From Wikipedia, the free encyclopedia
Error-related negativity (ERN), sometimes referred to as the Ne, is a component of an event-related potential (ERP). ERPs are electrical activity in the brain as measured through electroencephalography (EEG) and time-locked to an external event (e.g., presentation of a visual stimulus) or a response (e.g. an error of commission). A robust ERN component is observed after errors are committed during various choice tasks, even when the participant is not explicitly aware of making the error;[1] however, in the case of unconscious errors the ERN is reduced.[2][3] An ERN is also observed when non-human primates commit errors.[4]
History[edit]
The ERN was first discovered in 1968 by Russian Natalia Petrovna Bekhtereva neuroscientist and psychologist and was called «error detector»[citation needed]. Later in 1990 ERN was developed by two independent research teams; Michael Falkenstein, J. Hohnsbein, J. Hoormann, & L. Blanke (1990) at the Institute for Work Physiology and Neurophysiology in Dortmund, Germany (who called it the «Ne»), and W.J. «Bill» Gehring, M.G.H. Coles, D.E. Meyer & E. Donchin (1990) at the University of Michigan, USA.[5][6] The ERN was observed in response to errors committed by study participants during simple choice response tasks.
Component characteristics[edit]
The ERN is a sharp negative going signal which begins about the same time an incorrect motor response begins, (response locked event-related potential), and typically peaks from 80 to 150 milliseconds (ms) after the erroneous response begins (or 40-80 ms after the onset of electromyographic activity).[7][8][9][10][11][2] The ERN is the largest at frontal and central electrode sites.[2] A typical method for determining the average ERN amplitude for an individual involves calculating the peak-to-peak difference in voltage between the average of the most negative peaks 1-150 ms after response onset, and the average amplitude of positive peaks 100-0 ms before response onset.[12] For optimal resolution of the signal, reference electrodes are typically placed behind both ears using either hardware or arithmetically linked mastoid electrodes.[8]
Main paradigms[edit]
Any paradigm in which mistakes are made during motor responses can be used to measure the ERN. Natural keyboarding is one such example where typing errors are shown to elicit ERN.[13] The most important feature of any ERN paradigm is obtaining a sufficient number of errors in the participant’s responses, and the number of trials needed to obtain reliable scores can vary widely.[14] Early experiments identifying the component used a variety of techniques, including word and tone identification, and categorical discrimination (e.g. are the following an animal?).[6][15][16] However, the majority of experimental paradigms that elicit ERN deflections have been a variant on the Eriksen «Flanker»,[12][17] and «Go/NoGo».[18] In addition to responses with the hands, the ERN can also be measured in paradigms where the task is performed with the feet[19] or with vocal responses as in the Stroop paradigm.[20]
A standard Flanker task involves discerning the central «target» letter from a string of distracting «flanker» letters which surround it. For example, congruous letter strings such as «SSSSS» or «HHHHH» and incongruous letter strings such as «HHSHH» or «SSHSS» may be presented on a computer screen. Each target letter would be assigned a key stroke response on a keyboard, such as «S» = right shift key and «H» = left shift key. Presentation of each letter string is brief, generally less than 100 ms, and central on the screen. Participants have approximately 2000 ms to respond before the next presentation.
The most simple Go/NoGo tasks involve assigning a property of discernment to responding «Go» or not responding «NoGo.» For example, again congruous letter strings such as «SSSSS» or «HHHHH» and incongruous letter strings such as «HHSHH» or «SSHSS» may be presented on a computer screen. The participant could be instructed to respond by pressing the space bar, only for congruous strings, and to not respond when presented with incongruous letter strings. More complicated Go/NoGo tasks are usually created when the ERN is the component of interest however, because in order to observe the robust negativity errors must be made.
The classic Stroop paradigm involves a color-word task. Color words such as «red, yellow, orange, green» are presented centrally on a computer screen either in a color congruent with the word, («red» in the color red) or in a color incongruent with the word («red» in the color yellow). Participants may be asked to verbalize the color each word is written in. Incongruent and congruent presentations of the words can be manipulated to different rates, such as 25/75, 50/50, 30/70 etc.
Functional sensitivity[edit]
The amplitude of the ERN is sensitive to the intent and motivation of participants. When a participant is instructed to strive for accuracy in responses, observed amplitudes are typically larger than when participants are instructed to strive for speed.[12] Monetary incentives typically result in larger amplitudes as well.[21] Latency of the ERN peak amplitude can also vary between subjects, and does so reliably in special populations such as those diagnosed with ADHD, who show shorter latencies.[22] Participants with clinically diagnosed Obsessive Compulsive Disorder have exhibited ERN deflections with increased amplitude, prolonged latency, and a more posterior topography compared to clinically normal participants.[23][24][25] ERN latency has been manipulated through rapid feedback, wherein participants who received rapid feedback regarding the incorrect response subsequently showed shorter ERN peak latencies.[26] Additionally, a heightened ERN amplitude during social situations has been linked to anxiety symptoms in both childhood and adulthood.[27][28][29]
Developmental studies have shown that the ERN emerges throughout childhood and adolescence becoming more negative in amplitude and with a more defined peak.[30][31] The ERN appears to be modulated by the environment during childhood, with children who experience early adversity showing evidence of less negative ERN amplitudes.[31][32]
Theory/source[edit]
Although it is difficult to localize the origin of an ERP signal, extensive empirical research indicates that the ERN is most likely generated in the Anterior cingulate cortex (ACC) area of the brain. This conclusion is supported by fMRI,[33][34] and brain lesion research,[35] as well as dipole source modeling.[36] The Dorsolateral prefrontal cortex (DLPFC) may also be involved in the generation of the ERN to some degree, and it has been found that persons with higher levels of «absent-mindedness» have their ERN sourced more from that region.[37][38]
There is some debate within the field about what the ERN reflects (see especially Burle, et al.[39]) Some researchers maintain that the ERN is generated during the detection of or response to errors.[40][41] Others argue that the ERN is generated by a comparison process[11][39] or a conflict monitoring system,[42][43] and not specific to errors. In contrast to the above cognitive theories, new models suggest that the ERN may reflect the motivational significance of a task[44] or perhaps the emotional reaction to making an error.[45] This later view is consistent with findings linking errors and the ERN to autonomic arousal[46] and defensive motivated states,[47] and with findings suggesting that the ERN is dissociable from cognitive factors, but not affective ones.[45][48] Unfortunately, it is still unclear how to interpret differences in sizes of ERN, as both smaller and larger ERN have been interpreted as «better».[49]
[edit]
A stimulus locked event-related potential is also observed following the presentation of negative feedback stimuli in a cognitive task indicating the outcome of a response, often referred to as the feedback ERN (fERN).[50] This has led some researchers to extend the error-detection account of the response ERN (rERN) to a generic error detection system. This position has been elaborated into a reinforcement learning account of the ERN, arguing that both the rERN and the fERN are products of prediction error signals carried by the dopamine system arriving in the anterior cingulate cortex indicating that events have gone worse than expected.[51] In this framework it is common to measure both the rERN and the fERN as the difference in voltage between correct and incorrect responses and feedback, respectively.
Clinical applications[edit]
Debates about psychiatric disorders often become «chicken and egg» conundrums. The ERN has been proposed as a potential arbitrator of this argument. A body of empirical research has shown that the ERN reflects a «trait» level difference in individual error processing; especially concerning anxiety, rather than a «state» level difference.[21][52] For example; most people who experience depression do not feel depressed all of the time. Instead, they have periods of depressive «states» which may be minor and unique to an extreme situation such as death of a loved one, loss of employment, or major injury. However a person who has a depressive «trait» will have experienced more than one minor depressive «state» and usually at least one major depressive state, any of which may not be unique to an obviously extreme situation.[53] In fact, there is some evidence, albeit weak, that people with depression show small ERNs.[54][55] Scientists are exploring the use of the ERN and other ERP signals in identifying people at risk for psychiatric disorders in hopes of implementing early interventions. People with addictive behaviors such as smoking,[56] alcoholism,[57] and substance abuse[52] have also shown differential ERN responses compared to individuals without the same addictive behavior.
Pre-movement positivity[edit]
The ERN is often preceded by a small positive voltage deflection with a latency in the interval of -200 to -50 milliseconds in the response-locked ERP in channels over the scalp vertex, which is sometimes referred to as the «positive peak preceding the Ne» or «PNe»,[58] but more generally thought to reflect the pre-movement positivity (PMP) described by Deecke et al. (1969).[59] The PMP is thought to reflect a «go signal» by which pre-SMA and SMA permit a motor response to be carried out.[60] PMP is smaller before error motor responses than it is before correct motor responses, suggesting that it may be an important signal for discriminating erroneous from correct actions. Additionally, PMP is smaller in people who make more mistakes during the Flankers task and may have clinical utility in accident prone populations, such as youths with ADHD.[61]
[edit]
The ERN is often followed by a positivity, known as the error-related positivity or Pe. The Pe is a positive deflection with a centro-parietal distribution. When elicited, the Pe can occur 200-500ms after making an incorrect response, following the error negativity (Ne, ERN), but is not evident on all error trials.[11] In particular, the Pe is dependent on awareness or ability to detect errors.[1] Pe is basically the same as the P300 wave associated with conscious sensations.[62]: 128 Additionally, Vocat et al. (2008)[63] established the Ne and Pe not only have different topographical distributions, but have different generators. Source localization indicates that the Ne has a dipole in the anterior cingulate cortex and the Pe has a dipole in the posterior cingulate cortex. The Pe amplitude reflects the perception of the error, meaning with more awareness of the error, the amplitude of the Pe is larger. Falkenstein and colleagues (2000) have shown that the Pe is elicited on uncorrected trials and false alarm trials, suggesting it is not directly related to error correction. It thus seems to be related to error monitoring, albeit with different neural and cognitive roots from the error-related processing reflected in the Ne.
If the Pe reflects conscious error processing, then it might be expected to be different for people with deficits in conflict monitoring, such as ADHD and OCD. Whether this is true remains controversial. Some studies do indicate these conditions are associated with different Pe responses,[64][65] whereas other studies have not replicated those findings.[66][67] The Pe has also been used to evaluate error processing in patients with severe brain traumatic injury. In a study using a variation of the Stroop task, patients with severe traumatic brain injury associated with deficits in error processing were found to show a significantly smaller Pe on error trials when compared against the healthy controls.[68]
Some researchers argue that error-related negativity or error-related positivity is in fact, reward-related positivity. Reward-related positivity is also referred to as reward positivity, or RewP.[69] It has been suggested that ERP data is depicting neural positivity to rewards (aka reward positivity) rather than neural negativity to loss (aka error-related negativity). Thus, this shift in how we conceptualize neural responses to gains/losses allows us to further understand the underlying neural processes.
See also[edit]
- Bereitschaftspotential
- C1 and P1
- Contingent negative variation
- Difference due to memory
- Early left anterior negativity
- Late positive component
- Lateralized readiness potential
- Mismatch negativity
- N2pc
- N100
- N170
- N200
- N400
- P3a
- P3b
- P200
- P300 (neuroscience)
- P600
- Somatosensory evoked potential
- Visual N1
References[edit]
- ^ a b Nieuwenhuis S, Ridderinkhof KR, Blom J, Band GP, Kok A (September 2001). «Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task». Psychophysiology. 38 (5): 752–60. doi:10.1111/1469-8986.3850752. PMID 11577898.
- ^ a b c Scheffers MK, Coles MG (February 2000). «Performance monitoring in a confusing world: error-related brain activity, judgments of response accuracy, and types of errors». Journal of Experimental Psychology. Human Perception and Performance. 26 (1): 141–51. doi:10.1037/0096-1523.26.1.141. PMID 10696610.
- ^ Wessel JR (2012). «Error awareness and the error-related negativity: evaluating the first decade of evidence». Frontiers in Human Neuroscience. 6: 88. doi:10.3389/fnhum.2012.00088. PMC 3328124. PMID 22529791.
- ^ Godlove DC, Emeric EE, Segovis CM, Young MS, Schall JD, Woodman GF (November 2011). «Event-related potentials elicited by errors during the stop-signal task. I. Macaque monkeys». The Journal of Neuroscience. 31 (44): 15640–9. doi:10.1523/JNEUROSCI.3349-11.2011. PMC 3241968. PMID 22049407.
- ^ Gehring, William J.; Goss, Brian; Coles, Michael G. H.; Meyer, David E.; Donchin, Emanuel (2018-03-01). «The Error-Related Negativity». Perspectives on Psychological Science. 13 (2): 200–204. doi:10.1177/1745691617715310. ISSN 1745-6916. PMID 29592655. S2CID 4459484.
- ^ a b Gehring WJ, Coles M, Meyer D, Donchin E (1990). «The error-related negativity: an event-related brain potential accompanying errors». Psychophysiology. 27: 34.
- ^ Gehring WJ (1993). The error-related negativity: Evidence for a neural mechanism for error-related processing (Ph.D. thesis). University of Illinois at Urbana-Champaign.
- ^ a b Gehring WJ, Goss B, Coles MG, Meyer DE (1993). «A neural system for error detection and compensation». Psychological Science. 4 (6): 385–390. doi:10.1111/j.1467-9280.1993.tb00586.x. S2CID 17422146.
- ^ Dikman ZV, Allen JJ (January 2000). «Error monitoring during reward and avoidance learning in high- and low-socialized individuals». Psychophysiology. 37 (1): 43–54. doi:10.1111/1469-8986.3710043. PMID 10705766.
- ^ Luu P, Flaisch T, Tucker DM (January 2000). «Medial frontal cortex in action monitoring». The Journal of Neuroscience. 20 (1): 464–9. doi:10.1523/JNEUROSCI.20-01-00464.2000. PMC 6774138. PMID 10627622.
- ^ a b c Falkenstein M, Hoormann J, Christ S, Hohnsbein J (January 2000). «ERP components on reaction errors and their functional significance: a tutorial». Biological Psychology. 51 (2–3): 87–107. CiteSeerX 10.1.1.463.5431. doi:10.1016/S0301-0511(99)00031-9. PMID 10686361. S2CID 8569230.
- ^ a b c Gentsch A, Ullsperger P, Ullsperger M (October 2009). «Dissociable medial frontal negativities from a common monitoring system for self- and externally caused failure of goal achievement». NeuroImage. 47 (4): 2023–30. doi:10.1016/j.neuroimage.2009.05.064. PMID 19486945. S2CID 1269317.
- ^ Kalfaoglu, C; Stafford, T; Milne, L (2018). «Frontal theta band oscillations predict error correction and post-error slowing in typing» (PDF). Journal of Experimental Psychology: Human Perception and Performance. 44 (1): 69–88. doi:10.1037/xhp0000417. PMID 28447844. S2CID 7855008.
- ^ Clayson, Peter E. (2020). «Moderators of the internal consistency of error-related negativity scores: A meta-analysis of internal consistency estimates». Psychophysiology. 57 (8): e13583. doi:10.1111/psyp.13583. ISSN 1469-8986. PMID 32324305. S2CID 216084678.
- ^ Gehring WJ, Coles MG, Meyer DE, Donchin E (1995). «A brain potential manifestation of error-related processing.». In Karmos G, Molnár M, Csép V, Czigler I, Desmedt JE (eds.). Perspectives of Event-Related Potential Research. Vol. Supplement 44. New York: Oxford. pp. 261–272.
- ^ Hohnsbein J, Falkensetin M, Hoormann J (1989). «Error processing in visual and auditory choice reaction tasks». Psychophysiology. 3: 32.
- ^ Jodo E, Kayama Y (June 1992). «Relation of a negative ERP component to response inhibition in a Go/No-go task». Electroencephalography and Clinical Neurophysiology. 82 (6): 477–82. doi:10.1016/0013-4694(92)90054-L. PMID 1375556.
- ^ Ruchsow M, Spitzer M, Grön G, Grothe J, Kiefer M (July 2005). «Error processing and impulsiveness in normals: evidence from event-related potentials». Brain Research. Cognitive Brain Research. 24 (2): 317–25. doi:10.1016/j.cogbrainres.2005.02.003. PMID 15993769.
- ^ Holroyd CB, Dien J, Coles MG (February 1998). «Error-related scalp potentials elicited by hand and foot movements: evidence for an output-independent error-processing system in humans». Neuroscience Letters. 242 (2): 65–8. doi:10.1016/S0304-3940(98)00035-4. hdl:1854/LU-8650250. PMID 9533395. S2CID 18103169.
- ^ Masaki H, Tanaka H, Takasawa N, Yamazaki K (July 2001). «Error-related brain potentials elicited by vocal errors». NeuroReport. 12 (9): 1851–5. doi:10.1097/00001756-200107030-00018. PMID 11435911. S2CID 31526106.
- ^ a b Pailing PE, Segalowitz SJ (January 2004). «The error-related negativity as a state and trait measure: motivation, personality, and ERPs in response to errors» (PDF). Psychophysiology. 41 (1): 84–95. doi:10.1111/1469-8986.00124. PMID 14693003.
- ^ Chang W, Davies PL, Gavin WJ (2009). «Error monitoring in college students with attention-deficit/hyperactivity disorder». Journal of Psychophysiology. 23 (3): 113–125. doi:10.1027/0269-8803.23.3.113.
- ^ Johannes S, Wieringa BM, Nager W, Rada D, Dengler R, Emrich HM, Münte TF, Dietrich DE (November 2001). «Discrepant target detection and action monitoring in obsessive-compulsive disorder». Psychiatry Research. 108 (2): 101–10. doi:10.1016/S0925-4927(01)00117-2. PMID 11738544. S2CID 21537300.
- ^ Ruchsow M, Grön G, Reuter K, Spitzer M, Hermle L, Kiefer M (2005). «Error-related brain activity in patients with obsessive-compulsive disorder and in healthy controls». Journal of Psychophysiology. 19 (4): 298–304. doi:10.1027/0269-8803.19.4.298.
- ^ Endrass T, Schuermann B, Kaufmann C, Spielberg R, Kniesche R, Kathmann N (May 2010). «Performance monitoring and error significance in patients with obsessive-compulsive disorder». Biological Psychology. 84 (2): 257–63. doi:10.1016/j.biopsycho.2010.02.002. PMID 20152879. S2CID 2634362.
- ^ Fiehler K, Ullsperger M, von Cramon DY (January 2005). «Electrophysiological correlates of error correction». Psychophysiology. 42 (1): 72–82. doi:10.1111/j.1469-8986.2005.00265.x. PMID 15720582.
- ^ Buzzell GA, Troller-Renfree SV, Barker TV, Bowman LC, Chronis-Tuscano A, Henderson HA, Kagan J, Pine DS, Fox NA (December 2017). «A Neurobehavioral Mechanism Linking Behaviorally Inhibited Temperament and Later Adolescent Social Anxiety». Journal of the American Academy of Child and Adolescent Psychiatry. 56 (12): 1097–1105. doi:10.1016/j.jaac.2017.10.007. PMC 5975216. PMID 29173744.
- ^ Barker TV, Troller-Renfree SV, Bowman LC, Pine DS, Fox NA (April 2018). «Social influences of error monitoring in adolescent girls». Psychophysiology. 55 (9): e13089. doi:10.1111/psyp.13089. PMC 6113062. PMID 29682751.
- ^ Barker TV, Troller-Renfree S, Pine DS, Fox NA (December 2015). «Individual differences in social anxiety affect the salience of errors in social contexts». Cognitive, Affective, & Behavioral Neuroscience. 15 (4): 723–35. doi:10.3758/s13415-015-0360-9. PMC 4641754. PMID 25967929.
- ^ Clawson, Ann; Clayson, Peter E.; Keith, Cierra M.; Catron, Christina; Larson, Michael J. (2017-03-01). «Conflict and performance monitoring throughout the lifespan: An event-related potential (ERP) and temporospatial component analysis». Biological Psychology. 124: 87–99. doi:10.1016/j.biopsycho.2017.01.012. ISSN 0301-0511. PMID 28143802. S2CID 24643120.
- ^ a b Davies PL, Segalowitz SJ, Gavin WJ (June 2004). «Development of response-monitoring ERPs in 7- to 25-year-olds». Developmental Neuropsychology. 25 (3): 355–76. doi:10.1207/s15326942dn2503_6. PMID 15148003. S2CID 17152414.
- ^ Troller-Renfree S, Nelson CA, Zeanah CH, Fox NA (October 2016). «Deficits in error monitoring are associated with externalizing but not internalizing behaviors among children with a history of institutionalization». Journal of Child Psychology and Psychiatry, and Allied Disciplines. 57 (10): 1145–53. doi:10.1111/jcpp.12604. PMC 5047056. PMID 27569003.
- ^ Ito S, Stuphorn V, Brown JW, Schall JD (October 2003). «Performance monitoring by the anterior cingulate cortex during saccade countermanding». Science. 302 (5642): 120–2. Bibcode:2003Sci…302..120I. doi:10.1126/science.1087847. PMID 14526085. S2CID 20984400.
- ^ Holroyd, C. B., Nieuwenhuis, S., Mars, R. B., & Coles, M. G. H. (2004). Anterior cingulate cortex, selection for action, and error processing. In M. I. Posner (Ed.), Cognitive neuroscience of attention. (pp. 219-231). New York, NY, US: Guilford Press.
- ^ Stemmer B, Segalowitz SJ, Witzke W, Schönle PW (2004). «Error detection in patients with lesions to the medial prefrontal cortex: an ERP study». Neuropsychologia. 42 (1): 118–30. doi:10.1016/s0028-3932(03)00121-0. PMID 14615082. S2CID 34604786.
- ^ Dehaene S, Posner MI, Tucker DM (1994). «Localization of a neural system for error detection and compensation». Psychological Science. 5 (5): 303–305. doi:10.1111/j.1467-9280.1994.tb00630.x. S2CID 144007484.
- ^ Hester R, Foxe JJ, Molholm S, Shpaner M, Garavan H (September 2005). «Neural mechanisms involved in error processing: a comparison of errors made with and without awareness». NeuroImage. 27 (3): 602–8. CiteSeerX 10.1.1.688.5110. doi:10.1016/j.neuroimage.2005.04.035. hdl:2262/30186. PMID 16024258. S2CID 15497532.
- ^ Roche RA, Garavan H, Foxe JJ, O’Mara SM (January 2005). «Individual differences discriminate event-related potentials but not performance during response inhibition». Experimental Brain Research. 160 (1): 60–70. doi:10.1007/s00221-004-1985-z. PMID 15480606. S2CID 24173453.
- ^ a b Burle B, Roger C, Allain S, Vidal F, Hasbroucq T (September 2008). «Error negativity does not reflect conflict: a reappraisal of conflict monitoring and anterior cingulate cortex activity». Journal of Cognitive Neuroscience. 20 (9): 1637–55. CiteSeerX 10.1.1.471.7640. doi:10.1162/jocn.2008.20110. PMID 18345992. S2CID 13944789.
- ^ Bernstein PS, Scheffers MK, Coles MG (December 1995). ««Where did I go wrong?» A psychophysiological analysis of error detection». Journal of Experimental Psychology. Human Perception and Performance. 21 (6): 1312–22. doi:10.1037/0096-1523.21.6.1312. PMID 7490583.
- ^ Coles MG, Scheffers MK, Holroyd CB (June 2001). «Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error-processing». Biological Psychology. 56 (3): 173–89. doi:10.1016/s0301-0511(01)00076-x. PMID 11399349. S2CID 247129.
- ^ Larson, Michael J.; Clayson, Peter E.; Clawson, Ann (2014-09-01). «Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs». International Journal of Psychophysiology. 93 (3): 283–297. doi:10.1016/j.ijpsycho.2014.06.007. ISSN 0167-8760. PMID 24950132.
- ^ Botvinick MM, Cohen JD, Carter CS (December 2004). «Conflict monitoring and anterior cingulate cortex: an update». Trends in Cognitive Sciences. 8 (12): 539–46. CiteSeerX 10.1.1.335.6481. doi:10.1016/j.tics.2004.10.003. PMID 15556023. S2CID 6185169.
- ^ Hajcak G, Moser JS, Yeung N, Simons RF (March 2005). «On the ERN and the significance of errors». Psychophysiology. 42 (2): 151–60. CiteSeerX 10.1.1.718.1750. doi:10.1111/j.1469-8986.2005.00270.x. PMID 15787852.
- ^ a b Inzlicht M, Al-Khindi T (November 2012). «ERN and the placebo: a misattribution approach to studying the arousal properties of the error-related negativity». Journal of Experimental Psychology. General. 141 (4): 799–807. doi:10.1037/a0027586. PMID 22390264.
- ^ Hajcak G, McDonald N, Simons RF (November 2003). «To err is autonomic: error-related brain potentials, ANS activity, and post-error compensatory behavior». Psychophysiology. 40 (6): 895–903. CiteSeerX 10.1.1.533.4268. doi:10.1111/1469-8986.00107. PMID 14986842.
- ^ Hajcak G, Foti D (February 2008). «Errors are aversive: defensive motivation and the error-related negativity». Psychological Science. 19 (2): 103–8. doi:10.1111/j.1467-9280.2008.02053.x. PMID 18271855. S2CID 16118604.
- ^ Bartholow BD, Henry EA, Lust SA, Saults JS, Wood PK (February 2012). «Alcohol effects on performance monitoring and adjustment: affect modulation and impairment of evaluative cognitive control». Journal of Abnormal Psychology. 121 (1): 173–86. doi:10.1037/a0023664. PMC 4254813. PMID 21604824.
- ^ Clayson, Peter E.; Kappenman, Emily S.; Gehring, William J.; Miller, Gregory A.; Larson, Michael J. (2021-07-01). «A commentary on establishing norms for error-related brain activity during the arrow flanker task among young adults». NeuroImage. 234: 117932. doi:10.1016/j.neuroimage.2021.117932. ISSN 1053-8119. PMID 33677074.
