Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.) 5a
  8. ^ «Did You Know? Edison Coined the Term «Bug»«. August 1, 2013. Retrieved July 19, 2019.
  9. ^ Edison to Puskas, 13 November 1878, Edison papers, Edison National Laboratory, U.S. National Park Service, West Orange, N.J., cited in Hughes, Thomas Parke (1989). American Genesis: A Century of Invention and Technological Enthusiasm, 1870-1970. Penguin Books. p. 75. ISBN 978-0-14-009741-2.
  10. ^ «Baffle Ball». Internet Pinball Database. (See image of advertisement in reference entry)
  11. ^ «Modern Aircraft Carriers are Result of 20 Years of Smart Experimentation». Life. June 29, 1942. p. 25. Archived from the original on June 4, 2013. Retrieved November 17, 2011.
  12. ^ Dickinson Rich, Louise (1942), We Took to the Woods, JB Lippincott Co, p. 93, LCCN 42024308, OCLC 405243, archived from the original on March 16, 2017.
  13. ^ FCAT NRT Test, Harcourt, March 18, 2008
  14. ^ «Danis, Sharron Ann: «Rear Admiral Grace Murray Hopper»«. ei.cs.vt.edu. February 16, 1997. Retrieved January 31, 2010.
  15. ^ James S. Huggins. «First Computer Bug». Jamesshuggins.com. Archived from the original on August 16, 2000. Retrieved September 24, 2012.
  16. ^ «Bug Archived March 23, 2017, at the Wayback Machine», The Jargon File, ver. 4.4.7. Retrieved June 3, 2010.
  17. ^ a b «Log Book With Computer Bug Archived March 23, 2017, at the Wayback Machine», National Museum of American History, Smithsonian Institution.
  18. ^ «The First «Computer Bug», Naval Historical Center. But note the Harvard Mark II computer was not complete until the summer of 1947.
  19. ^ IEEE Annals of the History of Computing, Vol 22 Issue 1, 2000
  20. ^ Journal of the Royal Aeronautical Society. 49, 183/2, 1945 «It ranged … through the stage of type test and flight test and ‘debugging’ …»
  21. ^ Wilson, Andi; Schulman, Ross; Bankston, Kevin; Herr, Trey. «Bugs in the System» (PDF). Open Policy Institute. Archived (PDF) from the original on September 21, 2016. Retrieved August 22, 2016.
  22. ^ a b c d Rozens, Tracy (August 12, 2016). «Cyber reforms needed to strengthen software bug discovery and disclosure: New America report – Homeland Preparedness News». Retrieved August 23, 2016.
  23. ^ «News at SEI 1999 Archive». cmu.edu. Archived from the original on May 26, 2013.
  24. ^ Shustek, Len (August 2, 2016). «In His Own Words: Gary Kildall». Remarkable People. Computer History Museum. Archived from the original on December 17, 2016.
  25. ^ Kildall, Gary Arlen (August 2, 2016) [1993]. Kildall, Scott; Kildall, Kristin (eds.). «Computer Connections: People, Places, and Events in the Evolution of the Personal Computer Industry» (Manuscript, part 1). Kildall Family: 14–15. Archived from the original on November 17, 2016. Retrieved November 17, 2016.
  26. ^ a b «Testing experience : te : the magazine for professional testers». Testing Experience. Germany: testingexperience: 42. March 2012. ISSN 1866-5705. (subscription required)
  27. ^ Huizinga, Dorota; Kolawa, Adam (2007). Automated Defect Prevention: Best Practices in Software Management. Wiley-IEEE Computer Society Press. p. 426. ISBN 978-0-470-04212-0. Archived from the original on April 25, 2012.
  28. ^ McDonald, Marc; Musson, Robert; Smith, Ross (2007). The Practical Guide to Defect Prevention. Microsoft Press. p. 480. ISBN 978-0-7356-2253-1.
  29. ^ «Release Early, Release Often» Archived May 14, 2011, at the Wayback Machine, Eric S. Raymond, The Cathedral and the Bazaar
  30. ^ «Wide Open Source» Archived September 29, 2007, at the Wayback Machine, Elias Levy, SecurityFocus, April 17, 2000
  31. ^ Maurice Wilkes Quotes
  32. ^ «PolySpace Technologies history». christele.faure.pagesperso-orange.fr. Retrieved August 1, 2019.
  33. ^ Le Goues, Claire; Holtschulte, Neal; Smith, Edward K.; Brun, Yuriy; Devanbu, Premkumar; Forrest, Stephanie; Weimer, Westley (2015). «The ManyBugs and IntroClass Benchmarks for Automated Repair of C Programs». IEEE Transactions on Software Engineering. 41 (12): 1236–1256. doi:10.1109/TSE.2015.2454513. ISSN 0098-5589.
  34. ^ Just, René; Jalali, Darioush; Ernst, Michael D. (2014). «Defects4J: a database of existing faults to enable controlled testing studies for Java programs». Proceedings of the 2014 International Symposium on Software Testing and Analysis — ISSTA 2014. pp. 437–440. CiteSeerX 10.1.1.646.3086. doi:10.1145/2610384.2628055. ISBN 9781450326452. S2CID 12796895.
  35. ^ Allen, Mitch (May–June 2002). «Bug Tracking Basics: A beginner’s guide to reporting and tracking defects». Software Testing & Quality Engineering Magazine. Vol. 4, no. 3. pp. 20–24. Retrieved December 19, 2017.
  36. ^ Rex Black (2002). Managing The Testing Process (2Nd Ed.). Wiley India Pvt. Limited. p. 139. ISBN 9788126503131. Retrieved June 19, 2021.
  37. ^ Chris Vander Mey (August 24, 2012). Shipping Greatness — Practical Lessons on Building and Launching Outstanding Software, Learned on the Job at Google and Amazon. O’Reilly Media. pp. 79–81. ISBN 9781449336608.
  38. ^ Soleimani Neysiani, Behzad; Babamir, Seyed Morteza; Aritsugi, Masayoshi (October 1, 2020). «Efficient feature extraction model for validation performance improvement of duplicate bug report detection in software bug triage systems». Information and Software Technology. 126: 106344. doi:10.1016/j.infsof.2020.106344. S2CID 219733047.
  39. ^ «5.3. Anatomy of a Bug». bugzilla.org. Archived from the original on May 23, 2013.
  40. ^ Jones, Wilbur D. Jr., ed. (1989). «Show stopper». Glossary: defense acquisition acronyms and terms (4 ed.). Fort Belvoir, Virginia, USA: Department of Defense, Defense Systems Management College. p. 123. hdl:2027/mdp.39015061290758 – via Hathitrust.
  41. ^ a b Zachary, G. Pascal (1994). Show-stopper!: the breakneck race to create Windows NT and the next generation at Microsoft. New York: The Free Press. p. 158. ISBN 0029356717 – via archive.org.
  42. ^ «The Next Generation 1996 Lexicon A to Z: Slipstream Release». Next Generation. No. 15. March 1996. p. 41.
  43. ^ Carr, Nicholas (2018). «‘It’s Not a Bug, It’s a Feature.’ Trite—or Just Right?». wired.com.
  44. ^ Di Franco, Anthony; Guo, Hui; Cindy, Rubio-González. «A Comprehensive Study of Real-World Numerical Bug Characteristics» (PDF). Archived (PDF) from the original on October 9, 2022.
  45. ^ Kimbler, K. (1998). Feature Interactions in Telecommunications and Software Systems V. IOS Press. p. 8. ISBN 978-90-5199-431-5.
  46. ^ Syed, Mahbubur Rahman (July 1, 2001). Multimedia Networking: Technology, Management and Applications: Technology, Management and Applications. Idea Group Inc (IGI). p. 398. ISBN 978-1-59140-005-9.
  47. ^ Wu, Chwan-Hwa (John); Irwin, J. David (April 19, 2016). Introduction to Computer Networks and Cybersecurity. CRC Press. p. 500. ISBN 978-1-4665-7214-0.
  48. ^ RFC 1263: «TCP Extensions Considered Harmful» quote: «the time to distribute the new version of the protocol to all hosts can be quite long (forever in fact). … If there is the slightest incompatibly between old and new versions, chaos can result.»
  49. ^ Lientz, B. P.; Swanson, E. B.; Tompkins, G. E. (1978). «Characteristics of Application Software Maintenance». Communications of the ACM. 21 (6): 466–471. doi:10.1145/359511.359522. S2CID 14950091.
  50. ^ Amit, Idan; Feitelson, Dror G. (2020). «The Corrective Commit Probability Code Quality Metric». arXiv:2007.10912 [cs.SE].
  51. ^ An overview of the Software Engineering Laboratory (PDF) (Report). Maryland, USA: Goddard Space Flight Center, NASA. December 1, 1994. pp41–42 Figure 18; pp43–44 Figure 21. CR-189410; SEL-94-005. Archived (PDF) from the original on November 22, 2022. Retrieved November 22, 2022. (bibliography: An overview of the Software Engineering Laboratory)
  52. ^ a b Cobb, Richard H.; Mills, Harlan D. (1990). «Engineering software under statistical quality control». IEEE Software. 7 (6): 46. doi:10.1109/52.60601. ISSN 1937-4194. S2CID 538311 – via University of Tennessee – Harlan D. Mills Collection.
  53. ^ McConnell, Steven C. (1993). Code Complete. Redmond, Washington, USA: Microsoft Press. p. 611. ISBN 9781556154843 – via archive.org. (Cobb and Mills 1990)
  54. ^ Holzmann, Gerard (March 6, 2009). «Appendix D – Software Complexity» (PDF). In Dvorak, Daniel L. (ed.). NASA Study on Flight Software Complexity (Report). NASA. pdf frame 109/264. Appendix D p.2. Archived (PDF) from the original on March 8, 2022. Retrieved November 22, 2022. (under NASA Office of the Chief Engineer Technical Excellence Initiative)
  55. ^ Ullman, Ellen (2004). The Bug. Picador. ISBN 978-1-250-00249-5.

External links[edit]

  • «Common Weakness Enumeration» – an expert webpage focus on bugs, at NIST.gov
  • BUG type of Jim Gray – another Bug type
  • Picture of the «first computer bug» at the Wayback Machine (archived January 12, 2015)
  • «The First Computer Bug!» – an email from 1981 about Adm. Hopper’s bug
  • «Toward Understanding Compiler Bugs in GCC and LLVM». A 2016 study of bugs in compilers

#Руководства

  • 30 июн 2020

  • 14

Что такое баги, ворнинги и исключения в программировании

Разбираемся, какие бывают типы ошибок в программировании и как с ними справляться.

 vlada_maestro / shutterstock

Евгений Кучерявый

Пишет о программировании, в свободное время создаёт игры. Мечтает открыть свою студию и выпускать ламповые RPG.

Многим известно слово баг (англ. bug — жук), которым называют ошибки в программах. Однако баг — это не совсем ошибка, а скорее неожиданный результат работы. Также есть и другие термины: ворнинг, исключение, утечка.

В этой статье мы на примере C++ разберём, что же значат все эти слова и как эти проблемы влияют на эффективность программы.

Словом «ошибка» (англ. error) можно описать любую проблему, но чаще всего под ним подразумевают синтаксическую ошибку некорректно написанный код, который даже не скомпилируется:

//В конце команды забыли поставить точку с запятой (;)
int a = 5

Компилятор тут же скажет, что в коде ошибка и скорее всего не хватает запятой или точки с запятой.

