Error building embree static ray caster committing scene failed

vray зависает на building static raycast accelerator Account is banned Пожизненный бан vray зависает на building static raycast accelerator причём не только рендр но и весь комп приходится перезагружать систему сцена весит 700 м комп мощьный 16 оперативы 8 ядерный я бы не сказал что очень большая сцена но не маленькая что делать как […]

Содержание

  1. vray зависает на building static raycast accelerator
  2. vray зависает на building static raycast accelerator
  3. vray зависает на building static raycast accelerator
  4. помогите пожалуйста решитъ проблему
  5. nariman3d
  6. Локскли
  7. nariman3d
  8. Локскли
  9. Error building embree static ray caster committing scene failed

vray зависает на building static raycast accelerator

Account is banned

Пожизненный бан

vray зависает на building static raycast accelerator причём не только рендр но и весь комп приходится перезагружать систему сцена весит 700 м комп мощьный 16 оперативы 8 ядерный я бы не сказал что очень большая сцена но не маленькая что делать как исправить не могу продолжать работу заранее спасибо

маты збрасывал настройки тоже менял в чём может проблема быть

yura180991

дисплейс и нехватка памяти (если на сермате все ок)

а если выключить все светильники и маты на серый — та же лажа.

Account is banned

Пожизненный бан

у меня 32 и-то периодически сталкиваюсь с проблемой нехватки.зависеть может очень от многих факторов!

Account is banned

Пожизненный бан

Account is banned

Пожизненный бан

да, такая же фигня, но появилась только с последним проектом. Раньше проблем не знал. А сейчас зависает когда на 5, когда на 30 минут, в итоге отвисает и продолжает building static raycast accelerator считать около часа, а потом лайт кэш и так далее. При чем только первый раз, потом все рендеры без building static raycast accelerator проходят.

Мне интересно, почему раньше этого не было? У самого подозрения на #Дисплэйсмент в материалах, раньше его избегал, а тут несколько моделей пришлось с ним оставить. У кого какие мысли?

да. от дисплейсемента такое может быть вполне. Уже видел.

Настройка параметров raycaster settings в свитке System (уменьшить Max. levels, увеличить Min. leaf size, увеличить Face/level coefficient, переключить с Static на Dynamic Default Geometry).

Нет, макс последний стоит.

Я поколупалась еще сама — поменяла несколько материалов из сложных (типа 2сайд или врап) постаралась сделать обычные врей мтл. Мерджнула сцену в новый файл пустой, уменьшила разрешение на 1200*900 (было 1600*1200) соответственно уменьшила значение для лайт кеш. на building static raycast accelerator все равно подвисает, но по крайней мере картинки рендерятся по 2,5 часа а не по 11. но все же для такой не сложной сцены и небольшого разрешения это очень много. Сейас дождусь одной картинки попробую совет через один выше ) и посмотрю.

Источник

vray зависает на building static raycast accelerator

Всем доброго дня! Тоже возникла проблема с зависанием сцены намертво. Зависает при просчете акселератора та часть видов, где есть вид на балкон с кирпичом, сделанным через дисплейс. Вирейдисплейсментмод еще есть на фитопанно. Но даже если его там я отключаю, то ракурсы с балконом все равно не рендерит. Не помог и переход на динамик, не помогла установка лимита в 14 тыс мб (у меня оперативка на 16 гигов). Сейчас решила попробовать дождаться момента, когда сцена все-таки начнется рендериться после просчета акселератора. Потом если что еще попробую покрутить Max. levels, Min. leaf size, Face/level coefficient, как уже кто-то советовал. В противном случае даже не знаю, что делать(((((

Не раз уже в этой ветке обсуждений читала, что отключают дисплейс. Действительно, если отключить в материале злополучного кирпича его, то проблемные ракурсы начинают рендерится. Но, не поняла этот момент — как без дисплейса то. Бампом я кирпич так не продавлю.

Всем доброго дня! Тоже возникла проблема с зависанием сцены намертво. Зависает при просчете акселератора та часть видов, где есть вид на балкон с кирпичом, сделанным через дисплейс. Вирейдисплейсментмод еще есть на фитопанно. Но даже если его там я отключаю, то ракурсы с балконом все равно не рендерит. Не помог и переход на динамик, не помогла установка лимита в 14 тыс мб (у меня оперативка на 16 гигов). Сейчас решила попробовать дождаться момента, когда сцена все-таки начнется рендериться после просчета акселератора. Потом если что еще попробую покрутить Max. levels, Min. leaf size, Face/level coefficient, как уже кто-то советовал. В противном случае даже не знаю, что делать(((((

Не раз уже в этой ветке обсуждений читала, что отключают дисплейс. Действительно, если отключить в материале злополучного кирпича его, то проблемные ракурсы начинают рендерится. Но, не поняла этот момент — как без дисплейса то. Бампом я кирпич так не продавлю.

Для начала обновите VRay на последнюю доступную версию.

Embree не отключайте, только если вы точно знаете что делаете и что настраиваете, если нет — сделаете хуже. В вашем случае Embree не отвечает за Displacement, потому что вы не используете Displacement как статичную геометрию (у вас просто не хватит памяти).Включите Conserve Memory, включите Dynamic на 12000. Conserve memory включает более компактный режим аллокации памяти для треугольников, что поможет сэкономить память, но повлияет на время рендера.

В настройках Displace убедитесь, что используете 3D Displacement и в настройках модификатора в свитке 3D Performance отключен Static Geometry.

После этого меняйте Edge Length — иногда можно установить довольно высокий параметр и получить приемлимый результат.

Ну и стандартные оптимизации — рендерить в VRay Raw Image, конвертировать тяжелую геометрию в VRayProxy,, использовать как можно больше инстансов, если у вас есть геометрия в виде деревьев и т.д. — их можно заменить на тот же ForestPack и расставить вручную, что сэкономит довольно большой объём памяти.

Источник

vray зависает на building static raycast accelerator

Account is banned

Пожизненный бан

тут конечно динамик мемори лимит зависит от вашего ОЗУ. У меня 16 гегов, я вставляю 12 000

спасибо, и мне помог переход на dynamic, больше никаких зависающих акселераторов 🙂 а то я уже замучался.

Даже замедления рендера особо не заметил. А даже если оно и есть, то всё равно это быстрее, чем ждать, пока комп отвиснет через минут 5-10 :/

Настройка параметров raycaster settings в свитке System (уменьшить Max. levels, увеличить Min. leaf size, увеличить Face/level coefficient, переключить с Static на Dynamic Default Geometry).

а если зависает только рендер building light cache то есть комп работает можно закрыть программы, причем просчет building light cache не всегда зависает а когда зависает то нету смысла ждать )

Опачки. не знаю что из этого помогло. поставила динамик, max tree depth с 80 понизила до 70, min leaf size был 0.0 поставила 0,3 ну и face level coef. был 0,3 поставила 0,5.

Начал рендерить как обычно — сразу с лайт кеша, быстро. Спасибо Eugn и всем кто откликнулся

Надеюсь только это не повлияет на результат качества картинки. Вообще не понимаю в чем разница между динамик и статик.

Еще решил проблему так: перенес все содержимое сцены скриптом copy-paste в новый файл, помогло. Проблема появилась после установки новой версии вирея. После переноса объектов все как рукой сняло!

Mne pomoglo tolko Vikluchenie Displacement iz Global Switches

Настройка параметров raycaster settings в свитке System (уменьшить Max. levels, увеличить Min. leaf size, увеличить Face/level coefficient, переключить с Static на Dynamic Default Geometry).

Источник

помогите пожалуйста решитъ проблему

nariman3d

Пользователь сайта

Локскли

Пользователь сайта

nariman3d

Пользователь сайта

Локскли

Пользователь сайта

Сталкивался с подобным. Помогло следуещее:

Есть всего две проблемы, приводящие к вылету макса, в частности с vray. Как правило, они проявляют себя сразу при построении карты геометрии сцены (Binary Space Partitioning или сокращенно BSP tree) в оперативной памяти компьютера. Скорее всего, ты успеваешь еще увидеть, как начинает заполняться ползунок прогресса фазы Building Static Raycast Accelerator, и сцена вылетает.

Это либо баг в сцене, либо просто не хватает оперативной памяти для ее просчета. Когда V-ray начинает строить двоичное дерево, то он либо не может его построить из-за непредвиденной ошибки, либо ему просто не хватает оперативной памяти для этого процесса.

Проверив всю сцену методом исключения, ты проверил ее на баги, то есть на наличие непредвиденных ошибок. Если ни один объект в ней сам по себе не вызывает краш 3ds Max, то тебе следует исключить вторую причину. То есть, более оптимально воспользоваться оперативной памятью.

Проще всего, это перейти во вкладку Settings, развертывающийся свиток V-Ray:: System и найти там опцию Default geometry. Этот параметр отвечает за способ загрузки информации о сцене в оперативную память и соответственно влияет на построение бинарного дерева данных. По умолчанию он установлен Auto, что, при отсутствии в сцене дийплейсмента или прокси объектов, автоматически, во время рендеринга использует способ загрузки Static. Тебе же нужно принудительно установить в Default geometry значение Dynamic. Это позволит V-Ray, при построении бинарного дерева загружать лишь те объекты, которые необходимы для просчета конкретной порции сцены, а не все сразу без разбора.

Источник

Error building embree static ray caster committing scene failed

Новичок

Группа: Пользователи
Сообщений: 2
Регистрация: 29/10/2009
Пользователь №: 73 925

Программа просто закрывается при рендере, на этапе Bulding static raycast accelerator, не выдавая никаких ошибок. Иногда пишет о том что не хватает памяти для рендера.
Заметил что это происходит с файлами размером больше 170мб. Файл 130 мб рендериться нормально. На компьютере 2гб оперативной памяти. Работаю в 3д максе 9 32-bit, рендерю виреем. С чем может быть связана проблема?

п.с. возмоно я написал слишком мало информации, т.к. в первый раз пишу на форуме..

Сообщение отредактировал carton1 — 29/10/2009, 14:41

Рыцарь форума

Группа: Пользователи
Сообщений: 1 834
Регистрация: 16/11/2006
Пользователь №: 40 265

Программа просто закрывается при рендере, на этапе Bulding static raycast accelerator, не выдавая никаких ошибок. Иногда пишет о том что не хватает памяти для рендера.
Заметил что это происходит с файлами размером больше 170мб. Файл 130 мб рендериться нормально. На компьютере 2гб оперативной памяти. Работаю в 3д максе 9 32-bit, рендерю виреем. С чем может быть связана проблема?

п.с. возмоно я написал слишком мало информации, т.к. в первый раз пишу на форуме..

Источник

vray зависает на building static raycast accelerator

Всем доброго дня! Тоже возникла проблема с зависанием сцены намертво. Зависает при просчете акселератора та часть видов, где есть вид на балкон с кирпичом, сделанным через дисплейс. Вирейдисплейсментмод еще есть на фитопанно. Но даже если его там я отключаю, то ракурсы с балконом все равно не рендерит. Не помог и переход на динамик, не помогла установка лимита в 14 тыс мб (у меня оперативка на 16 гигов). Сейчас решила попробовать дождаться момента, когда сцена все-таки начнется рендериться после просчета акселератора. Потом если что еще попробую покрутить Max. levels, Min. leaf size, Face/level coefficient, как уже кто-то советовал. В противном случае даже не знаю, что делать(((((

Не раз уже в этой ветке обсуждений читала, что отключают дисплейс. Действительно, если отключить в материале злополучного кирпича его, то проблемные ракурсы начинают рендерится. Но, не поняла этот момент — как без дисплейса то. Бампом я кирпич так не продавлю.

Всем доброго дня! Тоже возникла проблема с зависанием сцены намертво. Зависает при просчете акселератора та часть видов, где есть вид на балкон с кирпичом, сделанным через дисплейс. Вирейдисплейсментмод еще есть на фитопанно. Но даже если его там я отключаю, то ракурсы с балконом все равно не рендерит. Не помог и переход на динамик, не помогла установка лимита в 14 тыс мб (у меня оперативка на 16 гигов). Сейчас решила попробовать дождаться момента, когда сцена все-таки начнется рендериться после просчета акселератора. Потом если что еще попробую покрутить Max. levels, Min. leaf size, Face/level coefficient, как уже кто-то советовал. В противном случае даже не знаю, что делать(((((

Не раз уже в этой ветке обсуждений читала, что отключают дисплейс. Действительно, если отключить в материале злополучного кирпича его, то проблемные ракурсы начинают рендерится. Но, не поняла этот момент — как без дисплейса то. Бампом я кирпич так не продавлю.

Для начала обновите VRay на последнюю доступную версию.

Embree не отключайте, только если вы точно знаете что делаете и что настраиваете, если нет — сделаете хуже. В вашем случае Embree не отвечает за Displacement, потому что вы не используете Displacement как статичную геометрию (у вас просто не хватит памяти).Включите Conserve Memory, включите Dynamic на 12000. Conserve memory включает более компактный режим аллокации памяти для треугольников, что поможет сэкономить память, но повлияет на время рендера.

В настройках Displace убедитесь, что используете 3D Displacement и в настройках модификатора в свитке 3D Performance отключен Static Geometry.

После этого меняйте Edge Length — иногда можно установить довольно высокий параметр и получить приемлимый результат.

Ну и стандартные оптимизации — рендерить в VRay Raw Image, конвертировать тяжелую геометрию в VRayProxy,, использовать как можно больше инстансов, если у вас есть геометрия в виде деревьев и т.д. — их можно заменить на тот же ForestPack и расставить вручную, что сэкономит довольно большой объём памяти.

Источник

vray зависает на building static raycast accelerator

Account is banned

Пожизненный бан

vray зависает на building static raycast accelerator причём не только рендр но и весь комп приходится перезагружать систему сцена весит 700 м комп мощьный 16 оперативы 8 ядерный я бы не сказал что очень большая сцена но не маленькая что делать как исправить не могу продолжать работу заранее спасибо

маты збрасывал настройки тоже менял в чём может проблема быть

yura180991

дисплейс и нехватка памяти (если на сермате все ок)

а если выключить все светильники и маты на серый — та же лажа.

Account is banned

Пожизненный бан

у меня 32 и-то периодически сталкиваюсь с проблемой нехватки.зависеть может очень от многих факторов!

Account is banned

Пожизненный бан

Account is banned

Пожизненный бан

да, такая же фигня, но появилась только с последним проектом. Раньше проблем не знал. А сейчас зависает когда на 5, когда на 30 минут, в итоге отвисает и продолжает building static raycast accelerator считать около часа, а потом лайт кэш и так далее. При чем только первый раз, потом все рендеры без building static raycast accelerator проходят.

Мне интересно, почему раньше этого не было? У самого подозрения на #Дисплэйсмент в материалах, раньше его избегал, а тут несколько моделей пришлось с ним оставить. У кого какие мысли?

да. от дисплейсемента такое может быть вполне. Уже видел.

Настройка параметров raycaster settings в свитке System (уменьшить Max. levels, увеличить Min. leaf size, увеличить Face/level coefficient, переключить с Static на Dynamic Default Geometry).

Нет, макс последний стоит.

Я поколупалась еще сама — поменяла несколько материалов из сложных (типа 2сайд или врап) постаралась сделать обычные врей мтл. Мерджнула сцену в новый файл пустой, уменьшила разрешение на 1200*900 (было 1600*1200) соответственно уменьшила значение для лайт кеш. на building static raycast accelerator все равно подвисает, но по крайней мере картинки рендерятся по 2,5 часа а не по 11. но все же для такой не сложной сцены и небольшого разрешения это очень много. Сейас дождусь одной картинки попробую совет через один выше ) и посмотрю.

Источник

Проблема с VRay 3.2

Столкнулась недавно с такой вот неприятной проблемой, решение которой никак не могу найти. Ни на одном форуме, русскоязычном или англоязычном, мне не удалось напасть на нечто подобное.

Проблема возникла после установки на 3ds max 2016 рендерера Corona, версия 1.1. Все вроде бы работало нормально, без непонятных косяков, что безумно порадовало, особенно вкупе с положительными моментами самого рендерера, совершенно нового для меня. Одним словом, все прекрасно, за исключением одного.

После многократного тестирования Corona, мне понадобилось перейти на VRay. Все как обычно, во вкладке Assign Renderer ставлю на VRay Adv 3.2, ничего не меняю в стартовых настройках и почти сразу же сталкиваюсь с двумя проблемами:

1. из раздела Cameras >> VRay куда-то пропала VRayPhysicalCamera. В наличии почему-то только VRayDomeCamera.

2. в процессе самого рендеринга все совершенно не как обычно. Скажем, вместо знакомого building static raycast accelerator окно рендера выдает building embree static accelerator. Потом вместо препассов, начинает сразу же Rendering Image, при чем в скобках пишуться какие-то пассы. И завершается рендер на стадии совершенно непотребной, картинка не то что шумная, а скорее просто недорендеренная.

Привожу принтскрины для наглядности.

Если кто-то сможет подсказать что делать, буду очень благодарна за помощь. Кстати, переустановка VRay не помогла.

Источник

Error building embree static ray caster error message

Новичок

Группа: Пользователи
Сообщений: 2
Регистрация: 29/10/2009
Пользователь №: 73 925

Программа просто закрывается при рендере, на этапе Bulding static raycast accelerator, не выдавая никаких ошибок. Иногда пишет о том что не хватает памяти для рендера.
Заметил что это происходит с файлами размером больше 170мб. Файл 130 мб рендериться нормально. На компьютере 2гб оперативной памяти. Работаю в 3д максе 9 32-bit, рендерю виреем. С чем может быть связана проблема?

п.с. возмоно я написал слишком мало информации, т.к. в первый раз пишу на форуме..

Сообщение отредактировал carton1 — 29/10/2009, 14:41

Рыцарь форума

Группа: Пользователи
Сообщений: 1 834
Регистрация: 16/11/2006
Пользователь №: 40 265

Программа просто закрывается при рендере, на этапе Bulding static raycast accelerator, не выдавая никаких ошибок. Иногда пишет о том что не хватает памяти для рендера.
Заметил что это происходит с файлами размером больше 170мб. Файл 130 мб рендериться нормально. На компьютере 2гб оперативной памяти. Работаю в 3д максе 9 32-bit, рендерю виреем. С чем может быть связана проблема?

п.с. возмоно я написал слишком мало информации, т.к. в первый раз пишу на форуме..

Источник

Проблема с VRay 3.2

Столкнулась недавно с такой вот неприятной проблемой, решение которой никак не могу найти. Ни на одном форуме, русскоязычном или англоязычном, мне не удалось напасть на нечто подобное.

Проблема возникла после установки на 3ds max 2016 рендерера Corona, версия 1.1. Все вроде бы работало нормально, без непонятных косяков, что безумно порадовало, особенно вкупе с положительными моментами самого рендерера, совершенно нового для меня. Одним словом, все прекрасно, за исключением одного.

После многократного тестирования Corona, мне понадобилось перейти на VRay. Все как обычно, во вкладке Assign Renderer ставлю на VRay Adv 3.2, ничего не меняю в стартовых настройках и почти сразу же сталкиваюсь с двумя проблемами:

1. из раздела Cameras >> VRay куда-то пропала VRayPhysicalCamera. В наличии почему-то только VRayDomeCamera.

2. в процессе самого рендеринга все совершенно не как обычно. Скажем, вместо знакомого building static raycast accelerator окно рендера выдает building embree static accelerator. Потом вместо препассов, начинает сразу же Rendering Image, при чем в скобках пишуться какие-то пассы. И завершается рендер на стадии совершенно непотребной, картинка не то что шумная, а скорее просто недорендеренная.

Привожу принтскрины для наглядности.

Если кто-то сможет подсказать что делать, буду очень благодарна за помощь. Кстати, переустановка VRay не помогла.

Источник

6 янв 2011

Вопрос в следующем:
При первом просчёте сцены(building static raycast accelerator) винда впадает в ступор на пару минут,загрузка проца и оперативки падает на ноль.Через некоторое время,просчитав,рендер продолжается.При дальнейших рендерах проблем нет,до тех пор пока не открываю сцену заново.В свитке v-ray если поменять с static на dynamic всё гуд.Это происходит в разных сценах ,по-разному,то есть пока не перевалит за определённое кол-во поликов;в одной сцене этот предел 3 ляма,в другой 5.Версии макса и рея разные,геометрия,материалы проверял,(насторйки стандартные)
Windiws 7 x64? i 5 760 Ram-4 gb
Ломаю голову,не могу найти решение!

6 янв 2011

А потому что в статик, у вас геометрия раскладываеца в память сразу вся и в зависимости от face/lvl coef будет занимать больше или меньше памяти (соотвецтвенно и рендер быстрее/медленнее). А в динамик вот вы поставили лимит на 3Гб и больше памяти вирей не откушает. А вот когда память заканчиваеца, система начинает кушать своп. А он медленный. Вот у вас и падает загрузка цп при переносе инфы в своп.

10 янв 2011

Спасибо.Про то что замедляет я в курсе,от того и ставлю статик.Но не на столько что б всё замораживало….
Т.е при первом просчёте building static raycast accelerator ,когда зависает виндовз,при этом просчёт сохраняется ,а при последующем рендере оно считает не заново,а с того места куда сохранило?Этим объясняется ,что 2-ой,3-й…просчёт building static raycast accelerator проходит без ступора? Просто раньше таких косяков не было!Значит докупать память т.к. жертвовать временем не вариант.

10 янв 2011

А с чего вы взяли что не настолько? А фрагментацию диска смотрели? Если у вас своп фрагментирован на 100500% ессна он будет медленный. Вы для начала дефрагментацию проведите (причём сначала полностью своп отключите, прогоните дефрагментацию пару раз прогой типа puran defrag и только потом снова включите пейджфайл), проверьте стало лучше/хуже. Но память докупить всё-же не помешает ибо как показывает практика при average face/leaf=4 на сценах в 3-5кк поликов половина (если не больше) памяти уходит под рейкаст акселератор…

11 янв 2011

Все диски фрагментированы.Спасибо за советы!Но так и не понял от чего «2-ой,3-й…просчёт building static raycast accelerator проходит без ступора? «

First of all thank you very much for your reply

I attached an image of two bodies, a cube and a cylinder put in close contact (pic00.PNG)

I retrieved from the two bodies two .stl meshes, than I used vertices and triangles

definitions for feeding the small code you have seen in my previous post.

The tessellations are internally created by an opencascade class (BRepIncrementalMesher)

and (in case, not in this one) «corrected» , if some degenerate triangle is present

(for complex models this often occurs)

It follows the list of node coordinates (just for showing you that no NaN, of Inf is present)

I plotted as an example the cloud of point for the «cylinder» (pic01.PNG) and draw

a few triangles by hand.

#vertices of «cube» mesh
-50 50 100
-50 50 0
-50 -50 0
-50 -50 100
50 50 100
50 50 0
50 -50 0
50 -50 100

#vectices of «cylinder mesh»
9.32141 23.1972 100
1.06103 24.9775 100
5.26698 24.4389 100
21.8254 12.1924 100
23.5719 8.3285 100
24.6404 4.22502 100
-11.2551 -22.3231 100
-14.8658 -20.0999 100
-18.0489 -17.2985 100
16.5169 18.7668 100
19.4509 15.7055 100
13.1077 21.2882 100
-24.9099 -2.12015 100
-18.0489 17.2985 100
-3.17545 -24.7975 100
-7.32057 -23.9042 100
24.6404 -4.22502 100
-22.7807 -10.2975 100
-24.1933 -6.29945 100
5.26698 -24.4389 100
1.06103 -24.9775 100
16.5169 -18.7668 100
-20.7127 -13.9994 100
9.32141 -23.1972 100
13.1077 -21.2882 100
-22.7807 10.2975 100
-20.7127 13.9994 100
-24.1933 6.29945 100
-24.9099 2.12015 100
19.4509 -15.7055 100
21.8254 -12.1924 100
-11.2551 22.3231 100
-14.8658 20.0999 100
-7.32057 23.9042 100
23.5719 -8.3285 100
-3.17545 24.7975 100
25 0 100
9.32141 23.1972 150
5.26698 24.4389 150
1.06103 24.9775 150
21.8254 12.1924 150
24.6404 4.22502 150
23.5719 8.3285 150
-11.2551 -22.3231 150
-18.0489 -17.2985 150
-14.8658 -20.0999 150
16.5169 18.7668 150
19.4509 15.7055 150
13.1077 21.2882 150
-18.0489 17.2985 150
-24.9099 -2.12015 150
-3.17545 -24.7975 150
-7.32057 -23.9042 150
24.6404 -4.22502 150
-24.1933 -6.29945 150
-22.7807 -10.2975 150
5.26698 -24.4389 150
1.06103 -24.9775 150
16.5169 -18.7668 150
-20.7127 -13.9994 150
9.32141 -23.1972 150
13.1077 -21.2882 150
-20.7127 13.9994 150
-22.7807 10.2975 150
-24.1933 6.29945 150
-24.9099 2.12015 150
19.4509 -15.7055 150
21.8254 -12.1924 150
-11.2551 22.3231 150
-14.8658 20.0999 150
-7.32057 23.9042 150
23.5719 -8.3285 150
-3.17545 24.7975 150
25 0 150

As you suggested I change the code line in which the device is created into

device = rtcNewDevice(«threads=1, verbose=2″);

Actually I do not know exactly if arguments should be separated by comma, but it seems

to work (obviously I tried also   device = rtcNewDevice(«threads=1«), and device = rtcNewDevice(«verbose=2″)

separately).

In the following the log. The code gets stuck @ building BVH8<triangle4v> using avx::BVH8BuilderSAH.

Thank in advance for your support

Regards

Giovanni

Embree Ray Tracing Kernels 3.13.0 (7c53133eb21424f7f0ae1e25bf357e358feaf6ab)

Compiler : Intel Compiler 19.0.8

Build : Release

Platform : Windows (64bit)

CPU : Core Haswell (GenuineIntel)

Threads : 4

ISA : XMM YMM SSE SSE2 SSE3 SSSE3 SSE4.1 SSE4.2 POPCNT AVX F16C RDRAND AVX2 FMA3 LZCNT BMI1 BMI2

Targets : SSE SSE2 SSE3 SSSE3 SSE4.1 SSE4.2 AVX AVXI AVX2

MXCSR : FTZ=1, DAZ=1

Config

Threads : 1

ISA : XMM YMM SSE SSE2 SSE3 SSSE3 SSE4.1 SSE4.2 POPCNT AVX F16C RDRAND AVX2 FMA3 LZCNT BMI1 BMI2

Targets : SSE SSE2 SSE3 SSSE3 SSE4.1 SSE4.2 AVX AVXI AVX2 (supported)

SSE2 SSE4.2 AVX AVX2 AVX512 (compile time enabled)

Features: intersection_filter

Tasking : TBB2021.2 TBB_header_interface_12020 TBB_lib_interface_12020

general:

build threads = 1

build user threads = 0

start_threads = 0

affinity = 0

frequency_level = simd256

hugepages = disabled

verbosity = 2

cache_size = 134.218 MB

max_spatial_split_replications = 1.2

triangles:

accel = default

builder = default

traverser = default

motion blur triangles:

accel = default

builder = default

traverser = default

quads:

accel = default

builder = default

traverser = default

motion blur quads:

accel = default

builder = default

traverser = default

line segments:

accel = default

builder = default

traverser = default

motion blur line segments:

accel = default

builder = default

traverser = default

hair:

accel = default

builder = default

traverser = default

motion blur hair:

accel = default

builder = default

traverser = default

subdivision surfaces:

accel = default

grids:

accel = default

builder = default

motion blur grids:

accel = default

builder = default

object_accel:

min_leaf_size = 1

max_leaf_size = 1

object_accel_mb:

min_leaf_size = 1

max_leaf_size = 1

segments: 0

————————————

flat_linear_curve: 0

round_linear_curve: 0

oriented_linear_curve: 0

flat_bezier_curve: 0

round_bezier_curve: 0

oriented_bezier_curve: 0

flat_bspline_curve: 0

round_bspline_curve: 0

oriented_bspline_curve: 0

flat_hermite_curve: 0

round_hermite_curve: 0

oriented_hermite_curve: 0

flat_catmull_rom_curve: 0

round_catmull_rom_curve: 0

oriented_catmull_rom_curve: 0

triangles: 158

quads: 0

grid: 0

subdivs: 0

sphere: 0

disc: 0

oriented_disc: 0

usergeom: 0

instance_cheap: 0

instance_expensive: 0

building BVH8<triangle4v> using avx::BVH8BuilderSAH …

% Embree: High Performance Ray Tracing Kernels 4.0.0
% Intel Corporation

Intel® Embree Overview

Intel® Embree is a high-performance ray tracing library developed at
Intel, which is released as open source under the Apache 2.0
license. Intel® Embree
supports x86 CPUs under Linux, macOS, and Windows; ARM CPUs on macOS;
as well as Intel® GPUs under Linux and Windows.

Intel® Embree targets graphics application developers to improve the
performance of photo-realistic rendering applications. Embree is
optimized towards production rendering, by putting focus on incoherent
ray performance, high quality acceleration structure construction, a
rich feature set, accurate primitive intersection, and low memory
consumption.

Embree’s feature set includes various primitive types such as
triangles (as well quad and grids for lower memory consumption);
Catmull-Clark subdivision surfaces; various types of curve primitives,
such as flat curves (for distant views), round curves (for closeup
views), and normal oriented curves, all supported with different basis
functions (linear, Bézier, B-spline, Hermite, and Catmull Rom);
point-like primitives, such as ray oriented discs, normal oriented
discs, and spheres; user defined geometries with a procedural
intersection function; multi-level instancing; filter callbacks
invoked for any hit encountered; motion blur including multi-segment
motion blur, deformation blur, and quaternion motion blur; and ray
masking.

Intel® Embree contains ray tracing kernels optimized for the latest
x86 processors with support for SSE, AVX, AVX2, and AVX-512
instructions, and uses runtime code selection to choose between these
kernels. Intel® Embree contains algorithms optimized for incoherent
workloads (e.g. Monte Carlo ray tracing algorithms) and coherent
workloads (e.g. primary visibility and hard shadow rays) as well as
supports for dynamic scenes by implementing high-performance two-level
spatial index structure construction algorithms.

Intel® Embree supports applications written with the Intel® Implicit
SPMD Program Compiler (Intel® ISPC, https://ispc.github.io/) by
providing an ISPC interface to the core ray tracing
algorithms. This makes it possible to write a renderer that
automatically vectorizes and leverages SSE, AVX, AVX2, and AVX-512
instructions.

Intel® Embree supports Intel GPUs through the
SYCL open standard programming
language. SYCL allows to write C++ code that can be run on various
devices, such as CPUs and GPUs. Using Intel® Embree application
developers can write a single source renderer that executes
efficiently on CPUs and GPUs. Maintaining just one code base
this way can significantly improve productivity and eliminate
inconsistencies between a CPU and GPU version of the renderer. Embree
supports GPUs based on the Xe HPG and Xe HPC microarchitecture,
which support hardware accelerated ray tracing do deliver excellent
levels of ray tracing performance.

Supported Platforms

Embree supports Windows (32-bit and 64-bit), Linux (64-bit), and macOS
(64-bit). Under Windows, Linux and macOS x86 based CPUs are supported,
while ARM CPUs are currently only supported under macOS (e.g. Apple
M1). ARM support for Windows and Linux is experimental.

Embree supports Intel GPUs based on the Xe HPG microarchitecture
(Intel® Arc™ GPU) under Linux and Windows and Xe HPC microarchitecture
(Intel® Data Center GPU Flex Series and Intel® Data Center GPU Max
Series) under Linux.

Currently the following products are supported and further products
will get enabled soon:

  • Intel® Arc™ A770 Graphics
  • Intel® Arc™ A750 Graphics
  • Intel® Arc™ A770M Graphics
  • Intel® Arc™ A730M Graphics
  • Intel® Arc™ A550M Graphics

The code compiles with the Intel® Compiler, Intel® oneAPI DPC++
Compiler, GCC, Clang, and the Microsoft Compiler. To use Embree on the
GPU the Intel® oneAPI DPC++ Compiler must be used. Please see section
[Compiling Embree] for details on tested compiler versions.

Embree requires at least an x86 CPU with support for
SSE2 or an Apple M1 CPU.

Embree Support and Contact

If you encounter bugs please report them via Embree’s GitHub Issue
Tracker.

For questions and feature requests please write us at
embree_support@intel.com.

To receive notifications of updates and new features of Embree please
subscribe to the Embree mailing
list.

Installation of Embree

Windows Installation

Embree linked against Visual Studio 2015 are provided as a ZIP file
embree-4.0.0.x64.vc14.windows.zip. After
unpacking this ZIP file, you should set the path to the lib folder
manually to your PATH environment variable for applications to find
Embree.

Linux Installation

The Linux version of Embree is also delivered as a tar.gz file:
embree-4.0.0.x86_64.linux.tar.gz. Unpack
this file using tar and source the provided embree-vars.sh (if you
are using the bash shell) or embree-vars.csh (if you are using the C
shell) to set up the environment properly:

tar xzf embree-4.0.0.x86_64.linux.tar.gz
source embree-4.0.0.x86_64.linux/embree-vars.sh

We recommend adding a relative RPATH to your application that points
to the location where Embree (and TBB) can be found, e.g. $ORIGIN/../lib.

macOS Installation

The macOS version of Embree is also delivered as a ZIP file:
embree-4.0.0.x86_64.macosx.zip. Unpack
this file using tar and source the provided embree-vars.sh (if you
are using the bash shell) or embree-vars.csh (if you are using the C
shell) to set up the environment properly:

unzip embree-4.0.0.x64.macosx.zip    source embree-4.0.0.x64.macosx/embree-vars.sh

If you want to ship Embree with your application, please use the Embree
library of the provided ZIP file. The library name of that Embree
library is of the form @rpath/libembree.4.dylib
(and similar also for the included TBB library). This ensures that you
can add a relative RPATH to your application that points to the location
where Embree (and TBB) can be found, e.g. @loader_path/../lib.

Building Embree Applications

The most convenient way to build an Embree application is through
CMake. Just let CMake find your unpacked Embree package using the
FIND_PACKAGE function inside your CMakeLists.txt file:

 FIND_PACKAGE(embree 4 REQUIRED)

For CMake to properly find Embree you need to set the embree_DIR variable to
the folder containing the embree_config.cmake file. You might also have to
set the TBB_DIR variable to the path containing TBB-config.cmake of a local
TBB install, in case you do not have TBB installed globally on your system,
e.g:

cmake -D embree_DIR=path_to_embree_package/lib/cmake/embree-4.0.0/ 
      -D TBB_DIR=path_to_tbb_package/lib/cmake/tbb/ 
      ..

The FIND_PACKAGE function will create an embree target that
you can add to your target link libraries:

TARGET_LINK_LIBRARIES(application embree)

For a full example on how to build an Embree application please have a
look at the minimal tutorial provided in the src folder of the
Embree package and also the contained README.txt file.

Building Embree SYCL Applications

Building Embree SYCL applications is also best done using
CMake. Please first get some compatible SYCL compiler and setup the
environment as decribed in sections [Linux SYCL Compilation] and
[Windows SYCL Compilation].

Also perform the setup steps from the previous [Building Embree
Applications] section.

Please also have a look at the [Minimal] tutorial that is provided
with the Embree release, for an example how to build a simple SYCL
application using CMake and Embree.

To properly compile your SYCL application you have to add additional
SYCL compile flags for each C++ file that contains SYCL device side
code or kernels as described next.

JIT Compilation

We recommend using just in time compilation (JIT compilation) together
with [SYCL JIT caching] to compile Embree SYCL applications. For JIT
compilation add these options to the compilation phase of all C++
files that contain SYCL code:

-fsycl -Xclang -fsycl-allow-func-ptr -fsycl-targets=spir64

These options enable SYCL two phase compilation (-fsycl option),
enable function pointer support (-Xclang -fsycl-allow-func-ptr
option), and just in time (JIT) compilation only
(-fsycl-targets=spir64 option).

The following link options have to get added to the linking stage of
your application when using just in time compilation:

-fsycl -fsycl-targets=spir64

For a full example on how to build an Embree SYCL application please
have a look at the SYCL version of the minimal tutorial provided in
the src folder of the Embree package and also the contained
README.txt file.

Please have a look at the [Compiling Embree] section on how to create
an Embree package from sources if required.

AOT Compilation

Ahead of time compilation (AOT compilation) allows to speed up first
application start up time as device binaries are precompiled. We do
not recommend using AOT compilation as it does not allow the usage of
specialization constants to reduce code complexity.

For ahead of time compilation add these compile options to the
compilation phase of all C++ files that contain SYCL code:

-fsycl -Xclang -fsycl-allow-func-ptr -fsycl-targets=spir64_gen

These options enable SYCL two phase compilation (-fsycl option),
enable function pointer support (-Xclang -fsycl-allow-func-ptr
option), and ahead of time (AOT) compilation
(-fsycl-targets=spir64_gen option).

The following link options have to get added to the linking stage of
your application when compiling ahead of time for Xe HPG devices:

-fsycl -fsycl-targets=spir64_gen
-Xsycl-target-backend=spir64_gen "-device XE_HPG_CORE"

This in particular configures the devices for AOT compilation to
XE_HPG_CORE.