- ^ Miltner WH, Braun CH, Coles MG (November 1997). «Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a «generic» neural system for error detection». Journal of Cognitive Neuroscience. 9 (6): 788–98. doi:10.1162/jocn.1997.9.6.788. PMID 23964600. S2CID 25731024.
- ^ Holroyd CB, Coles MG (October 2002). «The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity». Psychological Review. 109 (4): 679–709. CiteSeerX 10.1.1.334.5138. doi:10.1037/0033-295x.109.4.679. PMID 12374324.
- ^ a b Olvet DM, Hajcak G (December 2008). «The error-related negativity (ERN) and psychopathology: toward an endophenotype». Clinical Psychology Review. 28 (8): 1343–54. doi:10.1016/j.cpr.2008.07.003. PMC 2615243. PMID 18694617.
- ^ Eaton WW, Shao H, Nestadt G, Lee HB, Lee BH, Bienvenu OJ, Zandi P (May 2008). «Population-based study of first onset and chronicity in major depressive disorder». Archives of General Psychiatry. 65 (5): 513–20. doi:10.1001/archpsyc.65.5.513. PMC 2761826. PMID 18458203.
- ^ Moran, Tim P.; Schroder, Hans S.; Kneip, Chelsea; Moser, Jason S. (2017-01-01). «Meta-analysis and psychophysiology: A tutorial using depression and action-monitoring event-related potentials». International Journal of Psychophysiology. Rigor and Replication: Towards Improved Best Practices in Psychophysiological Research. 111: 17–32. doi:10.1016/j.ijpsycho.2016.07.001. ISSN 0167-8760. PMID 27378538.
- ^ Clayson, Peter E.; Carbine, Kaylie A.; Larson, Michael J. (2020-04-01). «A registered report of error-related negativity and reward positivity as biomarkers of depression: P-Curving the evidence». International Journal of Psychophysiology. 150: 50–72. doi:10.1016/j.ijpsycho.2020.01.005. ISSN 0167-8760. PMID 31987869. S2CID 210933345.
- ^ Franken IH, van Strien JW, Kuijpers I (January 2010). «Evidence for a deficit in the salience attribution to errors in smokers». Drug and Alcohol Dependence. 106 (2–3): 181–5. doi:10.1016/j.drugalcdep.2009.08.014. PMID 19781864.
- ^ Fein G, Chang M (January 2008). «Smaller feedback ERN amplitudes during the BART are associated with a greater family history density of alcohol problems in treatment-naïve alcoholics». Drug and Alcohol Dependence. 92 (1–3): 141–8. doi:10.1016/j.drugalcdep.2007.07.017. PMC 2430520. PMID 17869027.
- ^ Albrecht B, Braindeis D, Uebel H, Heinrich H, Mueller U, Hasselhorn M, Steinhausen HC, Rothenberger A, Banaschewski T (2008). «Action monitoring in boys with attention-deficit/hyperactivity disorder, their nonaffected siblings, and normal control subjects: evidence for an endophenotype». Biological Psychiatry. 64 (7): 615–625. doi:10.1016/j.biopsych.2007.12.016. PMC 2580803. PMID 18339358.
- ^ Deecke L, Scheid P, Kornhuber H (1969). «Distribution of readiness potential, pre-motion positivity, and motor potential of the human cerebral cortex preceding voluntary finger movements». Experimental Brain Research. 7 (2): 158–168. doi:10.1007/BF00235441. PMID 5799432. S2CID 25140343.
- ^ Bortoletto M, Sarlo M, Poli S, Stegagno L (2006). «Pre-motion positivity during self-paced movements of finger and mouth». NeuroReport. 17 (9): 883–886. doi:10.1097/01.wnr.0000221830.95598.ea. PMID 16738481. S2CID 37340197.
- ^ Burwell S, Makeig S, Iacono W, Malone S (2019). «Reduced premovement positivity during the stimulus-response interval precedes errors: using single-trial and regression ERPs to understand performance deficits in ADHD». Psychophysiology. 56 (9): e13392. doi:10.1111/psyp.13392. PMC 6699894. PMID 31081153.
- ^ Dehaene, Stanislas (2014). Consciousness and the Brain: Deciphering How the Brain Codes Our Thoughts. Viking. ISBN 978-0670025435.
- ^ Vocat R, Pourtois G, Vuilleumier P (August 2008). «Unavoidable errors: a spatio-temporal analysis of time-course and neural sources of evoked potentials associated with error processing in a speeded task». Neuropsychologia. 46 (10): 2545–55. doi:10.1016/j.neuropsychologia.2008.04.006. PMID 18533202. S2CID 12322358.
- ^ Herrmann MJ, Saathoff C, Schreppel TJ, Ehlis AC, Scheuerpflug P, Pauli P, Fallgatter AJ (September 2009). «The effect of ADHD symptoms on performance monitoring in a non-clinical population». Psychiatry Research. 169 (2): 144–8. doi:10.1016/j.psychres.2008.06.015. PMID 19700203. S2CID 207446529.
- ^ Santesso DL, Segalowitz SJ, Schmidt LA (2006). «Error-related electrocortical responses are enhanced in children with obsessive-compulsive behaviors». Developmental Neuropsychology. 29 (3): 431–45. doi:10.1207/s15326942dn2903_3. PMID 16671860. S2CID 26971925.
- ^ Wild-Wall N, Oades RD, Schmidt-Wessels M, Christiansen H, Falkenstein M (October 2009). «Neural activity associated with executive functions in adolescents with attention-deficit/hyperactivity disorder (ADHD)» (PDF). International Journal of Psychophysiology. 74 (1): 19–27. doi:10.1016/j.ijpsycho.2009.06.003. PMID 19607863.
- ^ Endrass T, Klawohn J, Schuster F, Kathmann N (2008). «Overactive performance monitoring in obsessive-compulsive disorder: ERP evidence from correct and erroneous reactions». Neuropsychologia. 46 (7): 1877–87. doi:10.1016/j.neuropsychologia.2007.12.001. PMID 18514679. S2CID 10992143.
- ^ Larson MJ, Perlstein WM (October 2009). «Awareness of deficits and error processing after traumatic brain injury». NeuroReport. 20 (16): 1486–90. doi:10.1097/wnr.0b013e32833283fe. PMID 19809369. S2CID 31173397.
- ^ Proudfit, Greg Hajcak (April 2015). «The reward positivity: From basic research on reward to a biomarker for depression: The reward positivity». Psychophysiology. 52 (4): 449–459. doi:10.1111/psyp.12370. PMID 25327938.
The error-related negativity (ERN) is a potential with a frontocentral scalp distribution that appears some time (usually between 60 and 120ms) after an error response (Gehring et al., 1993) and is thought to be generated by the ACC (van Veen and Carter, 2002).
From: Neural Circuit Development and Function in the Brain, 2013
Brain Electrophysiological Signatures in Human Alcoholism and Risk
Chella Kamarajan, in Neuroscience of Alcohol, 2019
Error-Related Negativity
Error-related negativity (ERN) is a large negative potential observed around 150 ms after an “incorrect” response in tasks that require “correct” identification of a stimulus presented (cf. Kamarajan & Porjesz, 2015). Changes in ERN have been reported in several disorders (for a review, see Olvet & Hajcak, 2008). Reduced ERN amplitudes have been observed during acute alcohol administration (Ridderinkhof et al., 2002) as well as in heavy drinkers (Bartholow et al., 2003), while no prominent findings are available in alcoholic or HR individuals.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780128131251000131
Acute Exercise and Event-Related Potential
Yu-Kai Chang, in Exercise-Cognition Interaction, 2016
Error-Related Negativity and Error Positivity
ERN and Pe are response-locked components and are observed from 50 to 300 ms following the error response; therefore, these components have been linked to action monitoring (see Figure 3). ERN, also known as error negativity (Ne), was observed when the participant made errors during a cognitive task (Falkenstein, Hohnsbein, Hoormann, & Blanke, 1990). The negative-going waveform tends to be larger at the frontocentral areas at a latency of approximately 50–150 ms post-stimulus. ERN is considered an ERP component that reflects the response monitor system (Falkenstein, Hoormann, Christ, & Hohnsbein, 2000) and is most likely generated by the anterior cingulate cortex (Holroyd, Dien, & Coles, 1998).
Figure 3. Illustration of response-locked ERP components for error-related negativity (ERN) and error positive (Pe).
Pe differs from ERN and is a late and positive-going waveform, which is subsequent to ERN and is larger at the centroparietal areas at approximately 300 ms post-incorrect response. Although both ERN and Pe are related to error response, Pe is associated with post-error possessing (Falkenstein et al., 2000), and the underlying neural generators between the two components are independent (Herrmann, Römmler, Ehlis, Heidrich, & Fallgatter, 2004).
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780128007785000050
Research and Methods
Elizabeth A. Bauer, … Annmarie MacNamara, in Comprehensive Clinical Psychology (Second Edition), 2022
3.03.2.1.4.2 Error-Related Negativity (ERN)
The error-related negativity (ERN) is a negative deflection in the ERP waveform, occurring approximately 50–100 ms after an erroneous response (Falkenstein et al., 2000). The ERN is thought to reflect error monitoring and has been attributed primarily to activity in the anterior cingulate cortex (ACC; Olvet and Hajcak, 2008). A similar component of smaller magnitude has been identified following correct responses and has been termed the correct response negativity (CRN; Falkenstein et al., 2000). The most common tasks used to examine the ERN and CRN are the flanker and Go/No-Go tasks. The flanker task is a speeded task in which participants must respond as quickly and as accurately as possible to identify the direction of the center arrow in rows of arrows arranged in congruent (<<<<<, >>>>>) or incongruent (<<><<, >><>>) configurations (Eriksen and Eriksen, 1974). The Go/No-Go task is an inhibitory control task in which participants must withhold response to certain shapes or letters that vary in color or direction (e.g., Meyer et al., 2015). Using a flanker task and an unselected adult sample, the ERN has demonstrated acceptable test-retest reliability over a 2-weeks period (Olvet and Hajcak, 2009). Moreover, the ERN has demonstrated acceptable to good internal consistency using the flanker task, in both adult and adolescent samples (Klawohn et al., 2020).
The ERN has been used extensively to examine error monitoring in internalizing disorders. In general, anxiety disorders are characterized by larger ERN amplitudes (for meta-analysis, see Moser et al., 2013; in children, Meyer et al., 2011). Although no longer classified as an anxiety disorder, obsessive-compulsive disorder (OCD) has been reliably associated with increased ERN amplitudes (Olvet and Hajcak, 2008), with enhanced ERN amplitudes also present in unaffected first-degree relatives of those with OCD (Carrasco et al., 2013). Moreover, evidence has suggested that enhanced ERN amplitudes persist after treatment for both OCD (Riesel et al., 2015) and SAD (CBT and SSRIs; Kujawa et al., 2016). Therefore, increased error monitoring could be a trait-like vulnerability and could indicate risk for internalizing disorders. Along these lines, larger ERNs at age 6 have been found to predict the onset of new anxiety disorders by age 9 even when controlling for baseline anxiety symptoms and maternal history of anxiety (Meyer et al., 2015).
Unlike the relatively consistent results observed for anxiety disorders, the literature on depression and the ERN has yielded inconsistent results. Depression has been associated with both increased and decreased ERNs (for review, see Weinberg et al., 2015a), and some work has suggested that depression may even attenuate increased ERNs normally observed in GAD (Weinberg et al., 2015b). As such, different approaches may be needed to achieve clarity regarding the association between depression and the ERN. For example, recent work found that if other co-occurring transdiagnostic constructs (e.g., intolerance of uncertainty) were elevated, depression-related potentiation of the ERN was not observed (Ruchensky et al., 2020). This work suggests that the association between depression and the ERN is complex and may require consideration of multiple, simultaneous influences on error-processing.
Whereas increased ERNs have been associated with several different types of internalizing psychopathology (e.g., anxiety disorders and OCD), reduced ERNs have been associated with externalizing psychopathology, broadly construed (e.g., ADHD, antisocial personality, impulsivity; for meta-analysis, see Pasion and Barbosa, 2019). Therefore, the ERN may track fundamental, transdiagnostic distinctions between internalizing and externalizing psychopathology. Nonetheless, given more reliable associations with some internalizing disorders (i.e., anxiety, OCD), the ERN might also correspond to specific factors within the internalizing spectrum, such as error sensitivity or defensive mobilization.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780128186978000133
Neuroscience for Addiction Medicine: From Prevention to Rehabilitation — Methods and Interventions
Jennifer L. Stewart, April C. May, in Progress in Brain Research, 2016
4.1 Error-Related Negativity
The ERN is a negative-going ERP deflection peaking 50 ms after error commission that has been localized to ACC and is attenuated in substance users, reflecting reduced action monitoring for potential mistakes (Olvet and Hajcak, 2008). The ERN is most frequently measured during a response inhibition paradigm such as the Eriksen flanker task, wherein participants see a target stimulus within a set of other stimuli flanking it on either side and must press a button for the target; often the flankers are the same as the target (congruent) but on less frequent occasions, the flankers are different (incongruent) (Franken et al., 2010). In the latter case, participants must override attention to the flankers to make a correct response and often errors are committed, thereby eliciting an ERN. Potts et al. (2014) compared Flanker ERNs of nicotine smokers and nonsmokers within reward (winning 5¢) versus punishment (losing 5¢) contexts to determine whether addicted individuals differed in error valuations as a function of incentives. Whereas nonsmokers exhibited larger ERNs on punishment than reward error trials, smokers who consumed nicotine within the past hour did not differ in their ERNs to reward versus punishment errors, suggestive of reduced action monitoring to mistakes.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/S0079612315001193
Cognitive Control Processes Underlying Individual Differences in Self-Control
B.M. Wilkowski, M.D. Robinson, in Self-Regulation and Ego Control, 2016
Basic Research on Error Monitoring
The error-related negativity (ERN: Gehring et al., 1993) is an event-related potential generated by the ACC which peaks roughly 100 ms following errors on many speeded reaction time (RT) tasks (eg, the Stroop, flanker). Multiple theories (eg, Holroyd & Coles, 2002) suggest that it reflects the detection of errors by the monitoring system, triggering subsequent control. Consistent with this, posterror ACC activity is closely linked to subsequent prefrontal activity (eg, Kerns, 2006). These prefrontal regions instantiate control in part through slowed responding following errors (Gehring et al., 1993), ultimately allowing individuals to improve their subsequent performance (see Botvinick & Braver, 2015).
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780128018507000159
Neural Reward Processing in Human Alcoholism and Risk: A Focus on Event-Related Potentials, Oscillations, and Neuroimaging
Chella Kamarajan Ph.D., in Neuroscience of Alcohol, 2019
Error-Related Paradigm
A major electrophysiological index of error monitoring is “error-related negativity” (ERN), a negative potential around 150 ms after the participant makes an “incorrect” response in tasks that require “correct” identification of the stimulus presented (Falkenstein, Hohnsbein, Hoormann, & Blanke, 1991). ERN is reported to be aberrent in several neuropsychiatric disorders (Olvet & Hajcak, 2008). Studies have shown that acute alcohol administration significantly reduced ERN amplitude (e.g., Easdon, Izenberg, Armilio, Yu, & Alain, 2005). Similarly, heavy drinkers also displayed a smaller ERN amplitude (Bartholow, Henry, Lust, Saults, & Wood, 2012). In contrast, ERN amplitudes were found to be higher for alcohol-dependent patients compared to healthy controls, particularly in patients with comorbid anxiety disorders (Schellekens et al., 2010). However, there are no prominent ERN findings reported in HR individuals.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780128131251000271
Animal models for studying obsessive-compulsive and related disorders
Kurt Leroy Hoffman, in Modeling Neuropsychiatric Disorders in Laboratory Animals, 2016
4.7.3 Performance monitoring: error-related negativity
Another endophenotype that has been associated with OCD is enhanced ERN. ERN is a negative deflection in EEG recording, thought to originate mainly from the dACC, that peaks approximately 50–150 ms after an incorrect response in a speeded reaction time task. A typical task that is used to visualize the ERN is the Flanker task. In this task, the subject is to make a directional response (e.g., a right button press) when the target stimulus is a certain letter or letters (e.g., H or K), or a right-pointing arrow. The contrary directional response is to be made when a distinct target stimulus is shown (e.g., the letters C and S, or a left-pointing arrow). The target stimulus (e.g., a right-pointing arrow) is accompanied on each side by two flanker stimuli, which can be congruent to the target stimulus (also right-pointing arrows), or incongruent (left-pointing arrows). The flanker stimuli are very briefly shown (e.g., 150 ms), followed by the flanker stimuli along with the target stimulus (50 ms). The subject is to respond as quickly as possible according to the target stimulus. Flanker stimuli that are incongruent to the target stimulus produce cognitive conflict and increase the likelihood of making an error. ERN is calculated and analyzed as the amplitude of the error-related peak itself, or by subtracting the waveform associated with trials where an error was committed from the waveform of trials where correct responses were made. Importantly, correct responses are also associated with a small negative peak with the same latency as the ERN; this so-called correct response negativity (CRN) is also increased in individuals with OCD compared to healthy controls (Riesel et al., 2014). Although the precise functional significance of the ERN is not completely clear, there is general agreement that it reflects processes that are involved in monitoring ongoing task performance, including those involved in making behavioral adjustments in order to prevent mistakes, the monitoring of cognitive conflict, or the emotional response to errors.
Increased ERN has also been associated with GAD and depression, but such alterations have been reported somewhat less consistently compared to OCD, and may be more sensitive to the means by which ERN is measured and to current symptom state of the subject (reviewed in Endrass and Ullsperger, 2014). One study reported that ERN is elevated in subjects with GAD compared to control, but not in subjects diagnosed with major depressive disorder (MDD), or in subjects with comorbid GAD and MDD (Weinberg et al., 2015). Social anxiety disorder (SAD) has also been associated with increased ERN (Endrass et al., 2014). Increased behavioral inhibition in 7-year-old children was associated with increased ERN, and these characteristics predicted social anxiety symptoms present in these children at age 9 years (Lahat et al., 2014). There is evidence to suggest that the ERN is shaped by early parent-child interactions: specifically, 3-year-old children that experienced a punitive, authoritarian parental style showed increased ERN at age 6 years (Meyer et al., 2014). Taken together, these studies suggest that increased ERN might be a general characteristic of internalizing disorders (Olvet and Hajcak, 2008).
Interestingly, disorders outside of the internalizing spectrum show reductions in ERN compared to healthy control subjects. Reduced ERN is observed in individuals with schizophrenia and in otherwise healthy individuals at high risk for this disorder (reviewed in Manoach and Agam, 2013), as well as in individuals with euthymic bipolar disorder (Morsel et al., 2014). Reduced ERN is also associated with externalizing disorders such as ADHD (Hall et al., 2007; Geburek et al., 2013; McLoughlin et al., 2009). Juvenile offenders and young adult female binge drinkers show reduced ERN along with high impulsivity, as measured by the stop signal task (Smith and Mattick, 2013; Villà-Balló et al., 2014). Among disorders considered to be within the obsessive–compulsive spectrum (Hollander and Benzaquen, 1996), anorexia nervosa and trichotillomania have also been associated with reduced ERN (Pieters et al., 2007; Roberts et al., 2014). Notably, these latter disorders are considered to involve high impulsivity (Fineberg et al., 2010; Hollander and Benzaquen, 1996).
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780081000991000042
Meditation
Joan P. Pozuelos, … Peter Malinowski, in Progress in Brain Research, 2019
3.2.2 Response-locked component: ERN
We investigated training-related changes of the fronto-central ERN (at electrodes FC and C, Fig. 8) following the analysis procedure proposed by Segalowitz and co-workers (Santesso and Segalowitz, 2008; Segalowitz et al., 2010): We first calculated the residualized ERN using linear regression to partial out the variability from the ERN amplitude that results from the preceding positive deflection of the waveform (which is clearly visible in Fig. 8). The criterion of the linear regression was the peak amplitude of the ERN at the time window from 0 to 100 ms post-response. The predictor was the peak amplitude of the preceding positivity at the − 100 to 0 ms pre-response time window. The residual scores (residualized ERN) were introduced as dependent variable into a mixed-model ANOVA with Session (pre, post) and Group (MG, WLG) as factors. This revealed a significant Session × Group interaction [F(1,32) = 4.53, P = 0.04, partial η2 = 0.124]. Planned contrasts showed a significant increase of the residualized ERN from pre-testing (M = − 1.84, SD = 0.67) to post-testing (M = − 2.55, SD = 0.70) for the MG [F(1,32) = 6.66, P = 0.014], with no effect for the WLG [F < 1] (see Fig. 9A). To illustrate this effect, non-parametric permutation t-tests show a change from pre- to post-testing for fronto-central electrodes in the MG but not in the WLG (Fig. 8).
Fig. 8. Visual representation of the ERN effect: Fronto-central (electrodes FC and C) grand mean average ERPs at pre- and post-testing for both groups. Significant differences (at least 10 consecutive samples; i.e., 40 ms) are indicated by the gray areas in the line plots (light gray P < 0.05; FDR corrected). The right column shows difference topographies (post–pre) and t-test maps for the 0–100 ms after error responses.
Fig. 9. (A) Pre- and post-testing mean ERN amplitudes (0–100 ms) for both groups (error bars show standard-errors of the mean). (B) Scatterplot depicting the correlation between accumulated meditation time and change in ERN (post–pre residualized ERN) and regression line.
An exploratory Pearson correlation furthermore indicated that the change in the residualized ERN amplitude is positively associated with the amount of meditation training, in terms of total minutes practiced over the 3-week period (r = − 0.626, P = 0.005) (Fig. 9B).
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/S0079612318301584
Physical Activity, Fitness, and Cognition
Keita Kamijo, in Exercise-Cognition Interaction, 2016
Conclusions
Earlier neuroelectric studies of the P3, CNV, and ERN ERPs focused on overall PA levels, aerobic fitness, and higher-order cognitive control, and indicated that higher physically active and aerobically fit individuals exhibit superior cognitive control relative to their less active/fit peers across the lifespan. Newer neuroelectric studies have provided additional insights into the PA/fitness–cognition association by focusing on different types of PA and different aspects of cognitive processes, and by using more practical cognitive tasks, other ERP components, and other analysis techniques. In addition, a few recent ERP studies employed a longitudinal, randomized, and controlled design (Hillman et al., 2014; Kamijo, Pontifex, et al., 2011) and demonstrated a causal relationship between changes in fitness and cognitive function, which is generally consistent with the findings of cross-sectional studies. These neuroelectric studies have played a critical role in this area of research, and I would conclude that neuroelectric measures, coupled with behavioral task performance, can lead to a deeper understanding of the PA/fitness–cognition association.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780128007785000104
Event-Related Electromagnetic Responses☆
D. Crivelli, M. Balconi, in Reference Module in Neuroscience and Biobehavioral Psychology, 2017
Error-Related Negativity
In discrimination trials in which a fast choice is enforced by a reaction time task, an error-related negativity (ERN) is observed in trials in which the wrong response is performed. This response, predominantly observed over midline frontal areas, appears to reflect a process of rechecking that is initiated in parallel with the response. In many cases the ERN appears before the behavioral response and peaks between 70 and 120 ms after the output behavior. Presumably when the response is optimized for speed, the motor system is committed before the decision–recheck cycle is complete.
In addition to the ERN, a further component has been reported and associated to action-feedback monitoring processes. The feedback error-related negativity (FERN) is observed in response to an external feedback and its amplitude is related to the expectedness of the event (larger for unexpected outcomes than for expected outcomes). With respect to the ERN, FERN usually rises later and is more posteriorly distributed. Given such differences and source localization evidences highlighting partially different cortical generators, is has been suggested that the two components are independent. Their actual functional independence, however, is still a matter of debate.
Read full chapter
URL:
https://www.sciencedirect.com/science/article/pii/B9780128093245030534
Отрицательность, связанная с ошибкой ( ERN ), иногда называемая Ne, является компонентом связанного с событием потенциала (ERP). ERP — это электрическая активность в головном мозге, измеренная с помощью электроэнцефалографии (ЭЭГ) и привязанная по времени к внешнему событию (например, предъявлению визуального стимула) или реакции (например, совершенной ошибке). Устойчивый компонент ERN наблюдается после совершения ошибок во время различных задач выбора, даже если участник явно не осведомлен о совершении ошибки; однако в случае неосознанных ошибок ERN уменьшается. ERN также наблюдается, когда нечеловеческие приматы совершают ошибки.
История
ERN был впервые открыт в 1968 году российским нейробиологом и психологом Натальей Петровной Бехтеревой и получил название «детектор ошибок». Позже, в 1990 году, ERN была разработана двумя независимыми исследовательскими группами; Майкл Фалькенштейн, Дж. Хонсбейн, Дж. Хорманн и Л. Бланке (1990) из Института физиологии труда и нейрофизиологии в Дортмунде, Германия (который назвал его «Ne»), и WJ «Билл» Геринг, MGH Coles, Д.Е. Мейер и Э. Дончин (1990) в Мичиганском университете, США. ERN наблюдали в ответ на ошибки, допущенные участниками исследования во время простых задач выбора ответа.
Компонентные характеристики
ERN — это резкий отрицательный сигнал, который начинается примерно в то же время, когда начинается неправильная двигательная реакция ( потенциал, связанный с событием, заблокированный в ответе ), и обычно достигает пика от 80 до 150 миллисекунд (мс) после начала ошибочного ответа (или 40-80). мс после начала электромиографической активности). ERN является наибольшим в области фронтального и центрального электродов. Типичный метод определения средней амплитуды ERN для человека включает в себя вычисление разницы между пиками напряжения между средним значением наиболее отрицательных пиков через 1-150 мс после начала реакции и средней амплитудой положительных пиков 100-0 мс. до появления ответа. Для оптимального разрешения сигнала электроды сравнения обычно помещают за оба уха с использованием аппаратных или арифметически связанных сосцевидных электродов.