Также существуют ворнинги (англ. warning предупреждение). Они не являются ошибками, поэтому программа всё равно будет собрана. Вот пример:

int main()
{
   //Мы создаём две переменные, которые просто занимают память и никак не используются
   int a, b;
}

Мы можем попросить компилятор показать нам все предупреждения с помощью флага -Wall:

Предупреждения не являются чем-то критичным, но могут иметь негативные последствия. Например, ваша программа будет использовать больше памяти, чем должна. Так как C++ нужен в том числе и для разработки высоконагруженных систем, этого допускать нельзя.

После восклицательного знака в треугольнике количество предупреждений

Третий вид ошибок — ошибки сегментации (англ. segmentation fault, сокр. segfault, жарг. сегфолт). Они возникают, если программа пытается записать что-то в ячейку, недоступную для записи. Например:

//Создаём константный массив символов 
const char * s = "Hello World";
//Если мы попытаемся перезаписать значение константы, компилятор выдаст ошибку
//Но с помощью указателей мы можем обойти её, поэтому программа успешно скомпилируется
//Однако во время работы она будет выдавать ошибку сегментации
* (char *) s = 'H';

Вот результат работы такого кода:

Мы выяснили, что баг — это не совсем ошибка, а скорее неожиданное поведение программы или результат такого поведения. Баги могут быть чем-то забавным или неприятным. Например, как в играх:

Но они могут привести и к более серьёзным последствиям. Если неправильно спроектировать работу многопоточного приложения, то потоки будут постоянно опережать друг друга. Например, сообщение об ошибке из одного потока может опоздать на миллисекунду, из-за чего второй поток подумает, что никакой ошибки не было, и продолжит работу.

Если ваш код приводит в действие какое-нибудь потенциально опасное устройство, то ценой такой ошибки может быть чья-нибудь жизнь. Такое случилось с кодом для аппарата лучевой терапии Therac-25 — как минимум два человека умерло и ещё больше пострадали из-за превышения дозы радиации.

Также во время работы программы могут возникать ситуации, которые мешают корректной работе программы. Например, если вы просите пользователя ввести число, а он вводит строку.

Конвертировать введённое значение не всегда возможно, поэтому функция, которая занимается преобразованием, «выбрасывает» исключение (англ. exception). Это специальное сообщение говорит о том, что что-то идёт не так.

Если разработчик не описывает логику работы программы при вы выбрасывании исключения, то программа аварийно закрывается. Подробнее мы рассказали об этом в статье про ввод и конвертацию в C++.

Одно из самых известных исключений — переполнение стека (англ. stack overflow). В честь него даже назвали сайт, на котором программисты ищут помощь в решении своих проблем.

int main()
{
   //Бесконечная рекурсия - одна из причин переполнения стека вызовов
   main();
}

Компилятор C++ при этом может выдать ошибку сегментации, а не сообщение о переполнении стека:

Вот аналогичный код на языке C#:

class Program
{
   static void Main(string[] args)
   {
       Main(args);
   }
}

Однако сообщение в этот раз более конкретное:

В обоих случаях программа завершается, потому что не может дальше корректно работать.

Похожая ситуация — переполнение буфера (англ. buffer overflow). Она происходит, когда записываемое значение больше выделенной области в памяти.

//Пробуем записать в переменную типа int значение, которое превышает лимит
//Константа INT_MAX находится в библиотеке climits
int a = INT_MAX + 1;

Обратите внимание, что мы получили предупреждение об арифметическом переполнении (англ. integer overflow):

Тем не менее программа скомпилировалась. Если же такая ситуация возникнет во время вычислений, то мы можем не получить предупреждения.

Арифметическое переполнение стало причиной одной из самых дорогих аварий, произошедших из-за ошибки в коде. В 1996 году ракета-носитель «Ариан-5» взорвалась на 40-й секунде полёта — потери оценивают в 360–500 миллионов долларов.

К сожалению, вручную всё это заметить и исправить не получится. Однако существуют различные инструменты и технологии, которые могут помочь.

Один из таких инструментов — отладчик. Он помогает контролировать ход работы программы, чтобы отслеживать разные показатели.

Второй, более эффективный метод — unit-тесты. Они представляют из себя набор описанных ситуаций для каждого компонента программы с указанием ожидаемого поведения.

Например, у вас есть функция sum (int a, int b), которая возвращает сумму двух чисел. Вы можете написать unit-тесты, чтобы проверять следующие ситуации:

Входные данные Ожидаемый результат
5, 10 15
99, 99 198
8, -9 -1
-1, -1 -2
fff, 8 IllegalArgumentException

Если какой-то из этих тестов не пройден, вы узнаете об этом и сможете всё исправить. Это намного быстрее, чем проверять всё вручную.

Ошибок существует слишком много. При этом самые опасные тяжелее обнаружить, что только усугубляет ситуацию.


Учись бесплатно:
вебинары по программированию, маркетингу и дизайну.

Участвовать

Школа дронов для всех
Учим программировать беспилотники и управлять ими.

Узнать больше

Ошибки в программировании – дело обычное, хоть и неприятное. В данной статье будет рассказано о том, какими бывают ошибки (баги), а также что собой представляют исключения.

Определение

Ошибка в программировании (или так называемый баг) – это ситуация у разработчиков, при которой определенный код вследствие обработки выдает неверный результат. Причин данному явлению множество: неисправность компилятора, сбои интерфейса, неточности и нарушения в программном коде.

Баги обнаруживаются чаще всего в момент отладки или бета-тестирования. Реже – после итогового релиза готовой программы. Вот несколько вариантов багов:

  1. Появляется сообщение об ошибке, но приложение продолжает функционировать.
  2. ПО вылетает или зависает. Никаких предупреждений или предпосылок этому не было. Процедура осуществляется неожиданно для пользователя. Возможен вариант, при котором контент перезапускается самостоятельно и непредсказуемо.
  3. Одно из событий, описанных ранее, сопровождается отправкой отчетов разработчикам.

Ошибки в программах могут привести соответствующее приложение в негодность, а также к непредсказуемым алгоритмам функционирования. Желательно обнаруживать баги на этапе ранней разработки или тестирования. Лишь в этом случае программист сможет оперативно и относительно недорого внести необходимые изменения в код для отладки ПО.

История происхождения термина

Баг – слово, которое используется разработчиками в качестве сленга. Оно произошло от слова «bug» – «жук». Точно неизвестно, откуда в программировании и IT возник соответствующий термин. Существуют две теории:

  1. 9 сентября 1945 года ученые из Гарварда тестировали очередную вычислительную машину. Она называлась Mark II Aiken Relay Calculator. Устройство начало работать с ошибками. Когда его разобрали, то ученые заметили мотылька, застрявшего между реле. Тогда некая Грейс Хоппер назвала произошедший сбой упомянутым термином.
  2. Слово «баг» появилось задолго до появления Mark II. Термин использовался Томасом Эдисоном и указывал на мелкие недочеты и трудности. Во время Второй Мировой войны «bugs» называли проблемы с радарной электроникой.

Второй вариант кажется более реалистичным. Это факт, который подтвержден документально. Со временем научились различать различные типы багов в IT. Далее они будут рассмотрены более подробно.

Как классифицируют

Ошибки работы программ разделяются по разным факторам. Классификация у рядовых пользователей и разработчиков различается. То, что для первых – «просто программа вылетела» или «глючит», для вторых – огромная головная боль. Но существует и общепринятая классификация ошибок. Пример – по критичности:

  1. Серьезные неполадки. Это нарушения работоспособности приложения, которые могут приводить к непредвиденным крупным изменениям.
  2. Незначительные ошибки в программах. Чаще всего не оказывают серьезного воздействия на функциональность ПО.
  3. Showstopper. Критические проблемы в приложении или аппаратном обеспечении. Приводят к выходу программы из строя почти всегда. Для примера можно взять любое клиент-серверное приложение, в котором не получается авторизоваться через логин и пароль.

Последний вариант требует особого внимания со стороны программистов. Их стараются обнаружить и устранить в первую очередь. Критические ошибки могут отложить релиз исходной программы на неопределенный срок.

Также существуют различные виды сбоев в плане частоты проявления: постоянные и «разовые». Вторые встречаются редко, чаще – при определенных настройках и действиях со стороны пользователя. Первые появляются независимо от используемой платформы и выполненных клиентом манипуляций.

Иногда может получиться так, что ошибка возникает только на устройстве конкретного пользователя. В данном случае устранение неполадки требует индивидуального подхода. Иногда – полной замены компьютера. Связано это с тем, что никто не будет редактировать исходный код, когда он «глючит» только у одного пользователя.

Виды

Существуют различные типы ошибок в программах в зависимости от типовых условий использования приложений. Пример – сбои, которые возникают при возрастании нагрузки на оперативную память или центральный процессор устройства. Есть баги граничных условий, сбоя идентификаторов, несовместимости с архитектурой процессора (наиболее распространенная проблема на мобильных устройствах).

Разработчики выделяют следующие типы ошибок по уровню сложности:

  1. «Борбаг» – «стабильная» неполадка. Она легко обнаруживается на этапе разработки и компилирования. Иногда – во время тестирования наработкой исходной программы.
  2. «Гейзенбаг» – баги с поддержкой изменения свойств, включая зависимость от среды, в которой было запущено приложение. Сюда относят периодические неполадки в программах. Они могут исчезать на некоторое время, но через какой-то промежуток вновь дают о себе знать.
  3. «Мандельбаг» – непредвиденные ошибки. Обладают энтропийным поведением. Предсказать, к чему они приведут, практически невозможно.
  4. «Шрединбаг» – критические неполадки. Приводят к тому, что злоумышленники могут взломать программу. Данный тип ошибок обнаружить достаточно трудно, потому что они никак себя не проявляют.

Также есть классификация «по критичности». Тут всего два варианта – warning («варнинги») и критические весомые сбои. Первые сопровождаются характерными сообщениями и отчетами для разработчиков. Они не представляют серьезной опасности для работоспособности приложения. При компилировании такие сбои легко исправляются. В отдельных случаях компилятор справляется с этой задачей самостоятельно. А вот критические весомые сбои говорят сами за себя. Они приводят к серьезным нарушениям ПО. Исправляются обычно путем проработки логики и значительных изменений программного кода.

Типы багов

Ошибки в программах бывают:

  • логическими;
  • синтаксическими;
  • взаимодействия;
  • компиляционные;
  • ресурсные;
  • арифметические;
  • среды выполнения.

Это – основная классификация сбоев в приложениях и операционных системах. Логические, синтаксические и «среды выполнения» встречаются в разработке чаще остальных. На них будет сделан основной акцент.

Ошибки синтаксиса

Синтаксические баги распространены среди новичков. Они относятся к категории «самых безобидных». С данной категорией ошибок способны справиться компиляторы тех или иных языков. Соответствующие инструменты показывают, где допущена неточность. Остается лишь понять, как исправить ее.

Синтаксические ошибки – ошибки синтаксиса, правил языка. Вот пример в Паскале:

Код написан неверно. Согласно действующим синтаксическим нормам, в Pascal в первой строчке нужно в конце поставить точку с запятой.