To get a list of all device supported by AOT compilation look at the
help of the device option in ocloc tool:

Compiling Embree

We recommend using the prebuild Embree packages from
https://github.com/embree/embree/releases. If
you need to compile Embree yourself you need to use CMake as described
in the following.

Do not enable fast-math optimizations in your compiler as this mode is
not supported by Embree.

Linux and macOS

To compile Embree you need a modern C++ compiler that supports
C++11. Embree is tested with the following compilers:

Linux

  • Intel® oneAPI DPC++/C++ Compiler 2023.0.0
  • oneAPI DPC++/C++ Compiler 2022-12-14
  • Clang 5.0.0
  • Clang 4.0.0
  • GCC 10.0.1 (Fedora 32) AVX512 support
  • GCC 8.3.1 (Fedora 28) AVX512 support
  • GCC 7.3.1 (Fedora 27) AVX2 support
  • GCC 7.3.1 (Fedora 26) AVX2 support
  • GCC 6.4.1 (Fedora 25) AVX2 support
  • Intel® Implicit SPMD Program Compiler 1.18.1
  • Intel® Implicit SPMD Program Compiler 1.17.0
  • Intel® Implicit SPMD Program Compiler 1.16.1
  • Intel® Implicit SPMD Program Compiler 1.15.0
  • Intel® Implicit SPMD Program Compiler 1.14.1
  • Intel® Implicit SPMD Program Compiler 1.13.0
  • Intel® Implicit SPMD Program Compiler 1.12.0

macOS x86

  • Intel® C++ Classic Compiler 2023.0.0
  • Apple Clang 12.0.5 (macOS 11.7.1)

macOS M1

  • Apple Clang 12.0.5 (macOS 11.7.1)

Embree supports using the Intel® Threading Building Blocks (TBB) as the
tasking system. For performance and flexibility reasons we recommend
using Embree with the Intel® Threading Building Blocks (TBB) and best
also use TBB inside your application. Optionally you can disable TBB
in Embree through the EMBREE_TASKING_SYSTEM CMake variable.

Embree supports the Intel® Implicit SPMD Program Compiler (Intel® ISPC), which allows
straightforward parallelization of an entire renderer. If you
want to use Intel® ISPC then you can enable EMBREE_ISPC_SUPPORT in
CMake. Download and install the Intel® ISPC binaries from
ispc.github.io. After
installation, put the path to ispc permanently into your PATH environment
variable or you set the EMBREE_ISPC_EXECUTABLE variable to point at the ISPC
executable during CMake configuration.

You additionally have to install CMake 3.1.0 or higher and the developer
version of GLFW version 3.

Under macOS, all these dependencies can be installed
using MacPorts:

sudo port install cmake tbb-devel glfw-devel

Depending on your Linux distribution you can install these dependencies
using yum or apt-get. Some of these packages might already be
installed or might have slightly different names.

Type the following to install the dependencies using yum:

sudo yum install cmake
sudo yum install tbb-devel
sudo yum install glfw-devel

Type the following to install the dependencies using apt-get:

sudo apt-get install cmake-curses-gui
sudo apt-get install libtbb-dev
sudo apt-get install libglfw3-dev

Finally, you can compile Embree using CMake. Create a build directory
inside the Embree root directory and execute ccmake .. inside this
build directory.

mkdir build
cd build
ccmake ..

Per default, CMake will use the compilers specified with the CC and
CXX environment variables. Should you want to use a different
compiler, run cmake first and set the CMAKE_CXX_COMPILER and
CMAKE_C_COMPILER variables to the desired compiler. For example, to
use the Clang compiler instead of the default GCC on most Linux machines
(g++ and gcc), execute

cmake -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang ..

Running ccmake will open a dialog where you can perform various
configurations as described below in [CMake Configuration]. After having
configured Embree, press c (for configure) and g (for generate) to
generate a Makefile and leave the configuration. The code can be
compiled by executing make.

The executables will be generated inside the build folder. We recommend
installing the Embree library and header files on your
system. Therefore set the CMAKE_INSTALL_PREFIX to /usr in cmake
and type:

If you keep the default CMAKE_INSTALL_PREFIX of /usr/local then
you have to make sure the path /usr/local/lib is in your
LD_LIBRARY_PATH.

You can also uninstall Embree again by executing:

You can also create an Embree package using the following command:

Please see the [Building Embree Applications] section on how to build
your application with such an Embree package.

Linux SYCL Compilation

There are two options to compile Embree with SYCL support:
The open source «oneAPI DPC++ Compiler» or
the «Intel(R) oneAPI DPC++/C++ Compiler».
Other SYCL compilers are not supported.

The «oneAPI DPC++ Compiler» is more up-to-date than the «Intel(R) oneAPI
DPC++/C++ Compiler» but less stable. The current tested version of the «oneAPI
DPC++ compiler is

  • oneAPI DPC++ Compiler 2022-12-14

The compiler can be downloaded and simply extracted. The oneAPI DPC++ compiler
2022-12-14 can be set up executing the following command in a Linux (bash)
shell:

wget https://github.com/intel/llvm/releases/download/sycl-nightly%2F20221214/dpcpp-compiler.tar.gz
tar xzf dpcpp-compiler.tar.gz
source ./dpcpp_compiler/startup.sh

The startup.sh script will put clang++ and clang from the
oneAPI DPC++ Compiler into your path.

Please also install all Linux packages described in the previous
section.

Now, you can configure Embree using CMake by executing the following command
in the Embree root directory:

cmake -B build 
      -DCMAKE_CXX_COMPILER=clang++ 
      -DCMAKE_C_COMPILER=clang 
      -DEMBREE_SYCL_SUPPORT=ON

This will create a directory build to use as the CMake build directory,
configure the usage of the oneAPI DPC++ Compiler, and turn on SYCL support
through EMBREE_SYCL_SUPPORT=ON.

Alternatively, you can download and run the installer of the

  • Intel(R) oneAPI DPC++/C++ Compiler 2023.0.0.

After installation, you can set up the compiler by sourcing the
vars.sh script in the env directory of the compiler install directory, for example,

source /opt/intel/oneAPI/compiler/2023.0.0/env/vars.sh

This script will put the icpx and icx compiler executables from the
Intel(R) oneAPI DPC++/C++ Compiler in your path.

Now, you can configure Embree using CMake by executing the following command
in the Embree root directory:

cmake -B build 
      -DCMAKE_CXX_COMPILER=icpx 
      -DCMAKE_C_COMPILER=icx 
      -DEMBREE_SYCL_SUPPORT=ON

More information about setting up the Intel(R) oneAPI DPC++/C++ compiler can be
found in the Development Reference Guide. Please note, that the Intel(R) oneAPI DPC++/C++ compiler
requires at least CMake version 3.20.5 on Linux.

Independent of the DPC++ compiler choice, you can now build Embree using

The executables will be generated inside the build folder. The
executable names of the SYCL versions of the tutorials end with
_sycl.

Linux Graphics Driver Installation

To run the SYCL code you need to install the latest GPGPU drivers for
your Intel Xe HPG/HPC GPUs from here
https://dgpu-docs.intel.com/. Follow
the driver installation instructions for your graphics card and
operating system.

We tested Embree with the latest GPGPU driver Devel Release from
20220809. The Intel(R) Graphics Compute Runtime for oneAPI Level Zero
and OpenCL(TM) Driver from that release is too old for Embree to work
properly. Thus if no newer version of the GPGPU driver is available,
you need to additionally install the latest compute runtime from here
22.43.24595.

Unfortunately, these compute runtime packages are only available for
Ubuntu 22.04. You can also install a newer version of the compute
runtime if available.

Windows

Embree is tested using the following compilers under Windows:

  • Intel® oneAPI DPC++/C++ Compiler 2023.0.0
  • oneAPI DPC++/C++ Compiler 2022-12-14
  • Visual Studio 2019
  • Visual Studio 2017
  • Visual Studio 2015 (Update 1)
  • Intel® Implicit SPMD Program Compiler 1.18.1
  • Intel® Implicit SPMD Program Compiler 1.17.0
  • Intel® Implicit SPMD Program Compiler 1.16.1
  • Intel® Implicit SPMD Program Compiler 1.15.0
  • Intel® Implicit SPMD Program Compiler 1.14.1
  • Intel® Implicit SPMD Program Compiler 1.13.0
  • Intel® Implicit SPMD Program Compiler 1.12.0

To compile Embree for AVX-512 you have to use the Intel® Compiler.

Embree supports using the Intel® Threading Building Blocks (TBB) as the
tasking system. For performance and flexibility reasons we recommend
using use Embree with the Intel® Threading Building Blocks (TBB) and best
also use TBB inside your application. Optionally you can disable TBB
in Embree through the EMBREE_TASKING_SYSTEM CMake variable.

Embree will either find the Intel® Threading Building Blocks (TBB)
installation that comes with the Intel® Compiler, or you can install the
binary distribution of TBB directly from
https://github.com/oneapi-src/oneTBB/releases
into a folder named tbb into your Embree root directory. You also have
to make sure that the libraries tbb.dll and tbb_malloc.dll can be
found when executing your Embree applications, e.g. by putting the path
to these libraries into your PATH environment variable.

Embree supports the Intel® Implicit SPMD Program Compiler (Intel® ISPC), which
allows straightforward parallelization of an entire renderer. When installing
Intel® ISPC, make sure to download an Intel® ISPC version from
ispc.github.io that is compatible with
your Visual Studio version. After installation, put the path to ispc.exe
permanently into your PATH environment variable or you need to correctly set
the EMBREE_ISPC_EXECUTABLE variable during CMake configuration to point to
the ISPC executable. If you want to use Intel® ISPC, you have to enable
EMBREE_ISPC_SUPPORT in CMake.

You additionally have to install CMake
(version 3.1 or higher). Note that you need a native Windows CMake
installation because CMake under Cygwin cannot generate solution files
for Visual Studio.

Using the IDE

Run cmake-gui, browse to the Embree sources, set the build directory
and click Configure. Now you can select the Generator, e.g. «Visual
Studio 12 2013» for a 32-bit build or «Visual Studio 12 2013 Win64»
for a 64-bit build.

To use a different compiler than the Microsoft Visual C++ compiler, you
additionally need to specify the proper compiler toolset through the
option «Optional toolset to use (-T parameter)». E.g. to use Clang for
compilation set the toolset to «LLVM_v142».

Do not change the toolset manually in a solution file (neither through
the project properties dialog nor through the «Use Intel Compiler»
project context menu), because then some compiler-specific command line
options cannot be set by CMake.

Most configuration parameters described in the [CMake Configuration]
can be set under Windows as well. Finally, click «Generate» to create
the Visual Studio solution files.

The following CMake options are only available under Windows:

  • CMAKE_CONFIGURATION_TYPE: List of generated
    configurations. The default value is Debug;Release;RelWithDebInfo.

  • USE_STATIC_RUNTIME: Use the static version of the C/C++ runtime
    library. This option is turned OFF by default.

Use the generated Visual Studio solution file embree4.sln to compile
the project.

We recommend enabling syntax highlighting for the .ispc source and
.isph header files. To do so open Visual Studio, go to Tools ⇒
Options ⇒ Text Editor ⇒ File Extension and add the isph and ispc
extensions for the «Microsoft Visual C++» editor.

Using the Command Line

Embree can also be configured and built without the IDE using the Visual
Studio command prompt:

cd pathtoembree
mkdir build
cd build
cmake -G "Visual Studio 16 2019" ..
cmake --build . --config Release

You can also build only some projects with the --target switch.
Additional parameters after «--» will be passed to msbuild. For
example, to build the Embree library in parallel use

cmake --build . --config Release --target embree -- /m

Building Embree — Using vcpkg

You can download and install Embree using the vcpkg dependency manager:

git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.sh
./vcpkg integrate install
./vcpkg install embree3

The Embree port in vcpkg is kept up to date by Microsoft team members
and community contributors. If the version is out of date, please
create an issue or pull request
on the vcpkg repository.

Windows SYCL Compilation

There are two options to compile Embree with SYCL support:
The open source «oneAPI DPC++ Compiler» or
the «Intel(R) oneAPI DPC++/C++ Compiler».
Other SYCL compilers are not supported. You will also need an installed version
of Visual Studio that supports the C++17 standard, e.g. Visual Studio 2019.

The «oneAPI DPC++ Compiler» is more up-to-date than the «Intel(R) oneAPI
DPC++/C++ Compiler» but less stable. The current tested version of the oneAPI
DPC++ compiler is

  • oneAPI DPC++ Compiler 2022-12-14

Download and unpack the archive and open the «x64 Native Tools Command Prompt»
of Visual Studio and execute the following lines to properly configure the
environment to use the oneAPI DPC++ compiler:

set "DPCPP_DIR=path_to_dpcpp_compiler"
set "PATH=%DPCPP_DIR%bin;%PATH%"
set "PATH=%DPCPP_DIR%lib;%PATH%"
set "CPATH=%DPCPP_DIR%include;%CPATH%"
set "INCLUDE=%DPCPP_DIR%include;%INCLUDE%"
set "LIB=%DPCPP_DIR%lib;%LIB%"

The path_to_dpcpp_compiler should point to the unpacked oneAPI DPC++
compiler.

Now, you can configure Embree using CMake by executing the following command
in the Embree root directory:

cmake -B build
      -G Ninja
      -D CMAKE_BUILD_TYPE=Release
      -D CMAKE_CXX_COMPILER=clang++
      -D CMAKE_C_COMPILER=clang
      -D EMBREE_SYCL_SUPPORT=ON
      -D TBB_ROOT=path_to_tbblibcmaketbb

This will create a directory build to use as the CMake build directory, and
configure a release build that uses clang++ and clang from the oneAPI DPC++
compiler.

The Ninja generator is currently the easiest way to
use the oneAPI DPC++ compiler.

We also enable SYCL support in Embree using the EMBREE_SYCL_SUPPORT CMake
option.

Alternatively, you can download and run the installer of the

  • Intel(R) oneAPI DPC++/C++ Compiler 2023.0.0.

After installation, you can either open a regular Command Prompt and execute
the vars.bat script in the env directory of the compiler install directory,
for example

C:Program Files (x86)InteloneAPIcompiler2023.0.0envvars.bat

or simply open the installed «Intel oneAPI command prompt for Intel 64 for Visual Studio».

Both ways will put the icx compiler executable from the
Intel(R) oneAPI DPC++/C++ compiler in your path.

Now, you can configure Embree using CMake by executing the following command
in the Embree root directory:

cmake -B build
      -G Ninja
      -D CMAKE_BUILD_TYPE=Release
      -D CMAKE_CXX_COMPILER=icx
      -D CMAKE_C_COMPILER=icx
      -D EMBREE_SYCL_SUPPORT=ON
      -D TBB_ROOT=path_to_tbblibcmaketbb

More information about setting up the Intel(R) oneAPI DPC++/C++ compiler can be
found in the Development Reference Guide. Please note, that the Intel(R) oneAPI DPC++/C++ compiler
requires at least CMake version 3.23 on Windows.

Independent of the DPC++ compiler choice, you can now build Embree using

If you have problems with Ninja re-running CMake in an infinite loop,
then first remove the «Re-run CMake if any of its inputs changed.»
section from the build.ninja file and run the above command again.

You can also create an Embree package using the following command:

cmake --build build --target package

Please see the [Building Embree SYCL Applications] section on how to build
your application with such an Embree package.

Windows Graphics Driver Installation

In order to run the SYCL tutorials on HPG hardware, you first need to
install the proper graphics drivers for your graphics card from
https://www.intel.com. Embree will work with
graphics driver version 101.4027 or later.

CMake Configuration

The default CMake configuration in the configuration dialog should be
appropriate for most usages. The following list describes all
parameters that can be configured in CMake:

  • CMAKE_BUILD_TYPE: Can be used to switch between Debug mode
    (Debug), Release mode (Release) (default), and Release mode with
    enabled assertions and debug symbols (RelWithDebInfo).

  • EMBREE_STACK_PROTECTOR: Enables protection of return address
    from buffer overwrites. This option is OFF by default.

  • EMBREE_ISPC_SUPPORT: Enables Intel® ISPC support of Embree. This option
    is OFF by default.

  • EMBREE_SYCL_SUPPORT: Enables GPU support using SYCL. When this
    option is enabled you have to use some DPC++ compiler. Please see
    the sections [Linux SYCL Compilation] and [Windows SYCL Compilation]
    on supported DPC++ compilers. This option is OFF by default.

  • EMBREE_SYCL_AOT_DEVICES: Selects a list of GPU devices for
    ahead-of-time (AOT) compilation of device code. Possible values are
    either, «none» which enables only just in time (JIT) compilation, or
    a list of the Embree-supported Xe GPUs for AOT compilation:

    • XE_HPG_CORE : Xe HPG devices
    • XE_HPC_CORE : Xe HPC devices

    One can also specify multiple devices separated by comma to
    compile ahead of time for multiple devices,
    e.g. «XE_HPG_CORE,XE_HP_CORE». When enabling AOT compilation for one
    or multiple devices, JIT compilation will always additionally be
    enabled in case the code is executed on a device no code is
    precompiled for.

    Execute «ocloc compile —help» for more details of possible devices
    to pass. Embree is only supported on Xe HPG/HPC and newer devices.

    Per default, this option is set to «none» to enable JIT
    compilation. We recommend using JIT compilation as this enables the
    use of specialization constants to reduce code complexity.

  • EMBREE_STATIC_LIB: Builds Embree as a static library (OFF by
    default). Further multiple static libraries are generated for the
    different ISAs selected (e.g. embree4.a, embree4_sse42.a,
    embree4_avx.a, embree4_avx2.a, embree4_avx512.a). You have
    to link these libraries in exactly this order of increasing ISA.

  • EMBREE_API_NAMESPACE: Specifies a namespace name to put all Embree
    API symbols inside. By default, no namespace is used and plain C symbols
    are exported.

  • EMBREE_LIBRARY_NAME: Specifies the name of the Embree library file
    created. By default, the name embree4 is used.

  • EMBREE_IGNORE_CMAKE_CXX_FLAGS: When enabled, Embree ignores
    default CMAKE_CXX_FLAGS. This option is turned ON by default.

  • EMBREE_TUTORIALS: Enables build of Embree tutorials (default ON).

  • EMBREE_BACKFACE_CULLING: Enables backface culling, i.e. only
    surfaces facing a ray can be hit. This option is turned OFF by
    default.

  • EMBREE_COMPACT_POLYS: Enables compact tris/quads, i.e. only
    geomIDs and primIDs are stored inside the leaf nodes.

  • EMBREE_FILTER_FUNCTION: Enables the intersection filter function
    feature (ON by default).

  • EMBREE_RAY_MASK: Enables the ray masking feature (OFF by default).

  • EMBREE_RAY_PACKETS: Enables ray packet traversal kernels. This
    feature is turned ON by default. When turned on packet traversal is
    used internally and packets passed to rtcIntersect4/8/16 are kept
    intact in callbacks (when the ISA of appropriate width is enabled).

  • EMBREE_IGNORE_INVALID_RAYS: Makes code robust against the risk of
    full-tree traversals caused by invalid rays (e.g. rays containing
    INF/NaN as origins). This option is turned OFF by default.

  • EMBREE_TASKING_SYSTEM: Chooses between Intel® Threading TBB
    Building Blocks (TBB), Parallel Patterns Library (PPL) (Windows
    only), or an internal tasking system (INTERNAL). By default, TBB is
    used.

  • EMBREE_TBB_ROOT: If Intel® Threading Building Blocks (TBB)
    is used as a tasking system, search the library in this directory
    tree.

  • EMBREE_TBB_COMPONENT: The component/library name of Intel® Threading
    Building Blocks (TBB). Embree searches for this library name (default: tbb)
    when TBB is used as the tasking system.

  • EMBREE_TBB_POSTFIX: If Intel® Threading Building Blocks (TBB)
    is used as a tasking system, link to tbb<EMBREE_TBB_POSTFIX>.(so,dll,lib).
    Defaults to the empty string.

  • EMBREE_TBB_DEBUG_ROOT: If Intel® Threading Building Blocks (TBB)
    is used as a tasking system, search the library in this directory
    tree in Debug mode. Defaults to EMBREE_TBB_ROOT.

  • EMBREE_TBB_DEBUG_POSTFIX: If Intel® Threading Building Blocks (TBB)
    is used as a tasking system, link to tbb<EMBREE_TBB_DEBUG_POSTFIX>.(so,dll,lib)
    in Debug mode. Defaults to «_debug».

  • EMBREE_MAX_ISA: Select highest supported ISA (SSE2, SSE4.2, AVX,
    AVX2, AVX512, or NONE). When set to NONE the
    EMBREE_ISA_* variables can be used to enable ISAs individually. By
    default, the option is set to AVX2.

  • EMBREE_ISA_SSE2: Enables SSE2 when EMBREE_MAX_ISA is set to
    NONE. By default, this option is turned OFF.

  • EMBREE_ISA_SSE42: Enables SSE4.2 when EMBREE_MAX_ISA is set to
    NONE. By default, this option is turned OFF.

  • EMBREE_ISA_AVX: Enables AVX when EMBREE_MAX_ISA is set to NONE. By
    default, this option is turned OFF.

  • EMBREE_ISA_AVX2: Enables AVX2 when EMBREE_MAX_ISA is set to
    NONE. By default, this option is turned OFF.

  • EMBREE_ISA_AVX512: Enables AVX-512 for Skylake when
    EMBREE_MAX_ISA is set to NONE. By default, this option is turned OFF.

  • EMBREE_GEOMETRY_TRIANGLE: Enables support for triangle geometries
    (ON by default).

  • EMBREE_GEOMETRY_QUAD: Enables support for quad geometries (ON by
    default).

  • EMBREE_GEOMETRY_CURVE: Enables support for curve geometries (ON by
    default).

  • EMBREE_GEOMETRY_SUBDIVISION: Enables support for subdivision
    geometries (ON by default).

  • EMBREE_GEOMETRY_INSTANCE: Enables support for instances (ON by
    default).

  • EMBREE_GEOMETRY_USER: Enables support for user-defined geometries
    (ON by default).

  • EMBREE_GEOMETRY_POINT: Enables support for point geometries
    (ON by default).

  • EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR: Specifies a
    factor that controls the self-intersection avoidance feature for flat
    curves. Flat curve intersections which are closer than
    curve_radius*EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR to
    the ray origin are ignored. A value of 0.0f disables self-intersection
    avoidance while 2.0f is the default value.

  • EMBREE_DISC_POINT_SELF_INTERSECTION_AVOIDANCE: Enables self-intersection
    avoidance for RTC_GEOMETRY_TYPE_DISC_POINT geometry type (ON by default).
    When enabled intersections are skipped if the ray origin lies inside the
    sphere defined by the point primitive.

  • EMBREE_MIN_WIDTH: Enabled the min-width feature, which allows
    increasing the radius of curves and points to match some amount of
    pixels. See [rtcSetGeometryMaxRadiusScale] for more details.

  • EMBREE_MAX_INSTANCE_LEVEL_COUNT: Specifies the maximum number of nested
    instance levels. Should be greater than 0; the default value is 1.
    Instances nested any deeper than this value will silently disappear in
    release mode, and cause assertions in debug mode.

Embree API

The Embree API is a low-level C99 ray tracing API which can be used to
build spatial index structures for 3D scenes and perform ray queries of
different types.

The API can get used on the CPU using standard C, C++, and ISPC code
and Intel GPUs by using SYCL code.

The Intel® Implicit SPMD Program Compiler (Intel® ISPC) version of the
API, is almost identical to the standard C99 version, but contains
additional functions that operate on ray packets with a size of the
native SIMD width used by Intel® ISPC.

The SYCL version of the API is also mostly identical to the C99 version
of the API, with some exceptions listed in section [Embree SYCL API].

For simplicity this document refers to the C99 version of the API
functions. For changes when upgrading from the Embree 3 to the current
Embree 4 API see Section [Upgrading from Embree 3 to Embree 4].

All API calls carry the prefix rtc (or RTC for types) which stands
for ray tracing core. The API supports scenes consisting of
different geometry types such as triangle meshes, quad meshes (triangle
pairs), grid meshes, flat curves, round curves, oriented curves,
subdivision meshes, instances, and user-defined geometries. See Section
Scene Object for more information.

Finding the closest hit of a ray segment with the scene
(rtcIntersect-type functions), and determining whether any hit
between a ray segment and the scene exists (rtcOccluded-type
functions) are both supported. The API supports queries for single rays
and ray packets. See Section Ray Queries for more
information.

The API is designed in an object-oriented manner, e.g. it contains
device objects (RTCDevice type), scene objects (RTCScene type),
geometry objects (RTCGeometry type), buffer objects (RTCBuffer
type), and BVH objects (RTCBVH type). All objects are reference
counted, and handles can be released by calling the appropriate release
function (e.g. rtcReleaseDevice) or retained by incrementing the
reference count (e.g. rtcRetainDevice). In general, API calls that
access the same object are not thread-safe, unless specified otherwise.
However, attaching geometries to the same scene and performing ray
queries in a scene is thread-safe.

Device Object

Embree supports a device concept, which allows different components of
the application to use the Embree API without interfering with each
other. An application typically first creates a device using the
[rtcNewDevice] function (or [rtcNewSYCLDevice] when using SYCL for
the GPU). This device can then be used to construct further objects,
such as scenes and geometries. Before the application exits, it should
release all devices by invoking [rtcReleaseDevice]. An application
typically creates only a single device. If required differently, it
should only use a small number of devices at any given time.

Each user thread has its own error flag per device. If an error occurs
when invoking an API function, this flag is set to an error code (if it
isn’t already set by a previous error). See Section
[rtcGetDeviceError] for information on how to read the error code and
Section [rtcSetDeviceErrorFunction] on how to register a callback
that is invoked for each error encountered. It is recommended to always
set a error callback function, to detect all errors.

Scene Object

A scene is a container for a set of geometries, and contains a spatial
acceleration structure which can be used to perform different types of
ray queries.

A scene is created using the rtcNewScene function call, and released
using the rtcReleaseScene function call. To populate a scene with
geometries use the rtcAttachGeometry call, and to detach them use the
rtcDetachGeometry call. Once all scene geometries are attached, an
rtcCommitScene call (or rtcJoinCommitScene call) will finish the
scene description and trigger building of internal data structures.
After the scene got committed, it is safe to perform ray queries (see
Section Ray Queries) or to query the scene bounding box
(see [rtcGetSceneBounds] and [rtcGetSceneLinearBounds]).

If scene geometries get modified or attached or detached, the
rtcCommitScene call must be invoked before performing any further ray
queries for the scene; otherwise the effect of the ray query is
undefined. The modification of a geometry, committing the scene, and
tracing of rays must always happen sequentially, and never at the same
time. Any API call that sets a property of the scene or geometries
contained in the scene count as scene modification, e.g. including
setting of intersection filter functions.

Scene flags can be used to configure a scene to use less memory
(RTC_SCENE_FLAG_COMPACT), use more robust traversal algorithms
(RTC_SCENE_FLAG_ROBUST), and to optimize for dynamic content. See
Section [rtcSetSceneFlags] for more details.

A build quality can be specified for a scene to balance between
acceleration structure build performance and ray query performance. See
Section [rtcSetSceneBuildQuality] for more details on build quality.

Geometry Object

A new geometry is created using the rtcNewGeometry function.
Depending on the geometry type, different buffers must be bound (e.g.
using rtcSetSharedGeometryBuffer) to set up the geometry data. In
most cases, binding of a vertex and index buffer is required. The
number of primitives and vertices of that geometry is typically
inferred from the size of these bound buffers.

Changes to the geometry always must be committed using the
rtcCommitGeometry call before using the geometry. After committing, a
geometry is not included in any scene. A geometry can be added to a
scene by using the rtcAttachGeometry function (to automatically
assign a geometry ID) or using the rtcAttachGeometryById function (to
specify the geometry ID manually). A geometry can get attached to
multiple scenes.

All geometry types support multi-segment motion blur with an arbitrary
number of equidistant time steps (in the range of 2 to 129) inside a
user specified time range. Each geometry can have a different number of
time steps and a different time range. The motion blur geometry is
defined by linearly interpolating the geometries of neighboring time
steps. To construct a motion blur geometry, first the number of time
steps of the geometry must be specified using the
rtcSetGeometryTimeStepCount function, and then a vertex buffer for
each time step must be bound, e.g. using the
rtcSetSharedGeometryBuffer function. Optionally, a time range
defining the start (and end time) of the first (and last) time step can
be set using the rtcSetGeometryTimeRange function. This feature will
also allow geometries to appear and disappear during the camera shutter
time if the time range is a sub range of [0,1].

Ray Queries

The API supports finding the closest hit of a ray segment with the
scene (rtcIntersect-type functions), and determining whether any hit
between a ray segment and the scene exists (rtcOccluded-type
functions).

Supported are single ray queries (rtcIntersect1 and rtcOccluded1)
as well as ray packet queries for ray packets of size 4
(rtcIntersect4 and rtcOccluded4), ray packets of size 8
(rtcIntersect8 and rtcOccluded8), and ray packets of size 16
(rtcIntersect16 and rtcOccluded16).

See Sections [rtcIntersect1] and [rtcOccluded1] for a detailed
description of how to set up and trace a ray.

See tutorial Triangle Geometry for a complete example of how to
trace single rays and ray packets.

Point Queries

The API supports traversal of the BVH using a point query object that
specifies a location and a query radius. For all primitives
intersecting the according domain, a user defined callback function is
called which allows queries such as finding the closest point on the
surface geometries of the scene (see Tutorial Closest Point) or
nearest neighbour queries (see Tutorial Voronoi).

See Section [rtcPointQuery] for a detailed description of how to set
up point queries.

Collision Detection

The Embree API also supports collision detection queries between two
scenes consisting only of user geometries. Embree only performs
broadphase collision detection, the narrow phase detection can be
performed through a callback function.

See Section [rtcCollide] for a detailed description of how to set up
collision detection.

Seen tutorial Collision Detection for a
complete example of collision detection being used on a simple cloth
solver.

Filter Functions

The API supports filter functions that are invoked for each
intersection found during the rtcIntersect-type or rtcOccluded-type
calls.

The filter functions can be set per-geometry using the
rtcSetGeometryIntersectFilterFunction and
rtcSetGeometryOccludedFilterFunction calls. The former ones are
called geometry intersection filter functions, the latter ones geometry
occlusion filter functions. These filter functions are designed to be
used to ignore intersections outside of a user-defined silhouette of a
primitive, e.g. to model tree leaves using transparency textures.

The filter function can also get passed as arguments directly to the
traversal functions, see section [rtcInitIntersectArguments] and
[rtcInitOccludedArguments] for more details. These argument filter
functions are designed to change the semantics of the ray query,
e.g. to accumulate opacity for transparent shadows, count the number of
surfaces along a ray, collect all hits along a ray, etc. The argument
filter function must be enabled to be used for a scene using the
RTC_SCENE_FLAG_FILTER_FUNCTION_IN_ARGUMENTS scene flag. The callback
is only invoked for geometries that enable the callback using the
rtcSetGeometryEnableFilterFunctionFromArguments call, or enabled for
all geometries when the RTC_RAY_QUERY_FLAG_INVOKE_ARGUMENT_FILTER ray
query flag is set.

BVH Build API

The internal algorithms to build a BVH are exposed through the RTCBVH
object and rtcBuildBVH call. This call makes it possible to build a
BVH in a user-specified format over user-specified primitives. See the
documentation of the rtcBuildBVH call for more details.

Embree SYCL API

Embree supports ray tracing on Intel GPUs by using the SYCL programming
language. SYCL is a Khronos standardized C++ based language for single
source heterogenous programming for acceleration offload, see the SYCL
webpage for details.

The Embree SYCL API is designed for photorealistic rendering use cases,
where scene setup is performed on the host, and rendering on the
device. The Embree SYCL API is very similar to the standard Embree C99
API, and supports most of its features, such as all triangle-type
geometries, all curve types and basis functions, point geometry types,
user geometries, filter callbacks, multi-level instancing, and motion
blur.

To enable SYCL support you have to include the sycl.hpp file before
the Embree API headers:

#include <sycl/sycl.hpp>
#include <embree4/rtcore.h>

Next you need to initializes an Embree SYCL device using the
rtcNewSYCLDevice API function by providing a SYCL context.

Embree provides the rtcIsSYCLDeviceSupported API function to check if
some SYCL device is supported by Embree. You can also use the
rtcSYCLDeviceSelector to conveniently select the first SYCL device
that is supported by Embree, e.g.:

sycl::device device(rtcSYCLDeviceSelector);
sycl::queue queue(device, exception_handler);
sycl::context context(device);
RTCDevice device = rtcNewSYCLDevice(context,"");

Scenes created with an Embree SYCL device can only get used to trace
rays using SYCL on the GPU, it is not possible to trace rays on the CPU
with such a device. To render on the CPU and GPU in parallel, the user
has to create a second Embree device and create a second scene to be
used on the CPU.

Files containing SYCL code, have to get compiled with the Intel® oneAPI
DPC++ compiler. Please see section [Linux SYCL Compilation] and
[Windows SYCL Compilation] for supported compilers. The DPC++
compiler performs a two-phase compilation, where host code is compiled
in a first phase, and device code compiled in a second compilation
phase.

Standard Embree API functions for scene construction can get used on
the host but not the device. Data buffers that are shared with Embree
(e.g. for vertex of index buffers) have to get allocated as SYCL
unified shared memory (USM memory), using the sycl::malloc or
sycl::aligned_alloc calls with sycl::usm::alloc::shared property,
or the sycl::aligned_alloc_shared call, e.g:

void* ptr = sycl::aligned_alloc(16, bytes, queue, sycl::usm::alloc::shared);

These shared allocations have to be valid during rendering, as Embree
may access contained data when tracing rays. Embree does not support
device-only memory allocations, as the BVH builder implemented on the
CPU relies on reading the data buffers.

Device side rendering can get invoked by submitting a SYCL
parallel_for to the SYCL queue:

const sycl::specialization_id<RTCFeatureFlags> feature_mask;

RTCFeatureFlags required_features = RTC_FEATURE_FLAG_TRIANGLE;

queue.submit([=](sycl::handler& cgh)
{
  cgh.set_specialization_constant<feature_mask>(required_features);
  
  cgh.parallel_for(sycl::range<1>(1),[=](sycl::id<1> item, sycl::kernel_handler kh)
  {
    RTCIntersectArguments args;
    rtcInitIntersectArguments(&args);

    const RTCFeatureFlags features = kh.get_specialization_constant<feature_mask>();
    args.feature_mask = features;

    struct RTCRayHit rayhit;
    rayhit.ray.org_x = ox;
    rayhit.ray.org_y = oy;
    rayhit.ray.org_z = oz;
    rayhit.ray.dir_x = dx;
    rayhit.ray.dir_y = dy;
    rayhit.ray.dir_z = dz;
    rayhit.ray.tnear = 0;
    rayhit.ray.tfar = std::numeric_limits<float>::infinity();
    rayhit.ray.mask = -1;
    rayhit.ray.flags = 0;
    rayhit.hit.geomID = RTC_INVALID_GEOMETRY_ID;
    rayhit.hit.instID[0] = RTC_INVALID_GEOMETRY_ID;

    rtcIntersect1(scene, &rayhit, &args);

    result->geomID = rayhit.hit.geomID;
    result->primID = rayhit.hit.primID;
    result->tfar = rayhit.ray.tfar;
  });
});
queue.wait_and_throw();

This example passes a feature mask using a specialization contant to
the rtcIntersect1 function, which is recommended for GPU rendering.
For best performance, this feature mask should get used to enable only
features required by the application to render the scene, e.g. just
triangles in this example.

Inside the SYCL parallel_for loop you can use rendering related
functions, such as the rtcIntersect1 and rtcOccluded1 functions to
trace rays, rtcForwardIntersect1 and rtcForwardOccluded1 to
continue object traversal from inside a user geometry callback, and
rtcGetGeometryUserDataFromScene to get the user data pointer of some
geometry.

Have a look at the [Minimal] tutorial for a minimal SYCL example.

SYCL JIT caching

Compile times for just in time compilation (JIT compilation) can be
large. To resolve this issue we recommend enabling persistent JIT
compilation caching inside your application, by setting the
SYCL_CACHE_PERSISTENT environment variable to 1, and the
SYCL_CACHE_DIR environment variable to some proper directory where
the JIT cache should get stored. These environment variables have to
get set before the SYCL device is created, e.g:

setenv("SYCL_CACHE_PERSISTENT","1",1);
setenv("SYCL_CACHE_DIR","cache_dir",1);

sycl::device device(rtcSYCLDeviceSelector);
...

SYCL Memory Pooling

Memory Pooling is a mechanism where small USM memory allocations are
packed into larger allocation blocks. This mode is required when your
application performs many small USM allocations, as otherwise only a
small fraction of GPU memory is usable and data transfer performance
will be low.

Memory pooling is supported for USM allocations that are read-only by
the device. The following example allocated device read-only memory
with memory pooling support:

sycl::aligned_alloc_shared(align, bytes, queue,
  sycl::ext::oneapi::property::usm::device_read_only());

Embree SYCL Limitations

Embree only supports Xe HPC and HPG GPUs as SYCL devices, thus in
particular the CPU and other GPUs cannot get used as a SYCL device. To
render on the CPU just use the standard C99 API without relying on
SYCL.