Основные парадигмы
Любая парадигма, в которой ошибки совершаются во время двигательных реакций, может использоваться для измерения ERN. Естественная клавиатура — один из таких примеров, когда ошибки ввода приводят к выявлению ERN. Самая важная особенность любой парадигмы ERN — получение достаточного количества ошибок в ответах участников, а количество испытаний, необходимых для получения надежных оценок, может широко варьироваться. В ранних экспериментах по определению компонента использовались различные методы, включая определение слов и тонов, а также категориальное различение (например, следующее за животным?). Тем не менее, большинство экспериментальных парадигм, которые вызывают отклонения ERN, были вариантами «фланкера» Эриксена и «Go / NoGo». В дополнение к ответам руками, ERN также можно измерить в парадигмах, где задача выполняется ногами или голосовыми ответами, как в парадигме Струпа .
Стандартная задача фланкера включает в себя различение центральной «целевой» буквы из цепочки отвлекающих «фланкерных» букв, которые ее окружают. Например, на экране компьютера могут отображаться совпадающие цепочки букв, такие как «SSSSS» или «ЧЧЧЧ», и несочетаемые цепочки букв, такие как «ЧЧШЧ» или «SSHSS». Каждой целевой букве будет назначен ответ на нажатие клавиши на клавиатуре, например «S» = правая клавиша Shift и «H» = левая клавиша Shift. Каждая цепочка букв отображается кратко, обычно менее 100 мс, и занимает центральное место на экране. У участников есть примерно 2000 мс на ответ до следующей презентации. Самые простые задачи Go / NoGo включают в себя назначение свойства различения для ответа «Go» или не ответа «NoGo». Например, снова совпадающие последовательности букв, такие как «SSSSS» или «HHHHH», и несоответствующие последовательности букв, такие как «HHSHH» или «SSHSS», могут быть представлены на экране компьютера. Участник может быть проинструктирован отвечать, нажимая пробел, только для совпадающих строк и не отвечать, если им представлены несоответствующие строки букв. Однако более сложные задачи Go / NoGo обычно создаются, когда ERN является интересующим компонентом, потому что для наблюдения за устойчивой отрицательностью должны быть сделаны ошибки. Классическая парадигма Струпа включает в себя задачу цветного слова. Цветные слова, такие как «красный, желтый, оранжевый, зеленый», представлены в центре экрана компьютера либо в цвете, соответствующем слову («красный» в красном цвете), либо в цвете, несовместимом со словом («красный» желтого цвета). Участников могут попросить озвучить цвет, которым написано каждое слово. Неконгруэнтным и совпадающим представлением слов можно управлять с разной скоростью, например 25/75, 50/50, 30/70 и т. Д.
Функциональная чувствительность
Амплитуда ERN чувствительна к намерениям и мотивации участников. Когда участнику предписывают стремиться к точности ответов, наблюдаемые амплитуды обычно больше, чем когда участникам приказывают стремиться к скорости. Денежные стимулы также обычно приводят к большей амплитуде. Задержка амплитуды пика ERN также может варьироваться между субъектами, и это достоверно в особых популяциях, таких как люди с диагнозом СДВГ, которые показывают более короткие задержки. Участники с клинически диагностированным обсессивно-компульсивным расстройством продемонстрировали отклонения ERN с повышенной амплитудой, длительным латентным периодом и более задней топографией по сравнению с клинически нормальными участниками. Задержкой ERN манипулировали с помощью быстрой обратной связи, при этом участники, получившие быструю обратную связь относительно неправильного ответа, впоследствии показали более короткие пиковые задержки ERN. Кроме того, повышенная амплитуда ERN в социальных ситуациях была связана с симптомами тревоги как в детстве, так и во взрослом возрасте.
Исследования развития показали, что ERN возникает в детстве и подростковом возрасте, становясь более отрицательной по амплитуде и с более выраженным пиком. ERN, по-видимому, модулируется окружающей средой в детстве, при этом дети, которые переживают ранние невзгоды, демонстрируют менее отрицательные амплитуды ERN.
Теория / источник
Хотя трудно локализовать происхождение сигнала ERP, обширные эмпирические исследования показывают, что ERN, скорее всего, генерируется в области передней поясной коры (ACC) головного мозга. Этот вывод подтверждается фМРТ и исследованиями поражений головного мозга, а также моделированием дипольных источников. Дорзолатеральный префронтальная кора головной мозг (DLPFC) также может быть вовлечен в поколении ERN до некоторой степени, и было установлено, что люди с более высоким уровнем «рассеянность» имеют свою ERN источники более из этого региона.
В этой области ведутся споры о том, что отражает ERN (см. Особенно Burle, et al.). Некоторые исследователи утверждают, что ERN генерируется во время обнаружения ошибок или реакции на них. Другие утверждают, что ERN создается в процессе сравнения или в системе мониторинга конфликтов, а не только для ошибок. В отличие от вышеупомянутых когнитивных теорий, новые модели предполагают, что ERN может отражать мотивационную значимость задачи или, возможно, эмоциональную реакцию на ошибку. Эта более поздняя точка зрения согласуется с результатами, связывающими ошибки и ERN с вегетативным возбуждением и защитными мотивами, а также с результатами, предполагающими, что ERN отделима от когнитивных факторов, но не от аффективных. К сожалению, до сих пор неясно, как интерпретировать различия в размерах ERN, поскольку и меньший, и больший ERN интерпретировались как «лучшие».
Связанный со стимулом потенциал, связанный с событием, также наблюдается после представления стимулов отрицательной обратной связи в когнитивной задаче, указывающей на результат ответа, часто называемой ERN обратной связи (fERN). Это привело к тому, что некоторые исследователи расширили учет обнаружения ошибок в ответном ERN (rERN) до общей системы обнаружения ошибок. Эта позиция была переработана в учетную запись обучения с подкреплением в ERN, утверждая, что и rERN, и fERN являются продуктами сигналов ошибки прогнозирования, переносимых дофаминовой системой, поступающих в переднюю часть поясной коры головного мозга, что указывает на то, что события пошли хуже, чем ожидалось. В этой схеме принято измерять как rERN, так и fERN как разницу в напряжении между правильными и неправильными ответами и обратной связью, соответственно.
Клинические приложения
Споры о психических расстройствах часто превращаются в головоломку «курица и яйцо». ERN был предложен в качестве потенциального арбитра в этом аргументе. Ряд эмпирических исследований показал, что ERN отражает различие на уровне «признаков» при обработке индивидуальных ошибок; особенно в отношении тревожности, а не разницы в уровне «состояния». Например; большинство людей, страдающих депрессией, не испытывают депрессии все время. Вместо этого у них бывают периоды депрессивных «состояний», которые могут быть незначительными и уникальными для экстремальных ситуаций, таких как смерть любимого человека, потеря работы или серьезная травма. Однако человек, имеющий депрессивную «черту», будет испытывать более одного незначительного депрессивного «состояния» и обычно по крайней мере одно большое депрессивное состояние, любое из которых может не быть уникальным для явно экстремальной ситуации. Фактически, есть некоторые доказательства, хотя и слабые, того, что люди с депрессией показывают маленькие ERN. Ученые изучают возможность использования ERN и других сигналов ERP для выявления людей, подверженных риску психических расстройств, в надежде на раннее вмешательство. Люди с аддиктивным поведением, таким как курение, алкоголизм и злоупотребление психоактивными веществами, также показали разные реакции ERN по сравнению с людьми без такого же аддиктивного поведения.
Позитивность перед движением
ERN часто предшествует небольшое положительное отклонение напряжения с задержкой в интервале от -200 до -50 миллисекунд в ERP с блокировкой ответа в каналах над вершиной скальпа, что иногда называют «положительным пиком, предшествующим Ne. «или» PNe «, но в более общем плане считается, что он отражает позитивную реакцию перед движением (PMP), описанную Deecke et al. (1969). Считается, что PMP отражает «сигнал движения», с помощью которого пре-SMA и SMA позволяют осуществлять двигательную реакцию. PMP меньше перед ошибочными моторными реакциями, чем перед правильными моторными реакциями, что позволяет предположить, что это может быть важным сигналом для различения ошибочных действий от правильных. Кроме того, PMP меньше у людей, которые делают больше ошибок во время выполнения задания Flankers, и может иметь клиническое применение в группах населения, подверженных несчастным случаям, таких как молодые люди с СДВГ.
За ERN часто следует положительность, известная как положительность, связанная с ошибкой, или Pe. Ре является положительным отклонением с центрально-теменным распределением. При обнаружении Pe может появиться через 200-500 мс после неправильного ответа после отрицания ошибки (Ne, ERN), но не во всех испытаниях ошибок. В частности, Pe зависит от осведомленности или способности обнаруживать ошибки. Ре в основном совпадает с волной P300, связанной с сознательными ощущениями. Кроме того, Vocat et al. (2008) установили, что Ne и Pe не только имеют разное топографическое распределение, но и имеют разные генераторы. Локализация источника указывает на то, что Ne имеет диполь в передней поясной коре, а Pe имеет диполь в задней части поясной коры . Амплитуда Pe отражает восприятие ошибки, что означает, что чем больше известно об ошибке, тем больше амплитуда Pe. Фалькенштейн и его коллеги (2000) показали, что Pe выявляется при испытаниях без коррекции и при испытаниях ложных тревог, предполагая, что он не имеет прямого отношения к исправлению ошибок. Таким образом, похоже, что это связано с мониторингом ошибок, хотя и с другими нейронными и когнитивными корнями от связанной с ошибкой обработки, отраженной в Ne.
Если Pe отражает сознательную обработку ошибок, то можно ожидать, что он будет другим для людей с дефицитом мониторинга конфликтов, таких как СДВГ и ОКР . Правда ли это, остается спорным. Некоторые исследования действительно показывают, что эти состояния связаны с различными реакциями на Pe, тогда как другие исследования не воспроизводили эти результаты. Pe также использовался для оценки обработки ошибок у пациентов с тяжелой черепно-мозговой травмой. В исследовании, использующем вариант задачи Струпа, было обнаружено, что пациенты с тяжелой черепно-мозговой травмой, связанной с дефицитом обработки ошибок, показали значительно меньшее значение Pe при испытаниях ошибок по сравнению со здоровыми людьми из контрольной группы.
Некоторые исследователи утверждают, что негативность, связанная с ошибкой, или позитивность, связанная с ошибкой, на самом деле является позитивом, связанным с вознаграждением. Позитивность, связанная с вознаграждением, также называется позитивностью вознаграждения или RewP. Было высказано предположение, что данные ERP отображают нейронную позитивность к вознаграждениям (также известную как позитивность вознаграждения), а не нейронную негативность к потерям (также известную как негативность, связанная с ошибками). Таким образом, этот сдвиг в том, как мы концептуализируем нейронные реакции на выигрыши / потери, позволяет нам глубже понять лежащие в основе нейронные процессы.
Смотрите также
- Bereitschaftspotential
- C1 и P1
- Условное отрицательное изменение
- Разница из-за памяти
- Ранний левый передний негатив
- Поздний положительный компонент
- Боковой потенциал готовности
- Негативность несоответствия
- N2pc
- N100
- N170
- N200
- N400
- P3a
- P3b
- P200
- P300 (нейробиология)
- P600
- Соматосенсорный вызванный потенциал
- Визуальный N1
Рекомендации
Assessment |
Biopsychology |
Comparative |
Cognitive |
Developmental |
Language |
Individual differences |
Personality |
Philosophy |
Social |
Methods |
Statistics |
Clinical |
Educational |
Industrial |
Professional items |
World psychology |
Biological:
Behavioural genetics ·
Evolutionary psychology ·
Neuroanatomy ·
Neurochemistry ·
Neuroendocrinology ·
Neuroscience ·
Psychoneuroimmunology ·
Physiological Psychology ·
Psychopharmacology
(Index, Outline)
Error-related negativity (ERN), (sometimes referred to as the Ne), is a component of an event-related potential (ERP). ERPs are electrical activity in the brain as measured through electroencephalography (EEG) and time-locked to an external event (e.g., presentation of a visual stimulus or an error of commission). A robust ERN component is observed after errors are committed during various choice tasks, even when the participant is not explicitly aware of making the error;[1] however, in the case of unconscious errors the ERN is reduced.[2][3] An ERN is also observed when non-human primates commit errors.[4]
History
The ERN was first discovered in 1990 by two independent research teams; Michael Falkenstein, J. Hohnsbein, J. Hoormann, & L. Blanke (1990) at the Institute for Work Physiology and Neurophysiology in Dortmund, Germany (who called it the «Ne»), and W.J. «Bill» Gehring, D.E. Meyer & E. Donchin (1990) at the University of Michigan, USA. The ERN was observed in response to errors committed by study participants during simple choice response tasks.
Component Characteristics
The ERN is a sharp negative going signal which begins about the same time an incorrect motor response begins, (response locked event-related potential), and typically peaks from 80-150 milliseconds (ms) after the erroneous response begins (or 40-80 ms after the onset of electromyographic activity).[5][6][7][8][9][10] The ERN is the largest at frontal and central electrode sites.[11] A typical method for determining the average ERN amplitude for an individual involves calculating the peak-to-peak difference in voltage between the average of the most negative peaks 1-150 ms after response onset, and the average amplitude of positive peaks 100-0 ms before response onset.[12] For optimal resolution of the signal, reference electrodes are typically placed behind both ears using either hardware or arithmetically linked mastoid electrodes.[13]
Main Paradigms
Any paradigm in which mistakes are made during motor responses can be used to measure the ERN. The most important feature of any ERN paradigm is obtaining a sufficient number of errors in the participant’s responses. Early experiments identifying the component used a variety of techniques, including word and tone identification, and categorical discrimination (e.g. are the following an animal?).[14][15][16] However, the majority of experimental paradigms that elicit ERN deflections have been a variant on the Eriksen «Flanker»,[17][18] and «Go/NoGo,».[19] In addition to responses with the hands, the ERN can also be measured in paradigms where the task is performed with the feet [20] or with vocal responses as in the Stroop paradigm.[21]
A standard Flanker task involves discerning the central «target» letter from a string of distracting «flanker» letters which surround it. For example, congruous letter strings such as «SSSSS» or «HHHHH» and incongruous letter strings such as «HHSHH» or «SSHSS» may be presented on a computer screen. Each target letter would be assigned a key stroke response on a keyboard, such as «S» = right shift key and «H» = left shift key. Presentation of each letter string is brief, generally less than 100 ms, and central on the screen. Participants have approximately 2000 ms to respond before the next presentation.
The most simple Go/NoGo tasks involve assigning a property of discernment to responding «Go» or not responding «NoGo.» For example, again congruous letter strings such as «SSSSS» or «HHHHH» and incongruous letter strings such as «HHSHH» or «SSHSS» may be presented on a computer screen. The participant could be instructed to respond by pressing the space bar, only for congruous strings, and to not respond when presented with incongruous letter strings. More complicated Go/NoGo tasks are usually created when the ERN is the component of interest however, because in order to observe the robust negativity errors must be made.
The classic Stroop paradigm involves a color-word task. Color words such as «red, yellow, orange, green» are presented centrally on a computer screen either in a color congruent with the word, («red» in the color red) or in a color incongruent with the word («red» in the color yellow). Participants may be asked to verbalize the color each word is written in. Incongruent and congruent presentations of the words can be manipulated to different rates, such as 25/75, 50/50, 30/70 etc.
Functional Sensitivity
The amplitude of the ERN is sensitive to the intent and motivation of participants. When a participant is instructed to strive for accuracy in responses, observed amplitudes are typically larger than when participants are instructed to strive for speed.[22] Monetary incentives typically result in larger amplitudes as well.[23] Latency of the ERN peak amplitude can also vary between subjects, and does so reliably in special populations such as those diagnosed with ADHD, who show shorter latencies.[24] Participants with clinically diagnosed Obsessive Compulsive Disorder have exhibited ERN deflections with increased amplitude, prolonged latency, and a more posterior topography compared to clinically normal participants.[25][26][27] ERN latency has been manipulated through rapid feedback, wherein participants who received rapid feedback regarding the incorrect response subsequently showed shorter ERN peak latencies.[28]
Theory/Source
Although it is impossible to determine where in the brain an ERP signal originated, extensive empirical research indicates that the ERN is most likely generated in the Anterior cingulate cortex (ACC) area of the brain. This conclusion is supported by fMRI,[29][30] and brain lesion research,[31] as well as dipole source modeling.[32] The Dorsolateral prefrontal cortex (DLPFC) may also be involved in the generation of the ERN to some degree, and it has been found that persons with higher levels of «absent-mindedness» have their ERN sourced more from that region.[33][34]
There is some debate within the field about what the ERN reflects (see especially Burle, et al.[35]) Some researchers maintain that the ERN is generated during the detection of or response to errors.[36][37] Others argue that the ERN is generated by a comparison process [38][39] or a conflict monitoring system,[40] and not specific to errors. In contrast to the above cognitive theories, new models suggest that the ERN may reflect the motivational significance of a task [41] or perhaps the emotional reaction to making an error.[42] This later view is consistent with findings linking errors and the ERN to autonomic arousal [43] and defensive motivated states,[44] and with findings suggesting that the ERN is dissociable from cognitive factors, but not affective ones.[45][46]
A stimulus locked event-related potential is also observed following the presentation of negative feedback stimuli in a cognitive task indicating the outcome of a response, often referred to as the feedback ERN (fERN).[47] This has led some researchers to extend the error-detection account of the response ERN (rERN) to a generic error detection system. This position has been elaborated into a reinforcement learning account of the ERN, arguing that both the rERN and the fERN are products of prediction error signals carried by the dopamine system arriving in the anterior cingulate cortex indicating that events have gone worse than expected.[48] In this framework it is common to measure both the rERN and the fERN as the difference in voltage between correct and incorrect responses and feedback, respectively.
Clinical Applications
Debates about psychiatric disorders often become «chicken and egg» conundrums. The ERN has been proposed as a potential arbitrator of this argument. A body of empirical research has shown that the ERN reflects a «trait» level difference in individual error processing; especially concerning anxiety, rather than a «state» level difference.[49][50] For example; most people who experience depression do not feel depressed all of the time. Instead, they have periods of depressive «states» which may be minor and unique to an extreme situation such death of a loved one, loss of employment, or major injury. However a person who has a depressive «trait» will have experienced more than one minor depressive «state» and usually at least one major depressive state, any of which may not be unique to an obviously extreme situation.[51] Scientists are exploring the use of the ERN and other ERP signals in identifying people at risk for psychiatric disorders in hopes of implementing early interventions. People with addictive behaviors such as smoking,[52] alcoholism,[53] and substance abuse[54] have also shown differential ERN responses compared to individuals without the same addictive behavior.
The ERN is often followed by a positivity, known as the error-related positivity or Pe. The Pe is a positive deflection with a centro-parietal distribution. When elicited, the Pe can occur 200-500ms after making an incorrect response, following the error negativity (Ne, ERN), but is not evident on all error trials.[55] In particular, the Pe is dependent on awareness or ability to detect errors.[56] Additionally, Vocat et al. (2008)[57] established the Ne and Pe not only have different topographical distributions, but have different generators. Source localization indicates that the Ne has a dipole in the anterior cingulate cortex and the Pe has a dipole in the posterior cingulate cortex. The Pe amplitude reflects the perception of the error, meaning with more awareness of the error, the amplitude of the Pe is larger. Falkenstein and colleagues (2000) have shown that the Pe is elicited on uncorrected trials and false alarm trials, suggesting it is not directly related to error correction. It thus seems to be related to error monitoring, albeit with different neural and cognitive roots from the error-related processing reflected in the Ne.
If the Pe reflects conscious error processing, then it might be expected to be different for people with deficits in conflict monitoring, such as ADHD and OCD. Whether this is true remains controversial. Some studies do indicate these conditions are associated with different Pe responses,[58][59] whereas other studies have not replicated those findings.[60][61] The Pe has also been used to evaluate error processing in patients with severe brain traumatic injury. In a study using a variation of the Stroop task, patients with severe traumatic brain injury associated with deficits in error processing were found to show a significantly smaller Pe on error trials when compared against the healthy controls.[62]
References
- ↑ Nieuwenhuis, S., Ridderinkhof, K.R., Blom, J., Band, G.P.H., Kok, A., 2001. Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task. Psychophysiology 38, 752–760.
- ↑ Scheffers, M. K., & Coles, M. G. H. (2000). Performance monitoring in a confusing world: Error-related brain activity, judgments of response accuracy, and types of errors. Journal of Experimental Psychology: Human Perception and Performance, 26(1), 141-151.
- ↑ Wessel, J. R. (2012). Error awareness and the error-related negativity: Evaluating the first decade of evidence. Frontiers in Human Neuroscience, 6, 88.
- ↑ Godlove, D.C., Emeric, E.E., Segovis, C.M., Young, M.S., Schall, J.D., Woodman, G.F. (2011). Event-related potentials elicited by errors during the stop-signal task. I. macaque monkeys. Journal of Neuroscience 31 (44): 15640–15649.
- ↑ Gehring, W. J. (1993). The error-related negativity: Evidence for a neural mechanism for error-related processing. (ProQuest Information & Learning). Dissertation Abstracts International, 53 (10-B), 5090-5090. (Electronic; Print)
- ↑ Gehring, W. J., Goss, B., Coles, M. G., & Meyer, D. E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385-390.
- ↑ Dikman, Z.V., Allen, J.J.B., 2000. Error monitoring during reward and avoidance learning in high- and low-socialized individuals. Psychophysiology. 37, 43–54
- ↑ Luu, P., Flaisch, T., Tucker, D.M., 2000. Medial frontal cortex in action monitoring. Journal of Neuroscience 20, 464–469.
- ↑ Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology.Special Issue: Error Processing and Adaptive Responding, 51(2-3), 87-107.
- ↑ Scheffers, M. K., & Coles, M. G. H. (2000). Performance monitoring in a confusing world: Error-related brain activity, judgments of response accuracy, and types of errors. Journal of Experimental Psychology: Human Perception and Performance, 26(1), 141-151.
- ↑ Scheffers, M. K., & Coles, M. G. H. (2000). Performance monitoring in a confusing world: Error-related brain activity, judgments of response accuracy, and types of errors. Journal of Experimental Psychology: Human Perception and Performance, 26(1), 141-151.
- ↑ Gentsch, A., Ullsperger, P., & Ullsperger, M. (2009). Dissociable medial frontal negativities from a common monitoring system for self- and externally caused failure of goal achievement. NeuroImage, 47(4), 2023-2030.
- ↑ Gehring, W. J., Goss, B., Coles, M. G., & Meyer, D. E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385-390.
- ↑ Gehring, W. J., Coles, M., Meyer, D., & Donchin, E. (1990). The error-related negativity: an event-related brain potential accompanying errors. Psychophysiology, 27, 34.
- ↑ Gehring, W. J., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1995). A brain potential manifestation of error-related processing. In G. Karmos, M. Molnár, V. Csép, I. Czigler & J. E. Desmedt (Eds.), Perspectives of Event-Related Potential Research (Vol. Supplement 44, pp. 261-272). New York: Oxford.
- ↑ Hohnsbein, J., Falkensetin, M., & Hoormann, J. (1989). Error processing in visual and auditory choice reaction tasks. Psychophysiology, 3, 32.
- ↑ Gentsch, A., Ullsperger, P., & Ullsperger, M. (2009).
Dissociable medial frontal negativities from a common monitoring system for self- and externally caused failure of goal achievement. NeuroImage, 47(4), 2023-2030. - ↑ Jodo, E. (1992). Relation of a negative ERP component to response inhibition in a Go/No-go task. Electroencephalography and Clinical Neurophysiology Evoked Potentials, 82(6), 477.
- ↑ Ruchsow, M., Spitzer, M., Grön, G., Grothe, J., & Kiefer, M. (2005). Error processing and impulsiveness in normals: Evidence from event-related potentials. Cognitive Brain Research, 24(2), 317-325.
- ↑ Holroyd, C. B., Dien, J., & Coles, M. G. H. (1998). Error-related scalp potentials elicited by hand and foot movements: Evidence for an output-independent error processing system in humans. Neuroscience Letters, 241, 1-4.
- ↑ Masaki, H., Tanaka, H., Takasawa, N., & Yamazaki, K. (2001). Error-related brain potentials elicited by vocal errors. NeuroReport: For Rapid Communication of Neuroscience Research, 12(9), 1851-1855.
- ↑ Gentsch, A., Ullsperger, P., & Ullsperger, M. (2009). Dissociable medial frontal negativities from a common monitoring system for self- and externally caused failure of goal achievement. NeuroImage, 47(4), 2023-2030.
- ↑ Pailing, P. E., & Segalowitz, S. J. (2004). The error-related negativity as a state and trait measure: Motivation, personality, and ERPs in response to errors. Psychophysiology, 41(1), 84-84.
- ↑ Chang, W., Davies, P. L., & Gavin, W. J. (2009). Error monitoring in college students with attention-deficit/hyperactivity disorder. Journal of Psychophysiology, 23(3), 113-125.
- ↑ Johannes, S., Wieringa, B. M., Nager, W., Rada, D., Dengler, R., Emrich, H. M., et al. (2001). Discrepant target detection and action monitoring in obsessive-compulsive disorder. Psychiatry Research: Neuroimaging, 108(2), 101-110.
- ↑ Ruchsow, M., Grön, G., Reuter, K., Spitzer, M., Hermle, L., & Kiefer, M. (2005). Error-related brain activity in patients with obsessive-compulsive disorder and in healthy controls. Journal of Psychophysiology, 19(4), 298-304.