Логические

Тут стоит выделить обычные и арифметические типы. Вторые возникают, когда программе при работе необходимо вычислить много переменных, но на каком-то этапе расчетов возникают неполадки или нечто непредвиденное. Пример – получение в результатах «бесконечности».

Логические сбои обычного типа – самые сложные и неприятные. Их тяжелее всего обнаружить и исправить. С точки зрения языка программа может быть написана идеально, но работать неправильно. Подобное явление – следствие логической ошибки. Компиляторы их не обнаруживают.

Выше – пример логической ошибки в программе. Тут:

  1. Происходит сравнение значения i с 15.
  2. На экран выводится сообщение, если I = 15.
  3. В заданном цикле i не будет равно 15. Связано это с диапазоном значений – от 1 до 10.

Может показаться, что ошибка безобидная. В приведенном примере так и есть, но в более крупных программах такое явление приводит к серьезным последствиям.

Время выполнения

Run-time сбои – это ошибка времени выполнения программы. Встречается даже когда исходный код лишен логических и синтаксических ошибок. Связаны такие неполадки с ходом выполнения программного продукта. Пример – в процессе функционирования ПО был удален файл, считываемый программой. Если игнорировать подобные неполадки, можно столкнуться с аварийным завершением работы контента.

Самый распространенный пример в данной категории – это неожиданное деление на ноль. Предложенный фрагмент кода с точки зрения синтаксиса и логики написан грамотно. Но, если клиент наберет 0, произойдет сбой системы.

Компиляционный тип

Встречается при разработке на языках высокого уровня. Во время преобразований в машинный тип «что-то идет не так». Причиной служат синтаксические ошибки или сбои непосредственно в компиляторе.

Наличие подобных неполадок делает бета-тестирование невозможным. Компиляционные ошибки устраняются при разработке-отладке.

Ресурсные

Ресурсный тип ошибок – это сбои вроде «переполнение буфера» или «нехватка памяти». Тесно связаны с «железом» устройства. Могут быть вызваны действиями пользователя. Пример – запуск «свежих» игр на стареньких компьютерах.

Исправить ситуацию помогают основательные работы над исходным кодом. А именно – полное переписывание программы или «проблемного» фрагмента.

Взаимодействие

Подразумевается взаимодействие с аппаратным или программным окружением. Пример – ошибка при использовании веб-протоколов. Это приведет к тому, что облачный сервис не будет нормально функционировать. При постоянном возникновении соответствующей неполадки остается один путь – полностью переписывать «проблемный» участок кода, ответственный за соответствующий баг.

Исключения и как избежать багов

Исключение – событие, при возникновении которых начинается «неправильное» поведение программы. Механизм, необходимый для стабилизации обработки неполадок независимо от типа ПО, платформ и иных условий. Помогают разрабатывать единые концепции ответа на баги со стороны операционной системы или контента.

Исключения бывают:

  1. Программными. Они генерируются приложением или ОС.
  2. Аппаратными. Создаются процессором. Пример – обращение к невыделенной памяти.

Исключения нужны для охвата критических багов. Избежать неполадок помогут отладчики на этапе разработки. А еще – своевременное поэтапное тестирование программы.

P. S. Большой выбор курсов по тестированию есть и в Otus. Присутствуют варианты как для продвинутых, так и для начинающих пользователей.

Дефекты программного обеспечения можно обнаружить на каждом этапе разработки и тестирования продукта. Чтобы гарантировать исправление наиболее серьезных дефектов программного обеспечения, тестировщикам важно иметь хорошее представление о различных типах дефектов, которые могут возникнуть.

20 ВИДОВ ПРОГРАММНЫХ ДЕФЕКТОВ, КОТОРЫЕ ДОЛЖЕН ЗНАТЬ КАЖДЫЙ ТЕСТЕР

В этой статье мы обсудим самые распространенные типы ПО дефекты и способы их выявления.

Что такое дефект?

Дефект программного обеспечения — это ошибка, изъян, сбой или неисправность в компьютерной программе, из-за которой она выдает неправильный или неожиданный результат или ведет себя непреднамеренным образом. Программная ошибка возникает, когда фактические результаты не совпадают с ожидаемыми. Разработчики и программисты иногда допускают ошибки, которые создают ошибки, называемые дефектами. Большинство ошибок возникает из-за ошибок, которые допускают разработчики или программисты.

Обязательно прочтите: Разница между дефектом, ошибкой, ошибкой и сбоем

Типы программных ошибок при тестировании программного обеспечения

Существует множество различных типов дефектов программного обеспечения, и тестировщикам важно знать наиболее распространенные из них, чтобы они могут эффективно тестировать их.

Ошибки программного обеспечения подразделяются на три типа:

  1. Дефекты программного обеспечения по своей природе
  2. Дефекты программного обеспечения по их приоритету
  3. Дефекты программного обеспечения по их серьезности

Обычно мы можем видеть приоритет и серьезность классификаторов в большинстве инструментов отслеживания ошибок. Если мы настроим классификатор в соответствии с характером ошибки, а также приоритетом и серьезностью, это поможет легко управлять распределением обязанностей по исправлению ошибок соответствующим командам.

#1. Дефекты программного обеспечения по своей природе

Ошибки в программном обеспечении имеют широкий спектр природы, каждая из которых имеет свой собственный набор симптомов. Несмотря на то, что таких багов много, сталкиваться с ними можно не часто. Вот наиболее распространенные ошибки программного обеспечения, классифицированные по характеру, с которыми вы, скорее всего, столкнетесь при тестировании программного обеспечения.

#1. Функциональные ошибки

Как следует из названия, функциональные ошибки — это те, которые вызывают сбои в работе программного обеспечения. Хорошим примером этого может служить кнопка, при нажатии на которую должно открываться новое окно, но вместо этого ничего не происходит.

Функциональные ошибки можно исправить, выполнив функциональное тестирование.

#2. Ошибки на уровне модуля

Ошибки на уровне модуля — это дефекты, связанные с функциональностью отдельного программного модуля. Программный модуль — это наименьшая тестируемая часть приложения. Примеры программных модулей включают классы, методы и процедуры. Ошибки на уровне подразделения могут существенно повлиять на общее качество программного обеспечения.

Ошибки на уровне модуля можно исправить, выполнив модульное тестирование.

#3. Ошибки уровня интеграции

Ошибки уровня интеграции — это дефекты, возникающие при объединении двух или более программных модулей. Эти дефекты может быть трудно найти и исправить, потому что они часто требуют координации между несколькими командами. Однако они могут оказать существенное влияние на общее качество программного обеспечения.

Ошибки интеграции можно исправить, выполнив интеграционное тестирование.

#4. Дефекты юзабилити

Ошибки юзабилити — это дефекты, влияющие на работу пользователя с программным обеспечением и затрудняющие его использование. Дефект юзабилити — это дефект пользовательского опыта программного обеспечения, который затрудняет его использование. Ошибки юзабилити — это такие ошибки, как если веб-сайт сложен для доступа или обойти, или процесс регистрации сложен для прохождения.

Во время тестирования удобства использования тестировщики программного обеспечения проверяют приложения на соответствие требованиям пользователей и Руководству по доступности веб-контента (WCAG) для выявления таких проблем. Однако они могут оказать существенное влияние на общее качество программного обеспечения.

Ошибки, связанные с удобством использования, можно исправить, выполнив тестирование удобства использования.

#5. Дефекты производительности

Ошибки производительности — это дефекты, влияющие на производительность программного обеспечения. Это может включать в себя такие вещи, как скорость программного обеспечения, объем используемой памяти или количество потребляемых ресурсов. Ошибки уровня производительности сложно отследить и исправить, поскольку они могут быть вызваны рядом различных факторов.

Ошибки юзабилити можно исправить, выполнив тестирование производительности.

#6. Дефекты безопасности

Ошибки безопасности — это тип дефекта программного обеспечения, который может иметь серьезные последствия, если его не устранить. Эти дефекты могут позволить злоумышленникам получить доступ к конфиденциальным данным или системам или даже позволить им получить контроль над уязвимым программным обеспечением. Таким образом, очень важно, чтобы ошибкам уровня безопасности уделялось первоочередное внимание и устранялись как можно скорее.

Ошибки безопасности можно исправить, выполнив тестирование безопасности.

#7. Дефекты совместимости

Дефекты совместимости — это те ошибки, которые возникают, когда приложение несовместимо с оборудованием, на котором оно работает, или с другим программным обеспечением, с которым оно должно взаимодействовать. Несовместимость программного и аппаратного обеспечения может привести к сбоям, потере данных и другому непредсказуемому поведению. Тестировщики должны знать о проблемах совместимости и проводить соответствующие тесты. Программное приложение, имеющее проблемы с совместимостью, не работает последовательно на различных видах оборудования, операционных системах, веб-браузерах и устройствах при подключении к определенным программам или работе в определенных сетевых условиях.

Ошибки совместимости можно исправить, выполнение тестирования совместимости.

#8. Синтаксические ошибки

Синтаксические ошибки являются самым основным типом дефекта. Они возникают, когда код нарушает правила языка программирования. Например, использование неправильной пунктуации или забывание закрыть скобку может привести к синтаксической ошибке. Синтаксические ошибки обычно мешают запуску кода, поэтому их относительно легко обнаружить и исправить.

#9. Логические ошибки

Логические ошибки — это дефекты, из-за которых программа выдает неправильные результаты. Эти ошибки может быть трудно найти и исправить, потому что они часто не приводят к каким-либо видимым ошибкам. Логические ошибки могут возникать в любом типе программного обеспечения, но они особенно распространены в приложениях, требующих сложных вычислений или принятия решений.

Общие симптомы логических ошибок включают:

  • Неверные результаты или выходные данные
  • Неожиданное поведение
  • Сбой или зависание программного обеспечения

Чтобы найти и исправить логические ошибки, тестировщикам необходимо иметь четкое представление о коде программы и о том, как она должна работать. Часто лучший способ найти такие ошибки — использовать инструменты отладки или пошаговое выполнение, чтобы отслеживать выполнение программы и видеть, где что-то идет не так.

#2. Дефекты программного обеспечения по степени серьезности

Уровень серьезности присваивается дефекту по его влиянию. В результате серьезность проблемы отражает степень ее влияния на функциональность или работу программного продукта. Дефекты серьезности классифицируются как критические, серьезные, средние и незначительные в зависимости от степени серьезности.

#1. Критические дефекты

Критический дефект — это программная ошибка, имеющая серьезные или катастрофические последствия для работы приложения. Критические дефекты могут привести к сбою, зависанию или некорректной работе приложения. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение критическим дефектам, поскольку их необходимо исправить как можно скорее.

#2. Серьезные дефекты

Серьезный дефект — это программная ошибка, существенно влияющая на работу приложения. Серьезные дефекты могут привести к замедлению работы приложения или другому неожиданному поведению. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение серьезным дефектам, поскольку их необходимо исправить как можно скорее.

#3. Незначительные дефекты

Незначительный дефект — это программная ошибка, которая оказывает небольшое или незначительное влияние на работу приложения. Незначительные дефекты могут привести к тому, что приложение будет работать немного медленнее или демонстрировать другое неожиданное поведение. Разработчики и тестировщики часто не придают незначительным дефектам приоритет, потому что их можно исправить позже.