The SYCL language spec puts some restrictions to device functions, such
as disallowing: global variable access, malloc, invokation of virtual
functions, function pointers, runtime type information, exceptions,
recursion, etc. See Section
5.4. Language Restrictions for device functions of the SYCL
specification
for more details.

Using Intel’s oneAPI DPC++ compiler invoking an indirectly called
function is allowed, but we do not recommend this for performance
reasons.

Some features are not supported by the Embree SYCL API thus cannot get
used on the GPU:

  • The packet tracing functions rtcIntersect4/8/16 and
    rtcOccluded4/8/16 are not supported in SYCL device side code.
    Using these functions makes no sense for SYCL, as the programming
    model is implicitely executed in SIMT mode on the GPU anyway.

  • Filter and user geometry callbacks stored inside the geometry
    objects are not supported on SYCL. Please use the alternative
    approach of passing the function pointer through the
    RTCIntersectArguments (or RTCOccludedArguments) structures to
    the tracing function, which enables inlining on the GPU.

  • The rtcInterpolate function cannot get used on the the device.
    For most primitive types the vertex data interpolation is anyway a
    trivial operation, and an API call just introduces overheads. On
    the CPU that overhead is acceptable, but on the GPU it is not. The
    rtcInterpolate function does not know the geometry type it is
    interpolating over, thus its implementation on the GPU would
    contain a large switch statement for all potential geometry types.

  • Tracing rays using rtcIntersect1 and rtcOccluded1 functions
    from user geometry callbacks is not supported in SYCL. Please use
    the tail recursive rtcForwardIntersect1 and rtcForwardOccluded1
    calls instead.

  • Subdivision surfaces are not supported for Embree SYCL devices.

  • Collision detection (rtcCollide API call) is not supported in
    SYCL device side code.

  • Point queries (rtcPointQuery API call) are not supported in SYCL
    device side code.

Embree SYCL Known Issues

  • The SYCL support of Embree is in beta phase. Current functionality,
    quality, and GPU performance may not reflect that of the final
    product.

  • Currently only the following Intel® Arc™ GPUs are support:

    • Intel® Arc™ A770 Graphics
    • Intel® Arc™ A750 Graphics
    • Intel® Arc™ A770M Graphics
    • Intel® Arc™ A730M Graphics
    • Intel® Arc™ A550M Graphics
  • Intel® Data Center GPU Flex Series and Intel® Data Center GPU Max
    Series are currently not supported.

  • Ahead of time compilation is currently not working properly and you
    will get this error during compilation:

    llvm-foreach: Floating point exception (core dumped)
    
  • Compilation with build configuration «debug» is currently not
    working on Windows.

Upgrading from Embree 3 to Embree 4

This section summarizes API changes between Embree 3 and Embree4. Most
of these changes are motivated by GPU performance and having a
consistent API that works properly for the CPU and GPU.

  • The API include folder got renamed from embree3 to embree4, to be
    able to install Embree 3 and Embree 4 side by side, without having
    conflicts in API folder.

  • The RTCIntersectContext is renamed to RTCRayQueryContext and
    the RTCIntersectContextFlags got renamed to RTCRayQueryFlags.

  • There are some changes to the rtcIntersect and rtcOccluded
    functions. Most members of the old intersect context have been
    moved to some optional RTCIntersectArguments (and
    RTCOccludedArguments) structures, which also contains a pointer
    to the new ray query context. The argument structs fulfill the task
    of providing additional advanced arguments to the traversal
    functions. The ray query context can get used to pass additional
    data to callbacks, and to maintain an instID stack in case
    instancing is done manually inside user geometry callbacks. The
    arguments struct is not available inside callbacks. This change was
    in particular necessary for SYCL to allow inlining of function
    pointers provided to the traversal functions, and to reduce the
    amount of state passed to callbacks, which both improves GPU
    performance. Most applications can just drop passing the ray query
    context to port to Embree 4.

  • The rtcFilterIntersection and rtcFilterOcclusion API calls that
    invoke both, the geometry and argument version of the filter
    callback, from a user geometry callback are no longer supported.
    Instead applications should use the
    rtcInvokeIntersectFilterFromGeometry and
    rtcInvokeOccludedFilterFromGeometry API calls that invoke just
    the geometry version of the filter function, and invoke the
    argument filter function manually if required.

  • The filter function passed as arguments to rtcIntersect and
    rtcOccluded functions is only invoked for some geometry if
    enabled through rtcSetGeometryEnableFilterFunctionFromArguments
    for that geometry. Alternatively, argument filter functions can get
    enabled for all geometries using the
    RTC_RAY_QUERY_FLAG_INVOKE_ARGUMENT_FILTER ray query flag.

  • User geometry callbacks get a valid vector as input to identify
    valid and invalid rays. In Embree 3 the user geometry callback just
    had to update the ray hit members when an intersection was found
    and perform no operation otherwise. In Embree 4 the callback
    additionally has to return valid=-1 when a hit was found, and
    valid=0 when no hit was found. This allows Embree to properly pass
    the new hit distance to the ray tracing hardware only in the case a
    hit was found.

  • Further ray masking is enabled by default now as required by most
    applications and the default ray mask for geometries got changed
    from 0xFFFFFFFF to 0x1.

  • The stream tracing functions rtcIntersect1M, rtcIntersect1Mp,
    rtcIntersectNM, rtcIntersectNp, rtcOccluded1M,
    rtcOccluded1Mp, rtcOccludedNM, and rtcOccludedNp got removed
    as they were rarely used and did not provide relevant performance
    benefits. As alternative the application can just iterate over
    rtcIntersect1 and potentially rtcIntersect4/8/16 to get similar
    performance.

To use Embree through SYCL on the CPU and GPU additional changes are
required:

  • Embree 3 allows to use rtcIntersect recursively from a user
    geometry or intersection filter callback to continue a ray inside
    an instantiated object. In Embree 4 using rtcIntersect
    recursively is disallowed on the GPU but still supported on the
    CPU. To properly continue a ray inside an instantiated object use
    the new rtcForwardIntersect1 and rtcForwardOccluded1 functions.

  • The geometry object of Embree 4 is a host side only object, thus
    accessing it during rendering from the GPU is not allowed. Thus all
    API functions that take an RTCGeometry object as argument cannot
    get used during rendering. Thus in particular the
    rtcGetGeometryUserData(RTCGeometry) call cannot get used, but
    there is an alternative function
    rtcGetGeometryUserDataFromScene(RTCScene scene,uint geomID) that
    should get used instead.

  • The user geometry callback and filter callback functions should get
    passed through the intersection and occlusion argument structures
    to the rtcIntersect1 and rtcOccluded1 functions directly to
    allow inlining. The experimental geometry version of the callbacks
    is disabled in SYCL and should not get used.

  • The feature flags should get used in SYCL to minimal GPU code for
    optimal performance.

  • The rtcInterpolate function cannot get used on the device, and
    vertex data interpolation should get implemented by the
    application.

  • Indirectly called functions must be declared with
    RTC_SYCL_INDIRECTLY_CALLABLE when used as filter or user geometry
    callbacks.

Embree API Reference

rtcNewDevice

NAME

rtcNewDevice - creates a new device

SYNOPSIS

#include <embree4/rtcore.h>

RTCDevice rtcNewDevice(const char* config);

DESCRIPTION

This function creates a new device to be used for CPU ray tracing and
returns a handle to this device. The device object is reference counted
with an initial reference count of 1. The handle can be released using
the rtcReleaseDevice API call.

The device object acts as a class factory for all other object types.
All objects created from the device (like scenes, geometries, etc.)
hold a reference to the device, thus the device will not be destroyed
unless these objects are destroyed first.

Objects are only compatible if they belong to the same device, e.g it
is not allowed to create a geometry in one device and attach it to a
scene created with a different device.

A configuration string (config argument) can be passed to the device
construction. This configuration string can be NULL to use the
default configuration.

The following configuration is supported:

  • threads=[int]: Specifies a number of build threads to use. A
    value of 0 enables all detected hardware threads. By default all
    hardware threads are used.

  • user_threads=[int]: Sets the number of user threads that can be
    used to join and participate in a scene commit using
    rtcJoinCommitScene. The tasking system will only use
    threads-user_threads many worker threads, thus if the app wants to
    solely use its threads to commit scenes, just set threads equal to
    user_threads. This option only has effect with the Intel(R)
    Threading Building Blocks (TBB) tasking system.

  • set_affinity=[0/1]: When enabled, build threads are affinitized
    to hardware threads. This option is disabled by default on standard
    CPUs, and enabled by default on Xeon Phi Processors.

  • start_threads=[0/1]: When enabled, the build threads are started
    upfront. This can be useful for benchmarking to exclude thread
    creation time. This option is disabled by default.

  • isa=[sse2,sse4.2,avx,avx2,avx512]: Use specified ISA. By default
    the ISA is selected automatically.

  • max_isa=[sse2,sse4.2,avx,avx2,avx512]: Configures the automated
    ISA selection to use maximally the specified ISA.

  • hugepages=[0/1]: Enables or disables usage of huge pages. Under
    Linux huge pages are used by default but under Windows and macOS
    they are disabled by default.

  • enable_selockmemoryprivilege=[0/1]: When set to 1, this enables
    the SeLockMemoryPrivilege privilege with is required to use huge
    pages on Windows. This option has an effect only under Windows and
    is ignored on other platforms. See Section [Huge Page Support]
    for more details.

  • verbose=[0,1,2,3]: Sets the verbosity of the output. When set to
    0, no output is printed by Embree, when set to a higher level more
    output is printed. By default Embree does not print anything on the
    console.

  • frequency_level=[simd128,simd256,simd512]: Specifies the
    frequency level the application want to run on, which can be
    either:
    a) simd128 to run at highest frequency
    b) simd256 to run at AVX2-heavy frequency level
    c) simd512 to run at heavy AVX512 frequency level. When some
    frequency level is specified, Embree will avoid doing
    optimizations that may reduce the frequency level below the
    level specified. E.g. if your app does not use AVX instructions
    setting «frequency_level=simd128» will cause some CPUs to run
    at highest frequency, which may result in higher application
    performance if you do much shading. If you application heavily
    uses AVX code, you should best set the frequency level to
    simd256. Per default Embree tries to avoid reducing the
    frequency of the CPU by setting the simd256 level only when the
    CPU has no significant down clocking.

Different configuration options should be separated by commas, e.g.:

rtcNewDevice("threads=1,isa=avx");

EXIT STATUS

On success returns a handle of the created device. On failure returns
NULL as device and sets a per-thread error code that can be queried
using rtcGetDeviceError(NULL).

SEE ALSO

[rtcRetainDevice], [rtcReleaseDevice], [rtcNewSYCLDevice]

rtcNewSYCLDevice

NAME {#name}

rtcNewSYCLDevice - creates a new device to be used with SYCL

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCDevice rtcNewSYCLDevice(sycl::context context, const char* config);

DESCRIPTION {#description}

This function creates a new device to be used with SYCL for GPU
rendering and returns a handle to this device. The device object is
reference counted with an initial reference count of 1. The handle can
get released using the rtcReleaseDevice API call.

The passed SYCL context (context argument) is used to allocate GPU
data, thus only devices contained inside this context can be used for
rendering. By default the GPU data is allocated on the first GPU device
of the context, but this behavior can get changed with the
[rtcSetDeviceSYCLDevice] function.

The device object acts as a class factory for all other object types.
All objects created from the device (like scenes, geometries, etc.)
hold a reference to the device, thus the device will not be destroyed
unless these objects are destroyed first.

Objects are only compatible if they belong to the same device, e.g it
is not allowed to create a geometry in one device and attach it to a
scene created with a different device.

For an overview of configurations that can get passed (config
argument) please see the [rtcNewDevice] function description.

EXIT STATUS {#exit-status}

On success returns a handle of the created device. On failure returns
NULL as device and sets a per-thread error code that can be queried
using rtcGetDeviceError(NULL).

SEE ALSO {#see-also}

[rtcRetainDevice], [rtcReleaseDevice], [rtcNewDevice]

rtcIsSYCLDeviceSupported

NAME {#name}

rtcIsSYCLDeviceSupported - checks if some SYCL device is supported by Embree

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

bool rtcIsSYCLDeviceSupported(const sycl::device sycl_device);

DESCRIPTION {#description}

This function can be used to check if some SYCL device (sycl_device
argument) is supported by Embree.

EXIT STATUS {#exit-status}

The function returns true if the SYCL device is supported by Embree and
false otherwise. On failure an error code is set that can get queried
using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSYCLDeviceSelector]

rtcSYCLDeviceSelector

NAME {#name}

rtcSYCLDeviceSelector - SYCL device selector function to select
  devices supported by Embree

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

int rtcSYCLDeviceSelector(const sycl::device sycl_device);

DESCRIPTION {#description}

This function checks if the passed SYCL device (sycl_device
arguments) is supported by Embree or not. This function can be used
directly to select some supported SYCL device by using it as SYCL
device selector function. For instance, the following code sequence
selects an Embree supported SYCL device and creates an Embree device
from it:

sycl::device sycl_device(rtcSYCLDeviceSelector);
sycl::queue sycl_queue(sycl_device);
sycl::context(sycl_device);
RTCDevice device = rtcNewSYCLDevice(sycl_context,nullptr);

EXIT STATUS {#exit-status}

The function returns -1 if the SYCL device is supported by Embree and 1
otherwise. On failure an error code is set that can get queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcIsSYCLDeviceSupported]

rtcSetDeviceSYCLDevice

NAME {#name}

rtcSetDeviceSYCLDevice - sets the SYCL device to be used for memory allocations

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetDeviceSYCLDevice(RTCDevice device, const sycl::device sycl_device);

DESCRIPTION {#description}

This function sets the SYCL device (sycl_device argument) to be used
to allocate GPU memory when using the specified Embree device (device
argument). This SYCL device must be one of the SYCL devices contained
inside the SYCL context used to create the Embree device.

EXIT STATUS {#exit-status}

On failure an error code is set that can get queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewSYCLDevice]

rtcRetainDevice

NAME {#name}

rtcRetainDevice - increments the device reference count

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcRetainDevice(RTCDevice device);

DESCRIPTION {#description}

Device objects are reference counted. The rtcRetainDevice function
increments the reference count of the passed device object (device
argument). This function together with rtcReleaseDevice allows to use
the internal reference counting in a C++ wrapper class to manage the
ownership of the object.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewDevice], [rtcReleaseDevice]

rtcReleaseDevice

NAME {#name}

rtcReleaseDevice - decrements the device reference count

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcReleaseDevice(RTCDevice device);

DESCRIPTION {#description}

Device objects are reference counted. The rtcReleaseDevice function
decrements the reference count of the passed device object (device
argument). When the reference count falls to 0, the device gets
destroyed.

All objects created from the device (like scenes, geometries, etc.)
hold a reference to the device, thus the device will not get destroyed
unless these objects are destroyed first.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewDevice], [rtcRetainDevice]

rtcGetDeviceProperty

NAME {#name}

rtcGetDeviceProperty - queries properties of the device

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

ssize_t rtcGetDeviceProperty(
  RTCDevice device,
  enum RTCDeviceProperty prop
);

DESCRIPTION {#description}

The rtcGetDeviceProperty function can be used to query properties
(prop argument) of a device object (device argument). The returned
property is an integer of type ssize_t.

Possible properties to query are:

  • RTC_DEVICE_PROPERTY_VERSION: Queries the combined version number
    (MAJOR.MINOR.PATCH) with two decimal digits per component. E.g. for
    Embree 2.8.3 the integer 208003 is returned.

  • RTC_DEVICE_PROPERTY_VERSION_MAJOR: Queries the major version
    number of Embree.

  • RTC_DEVICE_PROPERTY_VERSION_MINOR: Queries the minor version
    number of Embree.

  • RTC_DEVICE_PROPERTY_VERSION_PATCH: Queries the patch version
    number of Embree.

  • RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED: Queries whether the
    rtcIntersect4 and rtcOccluded4 functions preserve packet size
    and ray order when invoking callback functions. This is only the
    case if Embree is compiled with EMBREE_RAY_PACKETS and SSE2 (or
    SSE4.2) enabled, and if the machine it is running on supports
    SSE2 (or SSE4.2).

  • RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED: Queries whether the
    rtcIntersect8 and rtcOccluded8 functions preserve packet size
    and ray order when invoking callback functions. This is only the
    case if Embree is compiled with EMBREE_RAY_PACKETS and AVX (or
    AVX2) enabled, and if the machine it is running on supports AVX
    (or AVX2).

  • RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED: Queries whether the
    rtcIntersect16 and rtcOccluded16 functions preserve packet size
    and ray order when invoking callback functions. This is only the
    case if Embree is compiled with EMBREE_RAY_PACKETS and AVX512
    enabled, and if the machine it is running on supports AVX512.

  • RTC_DEVICE_PROPERTY_RAY_MASK_SUPPORTED: Queries whether ray masks
    are supported. This is only the case if Embree is compiled with
    EMBREE_RAY_MASK enabled.

  • RTC_DEVICE_PROPERTY_BACKFACE_CULLING_ENABLED: Queries whether
    back face culling is enabled. This is only the case if Embree is
    compiled with EMBREE_BACKFACE_CULLING enabled.

  • RTC_DEVICE_PROPERTY_COMPACT_POLYS_ENABLED: Queries whether
    compact polys is enabled. This is only the case if Embree is
    compiled with EMBREE_COMPACT_POLYS enabled.

  • RTC_DEVICE_PROPERTY_FILTER_FUNCTION_SUPPORTED: Queries whether
    filter functions are supported, which is the case if Embree is
    compiled with EMBREE_FILTER_FUNCTION enabled.

  • RTC_DEVICE_PROPERTY_IGNORE_INVALID_RAYS_ENABLED: Queries whether
    invalid rays are ignored, which is the case if Embree is compiled
    with EMBREE_IGNORE_INVALID_RAYS enabled.

  • RTC_DEVICE_PROPERTY_TRIANGLE_GEOMETRY_SUPPORTED: Queries whether
    triangles are supported, which is the case if Embree is compiled
    with EMBREE_GEOMETRY_TRIANGLE enabled.

  • RTC_DEVICE_PROPERTY_QUAD_GEOMETRY_SUPPORTED: Queries whether
    quads are supported, which is the case if Embree is compiled with
    EMBREE_GEOMETRY_QUAD enabled.

  • RTC_DEVICE_PROPERTY_SUBDIVISION_GEOMETRY_SUPPORTED: Queries
    whether subdivision meshes are supported, which is the case if
    Embree is compiled with EMBREE_GEOMETRY_SUBDIVISION enabled.

  • RTC_DEVICE_PROPERTY_CURVE_GEOMETRY_SUPPORTED: Queries whether
    curves are supported, which is the case if Embree is compiled with
    EMBREE_GEOMETRY_CURVE enabled.

  • RTC_DEVICE_PROPERTY_POINT_GEOMETRY_SUPPORTED: Queries whether
    points are supported, which is the case if Embree is compiled with
    EMBREE_GEOMETRY_POINT enabled.

  • RTC_DEVICE_PROPERTY_USER_GEOMETRY_SUPPORTED: Queries whether user
    geometries are supported, which is the case if Embree is compiled
    with EMBREE_GEOMETRY_USER enabled.

  • RTC_DEVICE_PROPERTY_TASKING_SYSTEM: Queries the tasking system
    Embree is compiled with. Possible return values are:

    1. internal tasking system
    2. Intel Threading Building Blocks (TBB)
    3. Parallel Patterns Library (PPL)
  • RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED: Queries whether
    rtcJoinCommitScene is supported. This is not the case when Embree
    is compiled with PPL or older versions of TBB.

  • RTC_DEVICE_PROPERTY_PARALLEL_COMMIT_SUPPORTED: Queries whether
    rtcCommitScene can get invoked from multiple TBB worker threads
    concurrently. This feature is only supported starting with TBB 2019
    Update 9.

EXIT STATUS {#exit-status}

On success returns the value of the queried property. For properties
returning a boolean value, the return value 0 denotes false and 1
denotes true.

On failure zero is returned and an error code is set that can be
queried using rtcGetDeviceError.

rtcGetDeviceError

NAME {#name}

rtcGetDeviceError - returns the error code of the device

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCError rtcGetDeviceError(RTCDevice device);

DESCRIPTION {#description}

Each thread has its own error code per device. If an error occurs when
calling an API function, this error code is set to the occurred error
if it stores no previous error. The rtcGetDeviceError function reads
and returns the currently stored error and clears the error code. This
assures that the returned error code is always the first error occurred
since the last invocation of rtcGetDeviceError.

Possible error codes returned by rtcGetDeviceError are:

  • RTC_ERROR_NONE: No error occurred.

  • RTC_ERROR_UNKNOWN: An unknown error has occurred.

  • RTC_ERROR_INVALID_ARGUMENT: An invalid argument was specified.

  • RTC_ERROR_INVALID_OPERATION: The operation is not allowed for the
    specified object.

  • RTC_ERROR_OUT_OF_MEMORY: There is not enough memory left to
    complete the operation.

  • RTC_ERROR_UNSUPPORTED_CPU: The CPU is not supported as it does
    not support the lowest ISA Embree is compiled for.

  • RTC_ERROR_CANCELLED: The operation got canceled by a memory
    monitor callback or progress monitor callback function.

When the device construction fails, rtcNewDevice returns NULL as
device. To detect the error code of a such a failed device
construction, pass NULL as device to the rtcGetDeviceError
function. For all other invocations of rtcGetDeviceError, a proper
device pointer must be specified.

EXIT STATUS {#exit-status}

Returns the error code for the device.

SEE ALSO {#see-also}

[rtcSetDeviceErrorFunction]

rtcSetDeviceErrorFunction

NAME {#name}

rtcSetDeviceErrorFunction - sets an error callback function for the device

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

typedef void (*RTCErrorFunction)(
  void* userPtr,
  RTCError code,
  const char* str
);

void rtcSetDeviceErrorFunction(
  RTCDevice device,
  RTCErrorFunction error,
  void* userPtr
);

DESCRIPTION {#description}

Using the rtcSetDeviceErrorFunction call, it is possible to set a
callback function (error argument) with payload (userPtr argument),
which is called whenever an error occurs for the specified device
(device argument).

Only a single callback function can be registered per device, and
further invocations overwrite the previously set callback function.
Passing NULL as function pointer disables the registered callback
function.

When the registered callback function is invoked, it gets passed the
user-defined payload (userPtr argument as specified at registration
time), the error code (code argument) of the occurred error, as well
as a string (str argument) that further describes the error.

The error code is also set if an error callback function is registered.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcGetDeviceError]

rtcSetDeviceMemoryMonitorFunction

NAME {#name}

rtcSetDeviceMemoryMonitorFunction - registers a callback function
  to track memory consumption

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

typedef bool (*RTCMemoryMonitorFunction)(
  void* userPtr,
  ssize_t bytes,
  bool post
);

void rtcSetDeviceMemoryMonitorFunction(
  RTCDevice device,
  RTCMemoryMonitorFunction memoryMonitor,
  void* userPtr
);

DESCRIPTION {#description}

Using the rtcSetDeviceMemoryMonitorFunction call, it is possible to
register a callback function (memoryMonitor argument) with payload
(userPtr argument) for a device (device argument), which is called
whenever internal memory is allocated or deallocated by objects of that
device. Using this memory monitor callback mechanism, the application
can track the memory consumption of an Embree device, and optionally
terminate API calls that consume too much memory.

Only a single callback function can be registered per device, and
further invocations overwrite the previously set callback function.
Passing NULL as function pointer disables the registered callback
function.

Once registered, the Embree device will invoke the memory monitor
callback function before or after it allocates or frees important
memory blocks. The callback function gets passed the payload as
specified at registration time (userPtr argument), the number of
bytes allocated or deallocated (bytes argument), and whether the
callback is invoked after the allocation or deallocation took place
(post argument). The callback function might get called from multiple
threads concurrently.

The application can track the current memory usage of the Embree device
by atomically accumulating the bytes input parameter provided to the
callback function. This parameter will be >0 for allocations and <0
for deallocations.

Embree will continue its operation normally when returning true from
the callback function. If false is returned, Embree will cancel the
current operation with the RTC_ERROR_OUT_OF_MEMORY error code.
Issuing multiple cancel requests from different threads is allowed.
Canceling will only happen when the callback was called for allocations
(bytes > 0), otherwise the cancel request will be ignored.

If a callback to cancel was invoked before the allocation happens
(post == false), then the bytes parameter should not be
accumulated, as the allocation will never happen. If the callback to
cancel was invoked after the allocation happened (post == true), then
the bytes parameter should be accumulated, as the allocation properly
happened and a deallocation will later free that data block.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewDevice]

rtcNewScene

NAME {#name}

rtcNewScene - creates a new scene

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCScene rtcNewScene(RTCDevice device);

DESCRIPTION {#description}

This function creates a new scene bound to the specified device
(device argument), and returns a handle to this scene. The scene
object is reference counted with an initial reference count of 1. The
scene handle can be released using the rtcReleaseScene API call.

EXIT STATUS {#exit-status}

On success a scene handle is returned. On failure NULL is returned
and an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcRetainScene], [rtcReleaseScene]

rtcGetSceneDevice

NAME {#name}

rtcGetSceneDevice - returns the device the scene got created in

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCDevice rtcGetSceneDevice(RTCScene scene);

DESCRIPTION {#description}

This function returns the device object the scene got created in. The
returned handle own one additional reference to the device object, thus
you should need to call rtcReleaseDevice when the returned handle is
no longer required.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcReleaseDevice]

rtcRetainScene

NAME {#name}

rtcRetainScene - increments the scene reference count

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcRetainScene(RTCScene scene);

DESCRIPTION {#description}

Scene objects are reference counted. The rtcRetainScene function
increments the reference count of the passed scene object (scene
argument). This function together with rtcReleaseScene allows to use
the internal reference counting in a C++ wrapper class to handle the
ownership of the object.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewScene], [rtcReleaseScene]

rtcReleaseScene

NAME {#name}

rtcReleaseScene - decrements the scene reference count

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcReleaseScene(RTCScene scene);

DESCRIPTION {#description}

Scene objects are reference counted. The rtcReleaseScene function
decrements the reference count of the passed scene object (scene
argument). When the reference count falls to 0, the scene gets
destroyed.

The scene holds a reference to all attached geometries, thus if the
scene gets destroyed, all geometries get detached and their reference
count decremented.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewScene], [rtcRetainScene]

rtcAttachGeometry

NAME {#name}

rtcAttachGeometry - attaches a geometry to the scene

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

unsigned int rtcAttachGeometry(
  RTCScene scene,
  RTCGeometry geometry
);

DESCRIPTION {#description}

The rtcAttachGeometry function attaches a geometry (geometry
argument) to a scene (scene argument) and assigns a geometry ID to
that geometry. All geometries attached to a scene are defined to be
included inside the scene. A geometry can get attached to multiple
scenes. The geometry ID is unique for the scene, and is used to
identify the geometry when hit by a ray during ray queries.

This function is thread-safe, thus multiple threads can attach
geometries to a scene in parallel.

The geometry IDs are assigned sequentially, starting from 0, as long as
no geometry got detached. If geometries got detached, the
implementation will reuse IDs in an implementation dependent way.
Consequently sequential assignment is no longer guaranteed, but a
compact range of IDs.

These rules allow the application to manage a dynamic array to
efficiently map from geometry IDs to its own geometry representation.
Alternatively, the application can also use per-geometry user data to
map to its geometry representation. See rtcSetGeometryUserData and
rtcGetGeometryUserData for more information.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetGeometryUserData], [rtcGetGeometryUserData]

rtcAttachGeometryByID

NAME {#name}

rtcAttachGeometryByID - attaches a geometry to the scene
  using a specified geometry ID

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcAttachGeometryByID(
  RTCScene scene,
  RTCGeometry geometry,
  unsigned int geomID
);

DESCRIPTION {#description}

The rtcAttachGeometryByID function attaches a geometry (geometry
argument) to a scene (scene argument) and assigns a user provided
geometry ID (geomID argument) to that geometry. All geometries
attached to a scene are defined to be included inside the scene. A
geometry can get attached to multiple scenes. The passed user-defined
geometry ID is used to identify the geometry when hit by a ray during
ray queries. Using this function, it is possible to share the same IDs
to refer to geometries inside the application and Embree.

This function is thread-safe, thus multiple threads can attach
geometries to a scene in parallel.

The user-provided geometry ID must be unused in the scene, otherwise
the creation of the geometry will fail. Further, the user-provided
geometry IDs should be compact, as Embree internally creates a vector
which size is equal to the largest geometry ID used. Creating very
large geometry IDs for small scenes would thus cause a memory
consumption and performance overhead.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcAttachGeometry]

rtcDetachGeometry

NAME {#name}

rtcDetachGeometry - detaches a geometry from the scene

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcDetachGeometry(RTCScene scene, unsigned int geomID);

DESCRIPTION {#description}

This function detaches a geometry identified by its geometry ID
(geomID argument) from a scene (scene argument). When detached, the
geometry is no longer contained in the scene.

This function is thread-safe, thus multiple threads can detach
geometries from a scene at the same time.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcAttachGeometry], [rtcAttachGeometryByID]

rtcGetGeometry

NAME {#name}

rtcGetGeometry - returns the geometry bound to
  the specified geometry ID

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCGeometry rtcGetGeometry(RTCScene scene, unsigned int geomID);

DESCRIPTION {#description}

The rtcGetGeometry function returns the geometry that is bound to the
specified geometry ID (geomID argument) for the specified scene
(scene argument). This function just looks up the handle and does
not increment the reference count. If you want to get ownership of
the handle, you need to additionally call rtcRetainGeometry.

This function is not thread safe and thus can be used during rendering.
However, it is generally recommended to store the geometry handle
inside the application’s geometry representation and look up the
geometry handle from that representation directly.

If you need a thread safe version of this function please use
[rtcGetGeometryThreadSafe].

EXIT STATUS {#exit-status}

On failure NULL is returned and an error code is set that can be
queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcAttachGeometry], [rtcAttachGeometryByID],
[rtcGetGeometryThreadSafe]

rtcGetGeometryThreadSafe

NAME {#name}

rtcGetGeometryThreadSafe - returns the geometry bound to
  the specified geometry ID

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCGeometry rtcGetGeometryThreadSafe(RTCScene scene, unsigned int geomID);

DESCRIPTION {#description}

The rtcGetGeometryThreadSafe function returns the geometry that is
bound to the specified geometry ID (geomID argument) for the
specified scene (scene argument). This function just looks up the
handle and does not increment the reference count. If you want to get
ownership of the handle, you need to additionally call
rtcRetainGeometry.

This function is thread safe and should NOT get used during rendering.
If you need a fast non-thread safe version during rendering please use
the [rtcGetGeometry] function.

EXIT STATUS {#exit-status}

On failure NULL is returned and an error code is set that can be
queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcAttachGeometry], [rtcAttachGeometryByID], [rtcGetGeometry]

rtcCommitScene

NAME {#name}

rtcCommitScene - commits scene changes

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcCommitScene(RTCScene scene);

DESCRIPTION {#description}

The rtcCommitScene function commits all changes for the specified
scene (scene argument). This internally triggers building of a
spatial acceleration structure for the scene using all available worker
threads. Ray queries can be performed only after committing all scene
changes.

If the application uses TBB 2019 Update 9 or later for parallelization
of rendering, lazy scene construction during rendering is supported by
rtcCommitScene. Therefore rtcCommitScene can get called from
multiple TBB worker threads concurrently for the same scene. The
rtcCommitScene function will then internally isolate the scene
construction using a tbb::isolated_task_group. The alternative
approach of using rtcJoinCommitScene which uses an tbb:task_arena
internally, is not recommended due to it’s high runtime overhead.

If scene geometries get modified or attached or detached, the
rtcCommitScene call must be invoked before performing any further ray
queries for the scene; otherwise the effect of the ray query is
undefined. The modification of a geometry, committing the scene, and
tracing of rays must always happen sequentially, and never at the same
time. Any API call that sets a property of the scene or geometries
contained in the scene count as scene modification, e.g. including
setting of intersection filter functions.

The kind of acceleration structure built can be influenced using scene
flags (see rtcSetSceneFlags), and the quality can be specified using
the rtcSetSceneBuildQuality function.

Embree silently ignores primitives during spatial acceleration
structure construction that would cause numerical issues,
e.g. primitives containing NaNs, INFs, or values greater than 1.844E18f
(as no reasonable calculations can be performed with such values
without causing overflows).

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcJoinCommitScene]

rtcJoinCommitScene

NAME {#name}

rtcJoinCommitScene - commits the scene from multiple threads

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcJoinCommitScene(RTCScene scene);

DESCRIPTION {#description}

The rtcJoinCommitScene function commits all changes for the specified
scene (scene argument). The scene commit internally triggers building
of a spatial acceleration structure for the scene. Ray queries can be
performed after scene changes got properly committed.

The rtcJoinCommitScene function can get called from multiple user
threads which will all cooperate in the build operation. All threads
calling into this function will return from rtcJoinCommitScene after
the scene commit is finished. All threads must consistently call
rtcJoinCommitScene and not rtcCommitScene.

In contrast to the rtcCommitScene function, the rtcJoinCommitScene
function can be called from multiple user threads, while the
rtcCommitScene can only get called from multiple TBB worker threads
when used concurrently. For optimal performance we strongly recommend
using TBB inside the application together with the rtcCommitScene
function and to avoid using the rtcJoinCommitScene function.

The rtcJoinCommitScene feature allows a flexible way to lazily create
hierarchies during rendering. A thread reaching a not-yet-constructed
sub-scene of a two-level scene can generate the sub-scene geometry and
call rtcJoinCommitScene on that just generated scene. During
construction, further threads reaching the not-yet-built scene can join
the build operation by also invoking rtcJoinCommitScene. A thread
that calls rtcJoinCommitScene after the build finishes will directly
return from the rtcJoinCommitScene call.

Multiple scene commit operations on different scenes can be running at
the same time, hence it is possible to commit many small scenes in
parallel, distributing the commits to many threads.

When using Embree with the Intel® Threading Building Blocks (which is
the default), threads that call rtcJoinCommitScene will join the
build operation, but other TBB worker threads might also participate in
the build. To avoid thread oversubscription, we recommend using TBB
also inside the application. Further, the join mode only works properly
starting with TBB v4.4 Update 1. For earlier TBB versions, threads that
call rtcJoinCommitScene to join a running build will just trigger the
build and wait for the build to finish. Further, old TBB versions with
TBB_INTERFACE_VERSION_MAJOR < 8 do not support rtcJoinCommitScene,
and invoking this function will result in an error.

When using Embree with the internal tasking system, only threads that
call rtcJoinCommitScene will perform the build operation, and no
additional worker threads will be scheduled.

When using Embree with the Parallel Patterns Library (PPL),
rtcJoinCommitScene is not supported and calling that function will
result in an error.

To detect whether rtcJoinCommitScene is supported, use the
rtcGetDeviceProperty function.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcCommitScene], [rtcGetDeviceProperty]

rtcSetSceneProgressMonitorFunction

NAME {#name}

rtcSetSceneProgressMonitorFunction - registers a callback
  to track build progress

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

typedef bool (*RTCProgressMonitorFunction)(
  void* ptr,
  double n
);

void rtcSetSceneProgressMonitorFunction(
  RTCScene scene,
  RTCProgressMonitorFunction progress,
  void* userPtr
);

DESCRIPTION {#description}

Embree supports a progress monitor callback mechanism that can be used
to report progress of hierarchy build operations and to cancel build
operations.

The rtcSetSceneProgressMonitorFunction registers a progress monitor
callback function (progress argument) with payload (userPtr
argument) for the specified scene (scene argument).

Only a single callback function can be registered per scene, and
further invocations overwrite the previously set callback function.
Passing NULL as function pointer disables the registered callback
function.

Once registered, Embree will invoke the callback function multiple
times during hierarchy build operations of the scene, by passing the
payload as set at registration time (userPtr argument), and a double
in the range $[0, 1]$ which estimates the progress of the operation
(n argument). The callback function might be called from multiple
threads concurrently.

When returning true from the callback function, Embree will continue
the build operation normally. When returning false, Embree will
cancel the build operation with the RTC_ERROR_CANCELLED error code.
Issuing multiple cancel requests for the same build operation is
allowed.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewScene]

rtcSetSceneBuildQuality

NAME {#name}

rtcSetSceneBuildQuality - sets the build quality for
  the scene

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetSceneBuildQuality(
  RTCScene scene,
  enum RTCBuildQuality quality
);

DESCRIPTION {#description}

The rtcSetSceneBuildQuality function sets the build quality
(quality argument) for the specified scene (scene argument).
Possible values for the build quality are:

  • RTC_BUILD_QUALITY_LOW: Create lower quality data structures,
    e.g. for dynamic scenes. A two-level spatial index structure is
    built when enabling this mode, which supports fast partial scene
    updates, and allows for setting a per-geometry build quality
    through the rtcSetGeometryBuildQuality function.