- ↑ Endrass, T., Schuermann, B., Kaufmann, C., Spielberg, R., Kniesche, R., & Kathmann, N. (2010). Performance monitoring and error significance in patients with obsessive-compulsive disorder. Biological Psychology,
- ↑ Fiehler, K., Ullsperger, M., & Von Cramon, D. Y. (2005). Electrophysiological correlates of error correction. Psychophysiology, 42(1), 72-82.
- ↑ Ito, S., Stuphorn, V., Brown, J. W., & Schall, J. D. (2003). Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science, 302(5642), 120-122.
- ↑ Holroyd, C. B., Nieuwenhuis, S., Mars, R. B., & Coles, M. G. H. (2004). Anterior cingulate cortex, selection for action, and error processing. In M. I. Posner (Ed.), Cognitive neuroscience of attention. (pp. 219-231). New York, NY, US: Guilford Press.
- ↑ Stemmer, B., Segalowitz, S. J., Witzke, W., & Schönle, P. W. (2004). Error detection in patients with lesions to the medial prefrontal cortex: An ERP study. Neuropsychologia, 42(1), 118-130.
- ↑ Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5(5), 303-305.
- ↑ Hester, R., Foxe, J. J., Molholm, S., Shpaner, M., & Garavan, H. (2005). Neural mechanisms involved in error processing: A comparison of errors made with and without awareness. NeuroImage, 27(3), 602-608.
- ↑ Roche, R. A. P., Garavan, H., Foxe, J. J., & O’Mara, S. M. (2005). Individual differences discriminate event-related potentials but not performance during response inhibition. Experimental Brain Research, 160(1), 60-70.
- ↑ Burle, B., Roger, C., Allain, S., Vidal, F., & Hasbroucq, T. (2008). Error negativity does not reflect conflict: A reappraisal of conflict monitoring and anterior cingulate cortex activity. Journal of cognitive neuroscience, 20(9), 1637-1655.
- ↑ Bernstein, P. S., Scheffers, M. K., & Coles, M. G. H. (1995). «Where did I go wrong?» A psychophysiological analysis of error detection. Journal of Experimental Psychology: Human Perception and Performance, 21(6), 1312-1322.
- ↑ Coles, M. G. H., Scheffers, M. K., & Holroyd, C. B. (2001). Why is there an ERN/Ne on correct trials? response representations, stimulus-related components, and the theory of error-processing? Biological Psychology, 56(3), 173-189.
- ↑ Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology.Special Issue: Error Processing and Adaptive Responding, 51(2-3), 87-107.
- ↑ Burle, B., Roger, C., Allain, S., Vidal, F., & Hasbroucq, T. (2008). Error negativity does not reflect conflict: A reappraisal of conflict monitoring and anterior cingulate cortex activity. Journal of cognitive neuroscience, 20(9), 1637-1655.
- ↑ Matthew M. Botvinick, Jonathan D. Cohen, Cameron S. Carter, Conflict monitoring and anterior cingulate cortex: an update, Trends in Cognitive Sciences, Volume 8, Issue 12, December 2004, Pages 539-546, ISSN 1364-6613, DOI:10.1016/j.tics.2004.10.003 .
- ↑ Hajcak, G., Moser, J., Yeung, N., & Simons, R. (2005). On the ERN and the significance of errors. Psychophysiology, 42, 151-160.
- ↑ Inzlicht, M., & Al-Khindi, T. (in press). ERN and the placebo: A misattribution approach to studying the arousal properties of the error-related negativity. Journal of Experimental Psychology: General. DOI= http://dx.doi.org/10.1037/a0027586.
- ↑ Hajcak, G., McDonald, N., & Simons, R.F. (2003). To err is autonomic: error-related brain potentials, ANS activity, and post-error compensatory behavior. Psychophysiology, 40, 895-903.
- ↑ Hajcak, G., & Foti, D. (2008). Errors are aversive: Defensive motivation and the error-related negativity. Psychological Science, 19(2), 103-108 .
- ↑ Inzlicht, M., & Al-Khindi, T. (in press). ERN and the placebo: A misattribution approach to studying the arousal properties of the error-related negativity. Journal of Experimental Psychology: General. DOI:10.1037/a0027586 .
- ↑ Bartholow, B. D., Henry, E. A., Lust, S. A., Saults, J. S., & Wood, P. K. (in press). Alcohol effects on performance monitoring and adjustment: Affect modulation and impairment of evaluative cognitive control. Journal of Abnormal Psychology.
- ↑ Miltner, W. H., Braun, C. H., and Coles, M. G. 1997. Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a «generic» neural system for error detection. J. Cognitive Neuroscience 9, 6 (Nov. 1997), 788-798. DOI= http://dx.doi.org/10.1162/jocn.1997.9.6.788
- ↑ Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679-709.
- ↑ Pailing, P. E., & Segalowitz, S. J. (2004). The error-related negativity as a state and trait measure: Motivation, personality, and ERPs in response to errors. Psychophysiology, 41(1), 84-84.
- ↑ Olvet, D. M., & Hajcak, G. (2008). The error-related negativity (ERN) and psychopathology: Toward an endophenotype. Clinical Psychology Review, 28(8), 1343-1354.
- ↑ Eaton, W. W., Shao, H., Nestadt, G., Lee, H. B., Bienvenu, O. J., & Zandi, P. (2008). «Population-based study of first onset and chronicity in major depressive disorder»: Erratum. Archives of General Psychiatry, 65(7), 838-838.
- ↑ Franken, I. H. A., van Strien, J. W., & Kuijpers, I. (2010). Evidence for a deficit in the salience attribution to errors in smokers. Drug and Alcohol Dependence, 106(2-3), 181-185.
- ↑ Fein, G., & Chang, M. (2008). Smaller feedback ERN amplitudes during the BART are associated with a greater family history density of alcohol problems in treatment-naïve alcoholics. Drug and Alcohol Dependence, 92(1-3), 141-148.
- ↑ Olvet, D. M., & Hajcak, G. (2008). The error-related negativity (ERN) and psychopathology: Toward an endophenotype. Clinical Psychology Review, 28(8), 1343-1354.
- ↑ Falkenstein, M., Hoormann, J., Christ, S., and Hohnsbein, J. (2000) ERP components on reaction errors and their functional significance: a tutorial. Biological Psychology, 87-100.
- ↑ Nieuwenhuis, S., Ridderinkhof, R., Blom, J., Band, G.P.H., and Kok, A. (2001) Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology, 38:752-760.
- ↑ Vocat, R., Pourtois, G., and Vuilleumier, P. (2008) Unavoidable errors: A spatio-temporal analysis of time-course and neural sources of evoked potentials associated with error processing in a speeded task. Neuropsychologia, 46:2545-2555.
- ↑ Herrmann, M.J., Saathoff, C., Schreppel, T.J., Ehill, A.C., Scheuerpflug, P., Pauli, P., and Fallfatter, A.J. (2009). The effect of ADHD symptoms on performance monitoring in a non-clinical population. Psychiatry Research, 169(2):144-148.
- ↑ Santesso, D.L., Segalowitz, S.J., and Schmidt, L.A. (2006) Error-related electrocortical responses are enhanced in children with obsessive-compulsive behaviors. Developmental Neuropsychology, 29(3):431-445.
- ↑ Wild-Wall, N., Oades, R.D., Schmidt-Wessles, M., Christiansen, H., and Falkensetein, M. (2009) Neural activity associated with executive functions in adolescents with attention-deficit/hyperactivity disorder (ADHD). International Journal of Psychophysiology, 74(1):19-27.
- ↑ Endrass, T., Klawohn, J., Schuster, F., and Kathmann, N. (2008) Overactive performance monitoring in obsessive-compulsive disorder: ERP evidence from correct and erroneous reactions. Neuropsychologia, 46(7):1877-1887.
- ↑ Larson, M.J., and Perlstein, W.M. (2009) Awareness of deficits and error processing after traumatic brain injury. Neuroreport, 20(16):1486-1490.
See also
- Somatosensory evoked potential
- C1 and P1
- Visual N1
- Mismatch negativity
- N100
- N200
- N2pc
- N170
- P200
- N400
- P300 (neuroscience)
- P3a
- P3b
- Late Positive Component
- Difference due to Memory
- Contingent negative variation
- Bereitschaftspotential
- Lateralized readiness potential
- Early left anterior negativity
- P600
Introduction: The Error-Related Negativity
In the cognitive neuroscience of error processing, the discovery of an event-related brain potential (ERP) whose amplitude is different depending on the success or failure of an action was a groundbreaking step. Before Falkenstein and colleagues published the first peer-reviewed article about said potential in the human scalp EEG and termed it “Error Negativity” (Ne; Falkenstein et al., 1991 alternatively, and somewhat more commonly today called the “error-related negativity”; ERN, Gehring et al., 1993), the neuroscientific community was largely ignorant toward error processing, even though much of the experimental groundwork had been laid in the 1960s, prominently by Rabbitt and colleagues (Rabbitt, 1966, 1967). The discovery of this first measurable index of performance monitoring-related brain activity coincides with a continuously growing interest in the neuroscience of the more general area of cognitive control, signified by an exponential increase of publications in the field.
Since the 1990s, during which most of the studies about the ERN were published in journals focusing on behavioral rather than neuroscientific research, the differential properties of the ERN had been probed in a number of early studies. This early empirical work culminated in the emergence of (at least) four main branches of theories of what exactly drives the ERN amplitude: the error detection or “mismatch”-theories (Falkenstein et al., 1991; Coles et al., 2001) postulate the amount of difference between an intended and the actually performed action as the main influence on the amplitude of the ERN, with the latter represented as early as in the motor efference copy. According to the reinforcement learning theories of the ERN on the other hand (Holroyd and Coles, 2002), this comparison is carried out on the subcortical level of the basal ganglia instead, whereas the amplitude of the ERN amplitude is influenced by a learning signal carried forward into the cortical generators of the ERN by the mesencephalic dopamine system. A third perspective of ERN functionality is offered by the conflict monitoring accounts (Botvinick et al., 2001; Yeung et al., 2004), which move away from the accuracy of the action per se as the main determinant of ERN amplitude. Instead they postulate the degree of motor response-conflict, i.e., the arithmetic product of the activation of the erroneous and correct response tendencies at the time of the response as the decisive factor in ERN amplitude. A last branch of theories implicate the perceived probability of the occurrence of an error in a given experimental trial as the main determinant of ERN amplitude on that trial (Brown and Braver, 2005).
On the descriptive level, the ERN has a prominent fronto-central radial voltage distribution on the scalp and is consequently mostly quantified at electrode FCz in the extended 10–20 system of the EEG. Its neuronal generator has been located to the medial wall of the posterior medial frontal cortex (pMFC, Dehaene et al., 1994; Holroyd et al., 1998; Ullsperger and von Cramon, 2001; Gehring and Willoughby, 2002; Van Veen and Carter, 2002; Debener et al., 2005), the human homologue of the monkey rostral cingulate zone (RCZ, Ridderinkhof et al., 2004), a region also referred to as dorsal anterior cingulate cortex (dACC). It is followed by a complex of positive voltage deflections, commonly referred to as the error positivity (Pe, Falkenstein et al., 2000), which itself consists of at least two distinct components (late and early Pe, respectively) with partially dissociable features (Overbeek et al., 2005; Ridderinkhof et al., 2009).
The role of the ERN in subjective error awareness, i.e., the question of whether or not the ERN is related to humans’ conscious awareness of the accuracy of their own action, had not been studied until 10 years after the initial discovery of the ERN. The relation between a neuronal correlate of error processing on the one hand, and the emergence of explicit awareness of one’s own errors on the other hand is of pressing interest for the cognitive neurosciences of cognitive control, as the subjective perception of errors has obvious implications for remedial actions following errors (e.g., with respect to immediate corrective behaviors, learning from errors, or other behavioral adaptations, particular such that are in any sense intentional). Ultimately, one would want to be able to exploit the neuronal correlates of error processing for everyday life, e.g., in the context of brain-computer interfaces that inform a person of whether an error was made or not, which is why it is very important to identify which neuronal correlates influence the emergence of the subjective, spontaneous realization of having committed an error. The ERN is a prime candidate for this as it is (a) chronologically the first physiological manifestation of error-related processing following the response, peaking in the first 50–100 ms after an errors, (b) unlike the Pe, for which there exist many source localization attempts with quite variable results, it is reliably located to a specific, very circumscribed part of cortex, and (c) there is a huge body of literature about which factors influence the ERN per se, making it interesting if and how these factors are related to subjective error awareness.
The first study that explicitly probed the ERN’s sensitivity toward the degree of subjectively perceived accuracy was published in 2000 (Scheffers and Coles, 2000). It was followed by the emergence of a complex and ambivalent picture in subsequent studies of subjective “error awareness,” which either backed up the general finding of that initial study, which was that the processes underlying the ERN influence the subjective certainty of error perception, or seemingly contradicted it. As a matter of fact, just a year later, an influential study (Nieuwenhuis et al., 2001) failed to find a difference in ERN amplitude with respect to subjective error awareness. In the following, I will review the first decade of studies that dealt with the ERN and subjective error awareness, and try to find underlying factors that might contribute to either view. First, however, I will try to characterize and define what is meant by “error awareness” in a philosophical and empirical sense.
Awareness and Consciousness: Some Definitions
In order to be able examine error awareness and its influence on the brain processes that underlie performance monitoring (or any brain process that could potentially be influenced by awareness and vice versa) one must first define what exactly is meant by (error) “awareness.”
Consciousness and subjective awareness lie at the core of the discipline of philosophy of mind. As will be seen later on, what researchers mostly meant by “awareness” in the context of subjective error perception is called “access consciousness” in that branch of philosophy (Block, 2007). Access consciousness is defined as follows
“A mental state is access conscious when a subject has a certain sort of access to the content of the state. More precisely, a state is access conscious if by virtue of having the state, the content of the state is available for verbal report, for rational inference, and for the deliberate control of behavior.”
(Bayne and Chalmers, 2003, p. 6)
Access consciousness is characterized as the highest quality of representation in transitive (object-related) consciousness. The concept of accessibility, which is at the center of what characterizes an access conscious state, is in practice mainly operationalized by reportability, i.e., the availability of the presence of a stimulus for spontaneous verbalization by the (cognitive) system. Access consciousness and other types of transitive consciousness can be distinguished on the basis of the strength and quality of the subjective representation of a either a stimulus in a system or an internal state of a system in that system itself (see Figure 1). The degree of awareness of the presence of a certain stimulus is a good example for illustration: a (cognitive) system can be completely ignorant with respect to the presence of a stimulus, with no evidence of processing being present at any stage of the system. In such a case, the stimulus would consequently be classified as being “unperceived” in the narrow sense; the system would be non-conscious of it. The minimum of representation that must be evident in a system to indicate a type of consciousness is what constitutes phenomenological consciousness (Block, 1995), or phenomenality (Rosenthal, 2002). Quantifying this representation is called the “hard problem” of consciousness (Chalmers, 1995), or the problem of “qualia” (i.e., the “redness of red,” Crick and Koch, 2003), as opposed to the “easy problem” of consciousness, which is the problem of access consciousness (“easy” problem presumably because access consciousness is relatively easily quantifiable on the basis of overt behavior/verbal reporting). A fourth kind of conscious state is called reflexive consciousness by Block (synonyms: monitoring/interospective consciousness Block, 2001), and is characterized by the presence of Higher-Order Thoughts (Rosenthal, 2002), i.e., “thoughts about thoughts.” This ipsoreflexive quality distinguishes reflexive consciousness from mere phenomenality (or “thick” from “thin” phenomenality in Rosenthal’s terminology, where thick phenomenality is a synonym for what Block calls reflexive consciousness, and thin phenomenality is phenomenality in Block’s original sense). Importantly, (thin) phenomenanilty is indistinguishable from non-consciousness both empirically and for the system itself1.
Figure 1. Typology of transitive consciousness, based on different theoretical accounts from the philosophy of mind (see text for further details). Right column outlines defining properties of the different types of consciousness.
Beyond being able to formulate a clear working definition of what one is researching on, what is interesting about these formal and theoretical classifications for empirical performance monitoring research, is the question of what is potentially examinable using the battery of methods available to psychological and neuroscientific research. Research in the area of error awareness usually employs behavioral procedures aimed at an operationalization of access consciousness (in a sense that subjects are mostly presented with the computerized version of a verbal report, i.e., the pressing of a button to indicate conscious availability). However, reflexive consciousness (“gut feelings”) is also potentially examinable using standard experimental psychological methods. The methodological repertoire of research on so called “meta-cognitive feelings” (Koriat, 2007), i.e., feelings of the presence of a certain state in absence of the ability to explicitly fully characterize its nature, can potentially be utilized in error awareness research as well, e.g., by using wagering procedures (Persaud et al., 2007, see “Future directions” for more details). Also, a big virtue of neuroscientific compared to behavioral methods is that it is theoretically possible to detect the representation of a stimulus in the absence of any higher-order thought or access consciousness. For example, stimulus-evoked activity in primary sensory areas like V1 or the primary auditory cortex might well be a physiological manifestation of “thin” phenomenality, which is per definition unexaminable using behavioral methods.
For the purposes of this review, unless otherwise declared, I will talk about access consciousness when referring to (error) awareness. What distinguishes “consciously perceived/aware errors” from “non-consciously perceived/unaware errors” is reportability: is the subject able to report the inaccuracy of its action or not? Since there is also an ambiguity in the literature concerning the naming of error types depending on the presence or absence of access consciousness, I will refer to errors with access consciousness as “reported errors” (REs) and to errors in the absence of access consciousness as “non-reported errors” (NREs), unless otherwise specified.
Error Awareness and the ERN: A Chronology
In this paragraph, I will introduce and discuss the studies that reported findings with respect to the influence of ERN amplitude on subjective error awareness (or vice versa). This paragraph should give a comprehensive overview that outlines the respective details and findings of these studies. A summary of these details can be found in Table 1.
Table 1. Details of the studies that report testing of ERN amplitude differences for reported vs. non-reported errors, either as part of their main hypothesis or as auxiliary analyses.
The first study that explicitly addressed the sensitivity of the ERN amplitude to subjective error awareness was published in 2000 by Scheffers and Coles (2000). The authors presented subjects with a letter version of the classic flanker paradigm (Eriksen and Eriksen, 1974). After each trial, they prompted subjects to rate their confidence in their response on a five-point scaling ranging from “sure correct” to “sure incorrect,” with a neutral “don’t know” rating in between. They carried out two main analyses to address the question of the influence of error awareness on the ERN. The first analysis compared ERN amplitudes between all five confidence ratings, showing that ERN amplitude increased with growing error awareness. This result was confirmed in a second analysis which focused only on the three rating bins “don’t know”, “not sure incorrect”, and “sure incorrect,” as only eight participants had sufficient error numbers to warrant inclusion in the full analysis. Even more so: the same pattern appeared to be true for the negativity on correct trials that were examined in the full analysis (correct-related negativity, CRN, Vidal et al., 2000; Roger et al., 2010): the larger the ERN/CRN, the more the subjects consciously felt that they had made an error, even on correct trials. It has to be said that the CRN and ERN represent the activity of the same underlying neuronal network (Roger et al., 2010), and therefore, ostensibly reflect the same process.
This seemingly clear cut pattern of results was subsequently contradicted just 1 year later, though: Nieuwenhuis et al. (2001) published results from an eye-movement experiment, an anti-saccade task (AST), which demonstrated a null effect of error awareness on the ERN. In the anti-saccade paradigm, subjects must inhibit a prosaccade to a target stimulus appearing on one side of the screen and initiate an “anti”-saccade to the opposite site. Similarly (but not identically) to Scheffers and Coles (2000), Nieuwenhuis and colleagues prompted their subjects to assess the accuracy of their action after each trial: subjects had a limited time following the onset of the display of a cross on the correct side of the screen in order to press a button when they thought they had committed an erroneous prosaccade to the wrong side of the screen. Whereas the error positivity was significantly enlarged for reported as compared to non-reported errors, the ERN, contrary to Scheffers and Coles findings, was not.
Surprisingly, in the 4 years after these two initial studies, there were no further publications that tried to explain the disparity between them. Following a 2003 study by Dehaene et al. (2003), which found conflict-related effects in the dorsal ACC/RCZ, the neuronal generator of the ERN, only for unmasked conflicting primes as compared to fully masked primes, Mayr (2004) concluded
“There is some convergence across studies in that awareness seems crucial […] for indications of ACC-related activity. At the same time, enough inconsistencies remain to preclude any firm conclusion in this regard.”
(Mayr, 2004, p. 147, references removed from original text)
Mayr cites Scheffers and Coles (2000) study, alongside Dehaene et al. (2003) and another fMRI study (Stephan et al., 2002) as evidence for the first part of this statement, whereas Nieuwenhuis et al. (2001) study serves as reference for the second part.
It took until 2005 until the issue was addressed again, when Endrass et al. (2005) published data from a third type of paradigm, a stop-signal task in the oculomotor domain, which also introduced another slightly different scoring method for error awareness: similar to Scheffers and Coles (2000), people had to indicate their perceived response accuracy in both cases (errors and correct trials), but as in Nieuwenhuis et al. (2001), the rating was binary (error or correct, as compared to the five-point scale employed by Scheffers and Coles) and people had only limited time to make their assessment. In this stop-signal experiment, Endrass and colleagues again reported a null-finding with respect to the ERN and error awareness.
Comparable results were obtained in the two next studies dating from 2007 (Endrass et al., 2007; O’Connell et al., 2007). The 2007 study by Endrass and colleagues employed a similar AST as Nieuwenhuis et al. (2001), but the rating procedure was identical to their previous study (Endrass et al., 2005), with the exception that this time, the response to the accuracy-prompt was not under time pressure. O’Connell et al. (2007) combined EEG with concurrent measurements of autonomic nervous system (ANS) activity, as measured by the skin-conductance response (SCR). They also employed a novel paradigm into the study of the effects of error awareness on the ERN, that has been previously used in the fMRI domain by Hester et al. (2005) to probe the activity of the RCZ on reported and non-reported error trials (see below). They employed a Go-Nogo paradigm with Stroop-like stimuli (color-words in different ink color, Stroop, 1935) that they called “error awareness task” (EAT). In the EAT subjects have to perform a Go-response (button-press) unless one of two NoGo-situations is encountered: (1) a mismatch between word-ink and meaning of the word (Stroop NoGo); (2) a repetition of the previous word (Repeat NoGo). With those two complex rules, one engaging the psychological processes associated with the Stroop effect and the other engaging working memory effects similar to a one-back task, a sufficiently high number of non-reported errors can be achieved (a methodological problem in all error awareness studies) to warrant statistical comparison. The rating procedure to assess subjectively perceived accuracy was also arguably more complex than in previous paradigms: in case subjects thought they made an error (i.e., a Go-response in one of the two NoGo-situations), they had to abolish the Go-Response on the next trial and press an error-awareness button instead. Both these studies (Endrass et al., 2007; O’Connell et al., 2007) failed to find an error awareness effect on ERN amplitude, speaking in favor of the ERN being unrelated to subjective error awareness, and contradicting the initial findings of Scheffers and Coles (2000). Also, the findings of O’Connell et al. (2007)2 were later replicated in a slightly larger sample using auditory cues by Shalgi et al. (2009).
To add to the apparent confusion, however, in the last 4 years, seven more studies were published which all, to different extents, apparently backed up the findings of Scheffers and Coles (2000), reporting differences in ERN amplitude or source level RCZ activity between reported and non-reported errors. The closest replication of Scheffers and Coles’ findings with respect to experimental conditions was done by Maier et al. (2008), who also used a letter version of the flanker task. However, they employed the rating procedure from Nieuwenhuis et al. (2001), having people press an “error awareness button” in case of a reported error. They found highly significant differences in ERN amplitude with respect to subjective error awareness.
In 2010, Steinhauser and Yeung (2010) manipulated subjects’ incentives to either signal or not signal an error, effectively introducing two different response-bias conditions. They could show that it is primarily the error positivity that represents the input variables of the decision process that leads to signaling or not signaling an error, but they also found differences between reported and non-reported errors in the overall ERN in their perceptual discrimination task, with ERN amplitude being significantly increased for reported errors. That same year, Woodman (2010) published a study that differed from all previous studies to certain extent. Not only did he introduce a previously unseen paradigm into the error awareness literature (a visual search paradigm with masked or non-masked stimuli), but he also introduced a special quantification of awareness. The main task was to detect the presence of a stimulus in a visual search array by pressing a button when it was perceived as present in the array and another when it was supposedly absent. The stimulus was either masked by simultaneous-offset mask, or by delay-offset mask, with the latter reducing overt stimulus detection to chance level, whereas the simultaneous-offset mask left aware stimulus perception intact. It could be shown that an ERN was only elicited in the condition in which the mask did not disturb conscious stimulus perception (simultaneous-offset mask), whereas it was absent in the delayed-masking, pre-conscious condition. Furthermore, and most interestingly, an N2pc wave could be seen on target trials in either condition, irrespective of masking condition. The N2pc is an index of a shift in visuo-spatial attention following the presence of target stimuli (Luck and Hillyard, 1994). In essence, this shows a dissociation between intact target-stimulus representation (as indexed by the N2pc) and performance monitoring (as indexed by the ERN), possibly also dissociating a neural correlate of classic access conscious “awareness” of an error and phenomenologically conscious representations of a stimulus (see above). It also provides evidence that the ERN is related to the quality of awareness of an error.