#4. Тривиальные дефекты

Тривиальный дефект – это программная ошибка, не влияющая на работу приложения. Тривиальные дефекты могут привести к тому, что приложение отобразит сообщение об ошибке или проявит другое неожиданное поведение. Разработчики и тестировщики часто присваивают тривиальным дефектам самый низкий приоритет, потому что они могут быть исправлены позже.

#3. Дефекты программного обеспечения по приоритету

#1. Дефекты с низким приоритетом

Дефекты с низким приоритетом, как правило, не оказывают серьезного влияния на работу программного обеспечения и могут быть отложены для исправления в следующей версии или выпуске. В эту категорию попадают косметические ошибки, такие как орфографические ошибки, неправильное выравнивание и т. д.

#2. Дефекты со средним приоритетом

Дефекты со средним приоритетом — это ошибки, которые могут быть исправлены после предстоящего выпуска или в следующем выпуске. Приложение, возвращающее ожидаемый результат, которое, однако, неправильно форматируется в конкретном браузере, является примером дефекта со средним приоритетом.

#3. Дефекты с высоким приоритетом

Как следует из названия, дефекты с высоким приоритетом — это те, которые сильно влияют на функционирование программного обеспечения. В большинстве случаев эти дефекты необходимо исправлять немедленно, так как они могут привести к серьезным нарушениям нормального рабочего процесса. Дефекты с высоким приоритетом обычно классифицируются как непреодолимые, так как они могут помешать пользователю продолжить выполнение поставленной задачи.

Некоторые распространенные примеры дефектов с высоким приоритетом включают:

  • Дефекты, из-за которых приложение не работает. сбой
  • Дефекты, препятствующие выполнению задачи пользователем
  • Дефекты, приводящие к потере или повреждению данных
  • Дефекты, раскрывающие конфиденциальную информацию неавторизованным пользователям
  • Дефекты, делающие возможным несанкционированный доступ к системе
  • Дефекты, приводящие к потере функциональности
  • Дефекты, приводящие к неправильным результатам или неточным данным
  • Дефекты, вызывающие проблемы с производительностью, такие как чрезмерное использование памяти или медленное время отклика

#4. Срочные дефекты

Срочные дефекты — это дефекты, которые необходимо устранить в течение 24 часов после сообщения о них. В эту категорию попадают дефекты со статусом критической серьезности. Однако дефекты с низким уровнем серьезности также могут быть классифицированы как высокоприоритетные. Например, опечатка в названии компании на домашней странице приложения не оказывает технического влияния на программное обеспечение, но оказывает существенное влияние на бизнес, поэтому считается срочной.

#4. Дополнительные дефекты

#1. Отсутствующие дефекты

Отсутствующие дефекты возникают из-за требований, которые не были включены в продукт. Они также считаются несоответствиями спецификации проекта и обычно негативно сказываются на пользовательском опыте или качестве программного обеспечения.

#2. Неправильные дефекты

Неправильные дефекты — это те дефекты, которые удовлетворяют требованиям, но не должным образом. Это означает, что хотя функциональность достигается в соответствии с требованиями, но не соответствует ожиданиям пользователя.

#3. Дефекты регрессии

Дефект регрессии возникает, когда изменение кода вызывает непреднамеренное воздействие на независимую часть программного обеспечения.

Часто задаваемые вопросы — Типы программных ошибок< /h2>

Почему так важна правильная классификация дефектов?

Правильная классификация дефектов важна, поскольку она помогает эффективно использовать ресурсы и управлять ими, правильно приоритизировать дефекты и поддерживать качество программного продукта.

Команды тестирования программного обеспечения в различных организациях используют различные инструменты отслеживания дефектов, такие как Jira, для отслеживания дефектов и управления ими. Несмотря на то, что в этих инструментах есть несколько вариантов классификации дефектов по умолчанию, они не всегда могут наилучшим образом соответствовать конкретным потребностям организации.

Следовательно, важно сначала определить и понять типы дефектов программного обеспечения, которые наиболее важны для организации, а затем соответствующим образом настроить инструмент управления дефектами.

Правильная классификация дефектов также гарантирует, что команда разработчиков сможет сосредоточиться на критических дефектах и ​​исправить их до того, как они повлияют на конечных пользователей.

Кроме того, это также помогает определить потенциальные области улучшения в процессе разработки программного обеспечения, что может помочь предотвратить появление подобных дефектов в будущих выпусках.

Таким образом, отслеживание и устранение дефектов программного обеспечения может показаться утомительной и трудоемкой задачей. , правильное выполнение может существенно повлиять на качество конечного продукта.

Как найти лежащие в основе ошибки программного обеспечения?

Определение основной причины программной ошибки может быть сложной задачей даже для опытных разработчиков. Чтобы найти лежащие в основе программные ошибки, тестировщики должны применять систематический подход. В этот процесс входят различные этапы:

1) Репликация. Первым этапом является воспроизведение ошибки. Это включает в себя попытку воспроизвести тот же набор шагов, в котором возникла ошибка. Это поможет проверить, является ли ошибка реальной или нет.
2) Изоляция. После того, как ошибка воспроизведена, следующим шагом будет попытка ее изоляции. Это включает в себя выяснение того, что именно вызывает ошибку. Для этого тестировщики должны задать себе несколько вопросов, например:
– Какие входные данные вызывают ошибку?
– При каких различных условиях возникает ошибка?
– Каковы различные способы проявления ошибки?
3) Анализ: после Изолируя ошибку, следующим шагом будет ее анализ. Это включает в себя понимание того, почему возникает ошибка. Тестировщики должны задать себе несколько вопросов, таких как:
– Какова основная причина ошибки?
– Какими способами можно исправить ошибку?
– Какое исправление было бы наиболее эффективным? эффективно?
4) Отчет. После анализа ошибки следующим шагом является сообщение о ней. Это включает в себя создание отчета об ошибке, который включает всю соответствующую информацию об ошибке. Отчет должен быть четким и кратким, чтобы разработчики могли его легко понять.
5) Проверка. После сообщения об ошибке следующим шагом является проверка того, была ли она исправлена. Это включает в себя повторное тестирование программного обеспечения, чтобы убедиться, что ошибка все еще существует. Если ошибка исправлена, то тестер может подтвердить это и закрыть отчет об ошибке. Если ошибка все еще существует, тестировщик может повторно открыть отчет об ошибке.

Заключение

В индустрии программного обеспечения дефекты — неизбежная реальность. Однако благодаря тщательному анализу и пониманию их характера, серьезности и приоритета дефектами можно управлять, чтобы свести к минимуму их влияние на конечный продукт.

Задавая правильные вопросы и применяя правильные методы, тестировщики могут помочь обеспечить чтобы дефекты обнаруживались и исправлялись как можно раньше в процессе разработки.
TAG: qa

Ошибки в программах – дело обыденное. Приложения зависают, вылетают, перестают запускаться. В простейшем случае пользователь решает проблему переустановкой ПО или чисткой от «мусора». Разработчикам же нужно четко понимать, что такое баг, как исправить его и каким образом получить своевременную обратную связь от пользователей.

Что такое баг?

Термин «баг» (в переводе «жук») у программистов обозначает ситуацию, когда определенный код выдает неверный результат. Причины возникновения разные: ошибки в исходном коде, интерфейсе программы или некорректной работе компилятора. Обнаруживают их на этапе отладки или уже на стадии бета-тестирования, выпуска продукта на рынок.

Варианты ошибок:

  1. Появилось сообщение об ошибке, программа продолжает работу.
  2. Приложение зависает или вылетает без каких-либо предупреждений.
  3. Происходит одно из событий с одновременной отправкой отчета разработчику.

Сложнее всего работать с компьютерными играми, в которых чаще используют термин «краш» (crash). Он означает критическую проблему при запуске или использовании программы. Когда говорят о багах, то чаще имеют в виду сбои графики, например, если игрок «проваливается в текстуры».

Комьюнити теперь в Телеграм

Подпишитесь и будьте в курсе последних IT-новостей

Подписаться

Классификация багов

Точка зрения пользователей часто не совпадает с мнением программистов. Так, для первых всего лишь произошел сбой, «приложение перестало работать». Кодеру же предстоит головная боль с определением источника проблемы. Ведь ошибка в программе, вероятно, проявляется лишь на конкретном железе или при сочетании с другим софтом (часто с антивирусами).

Ошибка программы

Баги делят на категории в зависимости от их критичности:

  1. незначительные ошибки,
  2. серьезные ошибки,
  3. showstopper.

Последние указывают на критическую программную или аппаратную проблему, из-за которой ПО теряет свою функциональность практически на 100%. Например, не удается авторизоваться через логин-пароль или перестала работать кнопка «Далее». Поэтому таким ошибкам отдают приоритет.

Также есть деление ошибок по частоте проявления. Проще всего исправлять постоянные, возникающие при одних и тех же обстоятельствах, независимо от платформы, аппаратной части компьютера или каких-то действий пользователя. Сложность возрастает при периодических сбоях, когда причиной вполне может оказаться глючная оперативная память или ошибки накопителей.

Есть вариант, когда проблема возникает только на машине конкретного клиента. Здесь приходится либо заказывать индивидуальную «работу над ошибками», либо менять компьютер. Потому что ПО для массового пользователя никто не будет редактировать из-за «одного». Только если наберется некая критическая масса одинаковых случаев.

Разновидности ошибок

Программисту еще важно деление на разные типы ошибок приложений исходя из типовых условий их эксплуатации. Например, возникающие при повышении нагрузки на процессор, в интерфейсе, в модуле обработки входящих данных. Существуют баги граничных условий, сбоя идентификаторов, банальной несовместимости с архитектурой процессора (чаще в мобильных устройствах).

Баг в программе

Кодеры делят ошибки по сложности:

  1. Борбаг (Bohr Bug) – «стабильная» ошибка, легко выявляемая еще на этапе отладки или при бета-тестировании, когда речь еще не идет о выпуске стабильной версии.
  2. Гейзенбаг (Heisenbug) – периодически проявляющиеся, иногда надолго исчезающие баги с меняющимися свойствами, включая зависимость от программной среды, «железа».
  3. Мандельбаг (Mandelbug) – ошибка с энтропийным поведением, почти с непредсказуемым результатом.
  4. Шрединбаг (Schroedinbug) – критические баги, чаще приводящие к появлению возможности взлома, хотя внешне никак себя не проявляют.

Последняя категория ошибок – одна из основных причин регулярного обновления операционных систем Windows. Вроде бы пользователя все устраивает, а разработчик раз за разом выпускает новые пакеты исправлений. Наиболее известный баг, попортивший нервы многим кодерам, это «ошибка 2000 года» (Y2K Error). Про нее успешно забыли, но уроки извлекли.

Программисты различают и те ошибки, что мешают скомпилировать программу, и ворнинги. Вторая категория представляет собой лишь предупреждение о найденных «косяках» в коде, но они не мешают ни сборке ПО, ни последующей эксплуатации. Например, речь идет об отсутствии точки или точки запятой в синтаксисе, когда компилятор способен сам решить проблему.

Поиск ошибок

Логические

Наиболее серьезная из ошибок. Такие баги приводят к изменению функционирования программы вопреки техническому заданию. К чему это приведет, никто не знает – могут записаться на диске «не те данные», некорректно измениться важные документы или предоставиться доступ к коммерческой информации без авторизации. Исправить их получится только при знании изначальной логики.

