📚 Installation
the dependencies torch-scatter, torch-sparse and torch cluster are not installed correctly
I ran the command for pytorch scatter and get the output (same for sparse and cluster):
running install
running bdist_egg
running egg_info
writing torch_scatter.egg-infoPKG-INFO
writing dependency_links to torch_scatter.egg-infodependency_links.txt
writing top-level names to torch_scatter.egg-infotop_level.txt
reading manifest file ‘torch_scatter.egg-infoSOURCES.txt’
reading manifest template ‘MANIFEST.in’
writing manifest file ‘torch_scatter.egg-infoSOURCES.txt’
installing library code to buildbdist.win-amd64egg
running install_lib
running build_py
running build_ext
C:UsersJonasAnaconda3envsschnetenvlibsite-packagestorchutilscpp_extension.py:184: UserWarning: Error checking compiler version for cl: ‘utf-8’ codec can’t decode byte 0x81 in position 62: invalid start byte
warnings.warn(‘Error checking compiler version for {}: {}’.format(compiler, error))
creating buildbdist.win-amd64egg
creating buildbdist.win-amd64eggtest
copying buildlib.win-amd64-3.7testtest_backward.py -> buildbdist.win-amd64eggtest
copying buildlib.win-amd64-3.7testtest_forward.py -> buildbdist.win-amd64eggtest
copying buildlib.win-amd64-3.7testtest_max_min.py -> buildbdist.win-amd64eggtest
copying buildlib.win-amd64-3.7testtest_multi_gpu.py -> buildbdist.win-amd64eggtest
copying buildlib.win-amd64-3.7testtest_std.py -> buildbdist.win-amd64eggtest
copying buildlib.win-amd64-3.7testutils.py -> buildbdist.win-amd64eggtest
copying buildlib.win-amd64-3.7test_init_.py -> buildbdist.win-amd64eggtest
creating buildbdist.win-amd64eggtorch_scatter
copying buildlib.win-amd64-3.7torch_scatteradd.py -> buildbdist.win-amd64eggtorch_scatter
copying buildlib.win-amd64-3.7torch_scatterdiv.py -> buildbdist.win-amd64eggtorch_scatter
copying buildlib.win-amd64-3.7torch_scattermax.py -> buildbdist.win-amd64eggtorch_scatter
copying buildlib.win-amd64-3.7torch_scattermean.py -> buildbdist.win-amd64eggtorch_scatter
copying buildlib.win-amd64-3.7torch_scattermin.py -> buildbdist.win-amd64eggtorch_scatter
copying buildlib.win-amd64-3.7torch_scattermul.py -> buildbdist.win-amd64eggtorch_scatter
copying buildlib.win-amd64-3.7torch_scatterscatter_cpu.cp37-win_amd64.pyd -> buildbdist.win-amd64eggtorch_scatter
copying buildlib.win-amd64-3.7torch_scatterscatter_cuda.cp37-win_amd64.pyd -> buildbdist.win-amd64eggtorch_scatter
copying buildlib.win-amd64-3.7torch_scatterstd.py -> buildbdist.win-amd64eggtorch_scatter
copying buildlib.win-amd64-3.7torch_scattersub.py -> buildbdist.win-amd64eggtorch_scatter
creating buildbdist.win-amd64eggtorch_scatterutils
copying buildlib.win-amd64-3.7torch_scatterutilsext.py -> buildbdist.win-amd64eggtorch_scatterutils
copying buildlib.win-amd64-3.7torch_scatterutilsgen.py -> buildbdist.win-amd64eggtorch_scatterutils
copying buildlib.win-amd64-3.7torch_scatterutils_init_.py -> buildbdist.win-amd64eggtorch_scatterutils
copying buildlib.win-amd64-3.7torch_scatter_init_.py -> buildbdist.win-amd64eggtorch_scatter
byte-compiling buildbdist.win-amd64eggtesttest_backward.py to test_backward.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtesttest_forward.py to test_forward.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtesttest_max_min.py to test_max_min.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtesttest_multi_gpu.py to test_multi_gpu.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtesttest_std.py to test_std.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtestutils.py to utils.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtest_init_.py to init.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtorch_scatteradd.py to add.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtorch_scatterdiv.py to div.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtorch_scattermax.py to max.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtorch_scattermean.py to mean.