The year 2011 brought four more studies that measured ERN amplitude in error awareness experiments. Hughes and Yeung (2011) tried to dissociate response-conflict from error awareness using a flanker task with additional masked stimuli. They reported a null-finding with respect to error awareness and ERN-amplitude in a limited sample3. They did, however, find an association between ERN amplitude and error awareness on a single-trial level, which larger ERN amplitudes being beneficial for error awareness. In yet another recent study that investigated concurrent EEG and ANS measurements (heart rate and pupil diameter) during error awareness, our group (Wessel et al., 2011) reported a significantly enlarged ERN amplitude for reported compared to non-reported errors in the anti-saccade experiment, alongside differential effects of error awareness on both heart-rate and pupil diameter. In the first experiment, we used a binary rating for the assessment of error awareness, similarly to Endrass et al. (2007). In a second experiment, we tried to replicate the findings using the exact same stimulus layout and timing as in the first study of error awareness in the AST (Nieuwenhuis et al., 2001). Instead of the awareness button used in their study, however, we used a twofold procedure to get a more detailed picture of the degree of error awareness in this experiment. To that end, we used the same binary rating as in the first experiment, i.e., subjects had to push a button when they thought they made an error and a different button when they thought they did not. Then, we subsequently split the experimental trials for each subject and error type in half, based on the time it took for the subject to make the assessment of their own accuracy. This was done with the rationale that ratings that were made very fast were made with a higher degree of certainty than those which took the subjects longer to make. Not only did we again find a significantly enlarged ERN for reported compared to non-reported errors, but we also found that almost all of this difference was explained by the subsample of aware errors that was signaled very quickly, i.e., with high certainty, again providing evidence that ERN and error awareness are directly or indirectly related. Another recent study backed up this finding (and earlier ones that found an enlarged ERN for reported errors), this time using another novel task: Hewig et al. (2011) used a semi-blind digit-entering task and a three-point rating scale (“correct”, “unsure”, “incorrect”) after each trial and found significant ERN-CRN differences exclusively for incorrect trials judged “incorrect,” i.e., reported errors. “Unsure” and “correct”-rated error trials did not differ from their respective correct counterparts, confirming the results from the rating-reaction-time split in Experiment 2 in Wessel et al. (2011). To this day, the latest study regarding the cortical electrophysiology of error awareness (Dhar et al., 2011) did not explicitly focus on ERPs, but rather on EEG source imaging. Dhar and colleagues had subjects perform a visual Go-NoGo task with the option of pressing an awareness button whenever subjects felt they made an error. Even though they did not find a significantly enlarged ERN for reported errors compared to non-reported errors at FCz (in fact, there was no difference between either error trial and correct trials at FCz, i.e. no ERN), they did find significant differences in that direction at more left-lateralized frontal electrode sites, which is in line with their left-lateralized source-solution for the ERN in the left posterior cingulate motor area (lPCMA, MNI coordinates: x = −5 y = −15 z = 55) and also with the voltage distribution of the ERN in their study (see Figure 2 in their manuscript). Consequently, the activity in the lPCMA source was significantly enlarged on reported errors as compared to non-reported errors in their study.
Figure 2. Testing the error-correction hypothesis of ERN amplitude in the AST. Depicted are the combined data from both experiments in Wessel et al. (2011), limited to the 24 subjects that exhibited enough errors to warrant statistical comparison. (A) Difference between reported and non-reported errors in this sample. (B) Difference between corrected and non-corrected reported errors. (C) Difference between reported errors with fast corrections and reported errors with slow corrections.
As is evident, there is considerable disparity between studies as to whether error awareness is unrelated to the ERN (or vice versa) or not. Whereas there are several findings that strongly point to the fact that the ERN does coincide with higher degrees of error awareness (Scheffers and Coles, 2000; Maier et al., 2008; Steinhauser and Yeung, 2010; Woodman, 2010; Dhar et al., 2011; Hewig et al., 2011; Wessel et al., 2011), there are enough null-findings to shy away from too optimistic inferences (Nieuwenhuis et al., 2001; Endrass et al., 2005, 2007; O’Connell et al., 2007; Shalgi et al., 2009).
Studies of the ERN in Error Awareness: Commonalities and Differences
Because of the discrepancies in findings between studies, it is essential to review the commonalities and differences in these studies (the details of each study are listed in Table 1), and look for common patterns that might explain either finding, which I will do in the following.
Factors of the Task: Different Paradigms, Different Findings?
The paradigms used to investigate error awareness in relation to the ERN and Pe span many of the central paradigms of performance monitoring or cognitive control research in general. Of the abovementioned 13 studies addressing the topic, three utilize variants of the classic flanker task (Scheffers and Coles, 2000; Maier et al., 2008; Hughes and Yeung, 2011), four use Go-NoGo or stop signal paradigms (Endrass et al., 2005; O’Connell et al., 2007; Shalgi et al., 2009; Dhar et al., 2011), and three use the anti-saccade task (AST, Nieuwenhuis et al., 2001; Endrass et al., 2007; Wessel et al., 2011), which is essentially a combination of a Go-NoGo like paradigm and a forced choice reaction time task like the flanker task (in that one has to countermand an automatic response tendency and subsequently initiate another response). The three remaining studies used a visual discrimination task (Steinhauser and Yeung, 2010), a digit-entering task (Hewig et al., 2011), and a masked visual search paradigm (Woodman, 2010). One apparent tendency is that stop-signal/Go-NoGo studies (with the exception of Dhar et al., 2011) generally tend to yield null-findings, whereas flanker findings yield enlarged ERN amplitudes for reported compared to non-reported errors. The picture is less clear for the AST: whereas Nieuwenhuis et al. (2001) and Endrass et al. (2007) demonstrated null-findings; both experiments in Wessel et al. (2011) showed the error awareness amplitude effect for the ERN. All studies using other paradigms show significantly enlarged ERN amplitudes on reported errors.
While there seems to be a pattern in that studies using a task with a Go-NoGo/stop-signal component tend to yield null-effects whereas other tasks show enlarged ERN amplitudes for reported errors, it is hard to find an explanation for this. One reason might lie in the quantification of error awareness itself, or in the low ERN amplitudes and general effect sizes in these paradigms, both of which will be reviewed later on in this section. First, I will review two hypotheses concerning primary task performance (stimulus perception and error correction) that have recently been put forward as potentially influential in producing the presence or absence of ERN amplitude effects in error awareness experiments.
Stimulus Degradation as Potential Determinant of ERN Amplitude Differences
It has been argued that degraded stimulus perception might underlie the lower ERN amplitude on non-reported errors (Steinhauser and Yeung, 2010), based on the fact that some of the studies that reported null-findings used either masking procedures (Maier et al., 2008) or degraded the stimulus material in order to obtain enough non-reported errors to warrant statistical comparison (Scheffers and Coles, 2000; Steinhauser and Yeung, 2010). However, more recent studies do demonstrate these differences in the absence of degraded or masked stimulus material (Dhar et al., 2011; Hewig et al., 2011; Wessel et al., 2011). Also, the dissociation between stimulus perception on the neuronal level (as quantified by the N2pc) in such masking paradigms on the one hand and error awareness effects on the ERN on the other hand (Woodman, 2010) speaks against the fact that degraded stimulus perception is the only influence that causes ERN differences between error types in error awareness experiments. “Objective” evidence of neuronal stimulus representation was identical between error types in that study.
Unless subjective awareness of the stimulus material itself is a determinant of ERN amplitude, which would be assuming a direct connection between ERN and (error) awareness, differences in stimulus representation seem unlikely as the exclusive determinant of ERN amplitude in error awareness studies.
Error Correction: Differences Based on Awareness and their Potential Influence on the ERN
Another explanation for the discrepancies between studies has been put forward by Steinhauser and Yeung (2010). They argue that
“Ne/ERN amplitude should be determined primarily by variations in primary task performance rather than variations in error signaling. […] Thus, the ERN increase for detected errors may not reflect its direct role in error processing, but might instead be a by-product of the fact that detected errors tend to occur when fast guess responses are subsequently corrected (cf. Scheffers and Coles, 2000), resulting in high levels of conflict. This interpretation is consistent with evidence from the anti-saccade task that Ne/ERN amplitude is similar for detected and undetected errors that are always corrected (Nieuwenhuis et al., 2001), although in some studies this relationship is less clear (Endrass et al., 2007).”
(Steinhauser and Yeung, 2010, p. 15651)
It is in line with the evidence from the error awareness experiments that primary task performance does influence ERN amplitude [see later section: errors in the global workspace: the accumulating evidence (AE) account]. However, even though there is evidence from ERN studies not focusing on error awareness that error correction influences ERN amplitude (Rodriguez-Fornells et al., 2002), there is evidence that the instruction to explicitly withhold or carry out error correction tampers with the expectation of error likelihood, error significance (Fiehler et al., 2005), or a reduced motor threshold that account for differences in ERN amplitude found in these studies (Ullsperger and von Cramon, 2006) and are not directly related to error awareness.
In addition, behavioral findings across studies contradict the proposition that the ERN amplitude reflects additional response-conflict that results from the presence or absence of a corrective response (it should, however, still be influenced by “classic” response-conflict at the time of the response, cf. Yeung et al., 2004; Danielmeier et al., 2009). Steinhauser and Yeung mention that evidence for the error-correction hypothesis from the AST in Nieuwenhuis et al. (2001), who found identical error rates for both types of errors and also identical ERN amplitudes, is contradicted by the AST results from Endrass et al. (2007). In the latter study, a dissociation between error correction rate and ERN amplitude was found: significantly fewer reported errors than non-reported errors were subsequently corrected, despite identical ERN amplitudes. This pattern of behavioral results was confirmed in both AST experiments in Wessel et al. (2011), further contradicting the influence of corrective saccades on ERN amplitudes in error awareness AST studies. Also, the same pattern of results might also be present in Nieuwenhuis et al. (2001) data4, speaking against the error correction as lone determinant of the ERN amplitude differences found in error awareness experiments. Based on significant differences in corrective saccade latency relative to the response, which is shorter for non-reported errors in all three studies, it seems that in actuality, non-reported errors are the ones that are corrected in a quick and automatic fashion. Following a response-conflict based rationale, this pattern of results would actually lead to the prediction of enlarged ERN amplitudes for non-reported errors, if the presence or absence or timing of a potential error correction would be the primary influence on ERN amplitude.
In addition to these arguments, I will in the following present empirical evidence against the influence of error correction (both frequency and speed of correctional saccades) on the ERN amplitude result found in our study (Wessel et al., 2011). Figure 2A displays a re-analysis of the reported errors from both datasets used in Wessel et al. (2011, see manuscript for details on the AST and details on data processing), split by whether they were corrected or not. Only 24 out of 34 participants rendered enough aware errors in both conditions (corrected and not corrected, threshold at a minimum of five reported errors in each condition), but for the present purposes, this sample size is sufficient to warrant a sufficiently low beta-error probability to enable the testing of a null hypothesis. As can be seen from Figure 2A, there is no difference in ERN amplitude based on error correction in reported errors: t(23) = −0.2815, p > 0.7. Also, as can be seen from Figure 2B, there is no difference between fast and slow corrections in reported errors (median split of correction times): t(23) = 0.6739, p > 0.5.
Measuring Error Awareness: What is an “Aware” Error?
As seen above, performance on the primary task itself does not seem to be able to account for the differences in findings. One interesting possibility is that the measurement of awareness/access consciousness itself could be a decisive factor instead. There are several different quantifications of access consciousness in studies examining error awareness and the ERN, presumably all aimed at the same process. Procedures differs in certain core aspects: (a) difference in signaling between errors and correct trials, (b) the scaling of the quantification (binary vs. parametric), (c) the presence or absence of a neutral option, and (d) the presence or absence of a time-limit to rate one’s accuracy.
There is an even split between studies using a forced-choice rating (i.e., a button has to be pressed for both errors and corrects) and an error-signaling only (i.e., a button has to be pressed for errors only; nothing has to be done on subjectively correct trials). Seven studies use the latter approach, whereas seven other experiments (counting Experiment 1 and 2 from Wessel et al., 2011, as two separate experiments) use a forced choice rating. Amongst the studies using an “awareness button” are all studies using Go-NoGo paradigms. All studies using the “awareness button” method naturally set a time-limit for the subjects to make their decision (ranging from 1000 to 1500 ms), whereas all but one (Endrass et al., 2005) studies using forced-choice rating give subjects unlimited time to come up with their decision (the tasks will not commence until a decision for a trial has been made).
Strikingly, these methods of quantification potentially lead to different classifications of certain errors in terms of whether they count as reported/perceived or not. In a forced choice rating situation, subjects can still fully evaluate their (uncertain) situation and might still signal the error, or judge it as a “don’t know” trial, if that category is present. When using an error awareness button, however, after a certain amount of time, the next trial will start and the previous trial will be marked as “participant thought he/she was correct,” i.e., as an non-reported error, even though there might have been some residual error awareness, which then effectively contaminates the measurement. A good demonstration for this fact comes from examining false alarm rates in the different studies. False alarms in this scenario are rare events when subjects signal their correct responses as erroneous. A direct comparison is possible in the AST experiments: Nieuwenhuis et al. (2001), who used an awareness button, yielded a false alarm rate of 1.5%. Experiment 2 in Wessel et al. (2011), which used the exact same primary stimulus layout and task timing as Nieuwenhuis et al. (2001), but exchanged the awareness button rating with a forced choice rating, yielded a false alarm rate of 9.8%. This demonstrates that the usage of an awareness button not only potentially contaminates the “non-reported” errors with errors with residual access consciousness, but it also introduces a response bias toward not signaling an error. This is not only so because of the fact that unsure situations, where deciding to signal an error might take more time than allowed would be rated as “participant thought he/she was correct,” but also simply because signaling an error by pushing a button is more effortful than not signaling an error by doing nothing.
While the usage of an awareness button is probably a suboptimal procedure, it cannot alone explain the differences between studies. Not only do two out of the seven studies using forced choice ratings demonstrate null-findings with respect to ERN amplitude (Endrass et al., 2005, 2007), but also, significantly enlarged ERN amplitudes on aware errors can be observed in three out of the seven studies using the awareness button (four if counting Hughes and Yeung, 2011). Ultimately, when deciding which quantification of consciousness to choose, one is faced with the decision of whether (a) one wants to have a set of non-reported errors that are clear of any sort of residual (potentially reflexive/interoceptive) conscious representation (in which case a forced choice rating is the method of choice), or (b) one wants to have a set of reported errors that include only very “highly” (access-) conscious errors and in turn risk contaminating the “unaware” errors with potentially reflexively conscious errors. However, a solution to this problem might lie in using a finer scale than a parametric yes/no rating (which some studies have done, e.g., Scheffers and Coles, 2000; Hewig et al., 2011). Be aware, though, that if choosing between a forced choice rating and an “awareness button” procedure, a forced choice is probably the better option, because it does not introduce a response bias toward signaling or not signaling an error.
Since the method of quantification of an “aware” error cannot on its own account for the different findings (see above), another issue has to be taken into consideration, which is the question of type-2 error probability, i.e., the probability of accepting a null hypothesis, even though the alternative hypothesis is true.
Factors of Analysis: When is a Null-Finding a Null Finding?
The question of type-2 error probability is a classic topic in introductory statistics, but is often neglected in many studies, especially in the (cognitive) neurosciences. A high probability of committing a type-2 error stems from either low-power, low effect sizes, or a combination of the two. Low power mostly results from small sample sizes used to test a null hypothesis. This is a common problem in the neurosciences in particular, because data acquisition is an expensive, time-consuming procedure, which oftentimes limits sample sizes of such studies to fewer than 20 samples. The average sample size of the ERN-error awareness studies reviewed so far is 14.7. The sample size of the six studies officially demonstrating null effects is 14.1. A lot of studies do find marked numeric differences in neuronal activity that would replicate the early findings of Scheffers and Coles (2000), but fail to find significances presumably because of low sampling size. I have already mentioned the low sample size in the null-finding from one study (Hughes and Yeung, 2011) as an example. Since no major inferences in that study were based on this result, and the authors outline the limited sample size for that result in the discussion, it can be used for demonstration without depletion of their main findings. If all subjects involved in that study (N = 20) would have met the inclusion criterion (which was a minimum number of six errors in both conditions), the two-sided p-value would have been 0.06 (vs. 0.086 in the eight included subjects), provided the effect sizes would have remained constant. Considering the fact that all 12 subjects in that study who were not included in the actual test were excluded because they were statistically better at either the primary task (resulting in fewer overall errors) and/or at consciously detecting their errors (resulting in a lower ratio of non-reported to reported errors), it is not possible to justify the acceptance of a null-hypothesis. Similar arguments can in principle be applied to other studies that find numerical differences but no significances between error types. This is not to say that these results are of low value, particularly because the null-findings in ERN amplitude are oftentimes only remote points in the respective papers that do not lie at the core of the hypotheses tested. It does mean, however, that in case of a very low sample size, particularly when reporting low p-values for reported vs. non-reported errors, the acceptance of the null-hypothesis is not warranted from a statistical point of view.
Support for the low-power hypothesis presented here comes from the fMRI domain. Missing differential error awareness effects in the dACC/RCZ (Hester et al., 2005; Klein et al., 2007), the neural generator of the ERN, is oftentimes cited as supporting evidence in studies reporting the absence of an effect of error awareness on ERN amplitude. This is despite findings that demonstrate that response-conflict, which is also registered in the dACC/RCZ (Botvinick et al., 2001; Yeung et al., 2004) does not evoke such a RCZ response when elicited subliminally (Dehaene et al., 2003), and also despite the finding that consciously rejecting trials with a high subjective error-likelihood is correlated with activity in the RCZ (Magno et al., 2006). The three studies that explicitly address error awareness related activity in the RCZ in fMRI experiments (Hester et al., 2005, 2009; Klein et al., 2007) are an excellent illustration of the potential pitfalls of low samples sizes: Klein et al. (2007) report numerical differences in RCZ BOLD-activity, with reported errors eliciting more activity than non-reported errors (visible in Figure 2C in their manuscript), which fails to reach significance in the 13 subjects reported (p = 0.211, two-sided), leaving the anterior part of the left insular cortex as the only part of cortex sensitive to subjective error awareness. Hester et al. (2005) initially reported null-findings in the error-awareness task (EAT) with respect to RCZ activity as well, also in 13 subjects (p = 0.59 for the RCZ ROI). In a later study (Hester et al., 2009) using the same experiment in 16 subjects, however, they did find significant differences in that exact region.
All of this is not to argue that there is a definitive effect of error awareness on the amplitude of the ERN/RCZ activity, and all studies not demonstrating these effects fail to do so. There are certainly many factors that contribute to error awareness, and even more factors that potentially contribute to ERN amplitude. Error correction and stimulus representation might be among them, but they are unlikely to account for the differences found across several error awareness studies. Differences in study design or operationalization of subjective error awareness (see above) could account for many differences in findings.
In any case, based on the argument made in this paragraph, it is not possible to uphold the statement that the amplitude of the ERN is unrelated to subjective awareness. On the contrary: while there are many studies that demonstrate enlarged ERN amplitudes with respect to subjective error awareness with a low enough type-1 error probability to warrant rejection of the null-hypothesis (Scheffers and Coles, 2000; Maier et al., 2008; Steinhauser and Yeung, 2010; Woodman, 2010; Dhar et al., 2011; Hewig et al., 2011; Wessel et al., 2011), there are few, if any, studies that have sufficiently low type-2 error probability to warrant an acceptance of that null hypothesis. Future studies should make sure to contain large enough sample sizes in order to allow for strong inferences in case of a potential null finding.
A Putative Role of the ERN in an Overarching Model of Access Consciousness
After one establishes the fact that the ERN and error awareness are not unrelated, the obvious question is: what is its exact role in the emergence of error awareness? Does the amplitude of the ERN influence the emergence of error awareness or vice versa? Furthermore: what’s the role of the Pe? What’s the role of the ANS, which has been found to react differently to reported and non-reported errors (O’Connell et al., 2007; Wessel et al., 2011)? Ullsperger et al. (2010) have recently proposed a unified account of a putative role of these potentials in the emergence of error awareness, in which multiple sources of evidence accumulate over time and eventually culminate in error awareness (or blindness). Steinhauser and Yeung (2010) have convincingly demonstrated that this accumulating evidence (AE) is indeed reflected in the amplitude of the error-related potential following the ERN, the error positivity. In the following, I will try to link these accounts with each other and embed them in a prominent theory of the emergence of access consciousness in the brain, the global neuronal workspace (GNW) theory (Baars, 1988; Dehaene and Naccache, 2001).
The Global Neuronal Workspace Theory
The GNW theory is a unified theory about the neural mechanisms underlying the emergence of access consciousness of any stimulus in the brain. It is based early formulations of a “global workspace” of consciousness from Baars (1988) and on Fodor’s distinction of the brain into different “modular facilities” that are distinguishable from an “isotropic system” that integrates information across these modules (Fodor, 1985). Consequently, Dehaene and Naccache (2001) and Dehaene and Changeux (2004) pose the existence of two distinct networks in the human brain: the network of processors on the one hand, and the “global neuronal workspace” (GNW) on the other.
There are multiple different separate entities that comprise the network of processors, which consists of modules that code simple visual information (area V1), motion (area MT), faces (fusiform face area), or sounds (auditory cortex areas in the temporal lobe), amongst many others. Although the information coded in these processors differs in complexity and level of abstraction, all these areas have in common that they are located at relatively early stages of the stimulus processing chain, and can relay information in a specialized, automated, and fast feed-forward fashion.
The second network, the GNW, constitutes the neuronal basis of access consciousness according to the theory. It consists of long-range excitatory axons, which allow the exchange, or “broadcasting” of many different kinds of information across the areas that comprise the network of processors. It is the process of entering the GNW that effectively constitutes the emergence of awareness in the GNW model.
Attention plays a critical role in the GNW theory. Just as in classic models of attention, a stimulus can enter the GNW through one out of two mechanisms: (a) the specific module/processor is already the current locus of attention (top-down allocated attention) or (b) the stimulus is of sufficient strength to attract top-down attention itself (bottom-up driven attention).
The existence of a GNW has been formulated over a decade ago and predictions derived from it have been experimentally tested in several studies (e.g., Del Cul et al., 2007). It addresses the question of the generation of access consciousness in a neurobiologically plausible way, which is why I will try to implement our recent theory about the emergence of error awareness in the human brain (Ullsperger et al., 2010) into this framework, specifically focusing on the role of the ERN.
Errors in the Global Workspace: the Accumulating Evidence Account
A putative model of the emergence of error awareness is outlined in Figure 3. It embeds ideas from the AE account of emerging error awareness (Ullsperger et al., 2010) into the more general framework of the GNW model (Dehaene and Naccache, 2001). The general idea of the AE model fits in well with the basic principle of the GNW model: in the AE model, consistent with experimental findings, evidence about the accuracy of an action is available from multiple different cortical processors that code different types of information. This information accumulates over time and contributes to the reportability of an error in a feed-forward fashion. This kind of parallel processing in multiple different areas corresponds to the “network of processors” in the GNW model. Reportability of an error is then defined as access of that accumulating information to the GNW.
Figure 3. A putative model schematic of emerging error awareness in the human brain, based on the accumulating evidence account of error awareness and the global neuronal workspace model. Information about the accuracy of an action is processed in parallel in different areas that comprise the “network of processors,” which feeds forward into the GNW. Note that the flow of information indicated by the arrows is only depicted if potentially meaningful for error awareness. Additional exchange of information is also probable (especially attentional modulation from the GNW to the network of processors). Be aware that the potential functions of the performance monitoring network outlined here represent the main branches of theories that have been put forward, and it doesn’t mean that the ERN is a correlate of all these computations, but probably only a subset of them. ERN, error-related negativity; BG, basal ganglia; dACC, dorsal anterior cingulate cortex; RCZ, rostral cingulate zone; PES, post-error slowing; DA, dopamine.
The Network of Processors: Coding of Multiple Sources of Error-Evidence
Differences between reported and non-reported errors have been described on multiple levels of early and late nervous system processing. Much of this information is available at very early latency ranges, making it chronologically and logically unlikely to be a consequence of error awareness, and rather implicate it in feed-forward processing that contributes to emerging error awareness.
Sensory systems
It has been shown that errors that are subsequently reported differ from non-reported errors with respect to quantity and quality of the sensory information at hand. It is evident from correction rates in the AST studies (Endrass et al., 2007; Wessel et al., 2011, and potentially also Nieuwenhuis et al., 2001, see above) that non-reported errors are more often corrected than reported errors. This is a somewhat unexpected result, provided one interprets error correction as an intentional and conscious act. However, all three AST studies unequivocally report even more prominent effects of error awareness on correction times, i.e., the time from the erroneous to a subsequent corrective saccade, showing much longer correction RTs for aware errors. This means that most non-reported errors were corrected very fast (or vice versa: most fast corrected errors were subsequently not reported), potentially in an automated fashion, making them harder to detect for cognitive systems than the reported errors, which are not only corrected less frequently, but also with longer latencies. In terms of sensory representation, this means that for subsequently reported errors, gaze was directed in the wrong direction for a longer period of time, resulting in more sensory evidence for the cognitive system to detect.
Motor systems
On the motor level, another finding from the AST studies (Nieuwenhuis et al., 2001; Endrass et al., 2007; Wessel et al., 2011) provides a good demonstration of different levels of error-evidence between error types: these studies consistently show larger saccade sizes for reported as compared to non-reported errors. Hence, there is also quantitatively more evidence for inaccuracy of an action on aware errors.
Performance monitoring systems
It is far beyond the scope of this review to speculate as to the exact functional significance of the ERN or its underlying neural generator, the dACC/RCZ, and its associated network of brain regions. However, it does not matter for the purposes of this model what ERN/RCZ activity actually signifies. All four major accounts of ERN/RCZ function (see introduction) have a common theme in that this brain region (RCZ) and its respective neurophysiological signature (ERN) monitor ongoing behavior, potentially with the function of signaling the need for adjustments (Ridderinkhof et al., 2004), or even implementing these adjustments itself.