Синтаксические

Ошибки синтаксиса существуют на уровне конкретного языка программирования: C, Java, Python, Perl и т.д. Что на одной платформе работает максимум с ворнингами, для другой будет серьезной проблемой. Такие баги легко исправить на этапе компиляции, потому что инструмент не позволит «пройти дальше» некорректного участка кода.

Компиляционные

Ситуация происходит, когда код, написанный на языке высокого уровня, преобразуют в «простой», машиночитаемый. Причиной может служить как серьезная ошибка в синтаксисе, так и сбои в самом компиляторе. Такие баги устраняют на этапе разработки-отладки программ, потому что выпустить их даже для бета-тестирования не получится.

Среды выполнения

Так называемые ошибки Run-Time. Проявляются в скомпилированных программах, при запуске. Например, из-за нехватки ресурсов на машине, в результате аварийной ситуации (поломка памяти, носителя, устройств ввода-вывода). Такое происходит, если разработчик не учел реальных условий работы; придется вернуться к стадии проработки логики.

Арифметические

Одна из разновидностей логических ошибок. Происходят, когда программа при работе вычисляет массу переменных, но на каком-то этапе происходит непредвиденное. Например, деление на ноль или же приложение получает «бесконечный» результат. Изменить ситуацию получится только на уровне кода, внедренного в него алгоритма.

Ресурсные

Преимущественно к этой категории относят ошибки типа «переполнение буфера». Программист не учел необходимость очистки памяти перед размещением новых данных. Или интерфейс разработан без учета типовых разрешений экранов, и его элементы постоянно «съезжают», нарушается логика срабатывания кнопок и т.д. Исправить получится только переписыванием части кода.

Взаимодействия

Речь идет о взаимодействии с аппаратным или программным окружением. В случае с приложением для облачного ресурса программист мог допустить ошибку при использовании веб-протоколов. При постоянном появлении ошибки остается только переписывать участок кода, ответственный за появление бага, иначе программа останется неработоспособной.

Что такое исключение

Снизить риски появления непредвиденных ошибок позволяет внедрение в программу исключений. Это события, при возникновении которых начинается «неправильное» поведение. Такой механизм позволяет систематизировать обработку багов независимо от типа приложения, платформы и иных условий. И разработать единую систему реагирования, например, со стороны операционки.

Исключения ошибок

Существуют программные и аппаратные исключения. Первые генерируются самой программой и ОС, под которой она запущена. К аппаратным относятся те, что создаются процессором. Например, деление на 0, переполнение буфера, обращение к невыделенной памяти. Исключениями кодеры охватывают наиболее серьезные, критические баги.

Как избежать ошибок?

Существует два эффективных способа избежать проблем еще на стадии разработки. Первый – это отладка при помощи специальных программ. Они отображают результаты выполнения в цифрах, которые объективно показывают кодеру, правильно ли был обработан следующий участок кода или нужно искать закравшуюся ошибку.

Второй способ представляет собой привлечение специальных людей, тестировщиков. Они помогут разобраться с работоспособностью интерфейса в различных ситуациях, на разных платформах. Это происходит максимально приближенно к реальным условиям. Поэтому любой серьезный продукт проходит такую стадию обязательно.

Выводы

Баги – сопутствующий фактор любой разработки. Большую их часть пользователь не видит, потому что устраняются они еще в «лаборатории», на этапе альфа-тестирования. В бета-версии попадают уже незначительные ошибки, например, связанные с конкретными «узкими» условиями эксплуатации. Редкие проблемы помогают решать краш-репорты – отчеты, отсылаемые производителю самой программой. 

К вопросу о классификации программных ошибок

Березкин
Д.В.

Определение
понятия «ошибка в программе» 1

Классификация
ошибок по месту их возникновения 2

Классификация
ошибок с точки зрения тестировщика 12

Классификация
ошибок по степени их критичности 13

Классификация
ошибок в зависимости от их места в
жизненном цикле программного изделия 14

Классификация
программных ошибок (багов) с точки
зрения субъективного восприятия их
программистами 15

Некоторые
выводы 16

Литература 16

В качестве введения рассмотрим определения
понятия «ошибка». Начнем с наиболее
общего трактования этого понятия
применительно к некоторым техническим
системам.

По определению стандарта ISO
9241-13 [1] ошибка это – несоответствие
между целями пользователя и ответом
системы.

Определение, приведенное в работе [2],
предполагает, что ошибка вызвана не
сложностью задачи, а сложностью орудия
(напр., компьютерной системы), поэтому
она является не ошибкой пользователя,
а ошибкой разработчиков этого орудия.

Далее рассмотрим более частные
определения, непосредственно связанные
с компьютерными программами.

Определение понятия «ошибка в программе»

В самом общем случае под ошибкой
понимается какой-то сбой в программе
на этапе ее выполнения.

Ошибкой (или так называемым багом) можно
назвать недокументированные или
нежелательные, «побочные» реакции
программы на те или иные действия
пользователя равно как и при использовании
ее одновременно с другим программами
или на другой аппаратной платформе.

Майерс дает такое нестрогое определение:
«Если программа не делает того, чего
пользователь от нее вполне обосновано
ожидает, значит налицо программная
ошибка» [3].

Автор работы [4] настаивает на субъективном
характере программных ошибок: «Не
существует ни абсолютного определения
ошибок, ни точного критерия наличия их
в программе. Можно лишь сказать, насколько
программа не справляется со своей
задачей, — это исключительно субъективная
характеристика».

Канер с соавторами [5] указывают, что
определение ошибок как расхождение
между программой и ее спецификацией —
не верно. Они исходят из того, что даже
точно соответствующая спецификации
программа содержит ошибки в том случае,
если есть ошибки и в самой спецификации.

В книге [6] приводится такое определение
программных ошибок: «Говоря простыми
словами, программная ошибка — не что
иное, как изъян в разработке программного
продукта, который вызывает несоответствие
ожидаемых результатов выполнения
программного продукта и фактически
полученных результатов. Дефект может
возникнуть на стадии кодирования, на
стадии формулирования требований или
на стадии проектирования, либо же его
причина может крыться в некорректной
конфигурации или данных. Дефектом может
быть также что-то другое, что не
соответствует ожиданиям заказчика и
что может быть, а может и не быть определено
в спецификации программного продукта».

Классификация ошибок по месту их возникновения

Классификация ошибок в книге [5] дается
по месту их возникновения. В главе 4
приводится краткая классификация ошибок
и в Приложении – более полная, которая,
на мой взгляд, не имеет строгих принципов
и является скорее перечнем возможных
ошибок, чем их классификацией. Авторы
исходят из того, что главным критерием
программы должно быть ее качество,
которое трактуется как отсутствие в
ней недостатков, а также сбоев и явных
ошибок. Недостатки программы зависят
от субъективной оценкой ее качества
потенциальным пользователем. При этом
авторы скептически относятся к
спецификации и утверждают, что даже при
ее наличии, выявленные на конечном этапе
недостатки говорят о ее низком качестве.
При таком подходе преодоление недостатков
программы, особенно на заключительном
этапе проектирования, может приводить
к снижению надежности. Очевидно, что
для разработки ответственного и
безопасного программного обеспечения
(ПО) такой подход не годится, однако
проблемы наличия ошибок в спецификациях,
субъективного оценивания пользователем
качества программы существуют и не
могут быть проигнорированы. Должна быть
разработана система некоторых ограничений,
которая бы учитывала эти факторы при
разработке и сертификации такого рода
ПО. Для обычных программ все проблемы,
связанные с субъективным оцениванием
их качества и наличием ошибок, скорее
всего неизбежны.

В краткой классификации выделяются
следующие ошибки.

Ошибки пользовательского интерфейса.

Функциональность.

Взаимодействие программы с пользователем.

Организация программы.

Пропущенные команды.

Производительность.

Выходные данные.

Обработка ошибок.

Ошибки, связанные с обработкой граничных
условий.

Ошибки
вычислений.

Начальное и последующие состояния.

Ошибки управления потоком.

Ошибки передачи или интерпретации
данных.

Ситуация гонок.

Перегрузки.

Аппаратное обеспечение.

Контроль версий.

Документация.

Ошибки тестирования.

Подробная классификация с небольшой
правкой и моими комментариями приведена
ниже.

Ошибки пользовательского интерфейса.

Многие
из них субъективны, т.к. часто они
являются скорее неудобствами, чем
«чистыми» логическими ошибками. Однако
они могут провоцировать ошибки
пользователя программы или же замедлять
время его работы до неприемлемой
величины. В результате чего мы будем
иметь ошибки информационной системы
(ИС) в целом. Основным источником таких
ошибок является сложный компромисс
между функциональностью программы и
простотой обучения и работы пользователя
с этой программой. Проблему надо начинать
решать при проектировании системы на
уровне ее декомпозиции на отдельные
модули, исходя из того, что вряд ли
удастся спроектировать простой и удобный
пользовательский интерфейс для модуля,
перегруженного различными функциями.
Кроме того, необходимо учитывать
рекомендации по проектированию
пользовательских интерфейсов, например
[7]. В этой книге приводятся простые
модели проверки качества интерфейса,
которые можно использовать на стадии
его проектирования. На этапе тестирования
ПО полезно предусмотреть встроенные
средства тестирования, которые бы
запоминали последовательности действий
пользователя, время совершения отдельных
операций, расстояния перемещения курсора
мыши. Кроме этого возможно применение
гораздо более сложных средств
психо-физического тестирования на этапе
тестирования интерфейса пользователя,
которые позволят оценить скорость
реакции пользователя, частоту этих
реакций, утомляемость и т.п. Необходимо
отметить, что такие ошибки очень критичны
с точки зрения коммерческого успеха
разрабатываемого ПО, т.к. они будут в
первую очередь оцениваться потенциальным
заказчиком.

Ошибки функциональности.

«Если с помощью программы трудно,
неудобно или невозможно выполнить
что-то, чего может обоснованно ожидать
от нее пользователь, значит, в ней имеется
функциональная ошибка». Очень расплывчатое
определение, хотя возможно, что и верное.
Как уже отмечалось, авторы книги [5]
предполагают наличие ошибок в спецификации
программы. Авторы подразделяют ошибки
функциональности, однако трудно провести
грань между функциональными и другими
видами ошибок.

Избыточная функциональность. В
программе слишком много функций, поэтому
она сложна в изучении и эксплуатации.
Не хватает концептуального единства.
Второстепенные функции осложняют доступ
к базовым возможностям. Программа часто
теряет производительность. Документация
на систему слишком обширна и ею невозможно
пользоваться. Мне кажется, что часть
такого рода ошибок пересекаются с
ошибками интерфейса.

Ложное впечатление о наборе функций
продукта.
Связано в первую очередь с
ошибками или низким качеством документации.
Сюда же можно отнести не документируемые
функции программы и закладки. Очень
важный пункт с точки зрения безопасного
ПО: необходимо обеспечить строгое
соответствие описания программы и ее
функций.

Неадекватность реализации базовых
функций.
Функция реализована так, что
не годится для эксплуатации. Сюда
относятся вопросы недостаточной
производительности.

Пропущенная функция. В программе
не реализована функция, предусмотренная
спецификацией.

Неверно работающая функция. Функция
работает не так, как предусмотрено
спецификацией.