  • RTC_BUILD_QUALITY_MEDIUM: Default build quality for most usages.
    Gives a good compromise between build and render performance.

  • RTC_BUILD_QUALITY_HIGH: Create higher quality data structures for
    final-frame rendering. For certain geometry types this enables a
    spatial split BVH. When high quality mode is enabled, filter
    callbacks may be invoked multiple times for the same geometry.

Selecting a higher build quality results in better rendering
performance but slower scene commit times. The default build quality
for a scene is RTC_BUILD_QUALITY_MEDIUM.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetGeometryBuildQuality]

rtcSetSceneFlags

NAME {#name}

rtcSetSceneFlags - sets the flags for the scene

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

enum RTCSceneFlags
{
  RTC_SCENE_FLAG_NONE                    = 0,
  RTC_SCENE_FLAG_DYNAMIC                 = (1 << 0),
  RTC_SCENE_FLAG_COMPACT                 = (1 << 1),
  RTC_SCENE_FLAG_ROBUST                  = (1 << 2),
  RTC_SCENE_FLAG_FILTER_FUNCTION_IN_ARGUMENTS = (1 << 3)
};

void rtcSetSceneFlags(RTCScene scene, enum RTCSceneFlags flags);

DESCRIPTION {#description}

The rtcSetSceneFlags function sets the scene flags (flags argument)
for the specified scene (scene argument). Possible scene flags are:

  • RTC_SCENE_FLAG_NONE: No flags set.

  • RTC_SCENE_FLAG_DYNAMIC: Provides better build performance for
    dynamic scenes (but also higher memory consumption).

  • RTC_SCENE_FLAG_COMPACT: Uses compact acceleration structures and
    avoids algorithms that consume much memory.

  • RTC_SCENE_FLAG_ROBUST: Uses acceleration structures that allow
    for robust traversal, and avoids optimizations that reduce
    arithmetic accuracy. This mode is typically used for avoiding
    artifacts caused by rays shooting through edges of neighboring
    primitives.

  • RTC_SCENE_FLAG_FILTER_FUNCTION_IN_ARGUMENTS: Enables scene
    support for filter functions passed as argument to the traversal
    functions. See Section [rtcInitIntersectArguments] and
    [rtcInitOccludedArguments] for more details.

Multiple flags can be enabled using an or operation,
e.g. RTC_SCENE_FLAG_COMPACT | RTC_SCENE_FLAG_ROBUST.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcGetSceneFlags]

rtcGetSceneFlags

NAME {#name}

rtcGetSceneFlags - returns the flags of the scene

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

enum RTCSceneFlags rtcGetSceneFlags(RTCScene scene);

DESCRIPTION {#description}

Queries the flags of a scene. This function can be useful when setting
individual flags, e.g. to just set the robust mode without changing
other flags the following way:

RTCSceneFlags flags = rtcGetSceneFlags(scene);
rtcSetSceneFlags(scene, RTC_SCENE_FLAG_ROBUST | flags);

EXIT STATUS {#exit-status}

On failure RTC_SCENE_FLAG_NONE is returned and an error code is set
that can be queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetSceneFlags]

rtcGetSceneBounds

NAME {#name}

rtcGetSceneBounds - returns the axis-aligned bounding box of the scene

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTCORE_ALIGN(16) RTCBounds
{
  float lower_x, lower_y, lower_z, align0;
  float upper_x, upper_y, upper_z, align1;
};

void rtcGetSceneBounds(
  RTCScene scene,
  struct RTCBounds* bounds_o
);

DESCRIPTION {#description}

The rtcGetSceneBounds function queries the axis-aligned bounding box
of the specified scene (scene argument) and stores that bounding box
to the provided destination pointer (bounds_o argument). The stored
bounding box consists of lower and upper bounds for the x, y, and z
dimensions as specified by the RTCBounds structure.

The provided destination pointer must be aligned to 16 bytes. The
function may be invoked only after committing the scene; otherwise the
result is undefined.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcGetSceneLinearBounds], [rtcCommitScene], [rtcJoinCommitScene]

rtcGetSceneLinearBounds

NAME {#name}

rtcGetSceneLinearBounds - returns the linear bounds of the scene

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTCORE_ALIGN(16) RTCLinearBounds
{
  RTCBounds bounds0;
  RTCBounds bounds1;
};

void rtcGetSceneLinearBounds(
  RTCScene scene,
  struct RTCLinearBounds* bounds_o
);

DESCRIPTION {#description}

The rtcGetSceneLinearBounds function queries the linear bounds of the
specified scene (scene argument) and stores them to the provided
destination pointer (bounds_o argument). The stored linear bounds
consist of bounding boxes for time 0 (bounds0 member) and time 1
(bounds1 member) as specified by the RTCLinearBounds structure.
Linearly interpolating these bounds to a specific time t yields
bounds for the geometry at that time.

The provided destination pointer must be aligned to 16 bytes. The
function may be called only after committing the scene, otherwise the
result is undefined.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcGetSceneBounds], [rtcCommitScene], [rtcJoinCommitScene]

rtcNewGeometry

NAME {#name}

rtcNewGeometry - creates a new geometry object

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

enum RTCGeometryType
{
 RTC_GEOMETRY_TYPE_TRIANGLE,
 RTC_GEOMETRY_TYPE_QUAD,
 RTC_GEOMETRY_TYPE_SUBDIVISION,
 RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE,
 RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE,
 RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE,
 RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE,
 RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE,
 RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE,
 RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE,
 RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE,
 RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE,
 RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE,
 RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE,
 RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE,
 RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE,
 RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE,
 RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE,
 RTC_GEOMETRY_TYPE_GRID,
 RTC_GEOMETRY_TYPE_SPHERE_POINT,
 RTC_GEOMETRY_TYPE_DISC_POINT,
 RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT,
 RTC_GEOMETRY_TYPE_USER,
 RTC_GEOMETRY_TYPE_INSTANCE
};

RTCGeometry rtcNewGeometry(
  RTCDevice device,
  enum RTCGeometryType type
);

DESCRIPTION {#description}

Geometries are objects that represent an array of primitives of the
same type. The rtcNewGeometry function creates a new geometry of
specified type (type argument) bound to the specified device
(device argument) and returns a handle to this geometry. The geometry
object is reference counted with an initial reference count of 1. The
geometry handle can be released using the rtcReleaseGeometry API
call.

Supported geometry types are triangle meshes
(RTC_GEOMETRY_TYPE_TRIANGLE type), quad meshes (triangle pairs)
(RTC_GEOMETRY_TYPE_QUAD type), Catmull-Clark subdivision surfaces
(RTC_GEOMETRY_TYPE_SUBDIVISION type), curve geometries with different
bases (RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE,
RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE,
RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE,
RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE types) grid meshes
(RTC_GEOMETRY_TYPE_GRID), point geometries
(RTC_GEOMETRY_TYPE_SPHERE_POINT, RTC_GEOMETRY_TYPE_DISC_POINT,
RTC_TYPE_ORIENTED_DISC_POINT), user-defined geometries
(RTC_GEOMETRY_TYPE_USER), and instances
(RTC_GEOMETRY_TYPE_INSTANCE).

The types RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE, and
RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE will treat the curve as a
sweep surface of a varying-radius circle swept tangentially along the
curve. The types RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE, and
RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE use ray-facing ribbons as a
faster-to-intersect approximation.

After construction, geometries are enabled by default and not attached
to any scene. Geometries can be disabled (rtcDisableGeometry call),
and enabled again (rtcEnableGeometry call). A geometry can be
attached to multiple scenes using the rtcAttachGeometry call (or
rtcAttachGeometryByID call), and detached using the
rtcDetachGeometry call. During attachment, a geometry ID is assigned
to the geometry (or assigned by the user when using the
rtcAttachGeometryByID call), which uniquely identifies the geometry
inside that scene. This identifier is returned when primitives of the
geometry are hit in later ray queries for the scene.

Geometries can also be modified, including their vertex and index
buffers. After modifying a buffer, rtcUpdateGeometryBuffer must be
called to notify that the buffer got modified.

The application can use the rtcSetGeometryUserData function to set a
user data pointer to its own geometry representation, and later read
out this pointer using the rtcGetGeometryUserData function.

After setting up the geometry or modifying it, rtcCommitGeometry must
be called to finish the geometry setup. After committing the geometry,
vertex data interpolation can be performed using the rtcInterpolate
and rtcInterpolateN functions.

A build quality can be specified for a geometry using the
rtcSetGeometryBuildQuality function, to balance between acceleration
structure build performance and ray query performance. The build
quality per geometry will be used if a two-level acceleration structure
is built internally, which is the case if the RTC_BUILD_QUALITY_LOW
is set as the scene build quality. See Section
[rtcSetSceneBuildQuality] for more details.

EXIT STATUS {#exit-status}

On failure NULL is returned and an error code is set that can be
queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcEnableGeometry], [rtcDisableGeometry], [rtcAttachGeometry],
[rtcAttachGeometryByID], [rtcUpdateGeometryBuffer],
[rtcSetGeometryUserData], [rtcGetGeometryUserData],
[rtcCommitGeometry], [rtcInterpolate], [rtcInterpolateN],
[rtcSetGeometryBuildQuality], [rtcSetSceneBuildQuality],
[RTC_GEOMETRY_TYPE_TRIANGLE], [RTC_GEOMETRY_TYPE_QUAD],
[RTC_GEOMETRY_TYPE_SUBDIVISION], [RTC_GEOMETRY_TYPE_CURVE],
[RTC_GEOMETRY_TYPE_GRID], [RTC_GEOMETRY_TYPE_POINT],
[RTC_GEOMETRY_TYPE_USER], [RTC_GEOMETRY_TYPE_INSTANCE]

RTC_GEOMETRY_TYPE_TRIANGLE

NAME {#name}

RTC_GEOMETRY_TYPE_TRIANGLE - triangle geometry type

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCGeometry geometry =
  rtcNewGeometry(device, RTC_GEOMETRY_TYPE_TRIANGLE);

DESCRIPTION {#description}

Triangle meshes are created by passing RTC_GEOMETRY_TYPE_TRIANGLE to
the rtcNewGeometry function call. The triangle indices can be
specified by setting an index buffer (RTC_BUFFER_TYPE_INDEX type) and
the triangle vertices by setting a vertex buffer
(RTC_BUFFER_TYPE_VERTEX type). See rtcSetGeometryBuffer and
rtcSetSharedGeometryBuffer for more details on how to set buffers.
The index buffer must contain an array of three 32-bit indices per
triangle (RTC_FORMAT_UINT3 format) and the number of primitives is
inferred from the size of that buffer. The vertex buffer must contain
an array of single precision x, y, z floating point coordinates
(RTC_FORMAT_FLOAT3 format), and the number of vertices are inferred
from the size of that buffer. The vertex buffer can be at most 16 GB
large.

The parametrization of a triangle uses the first vertex p0 as base
point, the vector p1 - p0 as u-direction and the vector p2 - p0 as
v-direction. Thus vertex attributes t0,t1,t2 can be linearly
interpolated over the triangle the following way:

t_uv = (1-u-v)*t0 + u*t1 + v*t2
     = t0 + u*(t1-t0) + v*(t2-t0)

A triangle whose vertices are laid out counter-clockwise has its
geometry normal pointing upwards outside the front face, like
illustrated in the following picture:

For multi-segment motion blur, the number of time steps must be first
specified using the rtcSetGeometryTimeStepCount call. Then a vertex
buffer for each time step can be set using different buffer slots, and
all these buffers have to have the same stride and size.

Also see tutorial Triangle Geometry for an example of how to create
triangle meshes.

EXIT STATUS {#exit-status}

On failure NULL is returned and an error code is set that be get
queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry]

RTC_GEOMETRY_TYPE_QUAD

NAME {#name}

RTC_GEOMETRY_TYPE_QUAD - quad geometry type

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCGeometry geometry =
  rtcNewGeometry(device, RTC_GEOMETRY_TYPE_QUAD);

DESCRIPTION {#description}

Quad meshes are created by passing RTC_GEOMETRY_TYPE_QUAD to the
rtcNewGeometry function call. The quad indices can be specified by
setting an index buffer (RTC_BUFFER_TYPE_INDEX type) and the quad
vertices by setting a vertex buffer (RTC_BUFFER_TYPE_VERTEX type).
See rtcSetGeometryBuffer and rtcSetSharedGeometryBuffer for more
details on how to set buffers. The index buffer contains an array of
four 32-bit indices per quad (RTC_FORMAT_UINT4 format), and the
number of primitives is inferred from the size of that buffer. The
vertex buffer contains an array of single precision x, y, z
floating point coordinates (RTC_FORMAT_FLOAT3 format), and the number
of vertices is inferred from the size of that buffer. The vertex buffer
can be at most 16 GB large.

A quad is internally handled as a pair of two triangles v0,v1,v3 and
v2,v3,v1, with the u'/v' coordinates of the second triangle
corrected by u = 1-u' and v = 1-v' to produce a quad
parametrization where u and v are in the range 0 to 1. Thus the
parametrization of a quad uses the first vertex p0 as base point, and
the vector p1 - p0 as u-direction, and p3 - p0 as v-direction.
Thus vertex attributes t0,t1,t2,t3 can be bilinearly interpolated
over the quadrilateral the following way:

t_uv = (1-v)((1-u)*t0 + u*t1) + v*((1-u)*t3 + u*t2)

Mixed triangle/quad meshes are supported by encoding a triangle as a
quad, which can be achieved by replicating the last triangle vertex
(v0,v1,v2 -> v0,v1,v2,v2). This way the second triangle is a line
(which can never get hit), and the parametrization of the first
triangle is compatible with the standard triangle parametrization.

A quad whose vertices are laid out counter-clockwise has its geometry
normal pointing upwards outside the front face, like illustrated in the
following picture.

For multi-segment motion blur, the number of time steps must be first
specified using the rtcSetGeometryTimeStepCount call. Then a vertex
buffer for each time step can be set using different buffer slots, and
all these buffers must have the same stride and size.

EXIT STATUS {#exit-status}

On failure NULL is returned and an error code is set that can be
queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry]

RTC_GEOMETRY_TYPE_GRID

NAME {#name}

RTC_GEOMETRY_TYPE_GRID - grid geometry type

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCGeometry geometry =
  rtcNewGeometry(device, RTC_GEOMETRY_TYPE_GRID);

DESCRIPTION {#description}

Grid meshes are created by passing RTC_GEOMETRY_TYPE_GRID to the
rtcNewGeometry function call, and contain an array of grid
primitives. This array of grids can be specified by setting up a grid
buffer (with RTC_BUFFER_TYPE_GRID type and RTC_FORMAT_GRID format)
and the grid mesh vertices by setting a vertex buffer
(RTC_BUFFER_TYPE_VERTEX type). See rtcSetGeometryBuffer and
rtcSetSharedGeometryBuffer for more details on how to set buffers.
The number of grid primitives in the grid mesh is inferred from the
size of the grid buffer.

The vertex buffer contains an array of single precision x, y, z
floating point coordinates (RTC_FORMAT_FLOAT3 format), and the number
of vertices is inferred from the size of that buffer.

Each grid in the grid buffer is of the type RTCGrid:

struct RTCGrid
{
  unsigned int startVertexID;
  unsigned int stride;
  unsigned short width,height; 
};

The RTCGrid structure describes a 2D grid of vertices (with respect
to the vertex buffer of the grid mesh). The width and height
members specify the number of vertices in u and v direction,
e.g. setting both width and height to 3 sets up a 3×3 vertex grid.
The maximum allowed width and height is 32767. The startVertexID
specifies the ID of the top-left vertex in the vertex grid, while the
stride parameter specifies a stride (in number of vertices) used to
step to the next row.

A vertex grid of dimensions width and height is treated as a
(width-1) x (height-1) grid of quads (triangle-pairs), with the
same shared edge handling as for regular quad meshes. However, the
u/v coordinates have the uniform range [0..1] for an entire
vertex grid. The u direction follows the width of the grid while
the v direction the height.

For multi-segment motion blur, the number of time steps must be first
specified using the rtcSetGeometryTimeStepCount call. Then a vertex
buffer for each time step can be set using different buffer slots, and
all these buffers must have the same stride and size.

EXIT STATUS {#exit-status}

On failure NULL is returned and an error code is set that can be
queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry]

RTC_GEOMETRY_TYPE_SUBDIVISION

NAME {#name}

RTC_GEOMETRY_TYPE_SUBDIVISION - subdivision geometry type

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCGeometry geometry =
  rtcNewGeometry(device, RTC_GEOMETRY_TYPE_SUBDIVISION);

DESCRIPTION {#description}

Catmull-Clark subdivision meshes are supported, including support for
edge creases, vertex creases, holes, non-manifold geometry, and
face-varying interpolation. The number of vertices per face can be in
the range of 3 to 15 vertices (triangles, quadrilateral, pentagons,
etc).

Subdivision meshes are created by passing
RTC_GEOMETRY_TYPE_SUBDIVISION to the rtcNewGeometry function.
Various buffers need to be set by the application to set up the
subdivision mesh. See rtcSetGeometryBuffer and
rtcSetSharedGeometryBuffer for more details on how to set buffers.
The face buffer (RTC_BUFFER_TYPE_FACE type and RTC_FORMAT_UINT
format) contains the number of edges/indices of each face (3 to 15),
and the number of faces is inferred from the size of this buffer. The
index buffer (RTC_BUFFER_TYPE_INDEX type) contains multiple (3 to 15)
32-bit vertex indices (RTC_FORMAT_UINT format) for each face, and the
number of edges is inferred from the size of this buffer. The vertex
buffer (RTC_BUFFER_TYPE_VERTEX type) stores an array of single
precision x, y, z floating point coordinates (RTC_FORMAT_FLOAT3
format), and the number of vertices is inferred from the size of this
buffer.

Optionally, the application may set additional index buffers using
different buffer slots if multiple topologies are required for
face-varying interpolation. The standard vertex buffers
(RTC_BUFFER_TYPE_VERTEX) are always bound to the geometry topology
(topology 0) thus use RTC_BUFFER_TYPE_INDEX with buffer slot 0. User
vertex data interpolation may use different topologies as described
later.

Optionally, the application can set up the hole buffer
(RTC_BUFFER_TYPE_HOLE) which contains an array of 32-bit indices
(RTC_FORMAT_UINT format) of faces that should be considered
non-existing in all topologies. The number of holes is inferred from
the size of this buffer.

Optionally, the application can fill the level buffer
(RTC_BUFFER_TYPE_LEVEL) with a tessellation rate for each of the
edges of each face. This buffer must have the same size as the index
buffer. The tessellation level is a positive floating point value
(RTC_FORMAT_FLOAT format) that specifies how many quads along the
edge should be generated during tessellation. If no level buffer is
specified, a level of 1 is used. The maximally supported edge level is
4096, and larger levels are clamped to that value. Note that edges may
be shared between (typically 2) faces. To guarantee a watertight
tessellation, the level of these shared edges should be identical. A
uniform tessellation rate for an entire subdivision mesh can be set by
using the rtcSetGeometryTessellationRate function. The existence of a
level buffer has precedence over the uniform tessellation rate.

Optionally, the application can fill the sparse edge crease buffers to
make edges appear sharper. The edge crease index buffer
(RTC_BUFFER_TYPE_EDGE_CREASE_INDEX) contains an array of pairs of
32-bit vertex indices (RTC_FORMAT_UINT2 format) that specify
unoriented edges in the geometry topology. The edge crease weight
buffer (RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT) stores for each of these
crease edges a positive floating point weight (RTC_FORMAT_FLOAT
format). The number of edge creases is inferred from the size of these
buffers, which has to be identical. The larger a weight, the sharper
the edge. Specifying a weight of infinity is supported and marks an
edge as infinitely sharp. Storing an edge multiple times with the same
crease weight is allowed, but has lower performance. Storing an edge
multiple times with different crease weights results in undefined
behavior. For a stored edge (i,j), the reverse direction edges (j,i) do
not have to be stored, as both are considered the same unoriented edge.
Edge crease features are shared between all topologies.

Optionally, the application can fill the sparse vertex crease buffers
to make vertices appear sharper. The vertex crease index buffer
(RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX), contains an array of 32-bit
vertex indices (RTC_FORMAT_UINT format) to specify a set of vertices
from the geometry topology. The vertex crease weight buffer
(RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT) specifies for each of these
vertices a positive floating point weight (RTC_FORMAT_FLOAT format).
The number of vertex creases is inferred from the size of these
buffers, and has to be identical. The larger a weight, the sharper the
vertex. Specifying a weight of infinity is supported and makes the
vertex infinitely sharp. Storing a vertex multiple times with the same
crease weight is allowed, but has lower performance. Storing a vertex
multiple times with different crease weights results in undefined
behavior. Vertex crease features are shared between all topologies.

Subdivision modes can be used to force linear interpolation for parts
of the subdivision mesh; see rtcSetGeometrySubdivisionMode for more
details.

For multi-segment motion blur, the number of time steps must be first
specified using the rtcSetGeometryTimeStepCount call. Then a vertex
buffer for each time step can be set using different buffer slots, and
all these buffers have to have the same stride and size.

Also see tutorial Subdivision Geometry for an example of how to
create subdivision surfaces.

Parametrization

The parametrization for subdivision faces is different for
quadrilaterals and non-quadrilateral faces.

The parametrization of a quadrilateral face uses the first vertex p0
as base point, and the vector p1 - p0 as u-direction and p3 - p0 as
v-direction.

The parametrization for all other face types (with number of vertices
not equal 4), have a special parametrization where the subpatch ID n
(of the n-th quadrilateral that would be obtained by a single
subdivision step) and the local hit location inside this quadrilateral
are encoded in the UV coordinates. The following code extracts the
sub-patch ID i and local UVs of this subpatch:

unsigned int l = floorf(0.5f*U);
unsigned int h = floorf(0.5f*V);
unsigned int i = 4*h+l;
float u = 2.0f*fracf(0.5f*U)-0.5f;
float v = 2.0f*fracf(0.5f*V)-0.5f;

This encoding allows local subpatch UVs to be in the range [-0.5,1.5[
thus negative subpatch UVs can be passed to rtcInterpolate to sample
subpatches slightly out of bounds. This can be useful to calculate
derivatives using finite differences if required. The encoding further
has the property that one can just move the value u (or v) on a
subpatch by adding du (or dv) to the special UV encoding as long as
it does not fall out of the [-0.5,1.5[ range.

To smoothly interpolate vertex attributes over the subdivision surface
we recommend using the rtcInterpolate function, which will apply the
standard subdivision rules for interpolation and automatically takes
care of the special UV encoding for non-quadrilaterals.

Face-Varying Data

Face-varying interpolation is supported through multiple topologies per
subdivision mesh and binding such topologies to vertex attribute
buffers to interpolate. This way, texture coordinates may use a
different topology with additional boundaries to construct separate UV
regions inside one subdivision mesh.

Each such topology i has a separate index buffer (specified using
RTC_BUFFER_TYPE_INDEX with buffer slot i) and separate subdivision
mode that can be set using rtcSetGeometrySubdivisionMode. A vertex
attribute buffer RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE bound to a buffer
slot j can be assigned to use a topology for interpolation using the
rtcSetGeometryVertexAttributeTopology call.

The face buffer (RTC_BUFFER_TYPE_FACE type) is shared between all
topologies, which means that the n-th primitive always has the same
number of vertices (e.g. being a triangle or a quad) for each topology.
However, the indices of the topologies themselves may be different.

EXIT STATUS {#exit-status}

On failure NULL is returned and an error code is set that can be
queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry]

RTC_GEOMETRY_TYPE_CURVE

NAME {#name}

RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE -
  flat curve geometry with linear basis

RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE -
  flat curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE - 
  flat curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE - 
  flat curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE - 
  flat curve geometry with Catmull-Rom basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE -
  flat normal oriented curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE - 
  flat normal oriented curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE - 
  flat normal oriented curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE - 
  flat normal oriented curve geometry with Catmull-Rom basis

RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE -
  capped cone curve geometry with linear basis - discontinuous at edge boundaries

RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE -
  capped cone curve geometry with linear basis and spherical ending

RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE -
  swept surface curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE -
  swept surface curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE -
  swept surface curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE -
  swept surface curve geometry with Catmull-Rom basis

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE);

DESCRIPTION {#description}

Curves with per vertex radii are supported with linear, cubic Bézier,
cubic B-spline, and cubic Hermite bases. Such curve geometries are
created by passing RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE,
RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_HERMITE_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_CATMULL_ROM_CURVE,
RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE, or
RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE to the rtcNewGeometry
function. The curve indices can be specified through an index buffer
(RTC_BUFFER_TYPE_INDEX) and the curve vertices through a vertex
buffer (RTC_BUFFER_TYPE_VERTEX). For the Hermite basis a tangent
buffer (RTC_BUFFER_TYPE_TANGENT), normal oriented curves a normal
buffer (RTC_BUFFER_TYPE_NORMAL), and for normal oriented Hermite
curves a normal derivative buffer (RTC_BUFFER_TYPE_NORMAL_DERIVATIVE)
has to get specified additionally. See rtcSetGeometryBuffer and
rtcSetSharedGeometryBuffer for more details on how to set buffers.

The index buffer contains an array of 32-bit indices (RTC_FORMAT_UINT
format), each pointing to the first control vertex in the vertex
buffer, but also to the first tangent in the tangent buffer, and first
normal in the normal buffer if these buffers are present.

The vertex buffer stores each control vertex in the form of a single
precision position and radius stored in (x, y, z, r) order in
memory (RTC_FORMAT_FLOAT4 format). The number of vertices is inferred
from the size of this buffer. The radii may be smaller than zero but
the interpolated radii should always be greater or equal to zero.
Similarly, the tangent buffer stores the derivative of each control
vertex (x, y, z, r order and RTC_FORMAT_FLOAT4 format) and
the normal buffer stores a single precision normal per control vertex
(x, y, z order and RTC_FORMAT_FLOAT3 format).

Linear Basis

For the linear basis the indices point to the first of 2 consecutive
control points in the vertex buffer. The first control point is the
start and the second control point the end of the line segment. When
constructing hair strands in this basis, the end-point can be shared
with the start of the next line segment.

For the linear basis the user optionally can provide a flags buffer of
type RTC_BUFFER_TYPE_FLAGS which contains bytes that encode if the
left neighbor segment (RTC_CURVE_FLAG_NEIGHBOR_LEFT flag) and/or
right neighbor segment (RTC_CURVE_FLAG_NEIGHBOR_RIGHT flags) exist
(see [RTCCurveFlags]). If this buffer is not set, than the left/right
neighbor bits are automatically calculated base on the index buffer
(left segment exists if segment(id-1)+1 == segment(id) and right
segment exists if segment(id+1)-1 == segment(id)).

A left neighbor segment is assumed to end at the start vertex of the
current segment, and to start at the previous vertex in the vertex
buffer. Similarly, the right neighbor segment is assumed to start at
the end vertex of the current segment, and to end at the next vertex in
the vertex buffer.

Only when the left and right bits are properly specified the current
segment can properly attach to the left and/or right neighbor,
otherwise the touching area may not get rendered properly.

Bézier Basis

For the cubic Bézier basis the indices point to the first of 4
consecutive control points in the vertex buffer. These control points
use the cubic Bézier basis, where the first control point represents
the start point of the curve, and the 4th control point the end point
of the curve. The Bézier basis is interpolating, thus the curve does go
exactly through the first and fourth control vertex.

B-spline Basis

For the cubic B-spline basis the indices point to the first of 4
consecutive control points in the vertex buffer. These control points
make up a cardinal cubic B-spline (implicit equidistant knot vector).
This basis is not interpolating, thus the curve does in general not go
through any of the control points directly. A big advantage of this
basis is that 3 control points can be shared for two continuous
neighboring curve segments, e.g. the curves (p0,p1,p2,p3) and
(p1,p2,p3,p4) are C1 continuous. This feature makes this basis a good
choice to construct continuous multi-segment curves, as memory
consumption can be kept minimal.

Hermite Basis

For the cubic Hermite basis the indices point to the first of 2
consecutive points in the vertex buffer, and the first of 2 consecutive
tangents in the tangent buffer. These two points and two tangents make
up a cubic Hermite curve. This basis is interpolating, thus does
exactly go through the first and second control point, and the first
order derivative at the begin and end matches exactly the value
specified in the tangent buffer. When connecting two segments
continuously, the end point and tangent of the previous segment can be
shared. Different versions of Catmull-Rom splines can be easily
constructed using the Hermite basis, by calculating a proper tangent
buffer from the control points.

Catmull-Rom Basis

For the Catmull-Rom basis the indices point to the first of 4
consecutive control points in the vertex buffer. This basis goes
through p1 and p2, with tangents (p2-p0)/2 and (p3-p1)/2.

Flat Curves

The RTC_GEOMETRY_TYPE_FLAT_* flat mode is a fast mode designed to
render distant hair. In this mode the curve is rendered as a connected
sequence of ray facing quads. Individual quads are considered to have
subpixel size, and zooming onto the curve might show geometric
artifacts. The number of quads to subdivide into can be specified
through the rtcSetGeometryTessellationRate function. By default the
tessellation rate is 4.

Normal Oriented Curves

The RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_* mode is a mode designed to
render blades of grass. In this mode a vertex spline has to get
specified as for the previous modes, but additionally a normal spline
is required. If the Hermite basis is used, the RTC_BUFFER_TYPE_NORMAL
and RTC_BUFFER_TYPE_NORMAL_DERIVATIVE buffers have both to be set.

The curve is rendered as a flat band whose center approximately follows
the provided vertex spline, whose half width approximately follows the
provided radius spline, and whose normal orientation approximately
follows the provided normal spline.

To intersect the normal oriented curve, we perform a newton-raphson
style intersection of a ray with a tensor product surface of a linear
basis (perpendicular to the curve) and cubic Bézier basis (along the
curve). We use a guide curve and its derivatives to construct the
control points of that surface. The guide curve is defined by a sweep
surface defined by sweeping a line centered at the vertex spline
location along the curve. At each parameter value the half width of the
line matches the radius spline, and the direction matches the cross
product of the normal from the normal spline and tangent of the vertex
spline. Note that this construction does not work when the provided
normals are parallel to the curve direction. For this reason the
provided normals should best be kept as perpendicular to the curve
direction as possible. We further assume second order derivatives of
the center curve to be zero for this construction, as otherwise very
large curvatures occurring in corner cases, can thicken the constructed
curve significantly.

Round Curves

In the RTC_GEOMETRY_TYPE_ROUND_* round mode, a real geometric surface
is rendered for the curve, which is more expensive but allows closeup
views.

For the linear basis the round mode renders a cone that tangentially
touches a start-sphere and end-sphere. The start sphere is rendered
when no previous segments is indicated by the neighbor bits. The end
sphere is always rendered but parts that lie inside the next segment
are clipped away (if that next segment exists). This way a curve is
closed on both ends and the interior will render properly as long as
only neighboring segments penetrate into a segment. For this to work
properly it is important that the flags buffer is properly populated
with neighbor information.

For the cubic polynomial bases, the round mode renders a sweep surface
by sweeping a varying radius circle tangential along the curve. As a
limitation, the radius of the curve has to be smaller than the
curvature radius of the curve at each location on the curve.

The intersection with the curve segment stores the parametric hit
location along the curve segment as u-coordinate (range 0 to +1).

For flat curves, the v-coordinate is set to the normalized distance in
the range -1 to +1. For normal oriented curves the v-coordinate is in
the range 0 to 1. For the linear basis and in round mode the
v-coordinate is set to zero.

In flat mode, the geometry normal Ng is set to the tangent of the
curve at the hit location. In round mode and for normal oriented
curves, the geometry normal Ng is set to the non-normalized geometric
normal of the surface.

For multi-segment motion blur, the number of time steps must be first
specified using the rtcSetGeometryTimeStepCount call. Then a vertex
buffer for each time step can be set using different buffer slots, and
all these buffers must have the same stride and size. For the Hermite
basis also a tangent buffer has to be set for each time step and for
normal oriented curves a normal buffer has to get specified for each
time step.

Also see tutorials Hair and Curves for examples of how to
create and use curve geometries.

EXIT STATUS {#exit-status}

On failure NULL is returned and an error code is set that can be
queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry], [RTCCurveFlags]

RTC_GEOMETRY_TYPE_POINT

NAME {#name}

RTC_GEOMETRY_TYPE_SPHERE_POINT -
  point geometry spheres

RTC_GEOMETRY_TYPE_DISC_POINT -
  point geometry with ray-oriented discs

RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT -
  point geometry with normal-oriented discs

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

rtcNewGeometry(device, RTC_GEOMETRY_TYPE_SPHERE_POINT);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_DISC_POINT);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT);

DESCRIPTION {#description}

Points with per vertex radii are supported with sphere, ray-oriented
discs, and normal-oriented discs geometric representations. Such point
geometries are created by passing RTC_GEOMETRY_TYPE_SPHERE_POINT,
RTC_GEOMETRY_TYPE_DISC_POINT, or
RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT to the rtcNewGeometry
function. The point vertices can be specified t through a vertex buffer
(RTC_BUFFER_TYPE_VERTEX). For the normal oriented discs a normal
buffer (RTC_BUFFER_TYPE_NORMAL) has to get specified additionally.
See rtcSetGeometryBuffer and rtcSetSharedGeometryBuffer for more
details on how to set buffers.

The vertex buffer stores each control vertex in the form of a single
precision position and radius stored in (x, y, z, r) order in
memory (RTC_FORMAT_FLOAT4 format). The number of vertices is inferred
from the size of this buffer. Similarly, the normal buffer stores a
single precision normal per control vertex (x, y, z order and
RTC_FORMAT_FLOAT3 format).

In the RTC_GEOMETRY_TYPE_SPHERE_POINT mode, a real geometric surface
is rendered for the curve, which is more expensive but allows closeup
views.

The RTC_GEOMETRY_TYPE_DISC_POINT flat mode is a fast mode designed to
render distant points. In this mode the point is rendered as a ray
facing disc.

The RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT mode is a mode designed as
a midpoint geometrically between ray facing discs and spheres. In this
mode the point is rendered as a normal oriented disc.

For all point types, only the hit distance and geometry normal is
returned as hit information, u and v are set to zero.

For multi-segment motion blur, the number of time steps must be first
specified using the rtcSetGeometryTimeStepCount call. Then a vertex
buffer for each time step can be set using different buffer slots, and
all these buffers must have the same stride and size.

Also see tutorial [Points] for an example of how to create and use
point geometries.

EXIT STATUS {#exit-status}

On failure NULL is returned and an error code is set that can be
queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry]

RTC_GEOMETRY_TYPE_USER

NAME {#name}

RTC_GEOMETRY_TYPE_USER - user geometry type

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCGeometry geometry =
  rtcNewGeometry(device, RTC_GEOMETRY_TYPE_USER);

DESCRIPTION {#description}

User-defined geometries contain a number of user-defined primitives,
just like triangle meshes contain multiple triangles. The shape of the
user-defined primitives is specified through registered callback
functions, which enable extending Embree with arbitrary types of
primitives.

User-defined geometries are created by passing RTC_GEOMETRY_TYPE_USER
to the rtcNewGeometry function call. One has to set the number of
primitives (see rtcSetGeometryUserPrimitiveCount), a user data
pointer (see rtcSetGeometryUserData), a bounding function closure
(see rtcSetGeometryBoundsFunction), as well as user-defined intersect
(see rtcSetGeometryIntersectFunction) and occluded (see
rtcSetGeometryOccludedFunction) callback functions. The bounding
function is used to query the bounds of all time steps of a user
primitive, while the intersect and occluded callback functions are
called to intersect the primitive with a ray. The user data pointer is
passed to each callback invocation and can be used to point to the
application’s representation of the user geometry.

The creation of a user geometry typically looks the following:

RTCGeometry geometry = rtcNewGeometry(device, RTC_GEOMETRY_TYPE_USER);
rtcSetGeometryUserPrimitiveCount(geometry, numPrimitives);
rtcSetGeometryUserData(geometry, userGeometryRepresentation);
rtcSetGeometryBoundsFunction(geometry, boundsFunction);
rtcSetGeometryIntersectFunction(geometry, intersectFunction);
rtcSetGeometryOccludedFunction(geometry, occludedFunction);

Please have a look at the rtcSetGeometryBoundsFunction,
rtcSetGeometryIntersectFunction, and rtcSetGeometryOccludedFunction
functions on the implementation of the callback functions.

Primitives of a user geometry are ignored during rendering when their
bounds are empty, thus bounds have lower>upper in at least one
dimension.

See tutorial User Geometry for an example of how to use the
user-defined geometries.

EXIT STATUS {#exit-status}

On failure NULL is returned and an error code is set that can be
queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry], [rtcSetGeometryUserPrimitiveCount],
[rtcSetGeometryUserData], [rtcSetGeometryBoundsFunction],
[rtcSetGeometryIntersectFunction], [rtcSetGeometryOccludedFunction]

RTC_GEOMETRY_TYPE_INSTANCE

NAME {#name}

RTC_GEOMETRY_TYPE_INSTANCE - instance geometry type

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCGeometry geometry =
   rtcNewGeometry(device, RTC_GEOMETRY_TYPE_INSTANCE);

DESCRIPTION {#description}

Embree supports instancing of scenes using affine transformations (3×3
matrix plus translation). As the instanced scene is stored only a
single time, even if instanced to multiple locations, this feature can
be used to create very complex scenes with small memory footprint.