What could be shown based on the review of the existing literature is that there is a growing amount of evidence that the levels of ERN/RCZ activity differ between reported and non-reported errors, with the former carrying quantitatively more information/activity. So while it is not to be determined what exact function this module serves (detecting mismatch between a forward model and the motor efference copy (Falkenstein et al., 1991; Coles et al., 2001), monitoring response-conflict (Botvinick et al., 2001; Yeung et al., 2004), reflecting a learning signal from the dopaminergic midbrain (Holroyd and Coles, 2002), representing the likelihood of an error on a given trial (Brown and Braver, 2005), or signaling the unsigned reward prediction error, or “surprise” of a given response (Alexander and Brown, 2011; Hayden et al., 2011), it can be said with certainty that this activity differs with respect to subjective error awareness.
Interoceptive systems
One of the most interesting modules in this model is the interoceptive system. It has been shown in at least two studies (O’Connell et al., 2007; Wessel et al., 2011) that the activity of the ANS differs with respect to subjective error awareness. This is particularly interesting with respect to the fact that the insular cortex has been shown to be also sensitive to this factor (Klein et al., 2007, for a review, see: Ullsperger et al., 2010). The insular cortex has been conjectured to reflect the activity of an “interoceptive awareness” system (Critchley et al., 2004; Craig, 2009; Medford and Critchley, 2010). The question of causality (or even temporal order) between the ANS, the insular cortex, and error awareness is not sufficiently clear as of yet. Particularly, this is because of the fact that necessary lesion studies of the insular cortex are hard to conduct. Ischemic stroke damage that is exclusive to the insula, while leaving the prefrontal cognitive controls areas/circuits intact, is very rare given the layout of the cerebral blood supply. Therefore, it can only be speculated whether the differential autonomic activity, which could be picked up by the interoceptive system, contributes to the emergence of error awareness, or whether the awareness of the error leads to an increased activation of the ANS. Nevertheless, it is theoretically possible that this system is another module coding information of relevance for the access of erroneous information to the global neuronal network.
Interaction between different modules
The information coded in these distinct networks is very different in nature, but can be potentially used by the cognitive system in a cumulative fashion, which could then enable the erroneous quality of an action to exceed a threshold necessary for (access-) conscious report. It is notable that these networks, although distinct in nature, also interact with one another in a way that is relevant to error processing. For example, ERN amplitude/RCZ activity has been shown to predict the amount of error-related remedial processes (for a review, see Danielmeier and Ullsperger, 2011). Such processes are evident in both the motor domain (as indicated by post-error slowing (PES), a relative slowing in reaction times following errors as compared to correct trials), as well as in sensory cortices (evident in the attenuation of task-irrelevant information and amplification of task-relevant information following errors). Both these processes have been found to correlate with preceding activity in the ACC/RCZ (PES: King et al., 2010, post-error regulation of sensory areas: Danielmeier et al., 2011). PES has also been found to be predicted by ERN amplitude on the previous error trial (Debener et al., 2005; Wessel and Ullsperger, 2011). Interestingly, these processes could also be mediated by the GNW (or any other part of the cognitive system that mediates error awareness): in studies that examine the relation between ERN/Pe amplitude and error awareness, PES has been consistently found to be exclusive for aware errors (e.g., Nieuwenhuis et al., 2001; Endrass et al., 2007; Wessel et al., 2011), regardless of whether an ERN effect for error awareness is reported. The same is true (to a lesser extent) for Klein et al. (2007) fMRI study. However, it is also possible that the neuronal processes underlying PES happen in the absence of awareness and are triggered by other factors that coincide with greater error awareness. This is later conjecture is backed up by findings from behavioral studies that find PES in the absence of error awareness (Rabbitt, 2002; Logan and Crump, 2010). The PES—error awareness contingency might be exclusive to the AST (which is the paradigm that was used in all studies that report positive findings, see above), where eye-movements (as opposed to button presses) are the primary response domain, and which has been used in all four studies that report greater PES for reported errors. This can potentially give insights into possible variables that give rise to both error awareness and PES at the same time, without the two themselves having a direct, causal connection: in the AST, as seen before, unreported errors are associated with fewer behavioral evidence (smaller saccade sizes), sensory evidence (faster corrections, i.e., less visual evidence of “having looked in the wrong direction”), and proprioceptive evidence for the erroneousness of the action. This lack of evidence compared to reported errors ostensibly ultimately leads to error blindness on these trials. The same might not necessarily be true for button press paradigms, especially with respect to proprioceptive feedback: compared to an eye-movement, an erroneous button press is associated with stronger proprioceptive feedback, but also with all sorts of other sensory evidence (the auditory “click” of the key, the visual feedback of moving the finger), which is the same across both types of errors, unlike in the AST. These same factors (or a subset of them) could in fact be the variables causing PES. More research on the dynamics of the interaction between the different subsystems that carry error-relevant information is needed in order to answer this question.
The Question of Threshold: all-or-nothing Access and the Role of the Pe
The GNW model postulates access to the GNW as an all-or-nothing process, potentially signified by biological parameters with bimodal distributions, such as the P300 ERP (Dehaene and Changeux, 2004). It has been shown that the P300 does indeed parallel the non-linear properties of subjects’ reports of seeing or not seeing a masked stimulus (Del Cul et al., 2007). It has also long been speculated that the error positivity (Pe) signifies processes comparable to the stimulus-locked P300 (Overbeek et al., 2005). Therefore, it is tempting to speculate that the Pe does indeed signify the activity of the GNW (as the P300 seems to do), and, therefore, the actual expression of error awareness. However, in the recent study by Steinhauser and Yeung (2010), the Pe has been found to be more related to the accumulating stimulus input into the error-awareness decision process than the output. It is an interesting question for future research whether the Pe is an input signal into the GNW, which might represent a combination of the input from the network of processors, or whether it is an output signal, reflecting the categorical “all-or-nothing” access to the GNW. What might potentially help is a distinction between the two different parts of the Pe, the late and early Pe (Overbeek et al., 2005; Endrass et al., 2007). The early Pe seems to be largely correlated with the ERN and might potentially signify the activity of the same underlying cortical generator, as is suggested by studies investigating the ERN using independent-component analysis (ICA, Jutten and Herault, 1991), which qualitatively show intact Pe effects when restricting the data to the independent-components underlying the ERN (Debener et al., 2005; Eichele et al., 2010; Wessel and Ullsperger, 2011). The later parts of the Pe seem to reflect a different process that is potentially closer to an actual expression of error awareness (Endrass et al., 2007), and might, therefore, indeed reflect the process that underlies the stimulus-locked P300 and potentially reflects access to the GNW. An early Pe might, therefore, have the properties that Steinhauser and Yeung (2010) describe, i.e., reflecting the cumulative input of error evidence into the GNW, whereas a later part of the Pe could indeed have the bimodal distribution that would be predicted based on the Pe/p300-equivalency hypothesis and the findings of Del Cul et al. (2007), and signify the actual expression of error awareness. This idea could be tested in future research.
Several predictions from this model, in which the information coded in the network of processors accumulates and is reflected in the amplitude of the Pe, are in line with earlier findings: ERN and Pe amplitude have been found to be significantly correlated on a single-trial level on multiple occasions (e.g., Steinhauser and Yeung, 2010; Hughes and Yeung, 2011). Also, the amplitude of the Pe correlates significantly with skin-conductance changes found following errors (Hajcak et al., 2003), which in turn has been found to be sensitive to subjective error awareness (O’Connell et al., 2007).
Future Directions
There are many different areas in which the field of error awareness research could make headway, which are certainly not all related to the specific role of the ERN. I will outline three major strains of research that could significantly contribute to the advancement of the field of error awareness research. Certainly, several other ideas come to mind, such as the assessment of the role of pre-trial states that influence primary task performance (Aston-Jones and Cohen, 2005; Eichele et al., 2008) with respect to their role in error awareness. In the following, I will focus on three general fields of ideas that are either closely related to the research reviewed in this article, or can be directly applied to the research of the role of the ERN in error awareness.
The Quantification of (Access) Consciousness
As described above, reportability by means of categorical rating procedures is the primarily used index of the degree of “error awareness” on a certain trial.
While this is certainly a valid index of access conscious availability of the accuracy of an action, one could think of more “indirect” quantifications of access consciousness. The issue of reactivity, i.e., interfering with ongoing psychological processes by probing them explicitly, is not as big an issue for the research on error awareness as it is for instance for contingency awareness in implicit learning, where probing explicit memory contents can trigger additional factors that interfere with the processes of interest (cf. Dienes, 2008). However, it is potentially possible that explicitly probing error awareness of every trial alters a generic error monitoring process. Therefore, more indirect measures could be employed. Persaud et al. (2007) recently demonstrated that post-decisional wagering procedures effectively capture awareness of contingencies in an Iowa gambling task. Such measures could be used to get a fine-grain quantification of error awareness as a single-trial measure (e.g., by allowing for a very unconstrained wagering procedure—“Wage anywhere between 1 and 100 cents on your accuracy,” or by having subjects bet on their action outcome in case they report their behavior as “unsure” or “don’t know”). Correlating these measures with ongoing neuronal activity should allow for specific hypothesis testing and should enable researchers to pull apart the exact mechanics of what really drives the emergence of error awareness. Also, these measures could allow for the potential quantification of types of consciousness that are not necessarily captured by overt and explicit rating procedures. Research on metacognitive feelings such as feeling of knowing (Koriat et al., 2006; Koriat, 2007) has shown that there are representations of stimuli/internal states that can be both accurate (i.e., greater than chance level), but not available for overt report, potentially getting at what philosophers called “reflexive” or “interoceptive” consciousness (Block, 2001). Another interesting approach that could certainly help elucidating the factors that contribute to error awareness is the quantification of the neuronal processes of stimulus perception from the mechanisms of error monitoring, as has been done in Woodman (2010). In a philosophical framework, it could be argued that this particular study could successfully disentangle phenomenological consciousness of a stimulus from access consciousness of an error. Further experiments along these lines could also help to elucidate the exact processes that are necessary for the emergence of error awareness.
Methodological Advancements and Single-Trial Hypotheses
All studies reviewed in this article have measured the ERN using the classic averaging method, according to the logic of event-related potential research. As notable exceptions, Steinhauser and Yeung (2010) and Hughes and Yeung (2011) have used functional logistic classification methods to generate spatial filters that dissociate the ERN from other ongoing brain processes in order to obtain single-trial amplitudes, even though the hypotheses tested were limited to the Pe. Advances in signal processing methods have given rise to many different approaches that can be used to study the single trial properties of ERPs like the ERN. This is particularly important because error awareness studies of ERP data oftentimes deal with the problem that many subjects do not have enough unreported errors to warrant a reliable average. Increasing the signal to noise ratio to the point where a single-trial analysis is possible effectively alleviates this situation.
Independent Component Analysis (ICA, Jutten and Herault, 1991) has been successfully used to study single-trial properties of error-related brain potentials (Debener et al., 2005; Eichele et al., 2010; Wessel and Ullsperger, 2011). Many other techniques are available that yield sufficient single-trial signal-to-noise ratios to enable single-trial research on the ERN. Such methods could be used to test hypotheses that are only hardly testable using averaging procedures: does the amplitude of the ERN on a given trial directly affect the accuracy rating (one would need a continuous or at least non-binary quantification of both ERN and access consciousness to answer this question), as, e.g., Scheffers and Coles (2000) results suggest? Is access to the GNW a continuous phenomenon or is it reflected as an all-or-nothing process in the properties of error-related ERPs? ICA (and other blind source separation or functional source separation techniques) would also enable the dissociation of the ERN/early Pe complex and the late Pe, which could then be used for separate hypothesis testing, e.g., about the association between the central nervous correlates of emerging access consciousness and error awareness. Such questions could be answered by exploiting the single-trial amplitudes of error-related ERPs, and could thereby significantly promote research in this field.
Indirect Benchmarks: the Functional Role of Consciousness in Error Processing
Consciousness, in order for it to be an empirically relevant process, needs to serve a certain function, or as Koriat put it:
“Self-controlled processes have measurable effects on behavior. Although […] many cognitive processes, including some that are subsumed under the rubric of executive function, occur outside of consciousness, there is also a recognition that the person is not a mere medium through which information flows.”
(Koriat, 2007, p. 292)
Koch and Tsuchiya (in: Block, 2007) also discuss functional roles of consciousness, and its effects on overt behavior, and summarize:
“Consciousness and (top-down controlled attention) are distinct neurobiological processes with distinct functions.”
(Koch and Tsuchiya, in Block, 2007, p. 509)
An example for executive function in the context of error awareness research that is independent of (access) consciousness is rapid error correction (see above). Yet it has also already been described that some error-related processes, such as PES, coincide with subjective error awareness, at least in certain paradigms (specifically the AST). If it can be proven that there are indeed behavioral markers in the domain of error processing that are causally dependent on subjective error awareness, this would not only give researchers another indirect index for measuring error awareness, but it would also elucidate the mechanism of the emergence of error awareness itself. PES is a potential candidate for such an index, but it has to be systematically examined under which circumstances PES and access consciousness coincide. Other likely candidates such as the attenuation of task-irrelevant activity and amplification of task-relevant activity found following errors (King et al., 2010; Danielmeier et al., 2011) that potentially are highly dependent on top-down attention need to be studied in a context of error awareness, in order to further outline the potential functional role of error awareness in the adaptive regulation of ongoing behavior.
Conclusion
A decade has passed since the first publication of a study on the effects of subjective error awareness on the amplitude of arguably the most prominent index of error-related brain activity, the ERN. A diverse picture emerged in the dozen studies that have been published since that first report, with some studies reporting significantly enlarged ERN amplitudes for reported compared to non-reported errors, and several other studies reporting null effects.
Based on the evidence reviewed and evaluated in this article, it appears safe to conclude that the processes that are reflected in the ERN and the processes involved in the emergence of error awareness are not separate from each other. Whether these processes are linked by a third process that influences both the ERN-underlying process and the emergence of awareness remains to be tested in future studies, and first and foremost needs a definitive identification of the process underlying the ERN. However, it should be evident from central parts of this review that none of the recently proposed factors that have been proposed to explain the differences in ERN amplitude between reported and non-reported errors (e.g. error correction, stimulus misrepresentation) can actually account for these effects.
I propose that the ERN serves as a feed-forward input signal into the systems responsible for error awareness. Alongside the input from many other areas in which error-relevant information is coded, the ultimate emergence of “error awareness” is grounded on the amplitude of this input. This proposition was expressed in terms of a combination of the previously existing AE account of error awareness and a more general model of the mechanisms of emerging access consciousness in the brain. The exact causal and chronological relations should be the focus of future study in this field that combines two of the most exciting areas of research in cognitive neuroscience: cognitive control and the emergence of awareness.
Conflict of Interest Statement
The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Acknowledgments
I would like to acknowledge the work of Dr. Claudia Danielmeier and Dr. Markus Ullsperger on the original study (Wessel et al., 2011), of which I used a subset of data to test the error correction account of the ERN, and for previous discussions about many of the issues presented in this article. This work was partially funded by a grant by the Gertrud Reemtsma Foundation for Brain Research.
Footnotes
- ^This begs the question if it is a valid state of what would commonly be called “consciousness” to begin with, as it appears to be more of a theoretical construct (Rosenthal, 2002).
- ^O’Connell et al. also reported another null-finding with respect to error awareness and ERN amplitude in O’Connell et al. (2009), yet the sample in that study was overlapping with the sample used in O’Connell et al. (2007).
- ^However, as noted by the authors in the discussion, the low number of samples hampers the acceptance of a null-finding in this study. This is especially true since, even despite the low sample size, the significant tendency (p = 0.086, two-sided) would turn into a positive finding if tested in a one-sided fashion [which would be justified in principle, in light of the previous results from flanker studies of error awareness, i.e., Scheffers and Coles (2000) and Maier et al. (2008)].
- ^Nieuwenhuis et al. (2001) show a plot of size and speed of the corrective saccades in their manuscript (Figure 1 therein), depicting corrective saccades in the latency-ranges from 0 to 1200 ms following the response. In the design of their version of the AST [unlike the AST variants employed in Endrass et al. (2007) and Wessel et al. (2011)], a white cross was displayed on the correct side of the screen (opposite of the imperative stimulus) 1000 ms after the onset of the imperative stimulus. Based on RTs of 194 ms and 200 ms for reported and non-reported errors, respectively, this means that on average, the white cross was displayed around the 800 ms mark in their corrective-saccades plot, rendering the saccades following that onset prosaccades to the now-present target rather than spontaneous, endogenous corrections of the error. Given that there are visibly more corrective saccades depicted in these latency ranges in the aware errors, even though there were significantly more non-reported errors on absolute, this speaks in favor of the fact that also in their study, just like in Endrass et al. (2007) and Wessel et al. (2011), there might have been more corrections on non-reported errors than on reported errors.
References
Baars, B. J. (1988). A Cognitive Theory of Consciousness. (Cambridge, UK: Cambridge University Press).
Bayne, T., and Chalmers, D. (2003). “What is the unity of consciousness,” in The Unity of Consciousness: Binding, Integration, and Dissociation, ed A. Cleeremans (Oxford, UK: Oxford University Press), 23–58.
Block, N. (1995). On a confusion about a function of consciousness. Behav. Brain Sci. 18, 227–247.
Block, N. (2007). Consciousness, accessibility, and the mesh between psychology and neuroscience. Behav. Brain Sci. 30, 481–499; discussion 499–548.
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., and Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Chalmers, D. J. (1995). Facing up to the problem of consciousness. J. Conscious. Stud. 2, 200–219.
Coles, M. G., Scheffers, M. K., and Holroyd, C. B. (2001). Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error-processing. Biol. Psychol. 56, 173–189.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., and Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nat. Neurosci. 7, 189–195.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Danielmeier, C., Eichele, T., Forstmann, B. U., Tittgemeyer, M., and Ullsperger, M. (2011). Posterior medial frontal cortex activity predicts post-error adaptations in task-related visual and motor areas. J. Neurosci. 31, 1780–1789.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., Von Cramon, D. Y., and Engel, A. K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J. Neurosci. 25, 11730–11737.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Dehaene, S., Artiges, E., Naccache, L., Martelli, C., Viard, A., Schurhoff, F., Recasens, C., Martinot, M. L., Leboyer, M., and Martinot, J. L. (2003). Conscious and subliminal conflicts in normal subjects and patients with schizophrenia: the role of the anterior cingulate. Proc. Natl. Acad. Sci. U.S.A. 100, 13722–13727.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Dehaene, S., and Changeux, J. (2004). “Neural mechanisms for access to consciousness,” in The Cognitive Neurosciences III, ed M. Gazzaniga (Cambridge, MA: MIT Press).
Dehaene, S., Posner, M. I., and Tucker, D. M. (1994). Localization of a neural system for error-detection and compensation. Psychol. Sci. 5, 303–305.
Dhar, M., Wiersema, J. R., and Pourtois, G. (2011). Cascade of neural events leading from error commission to subsequent awareness revealed using EEG source imaging. PLoS One 6:e19578. doi: 10.1371/journal.pone.0019578
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Eichele, H., Juvodden, H. T., Ullsperger, M., and Eichele, T. (2010). Mal-adaptation of event-related EEG responses preceding performance errors. Front. Hum. Neurosci. 4:65. doi: 10.3389/fnhum.2010.00065
CrossRef Full Text
Eichele, T., Debener, S., Calhoun, V. D., Specht, K., Engel, A. K., Hugdahl, K., von Cramon, D. Y., and Ullsperger, M. (2008). Prediction of human errors by maladaptive changes in event-related brain networks. Proc. Natl. Acad. Sci. U.S.A. 105, 6173–6178.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Endrass, T., Franke, C., and Kathmann, N. (2005). Error awareness in a saccade countermanding task. J. Psychophysiol. 19, 275–280.
Eriksen, B. A., and Eriksen, C. W. (1974). Effects of noise letters upon identification of a target letter in a nonsearch task. Percept. Psychophys. 16, 143–149.
Falkenstein, M., Hohnsbein, J., Hoormann, J., and Blanke, L. (1991). Effects of crossmodal divided attention on late Erp components. 2. Error processing in choice reaction tasks. Electroencephalogr. Clin. Neurophysiol. 78, 447–455.
Pubmed Abstract | Pubmed Full Text
Fodor, J. A. (1985). Precis of the modularity of mind. Behav. Brain Sci. 8, 1–5.
Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., and Donchin, E. (1993). A neural system for error-detection and compensation. Psychol. Sci. 4, 385–390.
Hajcak, G., McDonald, N., and Simons, R. F. (2003). To err is autonomic: error-related brain potentials, ANS activity, and post-error compensatory behavior. Psychophysiology 40, 895–903.
Pubmed Abstract | Pubmed Full Text
Hayden, B. Y., Heilbronner, S. R., Pearson, J. M., and Platt, M. L. (2011). Surprise signals in anterior cingulate cortex: neuronal encoding of unsigned reward prediction errors driving adjustment in behavior. J. Neurosci. 31, 4178–4187.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Hester, R., Foxe, J. J., Molholm, S., Shpaner, M., and Garavan, H. (2005). Neural mechanisms involved in error processing: a comparison of errors made with and without awareness. Neuroimage 27, 602–608.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Hewig, J., Coles, M. G., Trippe, R. H., Hecht, H., and Miltner, W. H. (2011). Dissociation of Pe and ERN/Ne in the conscious recognition of an error. Psychophysiology 48, 1390–1396.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Holroyd, C. B., Dien, J., and Coles, M. G. (1998). Error-related scalp potentials elicited by hand and foot movements: evidence for an output-independent error-processing system in humans. Neurosci. Lett. 242, 65–68.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Jutten, C., and Herault, J. (1991). Blind separation of sources. 1. An adaptive algorithm based on neuromimetic architecture. Signal Process. 24, 1–10.
King, J. A., Korb, F. M., Von Cramon, D. Y., and Ullsperger, M. (2010). Post-error behavioral adjustments are facilitated by activation and suppression of task-relevant and task-irrelevant information processing. J. Neurosci. 30, 12759–12769.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Klein, T. A., Endrass, T., Kathmann, N., Neumann, J., Von Cramon, D. Y., and Ullsperger, M. (2007). Neural correlates of error awareness. Neuroimage 34, 1774–1781.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Koriat, A. (2007). “Metacognition and consciousness,” in The Cambridge Handbook of Consciousness, eds P. D. Zelazo, M. Moscovitch, E. Thompson (Cambridge, UK: Cambridge University press), 289–325.
Koriat, A., Ma’Ayan, H., and Nussinson, R. (2006). The intricate relationships between monitoring and control in metacognition: lessons for the cause-and-effect relation between subjective experience and behavior. J. Exp. Psychol. Gen. 135, 36–69.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Luck, S. J., and Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual-search. Psychophysiology 31, 291–308.
Pubmed Abstract | Pubmed Full Text
Magno, E., Foxe, J. J., Molholm, S., Robertson, I. H., and Garavan, H. (2006). The anterior cingulate and error avoidance. J. Neurosci. 26, 4769–4773.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Maier, M., Steinhauser, M., and Hubner, R. (2008). Is the error-related negativity amplitude related to error detectability? Evidence from effects of different error types. J. Cogn. Neurosci. 20, 2263–2273.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P., and Kok, A. (2001). Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task. Psychophysiology 38, 752–760.
Pubmed Abstract | Pubmed Full Text
O’Connell, R. G., Bellgrove, M. A., Dockree, P. M., Lau, A., Hester, R., Garavan, H., Fitzgerald, M., Foxe, J. J., and Robertson, I. H. (2009). The neural correlates of deficient error awareness in attention-deficit hyperactivity disorder (ADHD). Neuropsychologia 47, 1149–1159.
Pubmed Abstract | Pubmed Full Text
O’Connell, R. G., Dockree, P. M., Bellgrove, M. A., Kelly, S. P., Hester, R., Garavan, H., Robertson, I. H., and Foxe, J. J. (2007). The role of cingulate cortex in the detection of errors with and without awareness: a high-density electrical mapping study. Eur. J. Neurosci. 25, 2571–2579.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Overbeek, T. J. M., Nieuwenhuis, S., and Ridderinkhof, K. R. (2005). Dissociable components of error processing — On the functional significance of the Pe Vis-a-vis the ERN/Ne. J. Psychophysiol. 19, 319–329.
Rabbitt, P. (1967). Time to detect errors as a function of factors affecting choice-response time. Acta Psychol. (Amst.) 27, 131–142.
Pubmed Abstract | Pubmed Full Text
Rodriguez-Fornells, A., Kurzbuch, A. R., and Munte, T. F. (2002). Time course of error detection and correction in humans: neurophysiological evidence. J. Neurosci. 22, 9990–9996.
Pubmed Abstract | Pubmed Full Text
Roger, C., Benar, C. G., Vidal, F., Hasbroucq, T., and Burle, B. (2010). Rostral Cingulate Zone and correct response monitoring: ICA and source localization evidences for the unicity of correct- and error-negativities. Neuroimage 51, 391–403.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Scheffers, M. K., and Coles, M. G. (2000). Performance monitoring in a confusing world: error-related brain activity, judgments of response accuracy, and types of errors. J. Exp. Psychol. Hum. Percept. Perform. 26, 141–151.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Stephan, K. M., Thaut, M. H., Wunderlich, G., Schicks, W., Tian, B., Tellmann, L., Schmitz, T., Herzog, H., McIntosh, G. C., Seitz, R. J., and Homberg, V. (2002). Conscious and subconscious sensorimotor synchronization–prefrontal cortex and the influence of awareness. Neuroimage 15, 345–352.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662.