Функция должна быть реализована
пользователем.
Пользователь должен
сам что-то сделать, чтобы функция
заработала. Для некоторых программ
такой режим предусматривается и не
может, на мой взгляд, считаться ошибкой.

Программа не делает того, что ожидает
от нее пользователь.
Причина таких
ошибок кроется в недостатках спецификации
программы. С этими ошибками нужно
бороться на этапе проектирования ПО.
Для ответственного ПО необходимо
потребовать безошибочность спецификаций.
Как этого добиться – сложный вопрос.
Во всяком случае, для достижения
высококачественного кодирования нужно
исходить из того, что спецификации
программ не содержат ошибок, иначе
совершенно не ясно как это обеспечить
и проконтролировать.

Взаимодействия программы и пользователя.
Их появление возможно как в интерактивном,
так и в пакетном режимах.

Пропущенная информация. Сюда
относятся типичные ошибки интерфейса:
ошибки в подсказках, в перечне возможных
команд, отсутствие справочной информации
и т.п., отсутствие индикации курсора или
признаков активности выполнения
программы, открытия документов. Сюда
необходимо отнести ошибки, когда
пользователю не выдана, предусмотренная
спецификацией информация, но почему-то
именно этот случай не отражен в работе
[5]. Для некоторых видов ПО подобная
ошибка может быть весьма критичной
(например, если не отражена информация
о наступлении важного события, аварии
в системе и т.п.).

Неверная или смущающая пользователя
информация.
Даже незначительные
ошибки подрывают доверие пользователя
к программе. На основании этих ошибок,
а также при недостаточно подробных
сообщениях пользователь может сделать
неверные выводы, которые могут иметь
серьезные последствия для системы в
целом. В этом разделе авторы анализируют
сообщения программ об ошибках. Сюда же
относятся такие интерфейсные ошибки,
как неудачные пиктограммы, названия
кнопок и функций, несколько разных
названий для одной и той же функции.
Избыточность документации, попытка
переложить на пользователя проблемы,
которые должны решить программисты.

Справочная система и сообщения об
ошибках.
Текст в электронном виде
должен быть не сложнее, чем на бумаге
(максимальный уровень сложности 5). Текст
должен быть написан простым языком,
сообщения программ должны быть в
утвердительной форме, краткими и
простыми, содержать минимум технических
терминов. Нужно избегать неуместной
эмоциональности и слов, которые могут
напугать пользователя. Документация
не должна содержать ошибок и неверных
примеров. Контекстно-зависимые справочные
системы и подсистемы обработки ошибок
должны проверять, что делает программа
в момент их вызова. Неправильное
определение источника ошибки в сообщении,
должны указываться причина ошибки и
способ выхода из ситуации.

Представляется целесообразным выделение
рубрики «Ошибки документации и сообщений
программы» в самостоятельный раздел.
Этот раздел не связан непосредственно
с кодом программ (по крайней мере, с его
функциональной частью) и процессом
кодирования. Поскольку язык технической
документации является строгим, основные
понятия должны быть строго определены,
их полисемия исключена, возможно
применение методов автоматической
обработки текстов и достижение при этом
весьма высокого качества.

Ошибки отображения. Данные отражаются
формально правильно, но в каком-то
неестественном виде, два курсора (забыли
стереть курсор в предыдущем фокусе
ввода), курсор исчезает или отображается
не в том месте, недоочищена часть экрана,
не выделены активные элементы экрана,
не снято выделение, отображена неверная
или неполная строка, сообщение остается
на экране слишком долго или исчезает
слишком быстро. В этот пункт следовало
бы добавить ошибки, связанные с появлением
информации, не предусмотренной
спецификацией, ошибки в форматах или
размерности некоторых полей, выдачу
информации (или части сообщений)
конфиденциального характера пользователем,
не имеющим соответствующих прав.

Организация экрана. Плохая
структурированность информации на
экране, неэстетическое оформление
экрана, неудачная организация меню,
ошибки организации диалоговых окон,
труднонаходимые конструкции, неуместное
использование мигания, пестрые цветовые
сочетания, использование цветов в
качестве смыслового интерфейса,
невозможность избавиться от избыточной
информации на экране – все это «ошибки
интерфейса».

Организация команд и способы их ввода.
Рассматриваются различные несоответствия.
Неуместная оптимизация, непоследовательный
синтаксис, неодинаковый стиль ввода
команд, нелогичные сокращения команд,
непоследовательные правила завершения
ввода, несоответствие опций для различных
команд, похожие названия для различных
команд, непоследовательная интерпретация
регистра, неодинаковое положение команды
в меню, неодинаковое использование
функциональных клавиш, непоследовательные
правила обработки ошибок, непоследовательные
правила редактирования или сохранения
данных.

Потери времени. Имеются в виду потери
времени из-за неудачного интерфейса
программы.

Меню. Меню должны быть простыми и
логичными, поэтому все недостатки меню
можно считать ошибками программы или
же потенциальным источником ошибок при
эксплуатации программного изделия.

Командные строки. В некоторых случаях
ввод команд может быть предпочтительнее
выбора из меню. Речь идет о чисто
интерфейсных вещах: учет регистра в
командах может приводить к ошибкам,
соблюдение единого порядка параметров
в командах, не распознаются полные имена
в командах, не допускаются сокращения,
сложная команда в одной строке, отсутствие
возможности пакетного ввода, отсутствие
возможности редактирования команд.

Нестандартное использование клавиатуры.
Рассматриваются различные неудобства
пользователя, приводящие к его ошибкам,
связанные с отсутствием возможности
использовать клавиши, их непривычное
использование, возможность осуществить
ввод недопустимых символов, отсутствие
индикаторов состояния клавиатуры,
отсутствие реакции на управляющие
клавиши.

Пропущенные команды. Ошибки связаны
с невозможностью или с существенными
трудностями пользователя при изменениях
состояния программы. Сюда входят ошибки,
связанные с невозможностью выйти из
какой-то программы или из какого-то
режима, прервать или приостановить
выполнение программы, отсутствие
возможности резервного копирования
(по-моему, это в первую очередь
функциональная ошибка), отсутствие
команды отмены, отсутствие запросов на
подтверждение команд для некоторых
ответственных операций, отсутствие
режима автоматического периодического
сохранения данных (по-моему, это также
функциональная ошибка).

Обработка ошибок пользователем. Не
предусмотрены пользовательские проверки
вводимых данных (по-моему, это в первую
очередь функциональная ошибка), сложно
исправить допущенную ошибку, не
предусмотрена возможность записи
комментариев (по-моему, это можно считать
как функциональной ошибкой, так и ошибкой
в интерфейсе в зависимости от того, что
представляет собой этот комментарий),
отсутствуют средства отображения связей
между переменными.

Разное. Очень эклектичный раздел.
Сюда входят ошибки, связанные с защитой
информации (неадекватные средства
защиты и избыточная защита), которые
необходимо выделить в самостоятельный
раздел. Невозможность спрятать меню
(недостаток интерфейса), отсутствие
поддержки стандартных функций операционной
системы, отсутствие поддержки длинных
имен файлов (функциональные ошибки).

Негибкость программы. В разделе
рассматриваются возможные проблемы
настройки пользовательского интерфейса
программы. Отмечается, что негибкость
программы – это не всегда недостаток,
т.к. программы с простым фиксированным
интерфейсом как правило более просты
в изучении и в эксплуатации. Выделяются
следующие виды ошибок: невозможность
отключить звук, отсутствие переключателя
учета регистра, несовместимость с
аппаратным обеспечением (по-моему, не
из этого раздела), игнорирование
инициализации устройств, выполненной
извне (имеется в виду, что программа не
может выполнить настройки конкретного
оборудования, а только посылает какой-то
ограниченный набор команд (по-моему, не
из этого раздела), не предусмотрено
отключение функции автоматического
сохранения, невозможность замедлить
(ускорить) прокрутку текста, отсутствие
возможности повторить последнее действие
или выяснить, каким оно было, невозможно
выполнить только что настроенную
команду, не сохраняются настроенные
параметры программы (мне кажется, что
это функциональный недостаток, причем
возможна ситуация, когда настройка
некоторых параметров пользователем
невозможна по соображениям безопасности),
побочные эффекты настройки, излишне
высокая степень настраиваемости.

Кто здесь главный? В этом пункте
авторы работы [5] опять возвращаются к
ошибкам в сообщениях программ и
недостаткам команд. Получился как бы
еще один раздел «Разное», который
включает следующие ошибки: навязывание
ненужных ограничений, дружественность
к новичкам, создающая неудобства для
опытных пользователей, навязчивая
предупредительность и неудачная попытка
сделать программу интеллектуальной,
запрос информации без необходимости,
ненужное повторение действий, ненужные
ограничения.

Производительность. Авторы отмечают
существование нескольких трактовок
этого понятия: 1) скорость программы, 2)
производительность работы пользователя,
3) субъективное восприятие пользователем
характеристик производительности
программы. В связи с этим возможна
ситуация, когда высокоскоростная
программа с неудачным пользовательским
интерфейсом кажется медленнее, чем на
самом деле. Какая-то логика в этом
безусловно есть, но представляется
более правильным разделить производительность
программы при решении ее основных
функциональных задач, которая в
большинстве случаев не зависит от
пользователей и может быть точно
замерена, и производительность
непосредственно интерфейса. При всей
субъективности этой характеристики
она может быть оценена на стадии
разработки интерфейса, а затем и измерена
специальными средствами.

В разделе выделяются следующие подразделы:
низкоскоростная программа (ошибки
проектирования и кодирования), задержка
реакции на действия пользователя,
большое время ответа, программа не
распознает ввод, отсутствие предупреждений
о длительных операциях, отсутствие
индикаторов хода работы, проблемы
тайм-аутов (здесь речь идет об искусственных
ограничениях времени ввода данных или
паузах при совершении каких-то действий),
надоедливая программа, избыточная
информация, передавая по медленным
сетям (проблема рассматривается только
с точки зрения интерфейса пользователя,
хотя проблема должна решаться при
проектировании системы в целом). Далее
приводятся ряд ошибок, которые явно не
из этого раздела: выходная информация
должна быть полной и понятной пользователю,
невозможно получить определенные
данные, невозможно перенаправить вывод,
формат, неподходящий для дальнейшей
обработки (речь идет об ошибках в
программных интерфейсах, явно напрашивается
вывод — выделить их в раздел: «Ошибки
взаимодействия программ»), слишком мало
или слишком много выходной информации,
абсурдная степень точности, невозможность
форматирования заголовков таблиц и
подписей рисунков, невозможность
изменения масштаба графиков. Необходимо
отметить, что последние 2 пункта являются
слишком частными, поэтому вызывает
сомнение необходимость включать
настолько частные ошибки в общую
классификацию.

Авторы работы [5] подчеркивают, что
вопросы производительности нельзя
рассматривать без учета работы
пользователя, поэтому выделяются такие
«узкие места», как: все, что повышает
вероятность ошибок пользователя,
громоздкая схема исправления ошибок,
все, что ставит пользователя в тупик,
неоправданное увеличение количества
действий, необходимых для достижения
определенного результата.

Обработка ошибок.

Предотвращение ошибок. Программа
должна быть защищена от недопустимого
ввода и неправильной эксплуатации.
Должна быть предусмотрена проверка
вводимых данных. Можно использовать
методы аппаратного обнаружения и
исправления ошибок.