Embree supports both single-level instancing and multi-level
instancing. The maximum instance nesting depth is
RTC_MAX_INSTANCE_LEVEL_COUNT; it can be configured at compile-time
using the constant EMBREE_MAX_INSTANCE_LEVEL_COUNT. Users should
adapt this constant to their needs: instances nested any deeper are
silently ignored in release mode, and cause assertions in debug mode.

Instances are created by passing RTC_GEOMETRY_TYPE_INSTANCE to the
rtcNewGeometry function call. The instanced scene can be set using
the rtcSetGeometryInstancedScene call, and the affine transformation
can be set using the rtcSetGeometryTransform function.

Please note that rtcCommitScene on the instanced scene should be
called first, followed by rtcCommitGeometry on the instance, followed
by rtcCommitScene for the top-level scene containing the instance.

If a ray hits the instance, the geomID and primID members of the
hit are set to the geometry ID and primitive ID of the hit primitive in
the instanced scene, and the instID member of the hit is set to the
geometry ID of the instance in the top-level scene.

The instancing scheme can also be implemented using user geometries. To
achieve this, the user geometry code should set the instID member of
the ray query context to the geometry ID of the instance, then trace
the transformed ray, and finally set the instID field of the ray
query context again to -1. The instID field is copied automatically
by each primitive intersector into the instID field of the hit
structure when the primitive is hit. See the User Geometry tutorial
for an example.

For multi-segment motion blur, the number of time steps must be first
specified using the rtcSetGeometryTimeStepCount function. Then a
transformation for each time step can be specified using the
rtcSetGeometryTransform function.

See tutorials Instanced Geometry and Multi Level Instancing for
examples of how to use instances.

EXIT STATUS {#exit-status}

On failure NULL is returned and an error code is set that can be
queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry], [rtcSetGeometryInstancedScene],
[rtcSetGeometryTransform]

RTCCurveFlags

NAME {#name}

RTCCurveFlags - per segment flags for curve geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

enum RTCCurveFlags
{
  RTC_CURVE_FLAG_NEIGHBOR_LEFT  = (1 << 0), 
  RTC_CURVE_FLAG_NEIGHBOR_RIGHT = (1 << 1) 
};

DESCRIPTION {#description}

The RTCCurveFlags type is used for linear curves to determine if the
left and/or right neighbor segment exist. Therefore one attaches a
buffer of type RTC_BUFFER_TYPE_FLAGS to the curve geometry which
stores an individual byte per curve segment.

If the RTC_CURVE_FLAG_NEIGHBOR_LEFT flag in that byte is enabled
for a curve segment, then the left segment exists (which starts one
vertex before the start vertex of the current curve) and the current
segment is rendered to properly attach to that segment.

If the RTC_CURVE_FLAG_NEIGHBOR_RIGHT flag in that byte is enabled
for a curve segment, then the right segment exists (which ends one
vertex after the end vertex of the current curve) and the current
segment is rendered to properly attach to that segment.

When not properly specifying left and right flags for linear curves,
the rendering at the ending of these curves may not look correct, in
particular when round linear curves are viewed from the inside.

EXIT STATUS {#exit-status}

SEE ALSO {#see-also}

[RTC_GEOMETRY_TYPE_CURVE]

rtcRetainGeometry

NAME {#name}

rtcRetainGeometry - increments the geometry reference count

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcRetainGeometry(RTCGeometry geometry);

DESCRIPTION {#description}

Geometry objects are reference counted. The rtcRetainGeometry
function increments the reference count of the passed geometry object
(geometry argument). This function together with rtcReleaseGeometry
allows to use the internal reference counting in a C++ wrapper class to
handle the ownership of the object.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry], [rtcReleaseGeometry]

rtcReleaseGeometry

NAME {#name}

rtcReleaseGeometry - decrements the geometry reference count

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcReleaseGeometry(RTCGeometry geometry);

DESCRIPTION {#description}

Geometry objects are reference counted. The rtcReleaseGeometry
function decrements the reference count of the passed geometry object
(geometry argument). When the reference count falls to 0, the
geometry gets destroyed.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry], [rtcRetainGeometry]

rtcCommitGeometry

NAME {#name}

rtcCommitGeometry - commits geometry changes

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcCommitGeometry(RTCGeometry geometry);

DESCRIPTION {#description}

The rtcCommitGeometry function is used to commit all geometry changes
performed to a geometry (geometry parameter). After a geometry gets
modified, this function must be called to properly update the internal
state of the geometry to perform interpolations using rtcInterpolate
or to commit a scene containing the geometry using rtcCommitScene.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcInterpolate], [rtcCommitScene]

rtcEnableGeometry

NAME {#name}

rtcEnableGeometry - enables the geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcEnableGeometry(RTCGeometry geometry);

DESCRIPTION {#description}

The rtcEnableGeometry function enables the specified geometry
(geometry argument). Only enabled geometries are rendered. Each
geometry is enabled by default at construction time.

After enabling a geometry, the scene containing that geometry must be
committed using rtcCommitScene for the change to have effect.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry], [rtcDisableGeometry], [rtcCommitScene]

rtcDisableGeometry

NAME {#name}

rtcDisableGeometry - disables the geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcDisableGeometry(RTCGeometry geometry);

DESCRIPTION {#description}

The rtcDisableGeometry function disables the specified geometry
(geometry argument). A disabled geometry is not rendered. Each
geometry is enabled by default at construction time.

After disabling a geometry, the scene containing that geometry must be
committed using rtcCommitScene for the change to have effect.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry], [rtcEnableGeometry], [rtcCommitScene]

rtcSetGeometryTimeStepCount

NAME {#name}

rtcSetGeometryTimeStepCount - sets the number of time steps of the
  geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryTimeStepCount(
  RTCGeometry geometry,
  unsigned int timeStepCount
);

DESCRIPTION {#description}

The rtcSetGeometryTimeStepCount function sets the number of time
steps for multi-segment motion blur (timeStepCount parameter) of the
specified geometry (geometry parameter).

For triangle meshes (RTC_GEOMETRY_TYPE_TRIANGLE), quad meshes
(RTC_GEOMETRY_TYPE_QUAD), curves (RTC_GEOMETRY_TYPE_CURVE), points
(RTC_GEOMETRY_TYPE_POINT), and subdivision geometries
(RTC_GEOMETRY_TYPE_SUBDIVISION), the number of time steps directly
corresponds to the number of vertex buffer slots available
(RTC_BUFFER_TYPE_VERTEX buffer type). For these geometries, one
vertex buffer per time step must be specified when creating
multi-segment motion blur geometries.

For instance geometries (RTC_GEOMETRY_TYPE_INSTANCE), a
transformation must be specified for each time step (see
rtcSetGeometryTransform).

For user geometries, the registered bounding callback function must
provide a bounding box per primitive and time step, and the
intersection and occlusion callback functions should properly intersect
the motion-blurred geometry at the ray time.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry], [rtcSetGeometryTimeRange]

rtcSetGeometryTimeRange

NAME {#name}

rtcSetGeometryTimeRange - sets the time range for a motion blur geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryTimeRange(
  RTCGeometry geometry,
  float startTime,
  float endTime
);

DESCRIPTION {#description}

The rtcSetGeometryTimeRange function sets a time range which defines
the start (and end time) of the first (and last) time step of a motion
blur geometry. The time range is defined relative to the camera shutter
interval [0,1] but it can be arbitrary. Thus the startTime can be
smaller, equal, or larger 0, indicating a geometry whose animation
definition start before, at, or after the camera shutter opens. Similar
the endTime can be smaller, equal, or larger than 1, indicating a
geometry whose animation definition ends after, at, or before the
camera shutter closes. The startTime has to be smaller or equal to the
endTime.

The default time range when this function is not called is the entire
camera shutter [0,1]. For best performance at most one time segment
of the piece wise linear definition of the motion should fall outside
the shutter window to the left and to the right. Thus do not set the
startTime or endTime too far outside the [0,1] interval for best
performance.

This time range feature will also allow geometries to appear and
disappear during the camera shutter time if the specified time range is
a sub range of [0,1].

Please also have a look at the rtcSetGeometryTimeStepCount function
to see how to define the time steps for the specified time range.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetGeometryTimeStepCount]

rtcSetGeometryVertexAttributeCount

NAME {#name}

rtcSetGeometryVertexAttributeCount - sets the number of vertex
  attributes of the geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryVertexAttributeCount(
  RTCGeometry geometry,
  unsigned int vertexAttributeCount
);

DESCRIPTION {#description}

The rtcSetGeometryVertexAttributeCount function sets the number of
slots (vertexAttributeCount parameter) for vertex attribute buffers
(RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) that can be used for the specified
geometry (geometry parameter).

This function is supported only for triangle meshes
(RTC_GEOMETRY_TYPE_TRIANGLE), quad meshes (RTC_GEOMETRY_TYPE_QUAD),
curves (RTC_GEOMETRY_TYPE_CURVE), points (RTC_GEOMETRY_TYPE_POINT),
and subdivision geometries (RTC_GEOMETRY_TYPE_SUBDIVISION).

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry], [RTCBufferType]

rtcSetGeometryMask

NAME {#name}

rtcSetGeometryMask - sets the geometry mask

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryMask(
  RTCGeometry geometry,
  unsigned int mask
);

DESCRIPTION {#description}

The rtcSetGeometryMask function sets a 32-bit geometry mask (mask
argument) for the specified geometry (geometry argument).

This geometry mask is used together with the ray mask stored inside the
mask field of the ray. The primitives of the geometry are hit by the
ray only if the bitwise and operation of the geometry mask with the
ray mask is not 0. This feature can be used to disable selected
geometries for specifically tagged rays, e.g. to disable shadow casting
for certain geometries.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[RTCRay], [rtcGetDeviceProperty]

rtcSetGeometryBuildQuality

NAME {#name}

rtcSetGeometryBuildQuality - sets the build quality for the geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryBuildQuality(
  RTCGeometry geometry,
  enum RTCBuildQuality quality
);

DESCRIPTION {#description}

The rtcSetGeometryBuildQuality function sets the build quality
(quality argument) for the specified geometry (geometry argument).
The per-geometry build quality is only a hint and may be ignored.
Embree currently uses the per-geometry build quality when the scene
build quality is set to RTC_BUILD_QUALITY_LOW. In this mode a
two-level acceleration structure is build, and geometries build a
separate acceleration structure using the geometry build quality. The
per-geometry build quality can be one of:

  • RTC_BUILD_QUALITY_LOW: Creates lower quality data structures,
    e.g. for dynamic scenes.

  • RTC_BUILD_QUALITY_MEDIUM: Default build quality for most usages.
    Gives a good compromise between build and render performance.

  • RTC_BUILD_QUALITY_HIGH: Creates higher quality data structures
    for final-frame rendering. Enables a spatial split builder for
    certain primitive types.

  • RTC_BUILD_QUALITY_REFIT: Uses a BVH refitting approach when
    changing only the vertex buffer.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetSceneBuildQuality]

rtcSetGeometryMaxRadiusScale

NAME {#name}

rtcSetGeometryMaxRadiusScale - assigns a maximal curve radius scale factor for min-width feature

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryMaxRadiusScale(RTCGeometry geometry, float maxRadiusScale);

DESCRIPTION {#description}

The rtcSetMaxGeometryScale function specifies a maximal scaling
factor for curve radii used by the min-width feature.

The min-width feature can increase the radius of curves and points, in
order to reduce aliasing and improve render times. The feature is
disabled by default and has to get enabled using the EMBREE_MIN_WIDTH
cmake option.

To use the feature, one has to specify a maximal curve radius scaling
factor using the [rtcSetGeometryMaxRadiusScale] function. This factor
should be a small number (e.g. 4) as the constructed BVH bounds get
increased in order to bound the curve in the worst case of maximal
radii.

One also has to set the minWidthDistanceFactor in the
RTCRayQueryContext when tracing a ray. This factor controls the target
radius size of a curve or point at some distance away of the ray
origin.

For each control point p with radius r of a curve or point primitive,
the primitive intersectors first calculate a target radius r’ as:

r' = length(p-ray_org) * minWidthDistanceFactor

Typically the minWidthDistanceFactor is set by the application such
that the target radius projects to the width of half a pixel (thus
primitive diameter is pixel sized).

The target radius r’ is then clamped against the minimal bound r and
maximal bound maxRadiusScale*r to obtain the final radius r»:

r'' = max(r, min(r', maxRadiusScale*r))

Thus curves or points close to the camera are rendered with a normal
radii r, and curves or points far from the camera are not enlarged too
much, as this would be very expensive to render.

When rtcSetGeometryMaxRadiusScale function is not invoked for a curve
or point geometry (or if the maximal scaling factor is set to 1.0),
then the curve or point geometry renders normally, with radii not
modified by the min-width feature.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcInitRayQueryContext]

rtcSetGeometryBuffer

NAME {#name}

rtcSetGeometryBuffer - assigns a view of a buffer to the geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryBuffer(
  RTCGeometry geometry,
  enum RTCBufferType type,
  unsigned int slot,
  enum RTCFormat format,
  RTCBuffer buffer,
  size_t byteOffset,
  size_t byteStride,
  size_t itemCount
);

DESCRIPTION {#description}

The rtcSetGeometryBuffer function binds a view of a buffer object
(buffer argument) to a geometry buffer type and slot (type and
slot argument) of the specified geometry (geometry argument).

One can specify the start of the first buffer element in bytes
(byteOffset argument), the byte stride between individual buffer
elements (byteStride argument), the format of the buffer elements
(format argument), and the number of elements to bind (itemCount).

The start address (byteOffset argument) and stride (byteStride
argument) must be both aligned to 4 bytes, otherwise the
rtcSetGeometryBuffer function will fail.

After successful completion of this function, the geometry will hold a
reference to the buffer object.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetSharedGeometryBuffer], [rtcSetNewGeometryBuffer]

rtcSetSharedGeometryBuffer

NAME {#name}

rtcSetSharedGeometryBuffer - assigns a view of a shared data buffer
  to a geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetSharedGeometryBuffer(
  RTCGeometry geometry,
  enum RTCBufferType type,
  unsigned int slot,
  enum RTCFormat format,
  const void* ptr,
  size_t byteOffset,
  size_t byteStride,
  size_t itemCount
);

DESCRIPTION {#description}

The rtcSetSharedGeometryBuffer function binds a view of a shared
user-managed data buffer (ptr argument) to a geometry buffer type and
slot (type and slot argument) of the specified geometry (geometry
argument).

One can specify the start of the first buffer element in bytes
(byteOffset argument), the byte stride between individual buffer
elements (byteStride argument), the format of the buffer elements
(format argument), and the number of elements to bind (itemCount).

The start address (byteOffset argument) and stride (byteStride
argument) must be both aligned to 4 bytes; otherwise the
rtcSetSharedGeometryBuffer function will fail.

When the buffer will be used as a vertex buffer
(RTC_BUFFER_TYPE_VERTEX and RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE), the
last buffer element must be readable using 16-byte SSE load
instructions, thus padding the last element is required for certain
layouts. E.g. a standard float3 vertex buffer layout should add
storage for at least one more float to the end of the buffer.

The buffer data must remain valid for as long as the buffer may be
used, and the user is responsible for freeing the buffer data when no
longer required.

Sharing buffers can significantly reduce the memory required by the
application, thus we recommend using this feature. When enabling the
RTC_SCENE_FLAG_COMPACT scene flag, the spatial index structures index
into the vertex buffer, resulting in even higher memory savings.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetGeometryBuffer], [rtcSetNewGeometryBuffer]

rtcSetNewGeometryBuffer

NAME {#name}

rtcSetNewGeometryBuffer - creates and assigns a new data buffer to
  the geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void* rtcSetNewGeometryBuffer(
  RTCGeometry geometry,
  enum RTCBufferType type,
  unsigned int slot,
  enum RTCFormat format,
  size_t byteStride,
  size_t itemCount
);

DESCRIPTION {#description}

The rtcSetNewGeometryBuffer function creates a new data buffer of
specified format (format argument), byte stride (byteStride
argument), and number of items (itemCount argument), and assigns it
to a geometry buffer slot (type and slot argument) of the specified
geometry (geometry argument). The buffer data is managed internally
and automatically freed when the geometry is destroyed.

The byte stride (byteStride argument) must be aligned to 4 bytes;
otherwise the rtcSetNewGeometryBuffer function will fail.

The allocated buffer will be automatically over-allocated slightly when
used as a vertex buffer, where a requirement is that each buffer
element should be readable using 16-byte SSE load instructions.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetGeometryBuffer], [rtcSetSharedGeometryBuffer]

RTCFormat

NAME {#name}

RTCFormat - specifies format of data in buffers

SYNOPSIS {#synopsis}

#include <embree4/rtcore_ray.h>

enum RTCFormat
{
  RTC_FORMAT_UINT,
  RTC_FORMAT_UINT2,
  RTC_FORMAT_UINT3,
  RTC_FORMAT_UINT4,

  RTC_FORMAT_FLOAT,
  RTC_FORMAT_FLOAT2,
  RTC_FORMAT_FLOAT3,
  RTC_FORMAT_FLOAT4,
  RTC_FORMAT_FLOAT5,
  RTC_FORMAT_FLOAT6,
  RTC_FORMAT_FLOAT7,
  RTC_FORMAT_FLOAT8,
  RTC_FORMAT_FLOAT9,
  RTC_FORMAT_FLOAT10,
  RTC_FORMAT_FLOAT11,
  RTC_FORMAT_FLOAT12,
  RTC_FORMAT_FLOAT13,
  RTC_FORMAT_FLOAT14,
  RTC_FORMAT_FLOAT15,
  RTC_FORMAT_FLOAT16,

  RTC_FORMAT_FLOAT3X4_ROW_MAJOR,
  RTC_FORMAT_FLOAT4X4_ROW_MAJOR,

  RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR,
  RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,

  RTC_FORMAT_GRID,
};

DESCRIPTION {#description}

The RTFormat structure defines the data format stored in data buffers
provided to Embree using the [rtcSetGeometryBuffer],
[rtcSetSharedGeometryBuffer], and [rtcSetNewGeometryBuffer] API
calls.

The RTC_FORMAT_UINT/2/3/4 format are used to specify that data
buffers store unsigned integers, or unsigned integer vectors of size
2,3 or 4. This format has typically to get used when specifying index
buffers, e.g. RTC_FORMAT_UINT3 for triangle meshes.

The RTC_FORMAT_FLOAT/2/3/4... format are used to specify that data
buffers store single precision floating point values, or vectors there
of (size 2,3,4, etc.). This format is typcally used to specify to
format of vertex buffers, e.g. the RTC_FORMAT_FLOAT3 type for vertex
buffers of triangle meshes.

The RTC_FORMAT_FLOAT3X4_ROW_MAJOR and
RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR formats, specify a 3×4 floating
point matrix layed out either row major or column major. The
RTC_FORMAT_FLOAT4X4_ROW_MAJOR and RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR
formats, specify a 4×4 floating point matrix layed out either row major
or column major. These matrix formats are used in the
[rtcSetGeometryTransform] function in order to set a transformation
matrix for geometries.

The RTC_FORMAT_GRID is a special data format used to specify grid
primitives of layout RTCGrid when creating grid geometries (see
[RTC_GEOMETRY_TYPE_GRID]).

EXIT STATUS {#exit-status}

SEE ALSO {#see-also}

[rtcSetGeometryBuffer], [rtcSetSharedGeometryBuffer],
[rtcSetNewGeometryBuffer], [rtcSetGeometryTransform]

RTCBufferType

NAME {#name}

RTCFormat - specifies format of data in buffers

SYNOPSIS {#synopsis}

#include <embree4/rtcore_ray.h>

enum RTCBufferType
{
  RTC_BUFFER_TYPE_INDEX            = 0,
  RTC_BUFFER_TYPE_VERTEX           = 1,
  RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE = 2,
  RTC_BUFFER_TYPE_NORMAL           = 3,
  RTC_BUFFER_TYPE_TANGENT          = 4,
  RTC_BUFFER_TYPE_NORMAL_DERIVATIVE = 5,

  RTC_BUFFER_TYPE_GRID                 = 8,

  RTC_BUFFER_TYPE_FACE                 = 16,
  RTC_BUFFER_TYPE_LEVEL                = 17,
  RTC_BUFFER_TYPE_EDGE_CREASE_INDEX    = 18,
  RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT   = 19,
  RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX  = 20,
  RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT = 21,
  RTC_BUFFER_TYPE_HOLE                 = 22,

  RTC_BUFFER_TYPE_FLAGS = 32
};

DESCRIPTION {#description}

The RTBufferType structure defines slots to assign data buffers to
using the [rtcSetGeometryBuffer], [rtcSetSharedGeometryBuffer], and
[rtcSetNewGeometryBuffer] API calls.

For most geometry types the RTC_BUFFER_TYPE_INDEX slot is used to
assign an index buffer, while the RTC_BUFFER_TYPE_VERTEX is used to
assign the corresponding vertex buffer.

The RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE slot can get used to assign
arbitrary additional vertex data which can get interpolated using the
[rtcInterpolate] API call.

The RTC_BUFFER_TYPE_NORMAL, RTC_BUFFER_TYPE_TANGENT, and
RTC_BUFFER_TYPE_NORMAL_DERIVATIVE are special buffers required to
assign per vertex normals, tangents, and normal derivatives for some
curve types.

The RTC_BUFFER_TYPE_GRID buffer is used to assign the grid primitive
buffer for grid geometries (see [RTC_GEOMETRY_TYPE_GRID]).

The RTC_BUFFER_TYPE_FACE, RTC_BUFFER_TYPE_LEVEL,
RTC_BUFFER_TYPE_EDGE_CREASE_INDEX,
RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT,
RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX,
RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT, and RTC_BUFFER_TYPE_HOLE are
special buffers required to create subdivision meshes (see
[RTC_GEOMETRY_TYPE_SUBDIVISION]).

The RTC_BUFFER_TYPE_FLAGS can get used to add additional flag per
primitive of a geometry, and is currently only used for linear curves.

EXIT STATUS {#exit-status}

SEE ALSO {#see-also}

[rtcSetGeometryBuffer], [rtcSetSharedGeometryBuffer],
[rtcSetNewGeometryBuffer]

rtcGetGeometryBufferData

NAME {#name}

rtcGetGeometryBufferData - gets pointer to
  the first buffer view element

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void* rtcGetGeometryBufferData(
  RTCGeometry geometry,
  enum RTCBufferType type,
  unsigned int slot
);

DESCRIPTION {#description}

The rtcGetGeometryBufferData function returns a pointer to the first
element of the buffer view attached to the specified buffer type and
slot (type and slot argument) of the geometry (geometry
argument).

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetGeometryBuffer], [rtcSetSharedGeometryBuffer],
[rtcSetNewGeometryBuffer]

rtcUpdateGeometryBuffer

NAME {#name}

rtcUpdateGeometryBuffer - marks a buffer view bound to the geometry
  as modified

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcUpdateGeometryBuffer(
  RTCGeometry geometry,
  enum RTCBufferType type,
  unsigned int slot
);

DESCRIPTION {#description}

The rtcUpdateGeometryBuffer function marks the buffer view bound to
the specified buffer type and slot (type and slot argument) of a
geometry (geometry argument) as modified.

If a data buffer is changed by the application, the
rtcUpdateGeometryBuffer call must be invoked for that buffer. Each
buffer view assigned to a buffer slot is initially marked as modified,
thus this function needs to be called only when doing buffer
modifications after the first rtcCommitScene.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewGeometry], [rtcCommitScene]

rtcSetGeometryIntersectFilterFunction

NAME {#name}

rtcSetGeometryIntersectFilterFunction - sets the intersection filter
  for the geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTCFilterFunctionNArguments
{
  int* valid;
  void* geometryUserPtr;
  const struct RTCRayQueryContext* context;
  struct RTCRayN* ray;
  struct RTCHitN* hit;
  unsigned int N;
};

typedef void (*RTCFilterFunctionN)(
  const struct RTCFilterFunctionNArguments* args
);

void rtcSetGeometryIntersectFilterFunction(
  RTCGeometry geometry,
  RTCFilterFunctionN filter
);

DESCRIPTION {#description}

The rtcSetGeometryIntersectFilterFunction function registers an
intersection filter callback function (filter argument) for the
specified geometry (geometry argument).

Only a single callback function can be registered per geometry, and
further invocations overwrite the previously set callback function.
Passing NULL as function pointer disables the registered callback
function.

The registered intersection filter function is invoked for every hit
encountered during the rtcIntersect-type ray queries and can accept
or reject that hit. The feature can be used to define a silhouette for
a primitive and reject hits that are outside the silhouette. E.g. a
tree leaf could be modeled with an alpha texture that decides whether
hit points lie inside or outside the leaf.

If the RTC_BUILD_QUALITY_HIGH mode is set, the filter functions may
be called multiple times for the same primitive hit. Further, rays
hitting exactly the edge might also report two hits for the same
surface. For certain use cases, the application may have to work around
this limitation by collecting already reported hits (geomID/primID
pairs) and ignoring duplicates.

The filter function callback of type RTCFilterFunctionN gets passed a
number of arguments through the RTCFilterFunctionNArguments
structure. The valid parameter of that structure points to an integer
valid mask (0 means invalid and -1 means valid). The geometryUserPtr
member is a user pointer optionally set per geometry through the
rtcSetGeometryUserData function. The context member points to the
ray query context passed to the ray query function. The ray parameter
points to N rays in SOA layout. The hit parameter points to N
hits in SOA layout to test. The N parameter is the number of rays and
hits in ray and hit. The hit distance is provided as the tfar
value of the ray. If the hit geometry is instanced, the instID member
of the ray is valid, and the ray and the potential hit are in object
space.

The filter callback function has the task to check for each valid ray
whether it wants to accept or reject the corresponding hit. To reject a
hit, the filter callback function just has to write 0 to the integer
valid mask of the corresponding ray. To accept the hit, it just has to
leave the valid mask set to -1. The filter function is further
allowed to change the hit and decrease the tfar value of the ray but
it should not modify other ray data nor any inactive components of the
ray or hit.

When performing ray queries using rtcIntersect1, it is guaranteed
that the packet size is 1 when the callback is invoked. When performing
ray queries using the rtcIntersect4/8/16 functions, it is not
generally guaranteed that the ray packet size (and order of rays inside
the packet) passed to the callback matches the initial ray packet.
However, under some circumstances these properties are guaranteed, and
whether this is the case can be queried using rtcGetDeviceProperty.

For many usage scenarios, repacking and re-ordering of rays does not
cause difficulties in implementing the callback function. However,
algorithms that need to extend the ray with additional data must use
the rayID component of the ray to identify the original ray to access
the per-ray data.

The implementation of the filter function can choose to implement a
single code path that uses the ray access helper functions RTCRay_XXX
and hit access helper functions RTCHit_XXX to access ray and hit
data. Alternatively the code can branch to optimized implementations
for specific sizes of N and cast the ray and hit inputs to the
proper packet types.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetGeometryOccludedFilterFunction]

rtcSetGeometryOccludedFilterFunction

NAME {#name}

rtcSetGeometryOccludedFilterFunction - sets the occlusion filter
  for the geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryOccludedFilterFunction(
  RTCGeometry geometry,
  RTCFilterFunctionN filter
);

DESCRIPTION {#description}

The rtcSetGeometryOccludedFilterFunction function registers an
occlusion filter callback function (filter argument) for the
specified geometry (geometry argument).

Only a single callback function can be registered per geometry, and
further invocations overwrite the previously set callback function.
Passing NULL as function pointer disables the registered callback
function.

The registered intersection filter function is invoked for every hit
encountered during the rtcOccluded-type ray queries and can accept or
reject that hit. The feature can be used to define a silhouette for a
primitive and reject hits that are outside the silhouette. E.g. a tree
leaf could be modeled with an alpha texture that decides whether hit
points lie inside or outside the leaf.

Please see the description of the
rtcSetGeometryIntersectFilterFunction for a description of the filter
callback function.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetGeometryIntersectFilterFunction]

rtcSetGeometryEnableFilterFunctionFromArguments

NAME {#name}

rtcSetGeometryEnableFilterFunctionFromArguments - enables
  argument filter functions for the geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryEnableFilterFunctionFromArguments(
   RTCGeometry geometry, bool enable);

DESCRIPTION {#description}

This function enables invokation the filter function passed through
RTCIntersectArguments or RTCOccludedArguments to the intersect and
occluded queries. If enable is true the argument filter function
invokation is enabled for the geometry or disabled otherwise. By
default the invokation of the argument filter function is disabled for
some geometry.

The argument filter function invokation can also get enforced for each
geometry by using the RTC_RAY_QUERY_FLAG_INVOKE_ARGUMENT_FILTER ray
query flag that can get passed to rtcIntersect and rtcOccluded
functions. See Section [rtcInitIntersectArguments] and
[rtcInitOccludedArguments] for more details.

In order to use the argument filter function for some scene, that
feature additionally has to get enabled using the
RTC_SCENE_FLAG_FILTER_FUNCTION_IN_ARGUMENTS scene flag. See Section
[rtcSetSceneFlags] for more details.

EXIT STATUS {#exit-status}

On failure an error code is set that can get queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcInitIntersectArguments], [rtcInitOccludedArguments],
[rtcSetSceneFlags]

rtcInvokeIntersectFilterFromGeometry

NAME {#name}

rtcInvokeIntersectFilterFromGeometry - invokes the
  intersection filter function from the geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcInvokeIntersectFilterFromGeometry(
  const struct RTCIntersectFunctionNArguments* args,
  const struct RTCFilterFunctionNArguments* filterArgs
);

DESCRIPTION {#description}

The rtcInvokeIntersectFilterFromGeometry function can be called
inside an RTCIntersectFunctionN user geometry callback function to
invoke the intersection filter registered to the geometry. For this an
RTCFilterFunctionNArguments structure must be created (see
rtcSetGeometryIntersectFilterFunction) which basically consists of a
valid mask, a hit packet to filter, the corresponding ray packet, and
the packet size. After the invocation of
rtcInvokeIntersectFilterFromGeometry, only rays that are still valid
(valid mask set to -1) should update a hit.

EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

SEE ALSO {#see-also}

[rtcInvokeOccludedFilterFromGeometry],
[rtcSetGeometryIntersectFunction]

rtcInvokeOccludedFilterFromGeometry

NAME {#name}

rtcInvokeOccludedFilterFromGeometry - invokes the occlusion
  filter function from the geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcInvokeOccludedFilterFromGeometry(
  const struct RTCOccludedFunctionNArguments* args,
  const struct RTCFilterFunctionNArguments* filterArgs
);

DESCRIPTION {#description}

The rtcInvokeOccludedFilterFromGeometry function can be called inside
an RTCOccludedFunctionN user geometry callback function to invoke the
occlusion filter registered to the geometry. For this an
RTCFilterFunctionNArguments structure must be created (see
rtcSetGeometryIntersectFilterFunction) which basically consists of a
valid mask, a hit packet to filter, the corresponding ray packet, and
the packet size. After the invocation of
rtcInvokeOccludedFilterFromGeometry only rays that are still valid
(valid mask set to -1) should signal an occlusion.

EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

SEE ALSO {#see-also}

[rtcInvokeIntersectFilterFromGeometry],
[rtcSetGeometryOccludedFunction]

rtcSetGeometryUserData

NAME {#name}

rtcSetGeometryUserData - sets the user-defined data pointer of the
  geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryUserData(RTCGeometry geometry, void* userPtr);

DESCRIPTION {#description}

The rtcSetGeometryUserData function sets the user-defined data
pointer (userPtr argument) for a geometry (geometry argument). This
user data pointer is intended to be pointing to the application’s
representation of the geometry, and is passed to various callback
functions. The application can use this pointer inside the callback
functions to access its geometry representation.

The rtcGetGeometryUserData function can be used to query an already
set user data pointer of a geometry.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcGetGeometryUserData]

rtcGetGeometryUserData

NAME {#name}

rtcGetGeometryUserData - returns the user data pointer
  of the geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void* rtcGetGeometryUserData(RTCGeometry geometry);

DESCRIPTION {#description}

The rtcGetGeometryUserData function queries the user data pointer
previously set with rtcSetGeometryUserData. When
rtcSetGeometryUserData was not called yet, NULL is returned.

This function is supposed to be used during rendering, but only
supported on the CPU and in SYCL on the GPU.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetGeometryUserData]

rtcGetGeometryUserDataFromScene

NAME {#name}

rtcGetGeometryUserDataFromScene - returns the user data pointer
  of the geometry through the scene object

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void* rtcGetGeometryUserDataFromScene(RTCScene scene, unsigned int geomID);

DESCRIPTION {#description}

The rtcGetGeometryUserDataFromScene function queries the user data
pointer previously set with rtcSetGeometryUserData from the geometry
with index geomID from the specified scene scene. When
rtcSetGeometryUserData was not called yet, NULL is returned.

This function is supposed to be used during rendering.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetGeometryUserData], [rtcGetGeometryUserData]

rtcSetGeometryUserPrimitiveCount

NAME {#name}

rtcSetGeometryUserPrimitiveCount - sets the number of primitives
  of a user-defined geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryUserPrimitiveCount(
  RTCGeometry geometry,
  unsigned int userPrimitiveCount
);

DESCRIPTION {#description}

The rtcSetGeometryUserPrimitiveCount function sets the number of
user-defined primitives (userPrimitiveCount parameter) of the
specified user-defined geometry (geometry parameter).

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[RTC_GEOMETRY_TYPE_USER]

rtcSetGeometryBoundsFunction

NAME {#name}

rtcSetGeometryBoundsFunction - sets a callback to query the
  bounding box of user-defined primitives

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTCBoundsFunctionArguments
{
  void* geometryUserPtr;
  unsigned int primID;
  unsigned int timeStep;
  struct RTCBounds* bounds_o;
};

typedef void (*RTCBoundsFunction)(
  const struct RTCBoundsFunctionArguments* args
);

void rtcSetGeometryBoundsFunction(
  RTCGeometry geometry,
  RTCBoundsFunction bounds,
  void* userPtr
);

DESCRIPTION {#description}

The rtcSetGeometryBoundsFunction function registers a bounding box
callback function (bounds argument) with payload (userPtr argument)
for the specified user geometry (geometry argument).

Only a single callback function can be registered per geometry, and
further invocations overwrite the previously set callback function.
Passing NULL as function pointer disables the registered callback
function.

In SYCL mode the BVH construction is done on the host and the passed
function pointer must be a host-side function pointer.

The registered bounding box callback function is invoked to calculate
axis-aligned bounding boxes of the primitives of the user-defined
geometry during spatial acceleration structure construction. The
bounding box callback of RTCBoundsFunction type is invoked with a
pointer to a structure of type RTCBoundsFunctionArguments which
contains various arguments, such as: the user data of the geometry
(geometryUserPtr member), the ID of the primitive to calculate the
bounds for (primID member), the time step at which to calculate the
bounds (timeStep member), and a memory location to write the
calculated bound to (bounds_o member).

In a typical usage scenario one would store a pointer to the internal
representation of the user geometry object using
rtcSetGeometryUserData. The callback function can then read that
pointer from the geometryUserPtr field and calculate the proper
bounding box for the requested primitive and time, and store that
bounding box to the destination structure (bounds_o member).

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[RTC_GEOMETRY_TYPE_USER]

rtcSetGeometryIntersectFunction

NAME {#name}

rtcSetGeometryIntersectFunction - sets the callback function to
  intersect a user geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTCIntersectFunctionNArguments
{
  int* valid;
  void* geometryUserPtr;
  unsigned int primID;
  struct RTCRayQueryContext* context;
  struct RTCRayHitN* rayhit;
  unsigned int N;
  unsigned int geomID;
};

typedef void (*RTCIntersectFunctionN)(
  const struct RTCIntersectFunctionNArguments* args
);

void rtcSetGeometryIntersectFunction(
  RTCGeometry geometry,
  RTCIntersectFunctionN intersect
);

DESCRIPTION {#description}

The rtcSetGeometryIntersectFunction function registers a
ray/primitive intersection callback function (intersect argument) for
the specified user geometry (geometry argument).

Only a single callback function can be registered per geometry and
further invocations overwrite the previously set callback function.
Passing NULL as function pointer disables the registered callback
function.

The registered callback function is invoked by rtcIntersect-type ray
queries to calculate the intersection of a ray packet of variable size
with one user-defined primitive. The callback function of type
RTCIntersectFunctionN gets passed a number of arguments through the
RTCIntersectFunctionNArguments structure. The value N specifies the
ray packet size, valid points to an array of integers that specify
whether the corresponding ray is valid (-1) or invalid (0), the
geometryUserPtr member points to the geometry user data previously
set through rtcSetGeometryUserData, the context member points to
the ray query context passed to the ray query, the rayhit member
points to a ray and hit packet of variable size N, and the geomID
and primID member identifies the geometry ID and primitive ID of the
primitive to intersect.