Ullsperger, M., and von Cramon, D. Y. (2001). Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs. Neuroimage 14, 1387–1401.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Wessel, J. R., Danielmeier, C., and Ullsperger, M. (2011). Error awareness revisited: accumulation of multimodal evidence from central and autonomic nervous systems. J. Cogn. Neurosci. 23, 3021–3036.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Wessel, J. R., and Ullsperger, M. (2011). Selection of independent components representing event-related brain potentials: a data-driven approach for greater objectivity. Neuroimage 54, 2105–2115.
Pubmed Abstract | Pubmed Full Text | CrossRef Full Text
Отрицание, связанное с ошибкой (ERN ), иногда называемое Ne, является компонентом событийного потенциала (ERP). ERP — это электрическая активность в головном мозге, измеренная с помощью электроэнцефалографии (ЭЭГ) и привязанная по времени к внешнему событию (например, предъявлению визуального стимула) или реакции (например, совершенной ошибке). Устойчивый компонент ERN наблюдается после совершения ошибок во время различных задач выбора, даже если участник явно не знает о совершении ошибки; однако в случае неосознанных ошибок ERN уменьшается. ERN также наблюдается, когда нечеловеческие приматы совершают ошибки.
Содержание
- 1 История
- 2 Характеристики компонентов
- 3 Основные парадигмы
- 4 Функциональная чувствительность
- 5 Теория / источник
- 6 Отрицательность, связанная с ошибкой обратной связи
- 7 Клинические применения
- 8 Положительность перед движением
- 9 Положительность, связанная с ошибкой
- 10 См. Также
- 11 Ссылки
История
ERN был впервые открыт в 1968 году российским нейробиологом и психологом Натальей Петровной Бехтеревой и получил название «детектор ошибок». Позже, в 1990 году, ERN была разработана двумя независимыми исследовательскими группами; Майкл Фалькенштейн, Дж. Хонсбейн, Дж. Хорманн и Л. Бланк (1990) из Института физиологии труда и нейрофизиологии в Дортмунде, Германия (который назвал его «Ne»), и В. Дж. «Билл» Геринг, M.G.H. Коулз, Д. Мейер и Э. Дончин (1990) в Мичиганском университете, США. ERN наблюдали в ответ на ошибки, допущенные участниками исследования во время простых задач выбора ответа.
Характеристики компонентов
ERN — это резкий отрицательный сигнал, который начинается примерно в то же время, когда начинается неправильная двигательная реакция (реакция заблокирована связанный с событием потенциал ), и обычно достигает пика через 80–150 миллисекунд (мс) после начала ошибочного ответа (или через 40–80 мс после начала электромиографической активности). ERN является наибольшим в области фронтального и центрального электродов. Типичный метод определения средней амплитуды ERN для индивидуума включает вычисление разницы между пиками в напряжении между средним значением наиболее отрицательных пиков через 1-150 мс после начала реакции и средней амплитудой положительные пики за 100–0 мс до начала ответа. Для оптимального разрешения сигнала опорные электроды обычно размещаются за обоими ушами с использованием аппаратных средств или арифметически связанных мастоидных электродов.
Основные парадигмы
Любая парадигма, в которой допускаются ошибки сделанные во время двигательных реакций, можно использовать для измерения ERN. Естественная клавиатура — один из таких примеров, когда ошибки ввода приводят к выявлению ERN. Самая важная особенность любой парадигмы ERN — получение достаточного количества ошибок в ответах участников, а количество испытаний, необходимых для получения достоверных оценок, может широко варьироваться. В ранних экспериментах по определению компонента использовались различные методы, включая определение слов и тонов, а также категориальное различение (например, следующее за животным?). Тем не менее, большинство экспериментальных парадигм, которые вызывают отклонения ERN, были вариантами Эриксена «Flanker» и «Go / NoGo». Помимо ответов руками, ERN также можно измерить в парадигмах, где задача выполняется ногами или голосовыми ответами, как в парадигме Струпа.
Стандартная задача Фланкера включает отличить центральную «целевую» букву от цепочки отвлекающих «фланкерных» букв, которые ее окружают. Например, на экране компьютера могут отображаться совпадающие цепочки букв, такие как «SSSSS» или «ЧЧЧЧ», и несоответствующие цепочки букв, такие как «ЧЧШЧ» или «SSHSS». Каждой целевой букве будет назначен ответ на нажатие клавиши на клавиатуре, например «S» = правая клавиша Shift и «H» = левая клавиша Shift. Представление каждой цепочки букв краткое, обычно менее 100 мс, и занимает центральное место на экране. У участников есть примерно 2000 мс, чтобы ответить до следующей презентации. Самые простые задачи Go / NoGo включают в себя назначение свойства распознавания для ответа «Go» или не ответа «NoGo». Например, снова совпадающие последовательности букв, такие как «SSSSS» или «HHHHH», и несочетаемые последовательности букв, такие как «HHSHH» или «SSHSS», могут быть представлены на экране компьютера. Участник может быть проинструктирован отвечать, нажимая пробел, только для совпадающих строк и не отвечать, если им представлены несоответствующие строки букв. Однако более сложные задачи Go / NoGo обычно создаются, когда ERN является интересующим компонентом, потому что для наблюдения за устойчивой отрицательностью должны быть сделаны ошибки. Классическая парадигма Струпа включает в себя задачу цветного слова. Цветные слова, такие как «красный, желтый, оранжевый, зеленый», отображаются в центре экрана компьютера либо в цвете, соответствующем слову («красный» в красном цвете), либо в цвете, несовместимом со словом («красный» желтого цвета). Участников могут попросить озвучить цвет, которым написано каждое слово. Неконгруэнтным и совпадающим представлением слов можно управлять с различной степенью, например 25/75, 50/50, 30/70 и т. Д.
Функционально чувствительность
Амплитуда ERN зависит от намерений и мотивации участников. Когда участнику дается указание стремиться к точности ответов, наблюдаемые амплитуды обычно больше, чем когда участникам приказывают стремиться к скорости. Денежные стимулы также обычно приводят к большей амплитуде. Задержка амплитуды пика ERN также может варьироваться у разных субъектов, и это достоверно в особых популяциях, таких как люди с диагнозом СДВГ, которые показывают более короткие задержки. Участники с клинически диагностированным обсессивно-компульсивным расстройством демонстрировали отклонения ERN с повышенной амплитудой, длительным латентным периодом и более задней топографией по сравнению с клинически нормальными участниками. Задержкой ERN манипулировали посредством быстрой обратной связи, при этом участники, получившие быструю обратную связь относительно неправильного ответа, впоследствии показали более короткие пиковые задержки ERN. Кроме того, повышенная амплитуда ERN в социальных ситуациях была связана с симптомами тревоги как в детстве, так и во взрослом возрасте.
Исследования развития показали, что ERN возникает в детстве и подростковом возрасте, становясь более отрицательной по амплитуде и с более определенным пиком.. ERN, по-видимому, модулируется окружающей средой в детстве, при этом дети, которые переживают ранние невзгоды, демонстрируют менее отрицательные амплитуды ERN.
Теория / источник
Хотя трудно локализовать происхождение сигнал ERP, обширные эмпирические исследования показывают, что ERN, скорее всего, генерируется в области передней поясной коры (ACC) мозга. Этот вывод подтверждается фМРТ и исследованиями повреждений головного мозга, а также моделированием дипольных источников. Дорсолатеральная префронтальная кора (DLPFC) также может быть в некоторой степени задействована в генерации ERN, и было обнаружено, что люди с более высоким уровнем «рассеянности» получают ERN больше из этого область. В этой области ведутся споры о том, что отражает ERN (см. Особенно Burle, et al.). Некоторые исследователи утверждают, что ERN генерируется во время обнаружения ошибок или реакции на них. Другие утверждают, что ERN создается в процессе сравнения или в системе мониторинга конфликтов, а не специфичен для ошибок. В отличие от приведенных выше когнитивных теорий, новые модели предполагают, что ERN может отражать мотивационную значимость задачи или, возможно, эмоциональную реакцию на ошибку. Эта более поздняя точка зрения согласуется с выводами, связывающими ошибки и ERN с вегетативным возбуждением и защитными мотивами, а также с выводами, предполагающими, что ERN отделима от когнитивных факторов, но не аффективных.
Отрицательность, связанная с ошибкой обратной связи
Связанный со стимулом потенциал, связанный с событием, также наблюдается после предъявления стимулов отрицательной обратной связи в когнитивной задаче, указывающей на результат ответа, часто называемой ERN обратной связи (fERN). Это привело к тому, что некоторые исследователи расширили счет обнаружения ошибок в ответном ERN (rERN) до общей системы обнаружения ошибок. Эта позиция была переработана в учетную запись обучения с подкреплением для ERN, утверждая, что и rERN, и fERN являются продуктами сигналов ошибки прогнозирования, переносимых дофаминовой системой, поступающих в переднюю поясную извилину, что указывает на то, что события прошли. хуже, чем ожидалось. В этой схеме принято измерять как rERN, так и fERN как разницу в напряжении между правильными и неправильными ответами и обратной связью, соответственно.
Клинические применения
Дебаты о психических расстройствах часто становятся загадкой «курица и яйцо». ERN был предложен в качестве потенциального арбитра в этом аргументе. Ряд эмпирических исследований показал, что ERN отражает различие на уровне «признаков» при обработке индивидуальных ошибок; особенно в отношении тревожности, а не разницы в уровнях «состояния». Например; большинство людей, страдающих депрессией, не испытывают депрессии все время. Вместо этого у них бывают периоды депрессивных «состояний», которые могут быть незначительными и уникальными для экстремальных ситуаций, таких как смерть любимого человека, потеря работы или серьезная травма. Однако человек, имеющий депрессивную «черту», будет испытывать более одного незначительного депрессивного «состояния» и обычно по крайней мере одно большое депрессивное состояние, любое из которых может не быть уникальным для явно экстремальной ситуации. На самом деле, есть некоторые доказательства, хотя и слабые, того, что люди с депрессией показывают маленькие ERN. Ученые изучают возможность использования ERN и других сигналов ERP для выявления людей с риском психических расстройств в надежде на раннее вмешательство. Люди с аддиктивным поведением, таким как курение, алкоголизм и злоупотребление психоактивными веществами, также показали разные реакции ERN по сравнению с людьми без такого же аддиктивного поведения.
Положительность перед перемещением
ERN часто предшествует небольшое положительное отклонение напряжения с задержкой в интервале от -200 до -50 миллисекунд в ERP с блокировкой ответа в каналах по вершина скальпа, которую иногда называют «положительным пиком, предшествующим Ne» или «PNe», но в более общем плане считается, что он отражает положительность перед движением (PMP), описанную Deecke et al. (1969). Считается, что PMP отражает «сигнал движения», с помощью которого пре-SMA и SMA позволяют осуществлять двигательную реакцию. PMP меньше перед ошибочными моторными реакциями, чем перед правильными моторными реакциями, что позволяет предположить, что это может быть важным сигналом для различения ошибочных действий от правильных. Кроме того, PMP меньше у людей, которые совершают больше ошибок во время выполнения задания Flankers, и может иметь клиническое применение в группах населения, подверженных несчастным случаям, таких как молодые люди с СДВГ.
Связанная с ошибкой позитивность
ERN — это часто за которым следует положительность, известная как положительность, связанная с ошибкой, или Pe. Ре является положительным отклонением с центро-теменным распределением. При обнаружении Pe может появиться через 200-500 мсек после неправильного ответа после отрицания ошибки (Ne, ERN), но не во всех испытаниях ошибок. В частности, Pe зависит от осведомленности или способности обнаруживать ошибки. Ре в основном совпадает с волной P300, связанной с сознательными ощущениями. Кроме того, Vocat et al. (2008) установили, что Ne и Pe не только имеют разное топографическое распределение, но и имеют разные генераторы. Локализация источника указывает на то, что Ne имеет диполь в передней поясной коре, а Pe имеет диполь в задней поясной коре. Амплитуда Pe отражает восприятие ошибки, что означает, что при большем осознании ошибки амплитуда Pe будет больше. Фалькенштейн и его коллеги (2000) показали, что Pe выявляется при испытаниях без коррекции и при испытаниях ложных тревог, предполагая, что он не имеет прямого отношения к исправлению ошибок. Таким образом, похоже, что это связано с мониторингом ошибок, хотя и с другими нейронными и когнитивными корнями от связанной с ошибкой обработки, отраженной в Ne.
Если Pe отражает сознательную обработку ошибок, то можно ожидать, что он будет другим для людей с дефицитом мониторинга конфликтов, таких как СДВГ и ОКР. Правда ли это, остается спорным. Некоторые исследования действительно показывают, что эти состояния связаны с различными реакциями на Pe, тогда как другие исследования не воспроизводили эти результаты. Pe также использовался для оценки обработки ошибок у пациентов с тяжелой черепно-мозговой травмой. В исследовании, использующем вариант задачи Струпа, было обнаружено, что пациенты с тяжелой черепно-мозговой травмой, связанной с дефицитом обработки ошибок, показали значительно меньшее значение Pe при испытаниях ошибок по сравнению со здоровым контролем.
См. Также
- Bereitschaftspotential
- C1 и P1
- Условная отрицательная вариация
- Разница из-за памяти
- Ранний левый передний отрицательный
- Поздний положительный компонент
- Латерализованный потенциал готовности
- Отрицательность несоответствия
- N2pc
- N100
- N170
- N200
- N400
- P3a
- P3b
- P200
- P300 (нейробиология)
- P600
- Соматосенсорные вызванные потенциал
- Visual N1
Ссылки
Отрицательность, связанная с ошибкой (ERN), иногда называемый Ne, является составной частью потенциал, связанный с событием (ERP). ERP — это электрическая активность мозга, измеренная через электроэнцефалография (ЭЭГ) и привязаны по времени к внешнему событию (например, предъявлению визуального стимула) или ответу (например, совершению ошибки). Устойчивый компонент ERN наблюдается после совершения ошибок во время различных задач выбора, даже если участник явно не знает о совершении ошибки;[1] однако в случае неосознанных ошибок ERN уменьшается.[2][3] ERN также наблюдается, когда нечеловеческие приматы совершают ошибки.[4]
История
ERN был впервые открыт в 1968 году российским нейробиологом и психологом Натальей Петровной Бехтеревой и получил название «детектор ошибок». Позже, в 1990 году, ERN была разработана двумя независимыми исследовательскими группами; Майкл Фалькенштейн, Дж. Хонсбейн, Дж. Хорманн и Л. Бланк (1990) из Института трудовой физиологии и нейрофизиологии в Дортмунде, Германия (который назвал его «Ne»), и В. Дж. «Билл» Геринг, M.G.H. Коулз, Д. Мейер и Э. Дончин (1990) в Мичиганском университете, США.[5] ERN наблюдали в ответ на ошибки, совершенные участниками исследования во время простых задач выбора ответа.
Характеристики компонентов
ERN — это резкий отрицательный сигнал, который начинается примерно в то же время, когда начинается неправильная двигательная реакция (реакция заблокирована потенциал, связанный с событием ), и обычно достигает пика через 80–150 миллисекунд (мс) после начала ошибочного ответа (или через 40–80 мс после начала электромиографической активности).[6][7][8][9][10][2] ERN является наибольшим в области фронтального и центрального электродов.[2] Типичный метод определения средней амплитуды ERN для человека включает вычисление разницы между пиками в Напряжение между средним значением наиболее отрицательных пиков через 1–150 мс после начала ответа и средней амплитудой положительных пиков за 100–0 мс до начала ответа.[11] Для оптимального разрешения сигнала электроды сравнения обычно размещаются за обоими ушами с использованием оборудования или арифметически связанных сосцевидный отросток электроды.[7]
Основные парадигмы
Любая парадигма, в которой совершаются ошибки во время двигательных реакций, может использоваться для измерения ERN. Естественная клавиатура — один из таких примеров, когда ошибки ввода приводят к выявлению ERN.[12] Самая важная особенность любой парадигмы ERN — получение достаточного количества ошибок в ответах участников, а количество испытаний, необходимых для получения достоверных оценок, может широко варьироваться.[13] В ранних экспериментах по выявлению компонента использовались различные методы, включая определение слов и тонов, а также категориальное различение (например, следующее за животным?).[5][14][15] Однако большинство экспериментальных парадигм, которые вызывают отклонения ERN, были вариантом «фланкера» Эриксена,[11][16] и «Go / NoGo».[17] Помимо ответов руками, ERN также можно измерить в парадигмах, где задача выполняется ногами.[18] или с голосовыми ответами, как в Парадигма Струпа.[19]
Стандарт Фланкер задача включает в себя различение центральной «целевой» буквы из цепочки отвлекающих «фланкерных» букв, которые ее окружают. Например, на экране компьютера могут отображаться совпадающие цепочки букв, такие как «SSSSS» или «ЧЧЧЧ», и несоответствующие цепочки букв, такие как «ЧЧШЧ» или «SSHSS». Каждой целевой букве будет назначен ответ на нажатие клавиши на клавиатуре, например, «S» = правая клавиша Shift и «H» = левая клавиша Shift. Представление каждой цепочки букв краткое, обычно менее 100 мс, и занимает центральное место на экране. У участников есть примерно 2000 мс, чтобы ответить перед следующей презентацией. Наиболее простые задачи Go / NoGo включают в себя назначение свойства различения для ответа «Go» или не ответа «Нет». Например, снова совпадающие последовательности букв, такие как «SSSSS» или «HHHHH», и несочетаемые последовательности букв, такие как «HHSHH» или «SSHSS», могут быть представлены на экране компьютера. Участник может быть проинструктирован отвечать, нажимая пробел, только для совпадающих строк и не отвечать, если им представлены несоответствующие строки букв. Однако более сложные задачи Go / NoGo обычно создаются, когда ERN представляет собой интересующий компонент, потому что для наблюдения за устойчивой отрицательностью должны быть сделаны ошибки. Струп парадигма включает задание цветного слова. Цветные слова, такие как «красный, желтый, оранжевый, зеленый», отображаются в центре экрана компьютера либо в цвете, соответствующем слову («красный» в красном цвете), либо в цвете, несовместимом со словом («красный» желтого цвета). Участников могут попросить озвучить цвет, которым написано каждое слово. Неконгруэнтным и совпадающим представлением слов можно управлять с различной скоростью, например 25/75, 50/50, 30/70 и т. Д.
Функциональная чувствительность
Амплитуда ERN зависит от намерений и мотивации участников. Когда участнику дается указание стремиться к точности ответов, наблюдаемые амплитуды обычно больше, чем когда участников просят стремиться к скорости.[11] Денежные стимулы также обычно приводят к большей амплитуде.[20] Задержка амплитуды пика ERN также может варьироваться между субъектами, и это достоверно в особых популяциях, таких как люди с диагнозом СДВГ, которые показывают более короткие задержки.[21] Участники с клинически диагностированным Обсессивно-компульсивное расстройство продемонстрировали отклонения ERN с повышенной амплитудой, длительным латентным периодом и более задней топографией по сравнению с клинически нормальными участниками.[22][23][24] Задержкой ERN манипулировали с помощью быстрой обратной связи, при этом участники, получившие быструю обратную связь относительно неправильного ответа, впоследствии показали более короткие пиковые задержки ERN.[25] Кроме того, повышенная амплитуда ERN в социальных ситуациях была связана с симптомами тревоги как в детстве, так и во взрослом возрасте.[26][27][28]
Исследования развития показали, что ERN возникает в детстве и подростковом возрасте, становясь более отрицательными по амплитуде и с более выраженным пиком.[29] ERN, по-видимому, модулируется окружающей средой в детстве, при этом дети, которые переживают ранние невзгоды, демонстрируют менее отрицательные амплитуды ERN.[29][30]
Теория / источник
Хотя локализовать происхождение сигнала ERP сложно, обширные эмпирические исследования показывают, что ERN, скорее всего, генерируется в Передняя поясная кора (ACC) область мозга. Этот вывод подтверждается фМРТ,[31][32] исследования поражений головного мозга,[33] а также моделирование дипольного источника.[34] В Дорсолатеральная префронтальная кора (DLPFC) также может в некоторой степени участвовать в генерации ERN, и было обнаружено, что люди с более высоким уровнем «рассеянности» получают свои ERN больше из этого региона.[35][36]В этой области ведутся споры о том, что отражает ERN (см., В частности, Burle, et al.[37]Некоторые исследователи утверждают, что ERN генерируется во время обнаружения ошибок или реакции на них.[38][39] Другие утверждают, что ERN создается в процессе сравнения.[10][37] или система мониторинга конфликтов,[40] и не относится к ошибкам. В отличие от приведенных выше когнитивных теорий, новые модели предполагают, что ERN может отражать мотивационную значимость задачи.[41] или, возможно, эмоциональная реакция на ошибку.[42] Эта более поздняя точка зрения согласуется с выводами, связывающими ошибки и ERN с вегетативным возбуждением.[43] и оборонительные мотивированные состояния,[44] и с выводами, предполагающими, что ERN отделима от когнитивных факторов, но не от аффективных.[42][45]
Связанный с событием потенциал, заблокированный стимулом, также наблюдается после предъявления стимулов отрицательной обратной связи в когнитивной задаче, указывающей на результат ответа, часто называемой ERN обратной связи (fERN).[46] Это привело к тому, что некоторые исследователи расширили учет обнаружения ошибок в ответном ERN (rERN) до общей системы обнаружения ошибок. Эта позиция была развита в системе обучения с подкреплением в ERN, где утверждается, что и rERN, и fERN являются продуктами сигналов ошибки прогнозирования, переносимых дофаминовой системой, поступающей в передняя поясная кора указывает на то, что события пошли хуже, чем ожидалось.[47] В этой схеме принято измерять как rERN, так и fERN как разницу в напряжении между правильными и неправильными ответами и обратной связью, соответственно.
Клинические применения
Споры о психических расстройствах часто превращаются в головоломку «курица и яйцо». ERN был предложен в качестве потенциального арбитра в этом аргументе. Ряд эмпирических исследований показал, что ERN отражает различие на уровне «признаков» при обработке индивидуальных ошибок; особенно в отношении тревожности, а не разницы в уровнях «состояния».[20][48] Например; большинство людей, страдающих депрессией, не испытывают депрессии все время. Вместо этого у них бывают периоды депрессивных «состояний», которые могут быть незначительными и уникальными для экстремальных ситуаций, таких как смерть любимого человека, потеря работы или серьезная травма. Однако человек, имеющий депрессивную «черту», будет испытывать более одного незначительного депрессивного «состояния» и обычно по крайней мере одно большое депрессивное состояние, любое из которых может не быть уникальным для явно экстремальной ситуации.[49] Фактически, есть некоторые доказательства, хотя и слабые, того, что люди с депрессией показывают маленькие ERN.[50][51] Ученые изучают возможность использования ERN и других сигналов ERP для выявления людей, подверженных риску психических расстройств, в надежде на раннее вмешательство. Людям с аддиктивным поведением, например курением,[52] алкоголизм,[53] и злоупотребление психоактивными веществами[48] также показали разные ответы ERN по сравнению с людьми без такого же аддиктивного поведения.
Позитив перед движением
ERN часто предшествует небольшое положительное отклонение напряжения с задержкой в интервале от -200 до -50 миллисекунд в ERP с блокировкой ответа в каналах над вершиной скальпа, что иногда называют «положительным пиком, предшествующим Ne. «или» PNe «,[54] но в более общем плане считается, что он отражает позитивную реакцию перед движением (PMP), описанную Deecke et al. (1969).[55] Считается, что PMP отражает «сигнал движения», с помощью которого пре-SMA и SMA позволяют осуществлять двигательную реакцию.[56] PMP меньше перед ошибочными моторными реакциями, чем перед правильными моторными реакциями, что позволяет предположить, что это может быть важным сигналом для различения ошибочных действий от правильных. Кроме того, PMP меньше у людей, которые делают больше ошибок во время выполнения задания Flankers, и может иметь клиническое применение в группах населения, подверженных несчастным случаям, таких как молодые люди с СДВГ.[57]
За ERN часто следует положительность, известная как положительность, связанная с ошибкой, или Pe. Ре является положительным отклонением с центро-теменным распределением. При обнаружении Pe может появиться через 200-500 мсек после неправильного ответа после отрицания ошибки (Ne, ERN), но не во всех испытаниях ошибок.[10] В частности, Pe зависит от осведомленности или способности обнаруживать ошибки.[1] Pe в основном такой же, как P300 волна, связанная с осознанными ощущениями.[58]:128 Кроме того, Vocat et al. (2008)[59] Установлено, что Ne и Pe не только имеют разные топографические распределения, но и имеют разные генераторы. Локализация источника указывает на то, что Ne имеет диполь в передняя поясная кора а у Pe есть диполь в задняя поясная кора. Амплитуда Pe отражает восприятие ошибки, что означает, что при большем осознании ошибки амплитуда Pe будет больше. Фалькенштейн и его коллеги (2000) показали, что Pe выявляется при испытаниях без коррекции и при испытаниях ложных тревог, предполагая, что он не имеет прямого отношения к исправлению ошибок. Таким образом, похоже, что это связано с мониторингом ошибок, хотя и с другими нейронными и когнитивными корнями от связанной с ошибкой обработки, отраженной в Ne.