Выделяются подпункты:

неверное начальное состояние;

неадекватная проверка пользовательского
ввода;

неадекватная защита от испорченных
данных;

не выполнена проверка переданных
параметров;

недостаточная защита от ошибок
операционной системы;

не выполняется проверка версии;

недостаточная защита от неправильного
использования («защита от дурака»).

Выявление ошибок. Программа должна
контролировать правильность данных.

Выделяются подпункты:

переполнение;

невозможные значения;

непроверенные данные;

флаги ошибок;

аппаратные сбои;

сравнение данных;

восстановление после ошибок;

автоматическое исправление ошибок;

отсутствие сообщения об ошибке;

не установлен флаг ошибки;

куда возвращается управление? (Ошибки
передачи управления после сбоя);

прекращение выполнения программы из-за
ошибки. Имеются в виду возможные ошибки
из-за не корректной обработки такой
ситуации;

обработка аппаратных отказов;

ну нет у меня нужного диска! Программа
должна предусматривать какой-то выход
из ситуации, когда пользователь не в
состоянии выполнить требуемое действие.

Ошибки, связанные с граничными
условиями.

Выделяют следующие типы таких ошибок:

неправильная обработка граничного
значения;

неверное граничное условие;

неправильная обработка данных, не
соответствующих граничным условиям.

Выделяются следующие подпункты:

числовые ограничения;

ограничения на равенство;

количественные ограничения;

пространственные ограничения;

ограничения времени (имеются в виду
вопросы, связанные с поведением системы
на границах заданных в программе
временных интервалов);

условия циклов;

ограничения объема памяти;

ограничения, связанные со структурой
данных;

ограничения, связанные с аппаратным
обеспечением;

невидимые границы.

Раздел представляется очень эклектичным.
Напрашивается вывод о вынесении ошибок,
связанных с циклами, использованием
памяти, ошибок в структурах данных в
отдельные разделы. Представляется, что
наличие того или иного ограничения не
может являться главным критерием
классификации. Также все ошибки, связанные
с аппаратным обеспечением должны быть
собраны в отдельном разделе и там
структурированы.

Ошибки вычислений.

Авторы работы [5] выделяют следующие
причины возникновения таких ошибок:

неверная логика (может быть следствием,
как ошибок проектирования, так и
кодирования);

неправильно выполняются арифметические
операции (как правило – это ошибки
кодирования);

неточные вычисления (могут быть
следствием, как ошибок проектирования,
так и кодирования). Очень сложная тема,
надо выработать свое отношение к ней с
точки зрения разработки безопасного
ПО.

Выделяются подпункты:

устаревшие константы;

ошибки вычислений;

неверно расставленные скобки;

неправильный порядок операторов;

неверно работает базовая функция;

переполнение и потеря значащих разрядов;

ошибки отсечения и округления;

путаница с представлением данных;

неправильное преобразование данных из
одного формата в другой;

неверная формула;

неправильное приближение.

Начальное и последующие состояния
(Ошибки инициализации).

Представляется не очень обоснованным
их выделение в самостоятельный раздел,
хотя они важны.

Выделяются подпункты:

не присвоены начальные значения;

не инициализирована переменная,
управляющая циклом;

не инициализирован указатель;

не очищена строка;

не инициализированы регистры;

не сброшен флаг;

данные должны были инициализироваться
в другом месте;

не выполнена повторная инициализация;

предположение (не верное), что данные
не были инициализированы;

путаница со статическими и динамическими
переменными;

не предполагавшаяся модификация данных,
выполняемая другими подпрограммами;

ошибочная инициализация;

зависимость от инструментальных средств,
которых может не быть.

Ошибки управления потоком.

В этот раздел относится все то, что
связано с последовательностью и
обстоятельствами выполнения операторов
программы.

Выделяются подпункты:

очевидно неверное поведение программы;

переход по GOTO;

логика, основанная на определении
вызывающей подпрограммы;

использование таблиц переходов;

выполнение данных (вместо команд).
Ситуация возможна из-за ошибок работы
с указателями, отсутствия проверок
границ массивов, ошибок перехода,
вызванных, например, ошибкой в таблице
адресов перехода, ошибок сегментирования
памяти;

переход к подпрограмме, которая
отсутствует в памяти. Ошибки связаны с
ошибками в организации оверлейных
программ;

реентерабельность. Реентерабельная
программа может вызывать сама себя или
быть вызвана несколькими параллельными
процессами одновременно. Такая возможность
может не поддерживаться языком
программирования. Если она поддерживается,
то нужно обеспечить защиту данных,
используемых одним процессом, от их
модификации другим;

путаница имен переменных и команд;

неверное предположение о состоянии
программы или данных после вызова;

обработка ошибок выполнения процедур
(имеются в виду ошибки, когда программист
не предусмотрел такую обработку);

возврат не в ту точку кода (сюда включены
несколько видов ошибок: испорченный
стек, переполнение и выход за нижнюю
границу стека, выход из подпрограммы
по GOTO вместо RETURN);

прерывания (сюда включены несколько
видов ошибок: неверная таблица прерываний,
ошибки, связанные с модификацией
программами таблицы прерываний, ошибки,
связанные с блокированием прерываний,
неудачное возобновление работы программы
после прерывания);

завершение работы программы;

«зависание» компьютера;

синтаксические ошибки, сообщения о
которых отображаются во время выполнения
программы (имеются в виду программы,
написанные на интерпретируемом языке
программирования);

ожидание невозможных условий или
комбинаций условий (примерами таких
ошибок являются: проблемы ввода/вывода,
взаимная блокировка, простая логическая
ошибка в условиях);

неверный приоритет пользователя или
процесса;

циклы (сюда включены несколько видов
ошибок: бесконечный цикл, неверное
начальное значение переменной управления
циклом, случайное изменение переменной
управления циклом, ошибочный критерий
выхода из цикла, команды, которые должны
или не должны выполняться внутри цикла,
ошибка вложенности циклов);

условные операторы (Сюда включены
несколько видов ошибок: неправильное
сравнение, неверные результаты сравнений,
условный оператор не учитывает модификации
программы, ошибки сравнения значений
переменных с плавающей точкой из-за
округлений, спутаны логические операторы,
присваивание вместо сравнения, ошибки
в использовании конструкции THRN/ELSE,
команды, которые не входят ни в одно из
предложений, не проверен флаг, не сброшен
флаг. Кроме этого в этом же подразделе
рассматривается сложный условный
оператор, содержащий многочисленные
варианты ветвления. В этом случае
возможны следующие ошибки: пропущен
блок, выполняемый во всех остальных
случаях, неверно определены действия
для всех остальных случаев, пропущенные
варианты, требуется подразделение
одного варианта на несколько, пересекающиеся
условия, неверные условия и невозможные
случаи).

Ошибки обработки или интерпретации
данных.

Выделяются подпункты:

проблемы при передаче данных между
подпрограммами (сюда включены несколько
видов ошибок: параметры указаны не в
том порядке или пропущены, несоответствие
типов данных, псевдонимы и различная
интерпретация содержимого одной и той
же области памяти, неправильная
интерпретация данных, неадекватная
информация об ошибке, перед аварийным
выходом из подпрограммы не восстановлено
правильное состояние данных, устаревшие
копии данных, связанные переменные не
синхронизированы, локальная установка
глобальных данных (имеется в виду
путаница локальных и глобальных
переменных), глобальное использование
локальных переменных, неверная маска
битового поля, неверное значение из
таблицы);

границы расположения данных (сюда
включены несколько видов ошибок: не
обозначен конец нуль-терминированной
строки, неожиданный конец строки,
запись/чтение за границами структуры
данных или ее элемента, чтение за
пределами буфера сообщения, чтение за
пределами буфера сообщения, дополнение
переменных до полного слова, переполнение
и выход за нижнюю границу стека данных,
затирание кода или данных другого
процесса);

проблемы с обменом сообщений (сюда
включены несколько видов ошибок: отправка
сообщения не тому процессу или не в тот
порт, ошибка распознавания полученного
сообщения, недостающие или
несинхронизированные сообщения,
сообщение передано только N
процессам из N+1, порча
данных, хранящихся на внешнем устройстве,
потеря изменений, не сохранены введенные
данные, объем данных слишком велик для
процесса-получателя, неудачная попытка
отмены записи данных).

Ситуация гонок.

Выделяются подпункты:

гонки при обновлении данных;

предположение, что одно задание завершится
до начала другого;

предположение, что в течение определенного
короткого интервала времени не будет
ввода данных;

предположение, что в течение определенного
короткого интервала времени не будет
прерываний;

ресурс только что стал недоступен;

предположение, что человек, устройство
или процесс ответят быстро;

реальный набор опций в процессе
перерисовки экрана;

задание начинается до того, как выполнены
подготовительные действия;

сообщения приходят одновременно или
не в том порядке, в котором они были
отправлены.

Повышенные нагрузки.

При повышенных нагрузках или нехватке
ресурсов могут возникнуть дополнительные
ошибки. Выделяются подпункты:

требуемый ресурс недоступен;

не освобожден ресурс;

нет сигнала об освобождении устройства;

старый файл не удален с накопителя;

системе не возвращена неиспользуемая
память;

лишние затраты компьютерного времени;

нет свободного блока памяти достаточного
размера;

недостаточный размер буфера ввода или
очереди;

не очищен элемент очереди, буфера или
стека;

потерянные сообщения;

снижение производительности;

повышение вероятности ситуационных
гонок;

при повышенной нагрузке объем
необязательных данных не сокращается;

не распознается сокращенный вывод
другого процесса при повышенной загрузке;

не приостанавливаются задания с низким
приоритетом;

задания с низким приоритетом вообще не
выполняются.

В этом разделе хотелось бы обратить
внимание на следующее:

1) Часть ошибок из этого раздела могут
проявляться и при не очень высоких
нагрузках, но, возможно, они будут
проявляться реже и через более длительные
интервалы времени;

2) Многие ошибки из 2-х предыдущих разделов
уже в своей формулировке носят
вероятностный характер, поэтому следует
предположить возможность использования
вероятностных моделей и методов для их
выявления.

Аппаратное обеспечение.

В разделе рассматриваются ошибки
взаимодействия программного и аппаратного
обеспечения. Выделяются подпункты:

неверное устройство;

неверный адрес устройства;

устройство недоступно;

устройство возвращено не в тот пул;

данному пользователю или программе
использование устройства запрещено;

данный уровень привилегий не позволяет
получить доступ к устройству;

шумы;

прерывание связи;

проблемы тайм-аута;

неверный накопитель;

не проверяется содержимое текущего
диска;

не закрыт файл;

неожиданный конец файла;

ошибки, связанные с длиной файлов и
дисковыми секторами;

неверный код операции или команды;

неверно интерпретирован код состояния
или возврата;

ошибка протокола обмена с устройством;

неполное использование возможностей
устройства;

игнорирование или неправильно используется
механизм страничного управления памятью;

игнорирование ограничений канала;

предположения о наличии или отсутствии
устройства или его инициализации;

программируемые функциональные клавиши.

Необходимо отметить, что в качестве
моделей ошибок данного раздела подойдут
вероятностные модели. Оправдано
моделировать ошибки программы и
аппаратуры совместно.

Контроль версий и идентификаторов.