The ray component of the rayhit structure contains valid data, in
particular the tfar value is the current closest hit distance found.
All data inside the hit component of the rayhit structure are
undefined and should not be read by the function.

The task of the callback function is to intersect each active ray from
the ray packet with the specified user primitive. If the user-defined
primitive is missed by a ray of the ray packet, the function should
return without modifying the ray or hit. If an intersection of the
user-defined primitive with the ray was found in the valid range (from
tnear to tfar), it should update the hit distance of the ray
(tfar member) and the hit (u, v, Ng, instID, geomID,
primID members). In particular, the currently intersected instance is
stored in the instID field of the ray query context, which must be
deep copied into the instID member of the hit.

As a primitive might have multiple intersections with a ray, the
intersection filter function needs to be invoked by the user geometry
intersection callback for each encountered intersection, if filtering
of intersections is desired. This can be achieved through the
rtcInvokeIntersectFilterFromGeometry call.

Within the user geometry intersect function, it is safe to trace new
rays and create new scenes and geometries.

When performing ray queries using rtcIntersect1, it is guaranteed
that the packet size is 1 when the callback is invoked. When performing
ray queries using the rtcIntersect4/8/16 functions, it is not
generally guaranteed that the ray packet size (and order of rays inside
the packet) passed to the callback matches the initial ray packet.
However, under some circumstances these properties are guaranteed, and
whether this is the case can be queried using rtcGetDeviceProperty.

For many usage scenarios, repacking and re-ordering of rays does not
cause difficulties in implementing the callback function. However,
algorithms that need to extend the ray with additional data must use
the rayID component of the ray to identify the original ray to access
the per-ray data.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetGeometryOccludedFunction], [rtcSetGeometryUserData],
[rtcInvokeIntersectFilterFromGeometry]

rtcSetGeometryOccludedFunction

NAME {#name}

rtcSetGeometryOccludedFunction - sets the callback function to
  test a user geometry for occlusion

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTCOccludedFunctionNArguments
{
  int* valid;
  void* geometryUserPtr;
  unsigned int primID;
  struct RTCRayQueryContext* context;
  struct RTCRayN* ray;
  unsigned int N;
  unsigned int geomID;
};

typedef void (*RTCOccludedFunctionN)(
  const struct RTCOccludedFunctionNArguments* args
);

void rtcSetGeometryOccludedFunction(
  RTCGeometry geometry,
  RTCOccludedFunctionN filter
);

DESCRIPTION {#description}

The rtcSetGeometryOccludedFunction function registers a ray/primitive
occlusion callback function (filter argument) for the specified user
geometry (geometry argument).

Only a single callback function can be registered per geometry, and
further invocations overwrite the previously set callback function.
Passing NULL as function pointer disables the registered callback
function.

The registered callback function is invoked by rtcOccluded-type ray
queries to test whether the rays of a packet of variable size are
occluded by a user-defined primitive. The callback function of type
RTCOccludedFunctionN gets passed a number of arguments through the
RTCOccludedFunctionNArguments structure. The value N specifies the
ray packet size, valid points to an array of integers which specify
whether the corresponding ray is valid (-1) or invalid (0), the
geometryUserPtr member points to the geometry user data previously
set through rtcSetGeometryUserData, the context member points to
the ray query context passed to the ray query, the ray member points
to a ray packet of variable size N, and the geomID and primID
member identifies the geometry ID and primitive ID of the primitive to
intersect.

The task of the callback function is to intersect each active ray from
the ray packet with the specified user primitive. If the user-defined
primitive is missed by a ray of the ray packet, the function should
return without modifying the ray. If an intersection of the
user-defined primitive with the ray was found in the valid range (from
tnear to tfar), it should set the tfar member of the ray to
-inf.

As a primitive might have multiple intersections with a ray, the
occlusion filter function needs to be invoked by the user geometry
occlusion callback for each encountered intersection, if filtering of
intersections is desired. This can be achieved through the
rtcInvokeOccludedFilterFromGeometry call.

Within the user geometry occlusion function, it is safe to trace new
rays and create new scenes and geometries.

When performing ray queries using rtcOccluded1, it is guaranteed that
the packet size is 1 when the callback is invoked. When performing ray
queries using the rtcOccluded4/8/16 functions, it is not generally
guaranteed that the ray packet size (and order of rays inside the
packet) passed to the callback matches the initial ray packet. However,
under some circumstances these properties are guaranteed, and whether
this is the case can be queried using rtcGetDeviceProperty.

For many usage scenarios, repacking and re-ordering of rays does not
cause difficulties in implementing the callback function. However,
algorithms that need to extend the ray with additional data must use
the rayID component of the ray to identify the original ray to access
the per-ray data.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetGeometryIntersectFunction], [rtcSetGeometryUserData],
[rtcInvokeOccludedFilterFromGeometry]

rtcSetGeometryPointQueryFunction

NAME {#name}

rtcSetGeometryPointQueryFunction - sets the point query callback function
  for a geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTCPointQueryFunctionArguments
{
  // the (world space) query object that was passed as an argument of rtcPointQuery.
  struct RTCPointQuery* query;

  // used for user input/output data. Will not be read or modified internally.
  void* userPtr;

  // primitive and geometry ID of primitive
  unsigned int  primID;        
  unsigned int  geomID;    

  // the context with transformation and instance ID stack
  struct RTCPointQueryContext* context;

  // scaling factor indicating whether the current instance transformation
  // is a similarity transformation.
  float similarityScale;
};

typedef bool (*RTCPointQueryFunction)(
  struct RTCPointQueryFunctionArguments* args
);

void rtcSetGeometryPointQueryFunction(
  RTCGeometry geometry,
  RTCPointQueryFunction queryFunc
);

DESCRIPTION {#description}

The rtcSetGeometryPointQueryFunction function registers a point query
callback function (queryFunc argument) for the specified geometry
(geometry argument).

Only a single callback function can be registered per geometry and
further invocations overwrite the previously set callback function.
Passing NULL as function pointer disables the registered callback
function.

The registered callback function is invoked by [rtcPointQuery] for
every primitive of the geometry that intersects the corresponding point
query domain. The callback function of type RTCPointQueryFunction
gets passed a number of arguments through the
RTCPointQueryFunctionArguments structure. The query object is the
original point query object passed into [rtcPointQuery], usrPtr is
an arbitrary pointer to pass input into and store results of the
callback function. The primID, geomID and context (see
[rtcInitPointQueryContext] for details) can be used to identify the
geometry data of the primitive.

A RTCPointQueryFunction can also be passed directly as an argument to
[rtcPointQuery]. In this case the callback is invoked for all
primitives in the scene that intersect the query domain. If a callback
function is passed as an argument to [rtcPointQuery] and (a
potentially different) callback function is set for a geometry with
[rtcSetGeometryPointQueryFunction] both callback functions are
invoked and the callback function passed to [rtcPointQuery] will be
called before the geometry specific callback function.

If instancing is used, the parameter simliarityScale indicates
whether the current instance transform (top element of the stack in
context) is a similarity transformation or not. Similarity
transformations are composed of translation, rotation and uniform
scaling and if a matrix M defines a similarity transformation, there is
a scaling factor D such that for all x,y: dist(Mx, My) = D * dist(x,
y). In this case the parameter scalingFactor is this scaling factor D
and otherwise it is 0. A valid similarity scale (similarityScale >
0) allows to compute distance information in instance space and scale
the distances into world space (for example, to update the query
radius, see below) by dividing the instance space distance with the
similarity scale. If the current instance transform is not a similarity
transform (similarityScale is 0), the distance computation has to be
performed in world space to ensure correctness. In this case the
instance to world transformations given with the context should be
used to transform the primitive data into world space. Otherwise, the
query location can be transformed into instance space which can be more
efficient. If there is no instance transform, the similarity scale is
1.

The callback function will potentially be called for primitives outside
the query domain for two reasons: First, the callback is invoked for
all primitives inside a BVH leaf node since no geometry data of
primitives is determined internally and therefore individual primitives
are not culled (only their (aggregated) bounding boxes). Second, in
case non similarity transformations are used, the resulting ellipsoidal
query domain (in instance space) is approximated by its axis aligned
bounding box internally and therefore inner nodes that do not intersect
the original domain might intersect the approximative bounding box
which results in unnecessary callbacks. In any case, the callbacks are
conservative, i.e. if a primitive is inside the query domain a callback
will be invoked but the reverse is not necessarily true.

For efficiency, the radius of the query object can be decreased (in
world space) inside the callback function to improve culling of
geometry during BVH traversal. If the query radius was updated, the
callback function should return true to issue an update of internal
traversal information. Increasing the radius or modifying the time or
position of the query results in undefined behaviour.

Within the callback function, it is safe to call [rtcPointQuery]
again, for example when implementing instancing manually. In this case
the instance transformation should be pushed onto the stack in
context. Embree will internally compute the point query information
in instance space using the top element of the stack in context when
[rtcPointQuery] is called.

For a reference implementation of a closest point traversal of triangle
meshes using instancing and user defined instancing see the tutorial
[ClosestPoint].

SEE ALSO {#see-also}

[rtcPointQuery], [rtcInitPointQueryContext]

rtcGetSYCLDeviceFunctionPointer

NAME {#name}

rtcGetSYCLDeviceFunctionPointer - obtains a device side
  function pointer for some SYCL function

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

template<auto F>
inline decltype(F) rtcGetSYCLDeviceFunctionPointer(sycl::queue& queue);

DESCRIPTION {#description}

This function returns a device side function pointer for some function
F. This function F must be defined using the
RTC_SYCL_INDIRECTLY_CALLABLE attribute, e.g.:

RTC_SYCL_INDIRECTLY_CALLABLE void filter(
  const RTCFilterFunctionNArguments* args) { ... }

RTCFilterFunctionN fptr = rtcGetSYCLDeviceFunctionPointer<filter>(queue);

Such a device side function pointers of some filter callbacks can get
assigned to a geometry using the
rtcSetGeometryIntersectFilterFunction and
rtcSetGeometryOccludedFilterFunction API functions.

Further, device side function pointers for user geometry callbacks can
be assigned to geometries using the rtcSetGeometryIntersectFunction
and rtcSetGeometryOccludedFunction API calls.

These geometry versions of the callback functions are disabled in SYCL
by default, and we recommend not using them for performance reasons.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetGeometryIntersectFunction],
[rtcSetGeometryOccludedFunction],
[rtcSetGeometryIntersectFilterFunction],
[rtcSetGeometryOccludedFilterFunction]

rtcSetGeometryInstancedScene

NAME {#name}

rtcSetGeometryInstancedScene - sets the instanced scene of
  an instance geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryInstancedScene(
  RTCGeometry geometry,
  RTCScene scene
);

DESCRIPTION {#description}

The rtcSetGeometryInstancedScene function sets the instanced scene
(scene argument) of the specified instance geometry (geometry
argument).

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[RTC_GEOMETRY_TYPE_INSTANCE], [rtcSetGeometryTransform]

rtcSetGeometryTransform

NAME {#name}

rtcSetGeometryTransform - sets the transformation for a particular
  time step of an instance geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryTransform(
  RTCGeometry geometry,
  unsigned int timeStep,
  enum RTCFormat format,
  const float* xfm
);

DESCRIPTION {#description}

The rtcSetGeometryTransform function sets the local-to-world affine
transformation (xfm parameter) of an instance geometry (geometry
parameter) for a particular time step (timeStep parameter). The
transformation is specified as a 3×4 matrix (3×3 linear transformation
plus translation), for which the following formats (format parameter)
are supported:

  • RTC_FORMAT_FLOAT3X4_ROW_MAJOR: The 3×4 float matrix is laid out
    in row-major form.

  • RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR: The 3×4 float matrix is laid
    out in column-major form.

  • RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR: The 3×4 float matrix is laid
    out in column-major form as a 4×4 homogeneous matrix with the last
    row being equal to (0, 0, 0, 1).

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[RTC_GEOMETRY_TYPE_INSTANCE]

rtcSetGeometryTransformQuaternion

NAME {#name}

rtcSetGeometryTransformQuaternion - sets the transformation for a particular
  time step of an instance geometry as a decomposition of the
  transformation matrix using quaternions to represent the rotation.

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryTransformQuaternion(
  RTCGeometry geometry,
  unsigned int timeStep,
  const struct RTCQuaternionDecomposition* qd
);

DESCRIPTION {#description}

The rtcSetGeometryTransformQuaternion function sets the
local-to-world affine transformation (qd parameter) of an instance
geometry (geometry parameter) for a particular time step (timeStep
parameter). The transformation is specified as a
[RTCQuaternionDecomposition], which is a decomposition of an affine
transformation that represents the rotational component of an affine
transformation as a quaternion. This allows interpolating rotational
transformations exactly using spherical linear interpolation (such as a
turning wheel).

For more information about the decomposition see
[RTCQuaternionDecomposition]. The quaternion given in the
RTCQuaternionDecomposition struct will be normalized internally.

For correct results, the transformation matrices for all time steps
must be set either using rtcSetGeometryTransform or
rtcSetGeometryTransformQuaternion. Mixing both representations is not
allowed. Spherical linear interpolation will be used, iff the
transformation matizes are set with
rtcSetGeometryTransformQuaternion.

For an example of this feature see the tutorial Quaternion Motion
Blur.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcInitQuaternionDecomposition], [rtcSetGeometryTransform]

rtcGetGeometryTransform

NAME {#name}

rtcGetGeometryTransform - returns the interpolated instance
  transformation for the specified time

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcGetGeometryTransform(
  RTCGeometry geometry,
  float time,
  enum RTCFormat format,
  void* xfm
);

DESCRIPTION {#description}

The rtcGetGeometryTransform function returns the interpolated local
to world transformation (xfm parameter) of an instance geometry
(geometry parameter) for a particular time (time parameter in range
$[0,1]$) in the specified format (format parameter).

Possible formats for the returned matrix are:

  • RTC_FORMAT_FLOAT3X4_ROW_MAJOR: The 3×4 float matrix is laid out
    in row-major form.

  • RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR: The 3×4 float matrix is laid
    out in column-major form.

  • RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR: The 3×4 float matrix is laid
    out in column-major form as a 4×4 homogeneous matrix with last row
    equal to (0, 0, 0, 1).

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[RTC_GEOMETRY_TYPE_INSTANCE], [rtcSetGeometryTransform]

rtcSetGeometryTessellationRate

NAME {#name}

rtcSetGeometryTessellationRate - sets the tessellation rate of the
  geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryTessellationRate(
  RTCGeometry geometry,
  float tessellationRate
);

DESCRIPTION {#description}

The rtcSetGeometryTessellationRate function sets the tessellation
rate (tessellationRate argument) for the specified geometry
(geometry argument). The tessellation rate can only be set for flat
curves and subdivision geometries. For curves, the tessellation rate
specifies the number of ray-facing quads per curve segment. For
subdivision surfaces, the tessellation rate specifies the number of
quads along each edge.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[RTC_GEOMETRY_TYPE_CURVE], [RTC_GEOMETRY_TYPE_SUBDIVISION]

rtcSetGeometryTopologyCount

NAME {#name}

rtcSetGeometryTopologyCount - sets the number of topologies of
  a subdivision geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryTopologyCount(
  RTCGeometry geometry,
  unsigned int topologyCount
);

DESCRIPTION {#description}

The rtcSetGeometryTopologyCount function sets the number of
topologies (topologyCount parameter) for the specified subdivision
geometry (geometry parameter). The number of topologies of a
subdivision geometry must be greater or equal to 1.

To use multiple topologies, first the number of topologies must be
specified, then the individual topologies can be configured using
rtcSetGeometrySubdivisionMode and by setting an index buffer
(RTC_BUFFER_TYPE_INDEX) using the topology ID as the buffer slot.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[RTC_GEOMETRY_TYPE_SUBDIVISION], [rtcSetGeometrySubdivisionMode]

rtcSetGeometrySubdivisionMode

NAME {#name}

rtcSetGeometrySubdivisionMode - sets the subdivision mode
  of a subdivision geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometrySubdivisionMode(
  RTCGeometry geometry,
  unsigned int topologyID,
  enum RTCSubdivisionMode mode
);

DESCRIPTION {#description}

The rtcSetGeometrySubdivisionMode function sets the subdivision mode
(mode parameter) for the topology (topologyID parameter) of the
specified subdivision geometry (geometry parameter).

The subdivision modes can be used to force linear interpolation for
certain parts of the subdivision mesh:

  • RTC_SUBDIVISION_MODE_NO_BOUNDARY: Boundary patches are ignored.
    This way each rendered patch has a full set of control vertices.

  • RTC_SUBDIVISION_MODE_SMOOTH_BOUNDARY: The sequence of boundary
    control points are used to generate a smooth B-spline boundary
    curve (default mode).

  • RTC_SUBDIVISION_MODE_PIN_CORNERS: Corner vertices are pinned to
    their location during subdivision.

  • RTC_SUBDIVISION_MODE_PIN_BOUNDARY: All vertices at the border are
    pinned to their location during subdivision. This way the boundary
    is interpolated linearly. This mode is typically used for texturing
    to also map texels at the border of the texture to the mesh.

  • RTC_SUBDIVISION_MODE_PIN_ALL: All vertices at the border are
    pinned to their location during subdivision. This way all patches
    are linearly interpolated.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[RTC_GEOMETRY_TYPE_SUBDIVISION]

rtcSetGeometryVertexAttributeTopology

NAME {#name}

rtcSetGeometryVertexAttributeTopology - binds a vertex
  attribute to a topology of the geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcSetGeometryVertexAttributeTopology(
  RTCGeometry geometry,
  unsigned int vertexAttributeID,
  unsigned int topologyID
);

DESCRIPTION {#description}

The rtcSetGeometryVertexAttributeTopology function binds a vertex
attribute buffer slot (vertexAttributeID argument) to a topology
(topologyID argument) for the specified subdivision geometry
(geometry argument). Standard vertex buffers are always bound to the
default topology (topology 0) and cannot be bound differently. A vertex
attribute buffer always uses the topology it is bound to when used in
the rtcInterpolate and rtcInterpolateN calls.

A topology with ID i consists of a subdivision mode set through
rtcSetGeometrySubdivisionMode and the index buffer bound to the index
buffer slot i. This index buffer can assign indices for each face of
the subdivision geometry that are different to the indices of the
default topology. These new indices can for example be used to
introduce additional borders into the subdivision mesh to map multiple
textures onto one subdivision geometry.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcSetGeometrySubdivisionMode], [rtcInterpolate],
[rtcInterpolateN]

rtcSetGeometryDisplacementFunction

NAME {#name}

rtcSetGeometryDisplacementFunction - sets the displacement function
  for a subdivision geometry

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTCDisplacementFunctionNArguments
{
  void* geometryUserPtr;
  RTCGeometry geometry;
  unsigned int primID;
  unsigned int timeStep;
  const float* u;
  const float* v;
  const float* Ng_x;
  const float* Ng_y;
  const float* Ng_z;
  float* P_x;
  float* P_y;
  float* P_z;
  unsigned int N;
};

typedef void (*RTCDisplacementFunctionN)(
   const struct RTCDisplacementFunctionNArguments* args
);

void rtcSetGeometryDisplacementFunction(
  RTCGeometry geometry,
  RTCDisplacementFunctionN displacement
);

DESCRIPTION {#description}

The rtcSetGeometryDisplacementFunction function registers a
displacement callback function (displacement argument) for the
specified subdivision geometry (geometry argument).

Only a single callback function can be registered per geometry, and
further invocations overwrite the previously set callback function.
Passing NULL as function pointer disables the registered callback
function.

The registered displacement callback function is invoked to displace
points on the subdivision geometry during spatial acceleration
structure construction, during the rtcCommitScene call.

The callback function of type RTCDisplacementFunctionN is invoked
with a number of arguments stored inside the
RTCDisplacementFunctionNArguments structure. The provided user data
pointer of the geometry (geometryUserPtr member) can be used to point
to the application’s representation of the subdivision mesh. A number
N of points to displace are specified in a structure of array layout.
For each point to displace, the local patch UV coordinates (u and v
arrays), the normalized geometry normal (Ng_x, Ng_y, and Ng_z
arrays), and the position (P_x, P_y, and P_z arrays) are
provided. The task of the displacement function is to use this
information and change the position data.

The geometry handle (geometry member) and primitive ID (primID
member) of the patch to displace are additionally provided as well as
the time step timeStep, which can be important if the displacement is
time-dependent and motion blur is used.

All passed arrays must be aligned to 64 bytes and properly padded to
make wide vector processing inside the displacement function easily
possible.

Also see tutorial Displacement Geometry for an example of how to
use the displacement mapping functions.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[RTC_GEOMETRY_TYPE_SUBDIVISION]

rtcGetGeometryFirstHalfEdge

NAME {#name}

rtcGetGeometryFirstHalfEdge - returns the first half edge of a face

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

unsigned int rtcGetGeometryFirstHalfEdge(
  RTCGeometry geometry,
  unsigned int faceID
);

DESCRIPTION {#description}

The rtcGetGeometryFirstHalfEdge function returns the ID of the first
half edge belonging to the specified face (faceID argument). For
instance in the following example the first half edge of face f1 is
e4.

This function can only be used for subdivision geometries. As all
topologies of a subdivision geometry share the same face buffer the
function does not depend on the topology ID.

Here f0 to f7 are 8 quadrilateral faces with 4 vertices each. The edges
e0 to e23 of these faces are shown with their orientation. For each
face the ID of the edges corresponds to the slots the face occupies in
the index array of the geometry. E.g. as the indices of face f1 start
at location 4 of the index array, the first edge is edge e4, the next
edge e5, etc.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcGetGeometryFirstHalfEdge], [rtcGetGeometryFace],
[rtcGetGeometryOppositeHalfEdge], [rtcGetGeometryNextHalfEdge],
[rtcGetGeometryPreviousHalfEdge]

rtcGetGeometryFace

NAME {#name}

rtcGetGeometryFace - returns the face of some half edge

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

unsigned int rtcGetGeometryFace(
  RTCGeometry geometry,
  unsigned int edgeID
);

DESCRIPTION {#description}

The rtcGetGeometryFace function returns the ID of the face the
specified half edge (edgeID argument) belongs to. For instance in the
following example the face f1 is returned for edges e4, e5, e6,
and e7.

This function can only be used for subdivision geometries. As all
topologies of a subdivision geometry share the same face buffer the
function does not depend on the topology ID.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcGetGeometryFirstHalfEdge], [rtcGetGeometryFace],
[rtcGetGeometryOppositeHalfEdge], [rtcGetGeometryNextHalfEdge],
[rtcGetGeometryPreviousHalfEdge]

rtcGetGeometryNextHalfEdge

NAME {#name}

rtcGetGeometryNextHalfEdge - returns the next half edge

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

unsigned int rtcGetGeometryNextHalfEdge(
  RTCGeometry geometry,
  unsigned int edgeID
);

DESCRIPTION {#description}

The rtcGetGeometryNextHalfEdge function returns the ID of the next
half edge of the specified half edge (edgeID argument). For instance
in the following example the next half edge of e10 is e11.

This function can only be used for subdivision geometries. As all
topologies of a subdivision geometry share the same face buffer the
function does not depend on the topology ID.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcGetGeometryFirstHalfEdge], [rtcGetGeometryFace],
[rtcGetGeometryOppositeHalfEdge], [rtcGetGeometryNextHalfEdge],
[rtcGetGeometryPreviousHalfEdge]

rtcGetGeometryPreviousHalfEdge

NAME {#name}

rtcGetGeometryPreviousHalfEdge - returns the previous half edge

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

unsigned int rtcGetGeometryPreviousHalfEdge(
  RTCGeometry geometry,
  unsigned int edgeID
);

DESCRIPTION {#description}

The rtcGetGeometryPreviousHalfEdge function returns the ID of the
previous half edge of the specified half edge (edgeID argument). For
instance in the following example the previous half edge of e6 is
e5.

This function can only be used for subdivision geometries. As all
topologies of a subdivision geometry share the same face buffer the
function does not depend on the topology ID.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcGetGeometryFirstHalfEdge], [rtcGetGeometryFace],
[rtcGetGeometryOppositeHalfEdge], [rtcGetGeometryNextHalfEdge],
[rtcGetGeometryPreviousHalfEdge]

rtcGetGeometryOppositeHalfEdge

NAME {#name}

rtcGetGeometryOppositeHalfEdge - returns the opposite half edge

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

unsigned int rtcGetGeometryOppositeHalfEdge(
  RTCGeometry geometry,
  unsigned int topologyID,
  unsigned int edgeID
);

DESCRIPTION {#description}

The rtcGetGeometryOppositeHalfEdge function returns the ID of the
opposite half edge of the specified half edge (edgeID argument) in
the specified topology (topologyID argument). For instance in the
following example the opposite half edge of e6 is e16.

An opposite half edge does not exist if the specified half edge has
either no neighboring face, or more than 2 neighboring faces. In these
cases the function just returns the same edge edgeID again.

This function can only be used for subdivision geometries. The function
depends on the topology as the topologies of a subdivision geometry
have different index buffers assigned.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcGetGeometryFirstHalfEdge], [rtcGetGeometryFace],
[rtcGetGeometryOppositeHalfEdge], [rtcGetGeometryNextHalfEdge],
[rtcGetGeometryPreviousHalfEdge]

rtcInterpolate

NAME {#name}

rtcInterpolate - interpolates vertex attributes

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTCInterpolateArguments
{
  RTCGeometry geometry;
  unsigned int primID;
  float u;
  float v;
  enum RTCBufferType bufferType;
  unsigned int bufferSlot;
  float* P;
  float* dPdu;
  float* dPdv;
  float* ddPdudu;
  float* ddPdvdv;
  float* ddPdudv;
  unsigned int valueCount;
};

void rtcInterpolate(
  const struct RTCInterpolateArguments* args
);

DESCRIPTION {#description}

The rtcInterpolate function smoothly interpolates per-vertex data
over the geometry. This interpolation is supported for triangle meshes,
quad meshes, curve geometries, and subdivision geometries. Apart from
interpolating the vertex attribute itself, it is also possible to get
the first and second order derivatives of that value. This
interpolation ignores displacements of subdivision surfaces and always
interpolates the underlying base surface.

The rtcInterpolate call gets passed a number of arguments inside a
structure of type RTCInterpolateArguments. For some geometry
(geometry parameter) this function smoothly interpolates the
per-vertex data stored inside the specified geometry buffer
(bufferType and bufferSlot parameters) to the u/v location (u and
v parameters) of the primitive (primID parameter). The number of
floating point values to interpolate and store to the destination
arrays can be specified using the valueCount parameter. As
interpolation buffer, one can specify vertex buffers
(RTC_BUFFER_TYPE_VERTEX) and vertex attribute buffers
(RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) as well.

The rtcInterpolate call stores valueCount number of interpolated
floating point values to the memory location pointed to by P. One can
avoid storing the interpolated value by setting P to NULL.

The first order derivative of the interpolation by u and v are stored
at the dPdu and dPdv memory locations. One can avoid storing first
order derivatives by setting both dPdu and dPdv to NULL.

The second order derivatives are stored at the ddPdudu, ddPdvdv,
and ddPdudv memory locations. One can avoid storing second order
derivatives by setting these three pointers to NULL.

To use rtcInterpolate for a geometry, all changes to that geometry
must be properly committed using rtcCommitGeometry.

All input buffers and output arrays must be padded to 16 bytes, as the
implementation uses 16-byte SSE instructions to read and write into
these buffers.

See tutorial Interpolation for an example of using the
rtcInterpolate function.

EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

SEE ALSO {#see-also}

[rtcInterpolateN]

rtcInterpolateN

NAME {#name}

rtcInterpolateN - performs N interpolations of vertex attribute data

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTCInterpolateNArguments
{
  RTCGeometry geometry;
  const void* valid;
  const unsigned int* primIDs;
  const float* u;
  const float* v;
  unsigned int N;
  enum RTCBufferType bufferType;
  unsigned int bufferSlot;
  float* P;
  float* dPdu;
  float* dPdv;
  float* ddPdudu;
  float* ddPdvdv;
  float* ddPdudv;
  unsigned int valueCount;
};

void rtcInterpolateN(
  const struct RTCInterpolateNArguments* args
);

DESCRIPTION {#description}

The rtcInterpolateN is similar to rtcInterpolate, but performs N
many interpolations at once. It additionally gets an array of u/v
coordinates and a valid mask (valid parameter) that specifies which
of these coordinates are valid. The valid mask points to N integers,
and a value of -1 denotes valid and 0 invalid. If the valid pointer is
NULL all elements are considers valid. The destination arrays are
filled in structure of array (SOA) layout. The value N must be
divisible by 4.

To use rtcInterpolateN for a geometry, all changes to that geometry
must be properly committed using rtcCommitGeometry.

EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

SEE ALSO {#see-also}

[rtcInterpolate]

rtcNewBuffer

NAME {#name}

rtcNewBuffer - creates a new data buffer

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCBuffer rtcNewBuffer(
  RTCDevice device,
  size_t byteSize
);

DESCRIPTION {#description}

The rtcNewBuffer function creates a new data buffer object of
specified size in bytes (byteSize argument) that is bound to the
specified device (device argument). The buffer object is reference
counted with an initial reference count of 1. The returned buffer
object can be released using the rtcReleaseBuffer API call. The
specified number of bytes are allocated at buffer construction time and
deallocated when the buffer is destroyed.

When the buffer will be used as a vertex buffer
(RTC_BUFFER_TYPE_VERTEX and RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE), the
last buffer element must be readable using 16-byte SSE load
instructions, thus padding the last element is required for certain
layouts. E.g. a standard float3 vertex buffer layout should add
storage for at least one more float to the end of the buffer.

EXIT STATUS {#exit-status}

On failure NULL is returned and an error code is set that can be
queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcRetainBuffer], [rtcReleaseBuffer]

rtcNewSharedBuffer

NAME {#name}

rtcNewSharedBuffer - creates a new shared data buffer

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCBuffer rtcNewSharedBuffer(
  RTCDevice device,
  void* ptr,
  size_t byteSize
);

DESCRIPTION {#description}

The rtcNewSharedBuffer function creates a new shared data buffer
object bound to the specified device (device argument). The buffer
object is reference counted with an initial reference count of 1. The
buffer can be released using the rtcReleaseBuffer function.

At construction time, the pointer to the user-managed buffer data
(ptr argument) including its size in bytes (byteSize argument) is
provided to create the buffer. At buffer construction time no buffer
data is allocated, but the buffer data provided by the application is
used. The buffer data must remain valid for as long as the buffer may
be used, and the user is responsible to free the buffer data when no
longer required.

When the buffer will be used as a vertex buffer
(RTC_BUFFER_TYPE_VERTEX and RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE), the
last buffer element must be readable using 16-byte SSE load
instructions, thus padding the last element is required for certain
layouts. E.g. a standard float3 vertex buffer layout should add
storage for at least one more float to the end of the buffer.

The data pointer (ptr argument) must be aligned to 4 bytes; otherwise
the rtcNewSharedBuffer function will fail.

EXIT STATUS {#exit-status}

On failure NULL is returned and an error code is set that can be
queried using rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcRetainBuffer], [rtcReleaseBuffer]

rtcRetainBuffer

NAME {#name}

rtcRetainBuffer - increments the buffer reference count

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcRetainBuffer(RTCBuffer buffer);

DESCRIPTION {#description}

Buffer objects are reference counted. The rtcRetainBuffer function
increments the reference count of the passed buffer object (buffer
argument). This function together with rtcReleaseBuffer allows to use
the internal reference counting in a C++ wrapper class to handle the
ownership of the object.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewBuffer], [rtcReleaseBuffer]

rtcReleaseBuffer

NAME {#name}

rtcReleaseBuffer - decrements the buffer reference count

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcReleaseBuffer(RTCBuffer buffer);

DESCRIPTION {#description}

Buffer objects are reference counted. The rtcReleaseBuffer function
decrements the reference count of the passed buffer object (buffer
argument). When the reference count falls to 0, the buffer gets
destroyed.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewBuffer], [rtcRetainBuffer]

rtcGetBufferData

NAME {#name}

rtcGetBufferData - gets a pointer to the buffer data

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void* rtcGetBufferData(RTCBuffer buffer);

DESCRIPTION {#description}

The rtcGetBufferData function returns a pointer to the buffer data of
the specified buffer object (buffer argument).

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewBuffer]

RTCRay

NAME {#name}

RTCRay - single ray structure

SYNOPSIS {#synopsis}

#include <embree4/rtcore_ray.h>

struct RTC_ALIGN(16) RTCRay
{
  float org_x;        // x coordinate of ray origin
  float org_y;        // y coordinate of ray origin
  float org_z;        // z coordinate of ray origin
  float tnear;        // start of ray segment

  float dir_x;        // x coordinate of ray direction
  float dir_y;        // y coordinate of ray direction
  float dir_z;        // z coordinate of ray direction
  float time;         // time of this ray for motion blur

  float tfar;         // end of ray segment (set to hit distance)
  unsigned int mask;  // ray mask
  unsigned int id;    // ray ID
  unsigned int flags; // ray flags
};

DESCRIPTION {#description}

The RTCRay structure defines the ray layout for a single ray. The ray
contains the origin (org_x, org_y, org_z members), direction
vector (dir_x, dir_y, dir_z members), and ray segment (tnear
and tfar members). The ray direction does not have to be normalized,
and only the parameter range specified by the tnear/tfar interval
is considered valid.

The ray segment must be in the range $[0, infty]$, thus ranges that
start behind the ray origin are not allowed, but ranges can reach to
infinity.

The ray further contains a motion blur time in the range $[0, 1]$
(time member), a ray mask (mask member), a ray ID (id member),
and ray flags (flags member). The ray mask can be used to mask out
some geometries for some rays (see rtcSetGeometryMask for more
details). The ray ID can be used to identify a ray inside a callback
function, even if the order of rays inside a ray packet has changed.

The embree4/rtcore_ray.h header additionally defines the same ray
structure in structure of array (SOA) layout for API functions
accepting ray packets of size 4 (RTCRay4 type), size 8 (RTCRay8
type), and size 16 (RTCRay16 type). The header additionally defines
an RTCRayNt template for ray packets of an arbitrary compile-time
size.

EXIT STATUS {#exit-status}

SEE ALSO {#see-also}

[RTCHit]

RTCHit

NAME {#name}

RTCHit - single hit structure

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTCHit
{
  float Ng_x;                                        // x coordinate of geometry normal
  float Ng_y;                                        // y coordinate of geometry normal
  float Ng_z;                                        // z coordinate of geometry normal

  float u;                                           // barycentric u coordinate of hit
  float v;                                           // barycentric v coordinate of hit

  unsigned int primID;                               // geometry ID
  unsigned int geomID;                               // primitive ID
  unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT]; // instance ID
};

DESCRIPTION {#description}

The RTCHit type defines the type of a ray/primitive intersection
result. The hit contains the unnormalized geometric normal in object
space at the hit location (Ng_x, Ng_y, Ng_z members), the
barycentric u/v coordinates of the hit (u and v members), as well
as the primitive ID (primID member), geometry ID (geomID member),
and instance ID stack (instID member) of the hit. The parametric
intersection distance is not stored inside the hit, but stored inside
the tfar member of the ray.

The embree4/rtcore_ray.h header additionally defines the same hit
structure in structure of array (SOA) layout for hit packets of size 4
(RTCHit4 type), size 8 (RTCHit8 type), and size 16 (RTCHit16
type). The header additionally defines an RTCHitNt template for hit
packets of an arbitrary compile-time size.

EXIT STATUS {#exit-status}

SEE ALSO {#see-also}

[RTCRay], [Multi-Level Instancing]

RTCRayHit

NAME {#name}

RTCRayHit - combined single ray/hit structure

SYNOPSIS {#synopsis}

#include <embree4/rtcore_ray.h>

struct RTCORE_ALIGN(16) RTCRayHit
{
  struct RTCRay ray;
  struct RTCHit hit;
};

DESCRIPTION {#description}

The RTCRayHit structure is used as input for the rtcIntersect-type
functions and stores the ray to intersect and some hit fields that hold
the intersection result afterwards.

The embree4/rtcore_ray.h header additionally defines the same ray/hit
structure in structure of array (SOA) layout for API functions
accepting ray packets of size 4 (RTCRayHit4 type), size 8
(RTCRayHit8 type), and size 16 (RTCRayHit16 type). The header
additionally defines an RTCRayHitNt template to generate ray/hit
packets of an arbitrary compile-time size.

EXIT STATUS {#exit-status}

SEE ALSO {#see-also}

[RTCRay], [RTCHit]

RTCRayN

NAME {#name}

RTCRayN - ray packet of runtime size

SYNOPSIS {#synopsis}

#include <embree4/rtcore_ray.h>

struct RTCRayN;

float& RTCRayN_org_x(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_org_y(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_org_z(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_tnear(RTCRayN* ray, unsigned int N, unsigned int i);

float& RTCRayN_dir_x(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_dir_y(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_dir_z(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_time (RTCRayN* ray, unsigned int N, unsigned int i);

float&        RTCRayN_tfar (RTCRayN* ray, unsigned int N, unsigned int i);
unsigned int& RTCRayN_mask (RTCRayN* ray, unsigned int N, unsigned int i);
unsigned int& RTCRayN_id   (RTCRayN* ray, unsigned int N, unsigned int i);
unsigned int& RTCRayN_flags(RTCRayN* ray, unsigned int N, unsigned int i);

DESCRIPTION {#description}

When the ray packet size is not known at compile time (e.g. when Embree
returns a ray packet in the RTCFilterFuncN callback function), Embree
uses the RTCRayN type for ray packets. These ray packets can only
have sizes of 1, 4, 8, or 16. No other packet size will be used.