Если Pe отражает сознательную обработку ошибок, то можно ожидать, что он будет другим для людей с дефицитом мониторинга конфликтов, таких как СДВГ и ОКР. Правда ли это, остается спорным. Некоторые исследования действительно показывают, что эти состояния связаны с разными реакциями на Pe,[60][61] в то время как другие исследования не воспроизвели эти результаты.[62][63] Pe также использовался для оценки обработки ошибок у пациентов с тяжелой черепно-мозговой травмой. В исследовании, использующем вариант Струп задача было обнаружено, что пациенты с тяжелой черепно-мозговой травмой, связанной с дефицитом обработки ошибок, показали значительно меньшее значение Pe при испытаниях на ошибки по сравнению со здоровым контролем.[64]
Смотрите также
- Bereitschaftspotential
- C1 и P1
- Условное отрицательное изменение
- Разница из-за памяти
- Ранний левый передний негатив
- Поздний положительный компонент
- Боковой потенциал готовности
- Негативность несоответствия
- N2pc
- N100
- N170
- N200
- N400
- P3a
- P3b
- P200
- P300 (нейробиология)
- P600
- Соматосенсорный вызванный потенциал
- Визуальный N1
Рекомендации
- ^ а б Nieuwenhuis S, Ridderinkhof KR, Blom J, Band GP, Kok A (сентябрь 2001 г.). «Связанные с ошибками мозговые потенциалы по-разному связаны с осознанием ошибок ответа: свидетельство антисаккадной задачи». Психофизиология. 38 (5): 752–60. Дои:10.1111/1469-8986.3850752. PMID 11577898.
- ^ а б c Scheffers MK, Coles MG (февраль 2000 г.). «Мониторинг производительности в запутанном мире: активность мозга, связанная с ошибками, оценки точности ответа и типы ошибок». Журнал экспериментальной психологии. Человеческое восприятие и производительность. 26 (1): 141–51. Дои:10.1037/0096-1523.26.1.141. PMID 10696610.
- ^ Вессель-младший (2012). «Осведомленность об ошибках и негативность, связанная с ошибками: оценка доказательств за первое десятилетие». Границы нейробиологии человека. 6: 88. Дои:10.3389 / fnhum.2012.00088. ЧВК 3328124. PMID 22529791.
- ^ Годлав, округ Колумбия, Эмерик Э., Сеговис К.М., Янг М.С., Шалл Д.Д., Вудман Г.Ф. (ноябрь 2011 г.). «Связанные с событием потенциалы, вызванные ошибками во время задачи стоп-сигнала. I. Обезьяны-макаки». Журнал неврологии. 31 (44): 15640–9. Дои:10.1523 / JNEUROSCI.3349-11.2011. ЧВК 3241968. PMID 22049407.
- ^ а б Геринг WJ, Coles M, Meyer D, Donchin E (1990). «Отрицательность, связанная с ошибкой: связанный с событием мозговой потенциал, сопровождающий ошибки». Психофизиология. 27: 34.
- ^ Геринг WJ (1993). Отрицательность, связанная с ошибкой: свидетельство нейронного механизма обработки, связанной с ошибкой (Кандидатская диссертация). Университет Иллинойса в Урбане-Шампейн.
- ^ а б Геринг WJ, Goss B, Coles MG, Meyer DE (1993). «Нейронная система для обнаружения и компенсации ошибок». Психологическая наука. 4 (6): 385–390. Дои:10.1111 / j.1467-9280.1993.tb00586.x.
- ^ Дикман З.В., Аллен Дж. Дж. (Январь 2000 г.). «Мониторинг ошибок во время обучения вознаграждению и избеганию у людей с высоким и низким уровнем социализации». Психофизиология. 37 (1): 43–54. Дои:10.1111/1469-8986.3710043. PMID 10705766.
- ^ Луу П., Флейш Т., Такер Д.М. (январь 2000 г.). «Медиальная лобная кора в мониторинге действия». Журнал неврологии. 20 (1): 464–9. Дои:10.1523 / JNEUROSCI.20-01-00464.2000. ЧВК 6774138. PMID 10627622.
- ^ а б c Falkenstein M, Hoormann J, Christ S, Hohnsbein J (январь 2000 г.). «Компоненты ERP по реагированию на ошибки и их функциональное значение: учебное пособие». Биологическая психология. 51 (2–3): 87–107. CiteSeerX 10.1.1.463.5431. Дои:10.1016 / S0301-0511 (99) 00031-9. PMID 10686361.
- ^ а б c Генч А., Ульспергер П., Ульспергер М. (октябрь 2009 г.). «Диссоциативные медиально-лобные негативности от общей системы мониторинга для само-и внешних неудач в достижении цели». NeuroImage. 47 (4): 2023–30. Дои:10.1016 / j.neuroimage.2009.05.064. PMID 19486945.
- ^ Калфаоглу, Ц; Стаффорд, Т; Милн, Л. (2018). «Фронтальные колебания тета-диапазона предсказывают исправление ошибок и замедление печати после ошибки» (PDF). Журнал экспериментальной психологии: человеческое восприятие и производительность. 44 (1): 69–88. Дои:10.1037 / xhp0000417. PMID 28447844.
- ^ Клейсон, Питер Э. «Модераторы внутренней согласованности оценок негативности, связанной с ошибками: метаанализ оценок внутренней согласованности». Психофизиология. н / д (н / д): e13583. Дои:10.1111 / psyp.13583. ISSN 1469-8986.
- ^ Геринг WJ, Coles MG, Meyer DE, Donchin E (1995). «Мозговое потенциальное проявление обработки, связанной с ошибками». В Karmos G, Molnár M, Csép V, Czigler I, Desmedt JE (ред.). Перспективы исследования событийного потенциала. Приложение 44. Нью-Йорк: Оксфорд. С. 261–272.
- ^ Hohnsbein J, Falkensetin M, Hoormann J (1989). «Обработка ошибок в задачах зрительной и слуховой реакции выбора». Психофизиология. 3: 32.
- ^ Джодо Э., Каяма Й. (июнь 1992 г.). «Связь отрицательного компонента ERP с подавлением реакции в задаче Go / No-go». Электроэнцефалография и клиническая нейрофизиология. 82 (6): 477–82. Дои:10.1016 / 0013-4694 (92) 90054-Л. PMID 1375556.
- ^ Ruchsow M, Spitzer M, Grön G, Grothe J, Kiefer M (июль 2005 г.). «Обработка ошибок и импульсивность в нормальных условиях: свидетельства связанных с событием потенциалов». Исследование мозга. Когнитивные исследования мозга. 24 (2): 317–25. Дои:10.1016 / j.cogbrainres.2005.02.003. PMID 15993769.
- ^ Холройд CB, Dien J, Coles MG (февраль 1998 г.). «Связанные с ошибками потенциалы кожи головы, вызванные движениями рук и ног: свидетельство независимой от результатов системы обработки ошибок у людей». Письма о неврологии. 242 (2): 65–8. Дои:10.1016 / S0304-3940 (98) 00035-4. HDL:1854 / LU-8650250. PMID 9533395.
- ^ Масаки Х., Танака Х., Такасава Н., Ямадзаки К. (июль 2001 г.). «Связанные с ошибками потенциалы мозга, вызванные голосовыми ошибками». NeuroReport. 12 (9): 1851–5. Дои:10.1097/00001756-200107030-00018. PMID 11435911.
- ^ а б Pailing PE, Segalowitz SJ (январь 2004 г.). «Отрицательность, связанная с ошибкой, как показатель состояния и черты характера: мотивация, личность и ERP в ответ на ошибки» (PDF). Психофизиология. 41 (1): 84–95. Дои:10.1111/1469-8986.00124. PMID 14693003.
- ^ Чанг В., Дэвис П.Л., Гэвин В.Дж. (2009). «Мониторинг ошибок у студентов колледжа с синдромом дефицита внимания / гиперактивности». Журнал Психофизиологии. 23 (3): 113–125. Дои:10.1027/0269-8803.23.3.113.
- ^ Йоханнес С., Виринга Б.М., Нагер В., Рада Д., Денглер Р., Эмрих Н.М., Мюнте Т.Ф., Дитрих Д.Е. (ноябрь 2001 г.). «Несоответствующее обнаружение цели и мониторинг действий при обсессивно-компульсивном расстройстве». Психиатрические исследования. 108 (2): 101–10. Дои:10.1016 / S0925-4927 (01) 00117-2. PMID 11738544.
- ^ Ruchsow M, Grön G, Reuter K, Spitzer M, Hermle L, Kiefer M (2005). «Связанная с ошибками мозговая активность у пациентов с обсессивно-компульсивным расстройством и у здоровых людей». Журнал Психофизиологии. 19 (4): 298–304. Дои:10.1027/0269-8803.19.4.298.
- ^ Эндрасс Т., Шюрманн Б., Кауфманн С., Спилберг Р., Книше Р., Катманн Н. (май 2010 г.). «Мониторинг эффективности и значимость ошибок у пациентов с обсессивно-компульсивным расстройством». Биологическая психология. 84 (2): 257–63. Дои:10.1016 / j.biopsycho.2010.02.002. PMID 20152879.
- ^ Fiehler K, Ullsperger M, von Cramon DY (январь 2005 г.). «Электрофизиологические корреляты коррекции ошибок». Психофизиология. 42 (1): 72–82. Дои:10.1111 / j.1469-8986.2005.00265.x. PMID 15720582.
- ^ Баззелл GA, Troller-Renfree SV, Barker TV, Bowman LC, Chronis-Tuscano A, Henderson HA, Kagan J, Pine DS, Fox NA (декабрь 2017 г.). «Нейроповеденческий механизм, связывающий поведенчески заторможенный темперамент и социальную тревогу у подростков». Журнал Американской академии детской и подростковой психиатрии. 56 (12): 1097–1105. Дои:10.1016 / j.jaac.2017.10.007. ЧВК 5975216. PMID 29173744.
- ^ Barker TV, Troller-Renfree SV, Bowman LC, Pine DS, Fox NA (апрель 2018 г.). «Социальное влияние мониторинга ошибок у девочек-подростков». Психофизиология. 55 (9): e13089. Дои:10.1111 / psyp.13089. ЧВК 6113062. PMID 29682751.
- ^ Barker TV, Troller-Renfree S, Pine DS, Fox NA (декабрь 2015 г.). «Индивидуальные различия в социальной тревожности влияют на значимость ошибок в социальных контекстах». Когнитивная, аффективная и поведенческая неврология. 15 (4): 723–35. Дои:10.3758 / s13415-015-0360-9. ЧВК 4641754. PMID 25967929.
- ^ а б Дэвис П.Л., Сегаловиц С.Дж., Гэвин В.Дж. (июнь 2004 г.). «Разработка системы реагирования-мониторинга ERP для детей от 7 до 25 лет». Нейропсихология развития. 25 (3): 355–76. Дои:10.1207 / s15326942dn2503_6. PMID 15148003.
- ^ Troller-Renfree S, Нельсон Калифорния, Зеана СН, Фокс Н.А. (октябрь 2016 г.). «Недостатки в мониторинге ошибок связаны с экстернализацией, но не с интернализацией поведения среди детей с историей помещения в учреждения». Журнал детской психологии и психиатрии и смежных дисциплин. 57 (10): 1145–53. Дои:10.1111 / jcpp.12604. ЧВК 5047056. PMID 27569003.
- ^ Ито С., Ступхорн В., Браун Дж. В., Шалл Дж. Д. (октябрь 2003 г.). «Контроль производительности передней поясной корой во время отмены саккады». Наука. 302 (5642): 120–2. Bibcode:2003Наука … 302..120И. Дои:10.1126 / science.1087847. PMID 14526085.
- ^ Холройд, К. Б., Ньювенхейс, С., Марс, Р. Б., и Коулз, М. Г. Х. (2004). Передняя поясная кора, выбор действия и обработка ошибок. В М. И. Познер (ред.), Когнитивная нейробиология внимания. (стр. 219-231). Нью-Йорк, Нью-Йорк, США: Guilford Press.
- ^ Стеммер Б., Сегаловиц С.Дж., Витцке В., Шенле П.В. (2004). «Обнаружение ошибок у пациентов с поражением медиальной префронтальной коры: исследование ERP». Нейропсихология. 42 (1): 118–30. Дои:10.1016 / с0028-3932 (03) 00121-0. PMID 14615082.
- ^ Дехайн С., Познер М.И., Такер Д.М. (1994). «Локализация нейронной системы для обнаружения и компенсации ошибок». Психологическая наука. 5 (5): 303–305. Дои:10.1111 / j.1467-9280.1994.tb00630.x.
- ^ Hester R, Foxe JJ, Molholm S, Shpaner M, Garavan H (сентябрь 2005 г.). «Нейронные механизмы, участвующие в обработке ошибок: сравнение ошибок, сделанных с осознанием и без осознания». NeuroImage. 27 (3): 602–8. CiteSeerX 10.1.1.688.5110. Дои:10.1016 / j.neuroimage.2005.04.035. HDL:2262/30186. PMID 16024258.
- ^ Рош Р.А., Гараван Х., Фокс Дж.Дж., О’Мара С.М. (январь 2005 г.). «Индивидуальные различия определяют потенциалы, связанные с событием, но не эффективность во время ингибирования реакции». Экспериментальное исследование мозга. 160 (1): 60–70. Дои:10.1007 / s00221-004-1985-z. PMID 15480606.
- ^ а б Берле Б., Роджер С., Аллен С., Видаль Ф., Хасбрук Т. (сентябрь 2008 г.). «Отрицательность ошибок не отражает конфликт: переоценка мониторинга конфликта и активности передней поясной извилины». Журнал когнитивной неврологии. 20 (9): 1637–55. CiteSeerX 10.1.1.471.7640. Дои:10.1162 / jocn.2008.20110. PMID 18345992.
- ^ Бернштейн П.С., Шефферс М.К., Коулз М.Г. (декабрь 1995 г.). ««В чем я ошибся? «Психофизиологический анализ обнаружения ошибок». Журнал экспериментальной психологии. Человеческое восприятие и производительность. 21 (6): 1312–22. Дои:10.1037/0096-1523.21.6.1312. PMID 7490583.
- ^ Coles MG, Scheffers MK, Holroyd CB (июнь 2001 г.). «Почему существует ERN / Ne при правильных испытаниях? Представления ответов, компоненты, связанные со стимулами, и теория обработки ошибок». Биологическая психология. 56 (3): 173–89. Дои:10.1016 / с0301-0511 (01) 00076-х. PMID 11399349.
- ^ Ботвиник М.М., Коэн Д.Д., Картер С.С. (декабрь 2004 г.). «Мониторинг конфликтов и передняя поясная кора: обновление». Тенденции в когнитивных науках. 8 (12): 539–46. CiteSeerX 10.1.1.335.6481. Дои:10.1016 / j.tics.2004.10.003. PMID 15556023.
- ^ Hajcak G, Moser JS, Yeung N, Simons RF (март 2005 г.). «Об ERN и значении ошибок». Психофизиология. 42 (2): 151–60. CiteSeerX 10.1.1.718.1750. Дои:10.1111 / j.1469-8986.2005.00270.x. PMID 15787852.
- ^ а б Инзлихт М., Аль-Хинди Т. (ноябрь 2012 г.). «ERN и плацебо: неверный подход к изучению возбуждающих свойств негативности, связанной с ошибкой». Журнал экспериментальной психологии. Общий. 141 (4): 799–807. Дои:10.1037 / a0027586. PMID 22390264.
- ^ Hajcak G, McDonald N, Simons RF (ноябрь 2003 г.). «Ошибки автономны: связанные с ошибками потенциалы мозга, активность ВНС и компенсаторное поведение после ошибки». Психофизиология. 40 (6): 895–903. CiteSeerX 10.1.1.533.4268. Дои:10.1111/1469-8986.00107. PMID 14986842.
- ^ Хайчак Г., Фоти Д. (февраль 2008 г.). «Ошибки отвратительны: защитная мотивация и отрицательность, связанная с ошибкой». Психологическая наука. 19 (2): 103–8. Дои:10.1111 / j.1467-9280.2008.02053.x. PMID 18271855.
- ^ Bartholow BD, Генри EA, Lust SA, Saults JS, Wood PK (февраль 2012 г.). «Влияние алкоголя на мониторинг и настройку производительности: влияет на модуляцию и нарушение оценочного когнитивного контроля». Журнал аномальной психологии. 121 (1): 173–86. Дои:10.1037 / a0023664. ЧВК 4254813. PMID 21604824.
- ^ Милтнер WH, Браун СН, Коулз М.Г. (ноябрь 1997 г.). «Связанные с событием потенциалы мозга после неправильной обратной связи в задаче оценки времени: свидетельство« общей »нейронной системы для обнаружения ошибок». Журнал когнитивной неврологии. 9 (6): 788–98. Дои:10.1162 / jocn.1997.9.6.788. PMID 23964600.
- ^ Холройд CB, Coles MG (октябрь 2002 г.). «Нейронная основа обработки ошибок человека: обучение с подкреплением, дофамин и негативность, связанная с ошибкой». Психологический обзор. 109 (4): 679–709. CiteSeerX 10.1.1.334.5138. Дои:10.1037 / 0033-295x.109.4.679. PMID 12374324.
- ^ а б Ольвет Д.М., Хаджак Г. (декабрь 2008 г.). «Связанная с ошибкой негативность (ERN) и психопатология: в сторону эндофенотипа». Обзор клинической психологии. 28 (8): 1343–54. Дои:10.1016 / j.cpr.2008.07.003. ЧВК 2615243. PMID 18694617.
- ^ Eaton WW, Shao H, Nestadt G, Lee HB, Lee BH, Bienvenu OJ, Zandi P (май 2008 г.). «Популяционное исследование первого начала и хронизации большого депрессивного расстройства». Архив общей психиатрии. 65 (5): 513–20. Дои:10.1001 / archpsyc.65.5.513. ЧВК 2761826. PMID 18458203.
- ^ Moran, Tim P .; Schroder, Hans S .; Кнайп, Челси; Мозер, Джейсон С. (01.01.2017). «Метаанализ и психофизиология: учебное пособие с использованием депрессии и мониторинга действий, связанных с потенциалом событий». Международный журнал психофизиологии. Строгость и репликация: на пути к совершенствованию лучших практик в психофизиологических исследованиях. 111: 17–32. Дои:10.1016 / j.ijpsycho.2016.07.001. ISSN 0167-8760.
- ^ Клейсон, Питер Э .; Carbine, Kaylie A .; Ларсон, Майкл Дж. (01.04.2020). «Зарегистрированный отчет о негативности, связанной с ошибкой, и положительном отношении к вознаграждению как биомаркеры депрессии: P-Curving доказательства». Международный журнал психофизиологии. 150: 50–72. Дои:10.1016 / j.ijpsycho.2020.01.005. ISSN 0167-8760.
- ^ Франкен И.Х., ван Стриен Дж.В., Куиджперс И. (январь 2010 г.). «Доказательства дефицита приписывания значимости ошибкам курильщиков». Наркотическая и алкогольная зависимость. 106 (2–3): 181–5. Дои:10.1016 / j.drugalcdep.2009.08.014. PMID 19781864.
- ^ Фейн Г., Чанг М. (январь 2008 г.). «Меньшие амплитуды ERN обратной связи во время BART связаны с большей плотностью семейного анамнеза проблем с алкоголем у не лечившихся алкоголиков». Наркотическая и алкогольная зависимость. 92 (1–3): 141–8. Дои:10.1016 / j.drugalcdep.2007.07.017. ЧВК 2430520. PMID 17869027.
- ^ Альбрехт Б., Брейндейс Д., Убель Х., Генрих Х., Мюллер У., Хассельхорн М., Штайнхаузен Х.С., Ротенбергер А., Банашевски Т. (2008). «Мониторинг действий у мальчиков с синдромом дефицита внимания / гиперактивности, их здоровых братьев и сестер и нормальных контрольных субъектов: свидетельство эндофенотипа». Биологическая психиатрия. 64 (7): 615–625. Дои:10.1016 / j.biopsych.2007.12.016. ЧВК 2580803. PMID 18339358.
- ^ Deecke L, Scheid P, Kornhuber H. «Распределение потенциала готовности, положительности перед движением и моторного потенциала коры головного мозга человека перед произвольными движениями пальцев». Экспериментальное исследование мозга. 7: 158–168.
- ^ Бортолетто М, Сарло М, Поли S, Стеганьо Л. (2006). «Положительность перед движением во время самостоятельных движений пальца и рта». NeuroReport. 17 (9): 883–886. Дои:10.1097 / 01.wnr.0000221830.95598.ea. PMID 16738481.
- ^ Беруэлл С., Макейг С., Яконо В., Мэлоун С. (2019). «Снижение позитивности перед движением в течение интервала« стимул-ответ »предшествует ошибкам: использование ERP с однократной пробой и регрессией для понимания дефицита работоспособности при СДВГ». Психофизиология. 56 (9): e13392. Дои:10.1111 / psyp.13392. ЧВК 6699894. PMID 31081153.
- ^ Дехайн, Станислав (2014). Сознание и мозг: расшифровка того, как мозг кодирует наши мысли. Викинг. ISBN 978-0670025435.
- ^ Vocat R, Pourtois G, Vuilleumier P (август 2008 г.). «Неизбежные ошибки: пространственно-временной анализ динамики и нейронных источников вызванных потенциалов, связанных с обработкой ошибок в ускоренной задаче». Нейропсихология. 46 (10): 2545–55. Дои:10.1016 / j.neuropsychologia.2008.04.006. PMID 18533202.
- ^ Herrmann MJ, Saathoff C, Schreppel TJ, Ehlis AC, Scheuerpflug P, Pauli P, Fallgatter AJ (сентябрь 2009 г.). «Влияние симптомов СДВГ на мониторинг производительности в неклинической популяции». Психиатрические исследования. 169 (2): 144–8. Дои:10.1016 / j.psychres.2008.06.015. PMID 19700203.
- ^ Сантессо Д.Л., Сегаловиц С.Дж., Шмидт Л.А. (2006). «Связанные с ошибками электрокортикальные реакции усиливаются у детей с обсессивно-компульсивным поведением». Нейропсихология развития. 29 (3): 431–45. Дои:10.1207 / s15326942dn2903_3. PMID 16671860.
- ^ Wild-Wall N, Oades RD, Schmidt-Wessels M, Christiansen H, Falkenstein M (октябрь 2009 г.). «Нервная активность, связанная с исполнительными функциями у подростков с синдромом дефицита внимания / гиперактивности (СДВГ)». Международный журнал психофизиологии. 74 (1): 19–27. Дои:10.1016 / j.ijpsycho.2009.06.003. PMID 19607863.
- ^ Endrass T, Klawohn J, Schuster F, Kathmann N (2008). «Мониторинг гиперактивности при обсессивно-компульсивном расстройстве: данные ERP на основе правильных и ошибочных реакций». Нейропсихология. 46 (7): 1877–87. Дои:10.1016 / j.neuropsychologia.2007.12.001. PMID 18514679.
- ^ Ларсон MJ, Perlstein WM (октябрь 2009 г.). «Осведомленность о недостатках и обработке ошибок после черепно-мозговой травмы». NeuroReport. 20 (16): 1486–90. Дои:10.1097 / wnr.0b013e32833283fe. PMID 19809369.
Synonyms
Definition
The error-related negativity, or ERN, is an electrical brain signal measured with an electroencephalogram. Detectible at the scalp via the event-related potential (ERP), the ERN occurs when an individual makes a behavioral error. The ERN is typically evoked with simple cognitive tasks when an individual responds incorrectly or responds when a response should be withheld. The ERN manifests as a negative deflection in the ERP at approximately 80–150 ms following error commission, time-locked to an individual’s response. The ERN is largest at central to frontal-central scalp regions. The most likely neural generator of the ERN is the anterior cingulate cortex, with converging evidence coming from fMRI (Ito, Stuphorn, Brown, & Schall, 2003), EEG source modeling (Luu, Tucker, Derryberry, Reed, & Poulsen, 2003), and brain lesion research (Stemmer, Segalowitz, Witzke, & Schönle, 2004).
See Also
References and Readings
-
Ito, S., Stuphorn, V., Brown, J. W., & Schall, J. D. (2003). Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science, 302(5642), 120–122.
CrossRef
PubMedGoogle Scholar
-
Luu, P., Tucker, D. M., Derryberry, D., Reed, M., & Poulsen, C. (2003). Electrophysiological responses to errors and feedback in the process of action regulation. Psychological Science, 14, 47–53.
CrossRef
PubMedGoogle Scholar
-
Stemmer, B., Segalowitz, S. J., Witzke, W., & Schönle, P. W. (2004). Error detection in patients with lesions to the medial prefrontal cortex: An ERP study. Neuropsychologia, 42(1), 118–130.
CrossRef
PubMedGoogle Scholar
Download references
Author information
Authors and Affiliations
-
Developmental Electrophysiology Laboratory, Yale Child Study Center, 230 South Frontage Road, New Haven, CT, 06520, USA
Dr. Michael J. Crowley Ph.D. (Associate Director)
Authors
- Dr. Michael J. Crowley Ph.D.
You can also search for this author in
PubMed Google Scholar
Corresponding author
Correspondence to
Michael J. Crowley Ph.D. .
Editor information
Editors and Affiliations
-
Irving B. Harris Professor of Child Psychiatry, Pediatrics and Psychology Yale University School of Medicine, Chief, Child Psychiatry Children’s Hospital at Yale-New Haven Child Study Center, New Haven, CT, USA
Fred R. Volkmar (Director, Child Study Center) (Director, Child Study Center)
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this entry
Cite this entry
Crowley, M.J. (2013). Error-Related Negativity.
In: Volkmar, F.R. (eds) Encyclopedia of Autism Spectrum Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1698-3_724
Download citation
- .RIS
- .ENW
- .BIB
-
DOI: https://doi.org/10.1007/978-1-4419-1698-3_724
-
Publisher Name: Springer, New York, NY
-
Print ISBN: 978-1-4419-1697-6
-
Online ISBN: 978-1-4419-1698-3
-
eBook Packages: Behavioral ScienceReference Module Humanities and Social Sciences