Выделяются подпункты:

таинственным образом появляются старые
ошибки;

обновление не всех копий данных или
программных файлов;

отсутствие заголовка;

отсутствие номера версии;

неверный номер версии в заголовке
экрана;

отсутствующая или неверная информация
об авторских правах;

программа, скомпилированная из архивной
копии, не соответствует проданному
варианту;

готовые диски содержат неверный код
или данные.

Ошибки тестирования.

Являются ошибками сотрудников группы
тестирования, а не программы. Выделяются
подпункты:

пропущенные ошибки в программе;

не замечена проблема (отмечаются
следующие причины этого: тестировщик
не знает, каким должен быть правильный
результат, ошибка затерялась в большом
объеме выходных данных, тестировщик не
ожидал такого результата теста,
тестировщик устал и невнимателен, ему
скучно, механизм выполнения теста
настолько сложен, что тестировщик
уделяет ему больше внимания, чем
результатам);

пропуск ошибок на экране;

не документирована проблема (отмечаются
следующие причины этого: тестировщик
неаккуратно ведет записи, тестировщик
не уверен в том, что данные действия
программы являются ошибочными, ошибка
показалась слишком незначительной,
тестировщик считает, что ошибку не будет
исправлена, тестировщика просили не
документировать больше подобные ошибки);

не выполнен запланированный тест
(отмечаются следующие причины этого:
тестовые материалы и записи плохо
организованы, тестировщику скучно
выполнять однотипные примеры, в одном
тесте объединено слишком много действий);

не описаны временные зависимости
появления ошибок;

слишком сложный тест (не позволяет
ошибку и добиться ее воспроизведения);

преувеличения;

личные выпады.

Ошибка выявлена и забыта.

Описываются ошибки использования
результатов тестирования. По-моему,
раздел следует объединить с предыдущим.
Выделяются подпункты:

не составлен итоговый отчет;

серьезная проблема не документирована
повторно;

не проверено исправление;

перед выпуском продукта не проанализирован
список нерешенных проблем.

Необходимо заметить, что изложенные в
2-х последних разделах ошибки тестирования
требуют для устранения средств
автоматизации тестирования и составления
отчетов. В идеальном случае, эти средства
должны быть проинтегрированы со
средствами и технологиями проектирования
ПО. Они должны стать важными инструментальными
средствами создания высококачественного
ПО. При разработке средств автоматизированного
тестирования следует избегать ошибок,
которые присущи любому ПО, поэтому нужно
потребовать, чтобы такие средства
обладали более высокими характеристиками
надежности, чем проверяемое с их помощью
ПО.

У слова «Баг» есть и другие значения; см. Баг.

Программная ошибка (жарг. баг) — означает ошибку в программе или в системе, из-за которой программа выдает неожиданное поведение и, как следствие, результат. Большинство программных ошибок возникают из-за ошибок, допущенных разработчиками программы в её исходном коде, либо в её дизайне. Также некоторые ошибки возникают из-за некорректной работы инструментов разработчика, например из-за компилятора, вырабатывающего некорректный код. Программу, которая содержит большое число ошибок, серьёзно ограничивающие её работоспособность, называют нестабильной (или, на жаргонном языке, «глючной», «глюкнутой», «забагованной», «бажной», «баг(а)нутой»).

Термин «программная ошибка» обычно употребляется для обозначения ошибок, проявляющих себя на стадии работы программы, в отличие, например, от ошибок проектирования или синтаксических ошибок. Отчет, содержащий информацию об ошибке также называют отчетом о проблеме (англ. bug report). Отчет о критической проблеме (англ. crash), вызывающей аварийное завершение программы, называют крэш-репортом (англ. crash report).

Программные ошибки локализуются и устраняются в процессе тестирования и отладки программы.

Содержание

  • 1 Этимология термина «баг»
  • 2 Значение и классификация ошибок программного обеспечения
    • 2.1 Разновидности
  • 3 Поиск и исправление ошибок
  • 4 Отчёты об ошибках
  • 5 Последствия
  • 6 См. также
  • 7 Примечания
  • 8 Ссылки

Этимология термина «баг»

В значении «неуловимой технической ошибки» слово «жучок» (англ. bug) употреблялось задолго до появления компьютеров персоналом телеграфных и телефонных компаний в отношении неполадок с электрооборудованием и радиотехникой. В 1878 году Томас Эдисон писал[1]:

«Так было со всеми моими изобретениями. Первый шаг — интуиция, которая приходит как вспышка, затем возникают трудности — устройство отказывается работать, и именно тогда проявляются «жучки» — как называют эти мелкие ошибки и трудности — и требуются месяцы пристального наблюдения, исследований и усилий, прежде чем дело дойдёт до коммерческого успеха или неудачи».

Оригинальный текст (англ.)

It has been just so in all of my inventions. The first step is an intuition, and comes with a burst, then difficulties arise—this thing gives out and [it is] then that «Bugs»—as such little faults and difficulties are called—show themselves and months of intense watching, study and labor are requisite before commercial success or failure is certainly reached.

Во время Второй мировой войны словом bugs именовали проблемы с радарной электроникой.

По одной из версий, в отношении программной ошибки этот термин впервые был применен 9 сентября 1947 года Грейс Хоппер, которая работала в Гарвардском университете с вычислительной машиной Harvard Mark II (англ.)русск.. Проследив возникшую ошибку в работе программы до электромеханического реле машины, она нашла между замкнувшими контактами сгоревшего мотылька. Извлечённое насекомое было вклеено скотчем в технический дневник с сопроводительной иронической надписью: «Первый реальный случай обнаружения жучка» (англ. First actual case of bug being found)[2].

Значение и классификация ошибок программного обеспечения

В зависимости от этапа разработки ПО, на котором выявляется ошибка, выделяют:

  • синтаксические ошибки (распознаваемые в качестве таковых транслятором и делающие компиляцию невозможной) — например отсутствие или несоответствие открывающей и закрывающей скобок;
  • предупреждения (warnings) компилятора — например, использование неинициализированной переменной. В этом случае компилятор может заметить, что программист делает что-то необычное (вероятно неверное), и сообщает об этом, однако программист сам принимает решение, игнорировать сообщение или нет;
  • ошибки времени исполнения, смысловые ошибки (семантические) — например вычитание переменных вместо сложения или ошибка сегментации.

По важности:

  • Showstoppers (без исправления которых дальнейшая разработка невозможна или бессмысленна);
  • Серьёзные;
  • Незначительные;

По времени появления:

  • Постоянно, при каждом запуске;
  • Иногда («плавающий» тип);
  • Только на машине у клиента (зависит от локальных настроек у клиента);

По месту и направлению:

  • Ошибки пользовательского интерфейса;
  • Системы обработки ошибок;
  • Ошибки, связанные с граничными условиями (например, некорректная обработка пустой строки или максимального числового значения);
  • Ошибки вычислений;
  • Ошибки управления потоками;
  • Ошибки обработки или интерпретации данных;
  • При состоянии гонки;
  • Повышение нагрузки;
  • Ошибки контроля версии и идентификаторов;
  • Ошибки тестирования;

В зависимости от характера ошибки, программы и среды исполнения, ошибка может проявляться сразу или наоборот — долгое время оставаться незамеченной (например Проблема 2038 года).

Также ошибка может проявляться в виде уязвимости, делающей возможным несанкционированный доступ к системе или DoS-атаку.

Разновидности

[источник не указан 360 дней]

  • Борбаг — легко обнаруживаемая стабильная ошибка
  • Гейзенбаг — сложно обнаруживаемая, периодически исчезающая и меняющая свойства, при попытке обнаружения, ошибка
  • Мандельбаг — ошибка с очень сложным, хаотичным, поведением
  • Шрёдинбаг — критическая ошибка, которая не проявляется, пока кто-нибудь на неё не наткнётся в исходном коде, после чего программа совершенно перестаёт работать

Поиск и исправление ошибок

Для отладки программы (англ. debugging) разработчиками ПО используются специальные программы-отладчики (англ. debugger). Например, в операционной системе Windows можно использовать программу WinDbg из пакета Microsoft Debugging Tools for Windows. Для GNU/Linux и ряда других UNIX-подобных операционных систем существует отладчик GDB (GNU Debugger).

Отчёты об ошибках

Основная масса ошибок обычно отлаживается на этапе компиляции и тестирования программы. Однако некоторая часть ошибок всё же попадает в публикуемую версию и проявляется на компьютерах конечных пользователей в процессе эксплуатации ПО. Для повышения качества программного обеспечения пользуются специальными программами, цель которых — отловить ошибку в целевом приложении, собрать необходимую информацию об её симптомах и отправить отчёт по интернету к разработчикам данного ПО.

Например, в операционную систему Windows встроена утилита Dr. Watson, которая по умолчанию отлавливает ошибки в приложениях пользователя и отправляет отчёт на специальный Сервер компании Microsoft. Также в качестве примера можно привести аналогичные библиотеки Breakpad[3] и CrashRpt[4].

Последствия

  • Авария ракеты-носителя «Ариан-5» (4 июня 1996) — пример одной из самых дорогостоящих компьютерных ошибок в истории.
  • Ошибки в программном обеспечении медицинского ускорителя Therac-25 привели к превышению доз облучения нескольких людей.
  • Финансовая организация Knight Capital Group (англ.)русск. потеряла 440 миллионов долларов за 45 минут из-за ошибки в программе высокочастотного трейдинга[5].

См. также

  • Отладка программы
  • Отчет об ошибке
  • Система отслеживания ошибок
  • Типобезопасность
  • Формальная верификация
  • GIGO

Примечания

  1. Источник: Edison to Puskas, 13 ноября 1878, Edison papers, Edison National Laboratory, U.S. National Park Service, West Orange, N.J., цитируется по книге Томаса П. Хьюджеса (Thomas P. Hughes), American Genesis: A History of the American Genius for Invention, Penguin Books, 1989, стр.

  2. Danis, Sharron Ann: «Rear Admiral Grace Murray Hopper». ei.cs.vt.edu (16, 1997-02-16). Проверено 20 января 2015.
  3. Breakpad. Google. Проверено 11 августа 2009. Архивировано 3 февраля 2012 года.
  4. CrashRpt. Архивировано 3 февраля 2012 года.
  5. Popper, Nathaniel. Knight Capital Says Trading Glitch Cost It $440 Million (англ.), New York Times (2 August 2012). Проверено 13 ноября 2017.

Ссылки

  • Уязвимости в исходных кодах, «Компьютерная газета». Продолжение: Уязвимости в исходных кодах. Перепечатка: 1 часть (недоступная ссылка), 2 часть (недоступная ссылка).
  • 10 худших ошибок в программировании в истории человечества
  • 2010 CWE/SANS Top 25 Most Dangerous Software Errors частичный перевод на русский 25 самых опасных ошибок при создании программ
  • Ошибки, обнаруженные в Open Source проектах разработчиками PVS-Studio с помощью статического анализа. Можно найти полезные примеры при подготовки статей и презентаций.

Понравилась статья? Поделить с друзьями:
  • Что такое ошибочное действие
  • Что такое проблема при сканировании частоты триколор тв как исправить ошибку
  • Что такое ошибка при запуске приложения 0xc0000005
  • Что такое ошибочно перечисленные денежные средства
  • Что такое приоритет ошибки какие могут быть приоритеты