You can either implement different special code paths for each of these
possible packet sizes and cast the ray to the appropriate ray packet
type, or implement one general code path that uses the RTCRayN_XXX
helper functions to access the ray packet components.

These helper functions get a pointer to the ray packet (ray
argument), the packet size (N argument), and returns a reference to a
component (e.g. x-component of origin) of the the i-th ray of the
packet (i argument).

EXIT STATUS {#exit-status}

SEE ALSO {#see-also}

[RTCHitN]

RTCHitN

NAME {#name}

RTCHitN - hit packet of runtime size

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct HitN;

float& RTCHitN_Ng_x(RTCHitN* hit, unsigned int N, unsigned int i);
float& RTCHitN_Ng_y(RTCHitN* hit, unsigned int N, unsigned int i);
float& RTCHitN_Ng_z(RTCHitN* hit, unsigned int N, unsigned int i);

float& RTCHitN_u(RTCHitN* hit, unsigned int N, unsigned int i);
float& RTCHitN_v(RTCHitN* hit, unsigned int N, unsigned int i);

unsigned& RTCHitN_primID(RTCHitN* hit, unsigned int N, unsigned int i);
unsigned& RTCHitN_geomID(RTCHitN* hit, unsigned int N, unsigned int i);
unsigned& RTCHitN_instID(RTCHitN* hit, unsigned int N, unsigned int i, unsigned int level);

DESCRIPTION {#description}

When the hit packet size is not known at compile time (e.g. when Embree
returns a hit packet in the RTCFilterFuncN callback function), Embree
uses the RTCHitN type for hit packets. These hit packets can only
have sizes of 1, 4, 8, or 16. No other packet size will be used.

You can either implement different special code paths for each of these
possible packet sizes and cast the hit to the appropriate hit packet
type, or implement one general code path that uses the RTCHitN_XXX
helper functions to access hit packet components.

These helper functions get a pointer to the hit packet (hit
argument), the packet size (N argument), and returns a reference to a
component (e.g. x component of Ng) of the the i-th hit of the packet
(i argument).

EXIT STATUS {#exit-status}

SEE ALSO {#see-also}

[RTCRayN]

RTCRayHitN

NAME {#name}

RTCRayHitN - combined ray/hit packet of runtime size

SYNOPSIS {#synopsis}

#include <embree4/rtcore_ray.h>

struct RTCRayHitN;

struct RTCRayN* RTCRayHitN_RayN(struct RTCRayHitN* rayhit, unsigned int N);
struct RTCHitN* RTCRayHitN_HitN(struct RTCRayHitN* rayhit, unsigned int N);

DESCRIPTION {#description}

When the packet size of a ray/hit structure is not known at compile
time (e.g. when Embree returns a ray/hit packet in the
RTCIntersectFunctionN callback function), Embree uses the
RTCRayHitN type for ray packets. These ray/hit packets can only have
sizes of 1, 4, 8, or 16. No other packet size will be used.

You can either implement different special code paths for each of these
possible packet sizes and cast the ray/hit to the appropriate ray/hit
packet type, or extract the RTCRayN and RTCHitN components using
the rtcGetRayN and rtcGetHitN helper functions and use the
RTCRayN_XXX and RTCHitN_XXX functions to access the ray and hit
parts of the structure.

EXIT STATUS {#exit-status}

SEE ALSO {#see-also}

[RTCHitN]

RTCFeatureFlags

NAME {#name}

RTCFeatureFlags - specifies features to enable
  for ray queries

SYNOPSIS {#synopsis}

#include <embree4/rtcore_ray.h>

enum RTCFeatureFlags
{
  RTC_FEATURE_FLAG_NONE = 0,
  
  RTC_FEATURE_FLAG_MOTION_BLUR = 1 << 0,

  RTC_FEATURE_FLAG_TRIANGLE = 1 << 1,
  RTC_FEATURE_FLAG_QUAD = 1 << 2,
  RTC_FEATURE_FLAG_GRID = 1 << 3,
  RTC_FEATURE_FLAG_SUBDIVISION = 1 << 4,
  RTC_FEATURE_FLAG_POINT = ... ,
  RTC_FEATURE_FLAG_CURVES = ... ,
 
  RTC_FEATURE_FLAG_CONE_LINEAR_CURVE = 1 << 5,
  RTC_FEATURE_FLAG_ROUND_LINEAR_CURVE  = 1 << 6,
  RTC_FEATURE_FLAG_FLAT_LINEAR_CURVE = 1 << 7,

  RTC_FEATURE_FLAG_ROUND_BEZIER_CURVE = 1 << 8,
  RTC_FEATURE_FLAG_FLAT_BEZIER_CURVE = 1 << 9,
  RTC_FEATURE_FLAG_NORMAL_ORIENTED_BEZIER_CURVE = 1 << 10,

  RTC_FEATURE_FLAG_ROUND_BSPLINE_CURVE = 1 << 11,
  RTC_FEATURE_FLAG_FLAT_BSPLINE_CURVE = 1 << 12,
  RTC_FEATURE_FLAG_NORMAL_ORIENTED_BSPLINE_CURVE = 1 << 13,

  RTC_FEATURE_FLAG_ROUND_HERMITE_CURVE = 1 << 14,
  RTC_FEATURE_FLAG_FLAT_HERMITE_CURVE = 1 << 15,
  RTC_FEATURE_FLAG_NORMAL_ORIENTED_HERMITE_CURVE = 1 << 16,

  RTC_FEATURE_FLAG_ROUND_CATMULL_ROM_CURVE = 1 << 17,
  RTC_FEATURE_FLAG_FLAT_CATMULL_ROM_CURVE = 1 << 18,
  RTC_FEATURE_FLAG_NORMAL_ORIENTED_CATMULL_ROM_CURVE = 1 << 19,

  RTC_FEATURE_FLAG_SPHERE_POINT = 1 << 20,
  RTC_FEATURE_FLAG_DISC_POINT = 1 << 21,
  RTC_FEATURE_FLAG_ORIENTED_DISC_POINT = 1 << 22,

  RTC_FEATURE_FLAG_ROUND_CURVES = ... ,
  RTC_FEATURE_FLAG_FLAT_CURVES = ... ,
  RTC_FEATURE_FLAG_NORMAL_ORIENTED_CURVES = ... ,
  
  RTC_FEATURE_FLAG_LINEAR_CURVES = ... ,
  RTC_FEATURE_FLAG_BEZIER_CURVES = ... ,
  RTC_FEATURE_FLAG_BSPLINE_CURVES = ... ,
  RTC_FEATURE_FLAG_HERMITE_CURVES = ... ,
  
  RTC_FEATURE_FLAG_INSTANCE = 1 << 23,

  RTC_FEATURE_FLAG_FILTER_FUNCTION_IN_ARGUMENTS = 1 << 24,
  RTC_FEATURE_FLAG_FILTER_FUNCTION_IN_GEOMETRY = 1 << 25,
  RTC_FEATURE_FLAG_FILTER_FUNCTION = ... ,

  RTC_FEATURE_FLAG_USER_GEOMETRY_CALLBACK_IN_ARGUMENTS = 1 << 26,
  RTC_FEATURE_FLAG_USER_GEOMETRY_CALLBACK_IN_GEOMETRY = 1 << 27,
  RTC_FEATURE_FLAG_USER_GEOMETRY = ... ,

  RTC_FEATURE_FLAG_32_BIT_RAY_MASK = 1 << 28,

  RTC_FEATURE_FLAG_ALL = 0xffffffff
};

DESCRIPTION {#description}

The RTCFeatureFlags enum specify a bit mask to enable specific ray
tracing features for ray query operations. The feature flags are passed
to the rtcIntersect1/4/8/16 and rtcOccluded1/4/8/16 functions
through the RTCIntersectArguments and RTCOccludedArguments
structures. Only a ray tracing feature whose bit is enabled in the
feature mask can get used. If a feature bit is not set, the behaviour
is undefined, thus the feature may work or not. To enable multiple
features the respective features have to get combined using a bitwise
OR operation.

The purpose of feature flags is to reduce code size on the GPU by
enabling just the features required to render the scene. On the CPU
there is no need to use feature flags, and the default of all features
enabled (RTC_FEATURE_FLAG_ALL) can just be kept.

The following features can get enabled using feature flags:

  • RTC_FEATURE_FLAG_MOTION_BLUR: Enables motion blur for all
    geometry types.

  • RTC_FEATURE_FLAG_TRIANGLE: Enables triangle geometries
    (RTC_GEOMETRY_TYPE_TRIANGLE).

  • RTC_FEATURE_FLAG_QUAD: Enables quad geometries
    (RTC_GEOMETRY_TYPE_QUAD).

  • RTC_FEATURE_FLAG_GRID: Enables grid geometries
    (RTC_GEOMETRY_TYPE_GRID).

  • RTC_FEATURE_FLAG_SUBDIVISION: Enables subdivision geometries
    (RTC_GEOMETRY_TYPE_SUBDIVISION).

  • RTC_FEATURE_FLAG_POINT: Enables all point geometry types
    (RTC_GEOMETRY_TYPE_XXX_POINT)

  • RTC_FEATURE_FLAG_CURVES: Enables all curve geometry types
    (RTC_GEOMETRY_TYPE_XXX_YYY_CURVE)

  • RTC_FEATURE_FLAG_ROUND_CURVES: Enables all round curves
    (RTC_GEOMETRY_TYPE_ROUND_XXX_CURVE).

  • RTC_FEATURE_FLAG_FLAT_CURVES: Enables all flat curves
    (RTC_GEOMETRY_TYPE_FLAT_XXX_CURVE).

  • RTC_FEATURE_FLAG_NORMAL_ORIENTED_CURVES: Enables all normal
    oriented curves
    (RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_XXX_CURVE).

  • RTC_FEATURE_FLAG_LINEAR_CURVES: Enables all linear curves
    (RTC_GEOMETRY_TYPE_XXX_LINEAR_CURVE).

  • RTC_FEATURE_FLAG_BEZIER_CURVES: Enables all Bézier curves
    (RTC_GEOMETRY_TYPE_XXX_BEZIER_CURVE).

  • RTC_FEATURE_FLAG_BSPLINE_CURVES: Enables all B-spline curves
    (RTC_GEOMETRY_TYPE_XXX_BSPLINE_CURVE).

  • RTC_FEATURE_FLAG_HERMITE_CURVES: Enables all Hermite curves
    (RTC_GEOMETRY_TYPE_XXX_HERMITE_CURVE).

  • RTC_FEATURE_FLAG_CONE_LINEAR_CURVE: Enables cone geometry type
    (RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE).

  • RTC_FEATURE_FLAG_ROUND_LINEAR_CURVE: Enables round linear
    curves (RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE).

  • RTC_FEATURE_FLAG_FLAT_LINEAR_CURVE: Enables flat linear curves
    (RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE).

  • RTC_FEATURE_FLAG_ROUND_BEZIER_CURVE: Enables round Bézier
    curves (RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE).

  • RTC_FEATURE_FLAG_FLAT_BEZIER_CURVE: Enables flat Bézier curves
    (RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE).

  • RTC_FEATURE_FLAG_NORMAL_ORIENTED_BEZIER_CURVE: Enables normal
    oriented Bézier curves
    (RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE).

  • RTC_FEATURE_FLAG_ROUND_BSPLINE_CURVE: Enables round B-spline
    curves (RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE).

  • RTC_FEATURE_FLAG_FLAT_BSPLINE_CURVE: Enables flat B-spline
    curves (RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE).

  • RTC_FEATURE_FLAG_NORMAL_ORIENTED_BSPLINE_CURVE: Enables
    normal oriented B-spline curves
    (RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE).

  • RTC_FEATURE_FLAG_ROUND_HERMITE_CURVE: Enables round Hermite
    curves (RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE).

  • RTC_FEATURE_FLAG_FLAT_HERMITE_CURVE: Enables flat Hermite
    curves (RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE).

  • RTC_FEATURE_FLAG_NORMAL_ORIENTED_HERMITE_CURVE: Enables
    normal oriented Hermite curves
    (RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE).

  • RTC_FEATURE_FLAG_ROUND_CATMULL_ROM_CURVE: Enables round
    Catmull Rom curves
    (RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE).

  • RTC_FEATURE_FLAG_FLAT_CATMULL_ROM_CURVE: Enables flat Catmull
    Rom curves (RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE).

  • RTC_FEATURE_FLAG_NORMAL_ORIENTED_CATMULL_ROM_CURVE: Enables
    normal oriented Catmull Rom curves
    (RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE).

  • RTC_FEATURE_FLAG_SPHERE_POINT: Enables sphere geometry type
    (RTC_GEOMETRY_TYPE_SPHERE_POINT).

  • RTC_FEATURE_FLAG_DISC_POINT: Enables disc geometry type
    (RTC_GEOMETRY_TYPE_DISC_POINT).

  • RTC_FEATURE_FLAG_ORIENTED_DISC_POINT: Enables oriented disc
    geometry types (RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT).

  • RTC_FEATURE_FLAG_INSTANCE: Enables instance geometries
    (RTC_GEOMETRY_TYPE_INSTANCE).

  • RTC_FEATURE_FLAG_FILTER_FUNCTION_IN_ARGUMENTS: Enables filter
    functions passed through intersect arguments.

  • RTC_FEATURE_FLAG_FILTER_FUNCTION_IN_GEOMETRY: Enable filter
    functions passed through geometry.

  • RTC_FEATURE_FLAG_FILTER_FUNCTION: Enables filter functions
    (argument and geometry version).

  • RTC_FEATURE_FLAG_USER_GEOMETRY_CALLBACK_IN_ARGUMENTS:
    Enables RTC_GEOMETRY_TYPE_USER with function pointer passed
    through intersect arguments.

  • RTC_FEATURE_FLAG_USER_GEOMETRY_CALLBACK_IN_GEOMETRY: Enables
    RTC_GEOMETRY_TYPE_USER with function pointer passed through
    geometry object.

  • RTC_FEATURE_FLAG_USER_GEOMETRY: Enables
    RTC_GEOMETRY_TYPE_USER geometries (both argument and geometry
    callback versions).

  • RTC_FEATURE_FLAG_32_BIT_RAY_MASK: Enables full 32 bit ray
    masks. If not used, only the lower 7 bits in the ray mask are
    handled correctly.

  • RTC_FEATURE_FLAG_ALL: Enables all features (default).

EXIT STATUS {#exit-status}

SEE ALSO {#see-also}

[rtcIntersect1], [rtcIntersect4/8/16], [rtcOccluded1],
[rtcOccluded4/8/16],

rtcInitIntersectArguments

NAME {#name}

rtcInitIntersectArguments - initializes the intersect arguments struct

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

enum RTCRayQueryFlags
{
  RTC_RAY_QUERY_FLAG_NONE,
  RTC_RAY_QUERY_FLAG_INCOHERENT,
  RTC_RAY_QUERY_FLAG_COHERENT,
  RTC_RAY_QUERY_FLAG_INVOKE_ARGUMENT_FILTER
};

struct RTCIntersectArguments
{
  enum RTCRayQueryFlags flags;
  enum RTCFeatureFlags feature_mask;
  struct RTCRayQueryContext* context;
  RTCFilterFunctionN filter;
  RTCIntersectFunctionN intersect;
#if RTC_MIN_WIDTH
  float minWidthDistanceFactor;
#endif
};

void rtcInitIntersectArguments(
  struct RTCIntersectArguments* args
);

DESCRIPTION {#description}

The rtcInitIntersectArguments function initializes the optional
argument struct that can get passed to the rtcIntersect1/4/8/16
functions to default values. The arguments struct needs to get used for
more advanced Embree features as described here.

The flags member can get used to enable special traversal mode. Using
the RTC_RAY_QUERY_FLAG_INCOHERENT flag uses an optimized traversal
algorithm for incoherent rays (default), while
RTC_RAY_QUERY_FLAG_COHERENT uses an optimized traversal algorithm for
coherent rays (e.g. primary camera rays).

The feature_mask member should get used in SYCL to just enable ray
tracing features required to render a given scene. Please see section
[RTCFeatureFlags] for a more detailed description.

The context member can get used to pass an optional intersection
context. It is guaranteed that the pointer to the context passed to a
ray query is directly passed to all callback functions. This way it is
possible to attach arbitrary data to the end of the context, such as a
per-ray payload. Please note that the ray pointer is not guaranteed to
be passed to the callback functions, thus reading additional data from
the ray pointer passed to callbacks is not possible. See section
[rtcInitRayQueryContext] for more details.

The filter member specifies a filter function to invoke for each
encountered hit. The support for the argument filter function must be
enabled for a scene by using the
RTC_SCENE_FLAG_FILTER_FUNCTION_IN_ARGUMENTS scene flag. In case of
instancing this feature has to get enabled also for each instantiated
scene.

The argument filter function is invoked for each geometry for which it
got explicitely enabled using the
rtcSetGeometryEnableFilterFunctionFromArguments function. The
invokation of the argument filter function can also get enfored for
each geometry using the RTC_RAY_QUERY_FLAG_INVOKE_ARGUMENT_FILTER ray
query flag. This argument filter function is invoked as a second filter
stage after the per-geometry filter function is invoked. Only rays that
passed the first filter stage are valid in this second filter stage.
Having such a per ray-query filter function can be useful to implement
modifications of the behavior of the query, such as collecting all hits
or accumulating transparencies.

The intersect member specifies the user geometry callback to get
invoked for each user geometry encountered during traversal. The user
geometry callback specified this way has preference over the one
specified inside the geometry.

The minWidthDistanceFactor value controls the target size of the
curve radii when the min-width feature is enabled. Please see the
[rtcSetGeometryMaxRadiusScale] function for more details on the
min-width feature.

EXIT STATUS {#exit-status}

No error code is set by this function.

SEE ALSO {#see-also}

[rtcIntersect1], [rtcIntersect4/8/16], [RTCFeatureFlags],
[rtcInitRayQueryContext], [RTC_GEOMETRY_TYPE_USER],
[rtcSetGeometryMaxRadiusScale]

rtcInitOccludedArguments

NAME {#name}

rtcInitOccludedArguments - initializes the occluded arguments struct

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

enum RTCRayQueryFlags
{
  RTC_RAY_QUERY_FLAG_NONE,
  RTC_RAY_QUERY_FLAG_INCOHERENT,
  RTC_RAY_QUERY_FLAG_COHERENT,
  RTC_RAY_QUERY_FLAG_INVOKE_ARGUMENT_FILTER
};

struct RTCOccludedArguments
{
  enum RTCRayQueryFlags flags;
  enum RTCFeatureFlags feature_mask;
  struct RTCRayQueryContext* context;
  RTCFilterFunctionN filter;
  RTCOccludedFunctionN intersect;
#if RTC_MIN_WIDTH
  float minWidthDistanceFactor;
#endif
};

void rtcInitOccludedArguments(
  struct RTCOccludedArguments* args
);

DESCRIPTION {#description}

The rtcInitOccludedArguments function initializes the optional
argument struct that can get passed to the rtcOccluded1/4/8/16
functions to default values. The arguments struct needs to get used for
more advanced Embree features as described here.

The flags member can get used to enable special traversal mode. Using
the RTC_RAY_QUERY_FLAG_INCOHERENT flag uses an optimized traversal
algorithm for incoherent rays (default), while
RTC_RAY_QUERY_FLAG_COHERENT uses an optimized traversal algorithm for
coherent rays (e.g. primary camera rays).

The feature_mask member should get used in SYCL to just enable ray
tracing features required to render a given scene. Please see section
[RTCFeatureFlags] for a more detailed description.

The context member can get used to pass an optional intersection
context. It is guaranteed that the pointer to the context passed to a
ray query is directly passed to all callback functions. This way it is
possible to attach arbitrary data to the end of the context, such as a
per-ray payload. Please note that the ray pointer is not guaranteed to
be passed to the callback functions, thus reading additional data from
the ray pointer passed to callbacks is not possible. See section
[rtcInitRayQueryContext] for more details.

The filter member specifies a filter function to invoked for each
encountered hit. The support for the argument filter function must be
enabled for a scene by using the
RTC_SCENE_FLAG_FILTER_FUNCTION_IN_ARGUMENTS scene flag. In case of
instancing this feature has to get enabled also for each instantiated
scene.

The argument filter function is invoked for each geometry for which it
got explicitely enabled using the
rtcSetGeometryEnableFilterFunctionFromArguments function. The
invokation of the argument filter function can also get enfored for
each geometry using the RTC_RAY_QUERY_FLAG_INVOKE_ARGUMENT_FILTER ray
query flag. This argument filter function is invoked as a second filter
stage after the per-geometry filter function is invoked. Only rays that
passed the first filter stage are valid in this second filter stage.
Having such a per ray-query filter function can be useful to implement
modifications of the behavior of the query, such as collecting all hits
or accumulating transparencies.

The intersect member specifies the user geometry callback to get
invoked for each user geometry encountered during traversal. The user
geometry callback specified this way has preference over the one
specified inside the geometry.

The minWidthDistanceFactor value controls the target size of the
curve radii when the min-width feature is enabled. Please see the
[rtcSetGeometryMaxRadiusScale] function for more details on the
min-width feature.

EXIT STATUS {#exit-status}

No error code is set by this function.

SEE ALSO {#see-also}

[rtcOccluded1], [rtcOccluded4/8/16], [RTCFeatureFlags],
[rtcInitRayQueryContext], [RTC_GEOMETRY_TYPE_USER],
[rtcSetGeometryMaxRadiusScale]

rtcInitRayQueryContext

NAME {#name}

rtcInitRayQueryContext - initializes the ray query context

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTCRayQueryContext
{
  #if RTC_MAX_INSTANCE_LEVEL_COUNT > 1
    unsigned int instStackSize;
  #endif
  
  unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT];
};

void rtcInitRayQueryContext(
  struct RTCRayQueryContext* context
);

DESCRIPTION {#description}

The rtcInitRayQueryContext function initializes the intersection
context to default values and should be called to initialize every ray
query context.

It is guaranteed that the pointer to the ray query context
(RTCRayQueryContext type) is passed to the registered callback
functions. This way it is possible to attach arbitrary data to the end
of the ray query context, such as a per-ray payload.

Inside the user geometry callback the ray query context can get used to
access the instID stack to know which instance the user geometry
object resides.

If not ray query context is specified when tracing a ray, a default
context is used.

EXIT STATUS {#exit-status}

No error code is set by this function.

SEE ALSO {#see-also}

[rtcIntersect1], [rtcIntersect4/8/16], [rtcOccluded1],
[rtcOccluded4/8/16]

rtcIntersect1

NAME {#name}

rtcIntersect1 - finds the closest hit for a single ray

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcIntersect1(
  RTCScene scene,
  struct RTCRayHit* rayhit
  struct RTCIntersectArguments* args = NULL
);

DESCRIPTION {#description}

The rtcIntersect1 function finds the closest hit of a single ray
(rayhit argument) with the scene (scene argument). The provided
ray/hit structure contains the ray to intersect and some hit output
fields that are filled when a hit is found. The passed optional
arguments struct (args argument) can get used for advanced use cases,
see section [rtcInitIntersectArguments] for more details.

To trace a ray, the user has to initialize the ray origin (org ray
member), ray direction (dir ray member), ray segment (tnear, tfar
ray members), ray mask (mask ray member), and set the ray flags to
0 (flags ray member). The ray time (time ray member) must be
initialized to a value in the range $[0, 1]. The ray segment has to
be in the range $[0, infty]$, thus ranges that start behind the ray
origin are not valid, but ranges can reach to infinity. See Section
[RTCRay] for the ray layout description.

The geometry ID (geomID hit member) of the hit data must be
initialized to RTC_INVALID_GEOMETRY_ID (-1).

When no intersection is found, the ray/hit data is not updated. When an
intersection is found, the hit distance is written into the tfar
member of the ray and all hit data is set, such as unnormalized
geometry normal in object space (Ng hit member), local hit
coordinates (u, v hit member), instance ID stack (instID hit
member), geometry ID (geomID hit member), and primitive ID (primID
hit member). See Section [RTCHit] for the hit layout description.

If the instance ID stack has a prefix of values not equal to
RTC_INVALID_GEOMETRY_ID, the instance ID on each level corresponds to
the geometry ID of the hit instance of the higher-level scene, the
geometry ID corresponds to the hit geometry inside the hit instanced
scene, and the primitive ID corresponds to the n-th primitive of that
geometry.

If level 0 of the instance ID stack is equal to
RTC_INVALID_GEOMETRY_ID, the geometry ID corresponds to the hit
geometry inside the top-level scene, and the primitive ID corresponds
to the n-th primitive of that geometry.

The implementation makes no guarantees that primitives whose hit
distance is exactly at (or very close to) tnear or tfar are hit or
missed. If you want to exclude intersections at tnear just pass a
slightly enlarged tnear, and if you want to include intersections at
tfar pass a slightly enlarged tfar.

The ray pointer passed to callback functions is not guaranteed to be
identical to the original ray provided. To extend the ray with
additional data to be accessed in callback functions, use the ray query
context. See section [rtcInitRayQueryContext] for more details.

The ray/hit structure must be aligned to 16 bytes.

EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

SEE ALSO {#see-also}

[rtcOccluded1], [rtcIntersect4/8/16], [RTCRayHit],
[rtcInitIntersectArguments]

rtcOccluded1

NAME {#name}

rtcOccluded1 - finds any hit for a single ray

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcOccluded1(
  RTCScene scene,
  struct RTCRay* ray,
  struct RTCOccludedArguments* args = NULL
);

DESCRIPTION {#description}

The rtcOccluded1 function checks for a single ray (ray argument)
whether there is any hit with the scene (scene argument). The passed
optional arguments struct (args argument) can get used for advanced
use cases, see section [rtcInitOccludedArguments] for more details.

To trace a ray, the user must initialize the ray origin (org ray
member), ray direction (dir ray member), ray segment (tnear, tfar
ray members), ray mask (mask ray member), and must set the ray flags
to 0 (flags ray member). The ray time (time ray member) must be
initialized to a value in the range $[0, 1]$. The ray segment must be
in the range $[0, infty]$, thus ranges that start behind the ray
origin are not valid, but ranges can reach to infinity. See Section
[RTCRay] for the ray layout description.

When no intersection is found, the ray data is not updated. In case a
hit was found, the tfar component of the ray is set to -inf.

The implementation makes no guarantees that primitives whose hit
distance is exactly at (or very close to) tnear or tfar are hit or
missed. If you want to exclude intersections at tnear just pass a
slightly enlarged tnear, and if you want to include intersections at
tfar pass a slightly enlarged tfar.

The ray pointer passed to callback functions is not guaranteed to be
identical to the original ray provided. To extend the ray with
additional data to be accessed in callback functions, use the ray query
context. See section [rtcInitRayQueryContext] for more details.

The ray must be aligned to 16 bytes.

EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

SEE ALSO {#see-also}

[rtcIntersect1], [rtcOccluded4/8/16], [RTCRay],
[rtcInitOccludedArguments]

rtcIntersect4/8/16

NAME {#name}

rtcIntersect4/8/16 - finds the closest hits for a ray packet

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcIntersect4(
  const int* valid,
  RTCScene scene,
  struct RTCRayHit4* rayhit,
  struct RTCIntersectArguments* args = NULL
);

void rtcIntersect8(
  const int* valid,
  RTCScene scene,
  struct RTCRayHit8* rayhit,
  struct RTCIntersectArguments* args = NULL
);

void rtcIntersect16(
  const int* valid,
  RTCScene scene,
  struct RTCRayHit16* rayhit,
  struct RTCIntersectArguments* args = NULL
);

DESCRIPTION {#description}

The rtcIntersect4/8/16 functions finds the closest hits for a ray
packet of size 4, 8, or 16 (rayhit argument) with the scene (scene
argument). The ray/hit input contains a ray packet and hit packet. The
passed optional arguments struct (args argument) are used to pass
additional arguments for advanced features. See Section
[rtcIntersect1] for more details and a description of how to set up
and trace rays.

A ray valid mask must be provided (valid argument) which stores one
32-bit integer (-1 means valid and 0 invalid) per ray in the
packet. Only active rays are processed, and hit data of inactive rays
is not changed.

The ray pointer passed to callback functions is not guaranteed to be
identical to the original ray provided. To extend the ray with
additional data to be accessed in callback functions, use the ray query
context. See section [rtcInitRayQueryContext] for more details.

For rtcIntersect4 the ray packet must be aligned to 16 bytes, for
rtcIntersect8 the alignment must be 32 bytes, and for
rtcIntersect16 the alignment must be 64 bytes.

The rtcIntersect4, rtcIntersect8 and rtcIntersect16 functions may
change the ray packet size and ray order when calling back into filter
functions or user geometry callbacks. Under some conditions the
application can assume packets to stay intakt, which can determined by
querying the RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED,
RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED,
RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED properties through the
rtcGetDeviceProperty function. See [rtcGetDeviceProperty] for more
information.

EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

SEE ALSO {#see-also}

[rtcIntersect1], [rtcOccluded4/8/16], [rtcInitIntersectArguments]

rtcOccluded4/8/16

NAME {#name}

rtcOccluded4/8/16 - finds any hits for a ray packet

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcOccluded4(
  const int* valid,
  RTCScene scene,
  struct RTCRay4* ray,
  struct RTCOccludedArguments* args = NULL
);

void rtcOccluded8(
  const int* valid,
  RTCScene scene,
  struct RTCRay8* ray,
  struct RTCOccludedArguments* args = NULL
);

void rtcOccluded16(
  const int* valid,
  RTCScene scene,
  struct RTCRay16* ray,
  struct RTCOccludedArguments* args = NULL
);

DESCRIPTION {#description}

The rtcOccluded4/8/16 functions checks for each active ray of the ray
packet of size 4, 8, or 16 (ray argument) whether there is any hit
with the scene (scene argument). The passed optional arguments struct
(args argument) can get used for advanced use cases, see section
[rtcInitOccludedArguments] for more details. See Section
[rtcOccluded1] for more details and a description of how to set up
and trace occlusion rays.

A ray valid mask must be provided (valid argument) which stores one
32-bit integer (-1 means valid and 0 invalid) per ray in the
packet. Only active rays are processed, and hit data of inactive rays
is not changed.

The ray pointer passed to callback functions is not guaranteed to be
identical to the original ray provided. To extend the ray with
additional data to be accessed in callback functions, use the ray query
context. See section [rtcInitRayQueryContext] for more details.

For rtcOccluded4 the ray packet must be aligned to 16 bytes, for
rtcOccluded8 the alignment must be 32 bytes, and for rtcOccluded16
the alignment must be 64 bytes.

The rtcOccluded4, rtcOccluded8 and rtcOccluded16 functions may
change the ray packet size and ray order when calling back into
intersect filter functions or user geometry callbacks. Under some
conditions the application can assume packets to stay intakt, which can
determined by querying the RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED,
RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED,
RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED properties through the
rtcGetDeviceProperty function. See [rtcGetDeviceProperty] for more
information.

EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

SEE ALSO {#see-also}

[rtcOccluded1], [rtcIntersect4/8/16], [rtcInitOccludedArguments]

rtcForwardIntersect1

NAME {#name}

rtcForwardIntersect1 - forwards a single ray to new scene
  from user geometry callback

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcForwardIntersect1(
  const struct RTCIntersectFunctionNArguments* args,
  RTCScene scene,
  struct RTCRay* ray,
  unsigned int instID
);

DESCRIPTION {#description}

The rtcForwardIntersect1 function forwards the traversal of a
transformed ray (ray argument) into a scene (scene argument) from a
user geometry callback. The function can only get invoked from a user
geometry callback for a ray traversal initiated with the
rtcIntersect1 function. The callback arguments structure of the
callback invokation has to get passed to the ray forwarding (args
argument). The user geometry callback should instantly terminate after
invoking the rtcForwardIntersect1 function.

Only the ray origin and ray direction members of the ray argument are
used for forwarding, all additional ray properties are inherited from
the initial ray traversal invokation of rtcIntersect1.

The implementation of the rtcForwardIntersect1 function recursively
continues the ray traversal into the specified scene and pushes the
provided instance ID (instID argument) to the instance ID stack. Hit
information is updated into the ray hit structure passed to the
original rtcIntersect1 invokation.

This function can get used to implement user defined instancing using
user geometries, e.g. by transforming the ray in a special way, and/or
selecting between different scenes to instantiate.

When using Embree on the CPU it is possible to recursively invoke
rtcIntersect1 directly from a user geometry callback. However, when
SYCL is used, recursively tracing rays is not directly supported, and
the rtcForwardIntersect1 function must be used.

The ray structure must be aligned to 16 bytes.

EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

SEE ALSO {#see-also}

[rtcIntersect1], [RTCRay]

rtcForwardOccluded1

NAME {#name}

rtcForwardOccluded1 - forwards a single ray to new scene
  from user geometry callback

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcForwardOccluded1(
  const struct RTCOccludedFunctionNArguments* args,
  RTCScene scene,
  struct RTCRay* ray,
  unsigned int instID
);

DESCRIPTION {#description}

The rtcForwardOccluded1 function forwards the traversal of a
transformed ray (ray argument) into a scene (scene argument) from a
user geometry callback. The function can only get invoked from a user
geometry callback for a ray traversal initiated with the rtcOccluded1
function. The callback arguments structure of the callback invokation
has to get passed to the ray forwarding (args argument). The user
geometry callback should instantly terminate after invoking the
rtcForwardOccluded1 function.

Only the ray origin and ray direction members of the ray argument are
used for forwarding, all additional ray properties are inherited from
the initial ray traversal invokation of rtcOccluded1.

The implementation of the rtcForwardOccluded1 function recursively
continues the ray traversal into the specified scene and pushes the
provided instance ID (instID argument) to the instance ID stack. Hit
information is updated into the ray structure passed to the original
rtcOccluded1 invokation.

This function can get used to implement user defined instancing using
user geometries, e.g. by transforming the ray in a special way, and/or
selecting between different scenes to instantiate.

When using Embree on the CPU it is possible to recursively invoke
rtcOccluded1 directly from a user geometry callback. However, when
SYCL is used, recursively tracing rays is not directly supported, and
the rtcForwardOccluded1 function must be used.

The ray structure must be aligned to 16 bytes.

EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

SEE ALSO {#see-also}

[rtcOccluded1], [RTCRay]

rtcForwardIntersect4/8/16

NAME {#name}

rtcForwardIntersect4/8/16 - forwards a ray packet to new scene
  from user geometry callback

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcForwardIntersect4(
  void int* valid,
  const struct RTCIntersectFunctionNArguments* args,
  RTCScene scene,
  struct RTCRay4* ray,
  unsigned int instID
);

void rtcForwardIntersect4(
  void int* valid,
  const struct RTCIntersectFunctionNArguments* args,
  RTCScene scene,
  struct RTCRay4* ray,
  unsigned int instID
);

void rtcForwardIntersect16(
  void int* valid,
  const struct RTCIntersectFunctionNArguments* args,
  RTCScene scene,
  struct RTCRay16* ray,
  unsigned int instID
);

DESCRIPTION {#description}

The rtcForwardIntersect4/8/16 functions forward the traversal of a
transformed ray packet (ray argument) into a scene (scene argument)
from a user geometry callback. The function can only get invoked from a
user geometry callback for a ray traversal initiated with the
rtcIntersect4/8/16 function. The callback arguments structure of the
callback invokation has to get passed to the ray forwarding (args
argument). The user geometry callback should instantly terminate after
invoking the rtcForwardIntersect4/8/16 function.

Only the ray origin and ray direction members of the ray argument are
used for forwarding, all additional ray properties are inherited from
the initial ray traversal invokation of rtcIntersect4/8/16.

The implementation of the rtcForwardIntersect4/8/16 function
recursively continues the ray traversal into the specified scene and
pushes the provided instance ID (instID argument) to the instance ID
stack. Hit information is updated into the ray hit structure passed to
the original rtcIntersect4/8/16 invokation.

This function can get used to implement user defined instancing using
user geometries, e.g. by transforming the ray in a special way, and/or
selecting between different scenes to instantiate.

When using Embree on the CPU it is possible to recursively invoke
rtcIntersect4/8/16 directly from a user geometry callback. However,
when SYCL is used, recursively tracing rays is not directly supported,
and the rtcForwardIntersect4/8/16 function must be used.

For rtcForwardIntersect4 the ray packet must be aligned to 16 bytes,
for rtcForwardIntersect8 the alignment must be 32 bytes, and for
rtcForwardIntersect16 the alignment must be 64 bytes.

EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

SEE ALSO {#see-also}

[rtcIntersect4/8/16]

rtcForwardOccluded4/8/16

NAME {#name}

rtcForwardOccluded4/8/16 - forwards a ray packet to new scene
  from user geometry callback

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcForwardOccluded4(
  void int* valid,
  const struct RTCOccludedFunctionNArguments* args,
  RTCScene scene,
  struct RTCRay4* ray,
  unsigned int instID
);

void rtcForwardOccluded4(
  void int* valid,
  const struct RTCOccludedFunctionNArguments* args,
  RTCScene scene,
  struct RTCRay4* ray,
  unsigned int instID
);

void rtcForwardOccluded16(
  void int* valid,
  const struct RTCOccludedFunctionNArguments* args,
  RTCScene scene,
  struct RTCRay16* ray,
  unsigned int instID
);

DESCRIPTION {#description}

The rtcForwardOccluded4/8/16 functions forward the traversal of a
transformed ray packet (ray argument) into a scene (scene argument)
from a user geometry callback. The function can only get invoked from a
user geometry callback for a ray traversal initiated with the
rtcOccluded4/8/16 function. The callback arguments structure of the
callback invokation has to get passed to the ray forwarding (args
argument). The user geometry callback should instantly terminate after
invoking the rtcForwardOccluded4/8/16 function.

Only the ray origin and ray direction members of the ray argument are
used for forwarding, all additional ray properties are inherited from
the initial ray traversal invokation of rtcOccluded4/8/16.

The implementation of the rtcForwardOccluded4/8/16 function
recursively continues the ray traversal into the specified scene and
pushes the provided instance ID (instID argument) to the instance ID
stack. Hit information is updated into the ray structure passed to the
original rtcOccluded4/8/16 invokation.

This function can get used to implement user defined instancing using
user geometries, e.g. by transforming the ray in a special way, and/or
selecting between different scenes to instantiate.

When using Embree on the CPU it is possible to recursively invoke
rtcOccluded4/8/16 directly from a user geometry callback. However,
when SYCL is used, recursively tracing rays is not directly supported,
and the rtcForwardOccluded4/8/16 function must be used.

For rtcForwardOccluded4 the ray packet must be aligned to 16 bytes,
for rtcForwardOccluded8 the alignment must be 32 bytes, and for
rtcForwardOccluded16 the alignment must be 64 bytes.

EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

SEE ALSO {#see-also}

[rtcOccluded4/8/16]

rtcInitPointQueryContext

NAME {#name}

rtcInitPointQueryContext - initializes the context information (e.g.
  stack of (multilevel-)instance transformations) for point queries

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTC_ALIGN(16) RTCPointQueryContext
{
  // accumulated 4x4 column major matrices from world to instance space.
  float world2inst[RTC_MAX_INSTANCE_LEVEL_COUNT][16];
  
  // accumulated 4x4 column major matrices from instance to world space.
  float inst2world[RTC_MAX_INSTANCE_LEVEL_COUNT][16];

  // instance ids.
  unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT];
  
  // number of instances currently on the stack.
  unsigned int instStackSize;
};

void rtcInitPointQueryContext(
  struct RTCPointQueryContext* context
);

DESCRIPTION {#description}

A stack (RTCPointQueryContext type) which stores the IDs and instance
transformations during a BVH traversal for a point query. The
transformations are assumed to be affine transformations (3×3 matrix
plus translation) and therefore the last column is ignored (see
[RTC_GEOMETRY_TYPE_INSTANCE] for details).

The rtcInitPointContext function initializes the context to default
values and should be called for initialization.

The context will be passed as an argument to the point query callback
function (see [rtcSetGeometryPointQueryFunction]) and should be used
to pass instance information down the instancing chain for user defined
instancing (see tutorial [ClosestPoint] for a reference
implementation of point queries with user defined instancing).

The context is an necessary argument to [rtcPointQuery] and Embree
internally uses the topmost instance transformation of the stack to
transform the point query into instance space.

EXIT STATUS {#exit-status}

No error code is set by this function.

SEE ALSO {#see-also}

[rtcPointQuery], [rtcSetGeometryPointQueryFunction]

rtcPointQuery

NAME {#name}

rtcPointQuery - traverses the BVH with a point query object

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTC_ALIGN(16) RTCPointQuery
{
  // location of the query
  float x;
  float y;
  float z;

  // radius and time of the query
  float radius;
  float time;
};

void rtcPointQuery(
  RTCScene scene,
  struct RTCPointQuery* query,
  struct RTCPointQueryContext* context,
  struct RTCPointQueryFunction* queryFunc,
  void* userPtr
);

DESCRIPTION {#description}

The rtcPointQuery function traverses the BVH using a RTCPointQuery
object (query argument) and calls a user defined callback function
(e.g queryFunc argument) for each primitive of the scene (scene
argument) that intersects the query domain.

The user has to initialize the query location (x, y and z member)
and query radius in the range $[0, infty]$. If the scene contains
motion blur geometries, also the query time (time member) must be
initialized to a value in the range $[0, 1]$.

Further, a RTCPointQueryContext (context argument) must be created
and initialized. It contains ID and transformation information of the
instancing hierarchy if (multilevel-)instancing is used. See
[rtcInitPointQueryContext] for further information.

For every primitive that intersects the query domain, the callback
function (queryFunc argument) is called, in which distance
computations to the primitive can be implemented. The user will be
provided with the primID and geomID of the according primitive,
however, the geometry information (e.g. triangle index and vertex data)
has to be determined manually. The userPtr argument can be used to
input geometry data of the scene or output results of the point query
(e.g. closest point currently found on surface geometry (see tutorial
[ClosestPoint])).

The parameter queryFunc is optional and can be NULL, in which case
the callback function is not invoked. However, a callback function can
still get attached to a specific RTCGeometry object using
[rtcSetGeometryPointQueryFunction]. If a callback function is
attached to a geometry and (a potentially different) callback function
is passed as an argument to rtcPointQuery, both functions are called
for the primitives of the according geometries.

The query radius can be decreased inside the callback function, which
allows to efficiently cull parts of the scene during BVH traversal.
Increasing the query radius and modifying time or location of the query
will result in undefined behaviour.

The callback function will be called for all primitives in a leaf node
of the BVH even if the primitive is outside the query domain, since
Embree does not gather geometry information of primitives internally.

Point queries can be used with (multilevel)-instancing. However, care
has to be taken when the instance transformation contains anisotropic
scaling or sheering. In these cases distance computations have to be
performed in world space to ensure correctness and the ellipsoidal
query domain (in instance space) will be approximated with its axis
aligned bounding box internally. Therefore, the callback function might
be invoked even for primitives in inner BVH nodes that do not intersect
the query domain. See [rtcSetGeometryPointQueryFunction] for details.

The point query structure must be aligned to 16 bytes.

SUPPORTED PRIMITIVES

Currently, all primitive types are supported by the point query API
except of points (see [RTC_GEOMETRY_TYPE_POINT]), curves (see
[RTC_GEOMETRY_TYPE_CURVE]) and sudivision surfaces (see
[RTC_GEOMETRY_SUBDIVISION]).

EXIT STATUS {#exit-status}

For performance reasons this function does not do any error checks,
thus will not set any error flags on failure.

SEE ALSO {#see-also}

[rtcSetGeometryPointQueryFunction], [rtcInitPointQueryContext]

rtcCollide

NAME {#name}

rtcCollide - intersects one BVH with another

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTCCollision {
  unsigned int geomID0, primID0;
  unsigned int geomID1, primID1;
};

typedef void (*RTCCollideFunc) (
  void* userPtr,
  RTCCollision* collisions,
  size_t num_collisions);

void rtcCollide (
    RTCScene hscene0, 
    RTCScene hscene1, 
    RTCCollideFunc callback, 
    void* userPtr
);

DESCRIPTION {#description}

The rtcCollide function intersects the BVH of hscene0 with the BVH
of scene hscene1 and calls a user defined callback function (e.g
callback argument) for each pair of intersecting primitives between
the two scenes. A user defined data pointer (userPtr argument) can
also be passed in.

For every pair of primitives that may intersect each other, the
callback function (callback argument) is called. The user will be
provided with the primID’s and geomID’s of multiple potentially
intersecting primitive pairs. Currently, only scene entirely composed
of user geometries are supported, thus the user is expected to
implement a primitive/primitive intersection to filter out false
positives in the callback function. The userPtr argument can be used
to input geometry data of the scene or output results of the
intersection query.

SUPPORTED PRIMITIVES {#supported-primitives}

Currently, the only supported type is the user geometry type (see
[RTC_GEOMETRY_TYPE_USER]).

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

rtcNewBVH

NAME {#name}

rtcNewBVH - creates a new BVH object

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

RTCBVH rtcNewBVH(RTCDevice device);

DESCRIPTION {#description}

This function creates a new BVH object and returns a handle to this
BVH. The BVH object is reference counted with an initial reference
count of 1. The handle can be released using the rtcReleaseBVH API
call.

The BVH object can be used to build a BVH in a user-specified format
over user-specified primitives. See the documentation of the
rtcBuildBVH call for more details.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcRetainBVH], [rtcReleaseBVH], [rtcBuildBVH]

rtcRetainBVH

NAME {#name}

rtcRetainBVH - increments the BVH reference count

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcRetainBVH(RTCBVH bvh);

DESCRIPTION {#description}

BVH objects are reference counted. The rtcRetainBVH function
increments the reference count of the passed BVH object (bvh
argument). This function together with rtcReleaseBVH allows to use
the internal reference counting in a C++ wrapper class to handle the
ownership of the object.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewBVH], [rtcReleaseBVH]

rtcReleaseBVH

NAME {#name}

rtcReleaseBVH - decrements the BVH reference count

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

void rtcReleaseBVH(RTCBVH bvh);

DESCRIPTION {#description}

BVH objects are reference counted. The rtcReleaseBVH function
decrements the reference count of the passed BVH object (bvh
argument). When the reference count falls to 0, the BVH gets destroyed.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewBVH], [rtcRetainBVH]

rtcBuildBVH

NAME {#name}

rtcBuildBVH - builds a BVH

SYNOPSIS {#synopsis}

#include <embree4/rtcore.h>

struct RTC_ALIGN(32) RTCBuildPrimitive
{
  float lower_x, lower_y, lower_z; 
  unsigned int geomID;
  float upper_x, upper_y, upper_z;
  unsigned int primID;
};

typedef void* (*RTCCreateNodeFunction) (
  RTCThreadLocalAllocator allocator,
  unsigned int childCount,
  void* userPtr
);

typedef void (*RTCSetNodeChildrenFunction) (
  void* nodePtr,
  void** children,
  unsigned int childCount,
  void* userPtr
);

typedef void (*RTCSetNodeBoundsFunction) (
  void* nodePtr,
  const struct RTCBounds** bounds,
  unsigned int childCount,
  void* userPtr
);

typedef void* (*RTCCreateLeafFunction) (
  RTCThreadLocalAllocator allocator,
  const struct RTCBuildPrimitive* primitives,
  size_t primitiveCount,
  void* userPtr
);

typedef void (*RTCSplitPrimitiveFunction) (
  const struct RTCBuildPrimitive* primitive,
  unsigned int dimension,
  float position,
  struct RTCBounds* leftBounds,
  struct RTCBounds* rightBounds,
  void* userPtr
);

typedef bool (*RTCProgressMonitorFunction)(
  void* userPtr, double n
);

enum RTCBuildFlags
{
  RTC_BUILD_FLAG_NONE,
  RTC_BUILD_FLAG_DYNAMIC
};

struct RTCBuildArguments
{
  size_t byteSize;

  enum RTCBuildQuality buildQuality;
  enum RTCBuildFlags buildFlags;
  unsigned int maxBranchingFactor;
  unsigned int maxDepth;
  unsigned int sahBlockSize;
  unsigned int minLeafSize;
  unsigned int maxLeafSize;
  float traversalCost;
  float intersectionCost;

  RTCBVH bvh;
  struct RTCBuildPrimitive* primitives;
  size_t primitiveCount;
  size_t primitiveArrayCapacity;
  
  RTCCreateNodeFunction createNode;
  RTCSetNodeChildrenFunction setNodeChildren;
  RTCSetNodeBoundsFunction setNodeBounds;
  RTCCreateLeafFunction createLeaf;
  RTCSplitPrimitiveFunction splitPrimitive;
  RTCProgressMonitorFunction buildProgress;
  void* userPtr;
};

struct RTCBuildArguments rtcDefaultBuildArguments();

void* rtcBuildBVH(
  const struct RTCBuildArguments* args
);

DESCRIPTION {#description}

The rtcBuildBVH function can be used to build a BVH in a user-defined
format over arbitrary primitives. All arguments to the function are
provided through the RTCBuildArguments structure. The first member of
that structure must be set to the size of the structure in bytes
(bytesSize member) which allows future extensions of the structure.
It is recommended to initialize the build arguments structure using the
rtcDefaultBuildArguments function.

The rtcBuildBVH function gets passed the BVH to build (bvh member),
the array of primitives (primitives member), the capacity of that
array (primitiveArrayCapacity member), the number of primitives
stored inside the array (primitiveCount member), callback function
pointers, and a user-defined pointer (userPtr member) that is passed
to all callback functions when invoked. The primitives array can be
freed by the application after the BVH is built. All callback functions
are typically called from multiple threads, thus their implementation
must be thread-safe.

Four callback functions must be registered, which are invoked during
build to create BVH nodes (createNode member), to set the pointers to
all children (setNodeChildren member), to set the bounding boxes of
all children (setNodeBounds member), and to create a leaf node
(createLeaf member).

The function pointer to the primitive split function (splitPrimitive
member) may be NULL, however, then no spatial splitting in high
quality mode is possible. The function pointer used to report the build
progress (buildProgress member) is optional and may also be NULL.

Further, some build settings are passed to configure the BVH build.
Using the build quality settings (buildQuality member), one can
select between a faster, low quality build which is good for dynamic
scenes, and a standard quality build for static scenes. One can also
specify the desired maximum branching factor of the BVH
(maxBranchingFactor member), the maximum depth the BVH should have
(maxDepth member), the block size for the SAH heuristic
(sahBlockSize member), the minimum and maximum leaf size
(minLeafSize and maxLeafSize member), and the estimated costs of
one traversal step and one primitive intersection (traversalCost and
intersectionCost members). When enabling the RTC_BUILD_FLAG_DYNAMIC
build flags (buildFlags member), re-build performance for dynamic
scenes is improved at the cost of higher memory requirements.

To spatially split primitives in high quality mode, the builder needs
extra space at the end of the build primitive array to store split
primitives. The total capacity of the build primitive array is passed
using the primitiveArrayCapacity member, and should be about twice
the number of primitives when using spatial splits.

The RTCCreateNodeFunc and RTCCreateLeafFunc callbacks are passed a
thread local allocator object that should be used for fast allocation
of nodes using the rtcThreadLocalAlloc function. We strongly
recommend using this allocation mechanism, as alternative approaches
like standard malloc can be over 10× slower. The allocator object
passed to the create callbacks may be used only inside the current
thread. Memory allocated using rtcThreadLocalAlloc is automatically
freed when the RTCBVH object is deleted. If you use your own memory
allocation scheme you have to free the memory yourself when the
RTCBVH object is no longer used.

The RTCCreateNodeFunc callback additionally gets the number of
children for this node in the range from 2 to maxBranchingFactor
(childCount argument).

The RTCSetNodeChildFunc callback function gets a pointer to the node
as input (nodePtr argument), an array of pointers to the children
(childPtrs argument), and the size of this array (childCount
argument).

The RTCSetNodeBoundsFunc callback function gets a pointer to the node
as input (nodePtr argument), an array of pointers to the bounding
boxes of the children (bounds argument), and the size of this array
(childCount argument).

The RTCCreateLeafFunc callback additionally gets an array of
primitives as input (primitives argument), and the size of this array
(primitiveCount argument). The callback should read the geomID and
primID members from the passed primitives to construct the leaf.

The RTCSplitPrimitiveFunc callback is invoked in high quality mode to
split a primitive (primitive argument) at the specified position
(position argument) and dimension (dimension argument). The
callback should return bounds of the clipped left and right parts of
the primitive (leftBounds and rightBounds arguments).

The RTCProgressMonitorFunction callback function is called with the
estimated completion rate n in the range $[0,1]$. Returning true
from the callback lets the build continue; returning false cancels
the build.

EXIT STATUS {#exit-status}

On failure an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO {#see-also}

[rtcNewBVH]

RTCQuaternionDecomposition

NAME {#name}

RTCQuaternionDecomposition - structure that represents a quaternion
  decomposition of an affine transformation

SYNOPSIS {#synopsis}

struct RTCQuaternionDecomposition
{
  float scale_x, scale_y, scale_z;
  float skew_xy, skew_xz, skew_yz;
  float shift_x, shift_y, shift_z;
  float quaternion_r, quaternion_i, quaternion_j, quaternion_k;
  float translation_x, translation_y, translation_z;
};

DESCRIPTION {#description}

The struct RTCQuaternionDecomposition represents an affine
transformation decomposed into three parts. An upper triangular
scaling/skew/shift matrix

$$
S = left( begin{array}{cccc}
scale_x & skew_{xy} & skew_{xz} & shift_x  
0 & scale_y & skew_{yz} & shift_y  
0 & 0 & scale_z & shift_z  
0 & 0 & 0 & 1  
end{array} right),
$$

a translation matrix

$$
T = left( begin{array}{cccc}
1 & 0 & 0 & translation_x  
0 & 1 & 0 & translation_y  
0 & 0 & 1 & translation_z  
0 & 0 & 0 & 1  
end{array} right),
$$

and a rotation matrix $R$, represented as a quaternion

$quaternion_r + quaternion_i  mathbf{i} + quaternion_j  mathbf{i} + quaternion_k  mathbf{k}$

where $mathbf{i}$, $mathbf{j}$ $mathbf{k}$ are the imaginary
quaternion units. The passed quaternion will be normalized internally.

The affine transformation matrix corresponding to a
RTCQuaternionDecomposition is $TRS$ and a point
$p = (p_x, p_y, p_z, 1)^T$ will be transformed as
$$p’ = T  R  S  p.$$

The functions rtcInitQuaternionDecomposition,
rtcQuaternionDecompositionSetQuaternion,
rtcQuaternionDecompositionSetScale,
rtcQuaternionDecompositionSetSkew,
rtcQuaternionDecompositionSetShift, and
rtcQuaternionDecompositionSetTranslation allow to set the fields of
the structure more conveniently.

EXIT STATUS {#exit-status}

No error code is set by this function.

SEE ALSO {#see-also}

[rtcSetGeometryTransformQuaternion],
[rtcInitQuaternionDecomposition]

rtcInitQuaternionDecomposition

NAME {#name}

rtcInitQuaternionDecomposition - initializes quaternion decomposition

SYNOPSIS {#synopsis}

void rtcInitQuaternionDecomposition(
  struct RTCQuaternionDecomposition* qd
);

DESCRIPTION {#description}

The rtcInitQuaternionDecomposition function initializes a
RTCQuaternionDecomposition structure to represent an identity
transformation.

EXIT STATUS {#exit-status}

No error code is set by this function.

SEE ALSO {#see-also}

[rtcSetGeometryTransformQuaternion], [RTCQuaternionDecomposition]

CPU Performance Recommendations

MXCSR control and status register

It is strongly recommended to have the Flush to Zero and
Denormals are Zero mode of the MXCSR control and status register
enabled for each thread before calling the rtcIntersect-type and
rtcOccluded-type functions. Otherwise, under some circumstances
special handling of denormalized floating point numbers can
significantly reduce application and Embree performance. When using
Embree together with the Intel® Threading Building Blocks, it is
sufficient to execute the following code at the beginning of the
application main thread (before the creation of the
tbb::task_scheduler_init object):

#include <xmmintrin.h>
#include <pmmintrin.h>
...
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);

If using a different tasking system, make sure each rendering thread
has the proper mode set.

Thread Creation and Affinity Settings

Tasking systems like TBB create worker threads on demand, which will
add a runtime overhead for the very first rtcCommitScene call. In
case you want to benchmark the scene build time, you should start the
threads at application startup. You can let Embree start TBB threads by
passing start_threads=1 to the cfg parameter of rtcNewDevice.

On machines with a high thread count (e.g. dual-socket Xeon or Xeon Phi
machines), affinitizing TBB worker threads increases build and
rendering performance. You can let Embree affinitize TBB worker threads
by passing set_affinity=1 to the cfg parameter of rtcNewDevice.
By default, threads are not affinitized by Embree with the exception of
Xeon Phi Processors where they are affinitized by default.

All Embree tutorials automatically start and affinitize TBB worker
threads by passing start_threads=1,set_affinity=1 to rtcNewDevice.

Fast Coherent Rays

For getting the highest performance for highly coherent rays, e.g.
primary or hard shadow rays, it is recommended to use packets with
setting the RTC_RAY_QUERY_FLAG_COHERENT flag in the
RTCIntersectArguments struct passed to the
rtcIntersect/rtcOccluded calls. The rays inside each packet should
be grouped as coherent as possible.

Huge Page Support

It is recommended to use huge pages under Linux to increase rendering
performance. Embree supports 2MB huge pages under Windows, Linux, and
macOS. Under Linux huge page support is enabled by default, and under
Windows and macOS disabled by default. Huge page support can be enabled
in Embree by passing hugepages=1 to rtcNewDevice or disabled by
passing hugepages=0 to rtcNewDevice.

We recommend using 2MB huge pages with Embree under Linux as this
improves ray tracing performance by about 5-10%. Under Windows using
huge pages requires the application to run in elevated mode which is a
security issue, thus likely not an option for most use cases. Under
macOS huge pages are rarely available as memory tends to get quickly
fragmented, thus we do not recommend using huge pages on macOS.

Huge Pages under Linux

Linux supports transparent huge pages and explicit huge pages. To
enable transparent huge page support under Linux, execute the following
as root:

echo always > /sys/kernel/mm/transparent_hugepage/enabled

When transparent huge pages are enabled, the kernel tries to merge 4KB
pages to 2MB pages when possible as a background job. Many Linux
distributions have transparent huge pages enabled by default. See the
following webpage for more information on transparent huge pages under
Linux. In
this mode each application, including your rendering application based
on Embree, will automatically tend to use huge pages.

Using transparent huge pages, the transitioning from 4KB to 2MB pages
might take some time. For that reason Embree also supports allocating
2MB pages directly when a huge page pool is configured. Such a pool can
be configured by writing some number of huge pages to allocate to
/proc/sys/vm/nr_overcommit_hugepages as root user. E.g. to configure
2GB of address space for huge page allocation, execute the following as
root:

echo 1000 > /proc/sys/vm/nr_overcommit_hugepages

See the following webpage for more information on huge pages under
Linux.

Huge Pages under Windows

To use huge pages under Windows, the current user must have the «Lock
pages in memory» (SeLockMemoryPrivilege) assigned. This can be
configured through the «Local Security Policy» application, by adding a
user to «Local Policies» -> «User Rights Assignment» -> «Lock pages
in memory». You have to log out and in again for this change to take
effect.

Further, your application must be executed as an elevated process («Run
as administrator») and the «SeLockMemoryPrivilege» must be explicitly
enabled by your application. Example code on how to enable this
privilege can be found in the «common/sys/alloc.cpp» file of Embree.
Alternatively, Embree will try to enable this privilege when passing
enable_selockmemoryprivilege=1 to rtcNewDevice. Further, huge pages
should be enabled in Embree by passing hugepages=1 to rtcNewDevice.

When the system has been running for a while, physical memory gets
fragmented, which can slow down the allocation of huge pages
significantly under Windows.

Huge Pages under macOS

To use huge pages under macOS you have to pass hugepages=1 to
rtcNewDevice to enable that feature in Embree.

When the system has been running for a while, physical memory gets
quickly fragmented, and causes huge page allocations to fail. For this
reason, huge pages are not very useful under macOS in practice.

Avoid store-to-load forwarding issues with single rays

We recommend to use a single SSE store to set up the org and tnear
components, and a single SSE store to set up the dir and time
components of a single ray (RTCRay type). Storing these values using
scalar stores causes a store-to-load forwarding penalty because Embree
is reading these components using SSE loads later on.

GPU Performance Recommendations

Low Code Complexity

As a general rule try to keep code complexity low, to avoid spill code
generation. To achieve this we recommend splitting your renderer into
separate kernels instead of using a single Uber kernel invokation.

Code can further get reduced by using SYCL specialization constants to
just enable rendering features required to render a given scene.

Feature Flags

Use SYCL specialization constants and the feature flags (see section
[RTCFeatureFlags]) of the rtcIntersect1 and rtcOccluded1 calls to
JIT compile minimal code. The passed feature flags should just contain
features required to render the current scene. If JIT compile times are
an issue, reduce the number of feature masks used and use JIT caching
(see section SYCL JIT caching).

Inline Indirect Calls

Attaching user geometry and intersection filter callbacks to the
geometries of the scene is not supported in SYCL for performance
reasons.

Instead directly pass the user geometry and intersection filter
callback functions through the RTCIntersectArguments (and
RTCOccludedArguments) struct to rtcIntersect1 (and rtcOccluded1)
API functions as in the following example:

RTC_SYCL_INDIRECTLY_CALLABLE void intersectionFilter(
  const RTCFilterFunctionNArguments* args
) { ... }

RTCIntersectArguments args;
rtcInitIntersectArguments(&args);
args.filter = intersectionFilter;

rtcIntersect1(scene,&ray,&args);

If the callback function is directly passed that way, the SYCL compiler
can inline the indirect call, which gives a huge performance benefit.
Do not read a function pointer form some memory location and pass it
to rtcIntersect1 (and rtcOccluded1) as this will also prevent
inlining.

7 Bit Ray Mask

Use just the lower 7 bits of the ray and geometry mask if possible,
even though Embree supports 32 bit ray masks for geometry masking. On
the CPU using any of the 32 bits yields the same performance, but the
ray tracing hardware only supports an 8 bit mask, thus Embree has to
emulate 32 bit masking if used. For that reason the lower 7 mask bits
are hardware accelerated and fast, while the mask bits 7-31 require
some software intervention and using them reduces performance. To turn
on 32 bit ray masks use the RTC_FEATURE_FLAG_32_BIT_RAY_MASK (see
section [RTCFeatureFlags]).

Limit Motion Blur Motions

The motion blur implementation on SYCL has some limitations regarding
supported motion. Primitive motion should be maximally as large as a
small multiple of the primitive size, otherwise performance can degrade
a lot. If detailed geometry moves fast, best put the geometry into an
instance, and apply motion blur to the instance itself, which
efficiently allows larger motions. As a fallback, problematic scenes
can always still get rendered robustly on the CPU.

Generic Pointers

Embree uses standard C++ pointers in its implementation. SYCL might not
be able to detect the memory space these pointers refer to and has to
treat them as generic pointers which are not performing optimal. The
DPC++ compiler has advanced optimizations to infer the proper address
space to avoid usage of generic pointers.

However, if you still encounter the following warning during ahead of
time compilation of SYCL kernels, then loads from generic pointer are
present:

warning: Adding XX occurrences of additional control flow due to presence
         of generic address space operations in function YYY.

To work around this issue we recommend:

  • Do not use local memory inside kernels that trace rays. In this
    case the DPC++ compiler knows that no local memory pointer can
    exist and will optimize generic loads. As this is typically the
    case for renderers, generic pointer will typically not cause
    issues.

  • Indirectly callable functions may still cause problems, even if
    your kernel does not use local memory. Thus best use SYCL pointers
    like sycl::global_ptr and sycl::private_ptr in indirectly
    callable functions to avoid generic address space usage.

  • You can also enforce usage of global pointers using the following
    DPC++ compile flags:
    -cl-intel-force-global-mem-allocation -cl-intel-no-local-to-generic.

Embree Tutorials

Embree comes with a set of tutorials aimed at helping users understand
how Embree can be used and extended. There is a very basic minimal
that can be compiled as both C and C++, which should get new users started quickly.
All other tutorials exist in an Intel® ISPC and C++ version to demonstrate
the two versions of the API. Look for files
named tutorialname_device.ispc for the Intel® ISPC implementation of the
tutorial, and files named tutorialname_device.cpp for the single ray C++
version of the tutorial. To start the C++ version use the tutorialname
executables, to start the Intel® ISPC version use the tutorialname_ispc
executables. All tutorials can print available command line options
using the --help command line parameter.

For all tutorials except minimal, you can select an initial camera using
the --vp (camera position), --vi (camera look-at point), --vu
(camera up vector), and --fov (vertical field of view) command line
parameters:

./triangle_geometry --vp 10 10 10 --vi 0 0 0

You can select the initial window size using the --size command line
parameter, or start the tutorials in full screen using the --fullscreen
parameter:

./triangle_geometry --size 1024 1024
./triangle_geometry --fullscreen

The initialization string for the Embree device (rtcNewDevice call)
can be passed to the ray tracing core through the --rtcore command
line parameter, e.g.:

./triangle_geometry --rtcore verbose=2,threads=1

The navigation in the interactive display mode follows the camera orbit
model, where the camera revolves around the current center of interest.
With the left mouse button you can rotate around the center of interest
(the point initially set with --vi). Holding Control pressed while
clicking the left mouse button rotates the camera around its location.
You can also use the arrow keys for navigation.

You can use the following keys:

F1
: Default shading

F2
: Gray EyeLight shading

F3
: Traces occlusion rays only.

F4
: UV Coordinate visualization

F5
: Geometry normal visualization

F6
: Geometry ID visualization

F7
: Geometry ID and Primitive ID visualization

F8
: Simple shading with 16 rays per pixel for benchmarking.

F9
: Switches to render cost visualization. Pressing again reduces
brightness.

F10
: Switches to render cost visualization. Pressing again increases
brightness.

f
: Enters or leaves full screen mode.

c
: Prints camera parameters.

ESC
: Exits the tutorial.

q
: Exits the tutorial.

Minimal

This tutorial is designed to get new users started with Embree.
It can be compiled as both C and C++. It demonstrates how to initialize
a device and scene, and how to intersect rays with the scene.
There is no image output to keep the tutorial as simple as possible.

Source Code

Triangle Geometry

This tutorial demonstrates the creation of a static cube and ground
plane using triangle meshes. It also demonstrates the use of the
rtcIntersect1 and rtcOccluded1 functions to render primary visibility
and hard shadows. The cube sides are colored based on the ID of the hit
primitive.

Source Code

Dynamic Scene

This tutorial demonstrates the creation of a dynamic scene, consisting
of several deforming spheres. Half of the spheres use the
RTC_BUILD_QUALITY_REFIT geometry build quality, which allows Embree
to use a refitting strategy for these spheres, the other half uses the
RTC_BUILD_QUALITY_LOW geometry build quality, causing a high
performance rebuild of their spatial data structure each frame. The
spheres are colored based on the ID of the hit sphere geometry.

Source Code

Multi Scene Geometry

This tutorial demonstrates the creation of multiple scenes sharing the
same geometry objects. Here, three scenes are built. One with all
the dynamic spheres of the Dynamic Scene test and two others each with
half. The ground plane is shared by all three scenes. The space bar
is used to cycle the scene chosen for rendering.

Source Code

User Geometry

This tutorial shows the use of user-defined geometry, to re-implement
instancing, and to add analytic spheres. A two-level scene is created,
with a triangle mesh as ground plane, and several user geometries that
instance other scenes with a small number of spheres of different kinds.
The spheres are colored using the instance ID and geometry ID of the hit
sphere, to demonstrate how the same geometry instanced in different
ways can be distinguished.

Source Code

Viewer

This tutorial demonstrates a simple OBJ viewer that traces primary
visibility rays only. A scene consisting of multiple meshes is created,
each mesh sharing the index and vertex buffer with the application.
It also demonstrates how to support additional per-vertex data, such as
shading normals.

You need to specify an OBJ file at the command line for this tutorial to
work:

Source Code

Intersection Filter

This tutorial demonstrates the use of filter callback functions to
efficiently implement transparent objects. The filter function used for
primary rays lets the ray pass through the geometry if it is entirely
transparent. Otherwise, the shading loop handles the transparency
properly, by potentially shooting secondary rays. The filter function
used for shadow rays accumulates the transparency of all surfaces along
the ray, and terminates traversal if an opaque occluder is hit.

Source Code

Instanced Geometry

This tutorial demonstrates the in-build instancing feature of Embree, by
instancing a number of other scenes built from triangulated spheres. The
spheres are again colored using the instance ID and geometry ID of the
hit sphere, to demonstrate how the same geometry instanced in different
ways can be distinguished.

Source Code

Multi Level Instancing

This tutorial demonstrates multi-level instancing, i.e., nesting instances
into instances. To enable the tutorial, set the compile-time variable
EMBREE_MAX_INSTANCE_LEVEL_COUNT to a value other than the default 1.
This variable is available in the code as RTC_MAX_INSTANCE_LEVEL_COUNT.

The renderer uses a basic path tracing approach, and the
image will progressively refine over time.
There are two levels of instances in this scene: multiple instances of
the same tree nest instances of a twig.
Intersections on up to RTC_MAX_INSTANCE_LEVEL_COUNT nested levels of
instances work out of the box. Users may obtain the instance ID stack for
a given hitpoint from the instID member.
During shading, the instance ID stack is used to accumulate
normal transformation matrices for each hit. The tutorial visualizes
transformed normals as colors.

Source Code

Path Tracer

This tutorial is a simple path tracer, based on the viewer tutorial.

You need to specify an OBJ file and light source at the command line for
this tutorial to work:

./pathtracer -i model.obj --ambientlight 1 1 1

As example models we provide the «Austrian Imperial Crown» model by
Martin Lubich and the «Asian Dragon» model from the
Stanford 3D Scanning Repository.

crown.zip

asian_dragon.zip

To render these models execute the following:

./pathtracer -c crown/crown.ecs
./pathtracer -c asian_dragon/asian_dragon.ecs

Source Code

Hair

This tutorial demonstrates the use of the hair geometry to render a
hairball.

Source Code

Curve Geometry

This tutorial demonstrates the use of the Linear Basis, B-Spline, and Catmull-Rom curve geometries.

Source Code

Subdivision Geometry

This tutorial demonstrates the use of Catmull-Clark subdivision
surfaces.

Source Code

Displacement Geometry

This tutorial demonstrates the use of Catmull-Clark subdivision
surfaces with procedural displacement mapping using a constant edge
tessellation level.

Source Code

Grid Geometry

This tutorial demonstrates the use of the memory efficient grid
primitive to handle highly tessellated and displaced geometry.

Source Code

Point Geometry

This tutorial demonstrates the use of the three representations
of point geometry.

Source Code

Motion Blur Geometry

This tutorial demonstrates rendering of motion blur using the
multi-segment motion blur feature. Shown is motion blur of a triangle mesh,
quad mesh, subdivision surface, line segments, hair geometry, Bézier
curves, instantiated triangle mesh where the instance moves,
instantiated quad mesh where the instance and the quads move, and user
geometry.

The number of time steps used can be configured using the --time-steps <int> and --time-steps2 <int> command line parameters, and the
geometry can be rendered at a specific time using the the --time <float> command line parameter.

Source Code

Quaternion Motion Blur

This tutorial demonstrates rendering of motion blur using quaternion
interpolation. Shown is motion blur using spherical linear interpolation of
the rotational component of the instance transformation on the left and
simple linear interpolation of the instance transformation on the right. The
number of time steps can be modified as well.

Source Code

Interpolation

This tutorial demonstrates interpolation of user-defined per-vertex data.

Source Code

Closest Point

This tutorial demonstrates a use-case of the point query API. The scene
consists of a simple collection of objects that are instanced and for several
point in the scene (red points) the closest point on the surfaces of the
scene are computed (white points). The closest point functionality is
implemented for Embree internal and for user-defined instancing. The tutorial
also illustrates how to handle instance transformations that are not
similarity transforms.

Source Code

Voronoi

This tutorial demonstrates how to implement nearest neighbour lookups using
the point query API. Several colored points are located on a plane and the
corresponding voroni regions are illustrated.

Source Code

Collision Detection

This tutorial demonstrates how to implement collision detection using
the collide API. A simple cloth solver is setup to collide with a sphere.

The cloth can be reset with the space bar. The sim stepped once with n
and continuous simulation started and paused with p.

Source Code

BVH Builder

This tutorial demonstrates how to use the templated hierarchy builders
of Embree to build a bounding volume hierarchy with a user-defined
memory layout using a high-quality SAH builder using spatial splits, a
standard SAH builder, and a very fast Morton builder.

Source Code

BVH Access

This tutorial demonstrates how to access the internal triangle
acceleration structure build by Embree. Please be aware that the
internal Embree data structures might change between Embree updates.

Source Code

Find Embree

This tutorial demonstrates how to use the FIND_PACKAGE CMake feature
to use an installed Embree. Under Linux and macOS the tutorial finds
the Embree installation automatically, under Windows the embree_DIR
CMake variable must be set to the following folder of the Embree
installation: C:Program FilesIntelEmbree3.

Source Code

Next Hit

This tutorial demonstrates how to robustly enumerate all hits along
the ray using multiple ray queries and an intersection filter
function. To improve performance, the tutorial also supports
collecting the next N hits in a single ray query.

Source Code

Понравилась статья? Поделить с друзьями:
  • Error building certification path for the target
  • Error building asn 1 representation can t build oid for variable
  • Error build identity info does not contain a macosvariant
  • Error build dso 113 death stranding
  • Error build command phasescriptexecution failed with a nonzero exit code