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtorch_scattermin.py to min.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtorch_scattermul.py to mul.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtorch_scatterstd.py to std.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtorch_scattersub.py to sub.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtorch_scatterutilsext.py to ext.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtorch_scatterutilsgen.py to gen.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtorch_scatterutils_init_.py to init.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtorch_scatter_init_.py to init.cpython-37.pyc
creating stub loader for torch_scatterscatter_cpu.cp37-win_amd64.pyd
creating stub loader for torch_scatterscatter_cuda.cp37-win_amd64.pyd
byte-compiling buildbdist.win-amd64eggtorch_scatterscatter_cpu.py to scatter_cpu.cpython-37.pyc
byte-compiling buildbdist.win-amd64eggtorch_scatterscatter_cuda.py to scatter_cuda.cpython-37.pyc
creating buildbdist.win-amd64eggEGG-INFO
copying torch_scatter.egg-infoPKG-INFO -> buildbdist.win-amd64eggEGG-INFO
copying torch_scatter.egg-infoSOURCES.txt -> buildbdist.win-amd64eggEGG-INFO
copying torch_scatter.egg-infodependency_links.txt -> buildbdist.win-amd64eggEGG-INFO
copying torch_scatter.egg-infotop_level.txt -> buildbdist.win-amd64eggEGG-INFO
writing buildbdist.win-amd64eggEGG-INFOnative_libs.txt
zip_safe flag not set; analyzing archive contents…
torch_scatter.pycache.scatter_cpu.cpython-37: module references file
torch_scatter.pycache.scatter_cuda.cpython-37: module references file
creating ‘disttorch_scatter-1.2.0-py3.7-win-amd64.egg’ and adding ‘buildbdist.win-amd64egg’ to it
removing ‘buildbdist.win-amd64egg’ (and everything under it)
Processing torch_scatter-1.2.0-py3.7-win-amd64.egg
creating c:usersjonasanaconda3envsschnetenvlibsite-packagestorch_scatter-1.2.0-py3.7-win-amd64.egg
Extracting torch_scatter-1.2.0-py3.7-win-amd64.egg to c:usersjonasanaconda3envsschnetenvlibsite-packages
Adding torch-scatter 1.2.0 to easy-install.pth file
Installed c:usersjonasanaconda3envsschnetenvlibsite-packagestorch_scatter-1.2.0-py3.7-win-amd64.egg
Processing dependencies for torch-scatter==1.2.0
Finished processing dependencies for torch-scatter==1.2.0
Environment
- OS: Windows 10
- Python version: 3.7
- PyTorch version: 1.1.0
- CUDA/cuDNN version: 10.1, V10.1.168
- GCC version: gcc (MinGW.org GCC-8.2.0-3) 8.2.0
- How you tried to install PyTorch Geometric and its extensions (pip, source): source using
- Any other relevant information: using visual studio 2019
Checklist
- [x ] I followed the installation guide.
- [x ] I cannot find my error message in the FAQ.
- [ x] I set up CUDA correctly and can compile CUDA code via
nvcc
. - [x ] I have cloned the repository and tried a manual installation from source.
- I do have multiple CUDA versions on my machine.
- [x ] I checked if the official extension example runs on my machine.
- The offical extension example runs on my machine.
##additional info:
running the first example works
import torch
from torch_geometric.data import Data
edge_index = torch.tensor([[0, 1, 1, 2],
[1, 0, 2, 1]], dtype=torch.long)
x = torch.tensor([[-1], [0], [1]], dtype=torch.float)
data = Data(x=x, edge_index=edge_index)
but transfering to the GPU
device = torch.device(‘cuda’)
data = data.to(device)
results in the error:
Traceback (most recent call last):
File «», line 1, in
File «C:UsersJonasAnaconda3envsschnetenvlibsite-packagestorch_geometricdatadata.py», line 247, in to
return self.apply(lambda x: x.to(device), *keys)
File «C:UsersJonasAnaconda3envsschnetenvlibsite-packagestorch_geometricdatadata.py», line 233, in apply
self[key] = func(item)
File «C:UsersJonasAnaconda3envsschnetenvlibsite-packagestorch_geometricdatadata.py», line 247, in
return self.apply(lambda x: x.to(device), *keys)
File «C:UsersJonasAnaconda3envsschnetenvlibsite-packagestorchcuda_init_.py», line 163, in _lazy_init
torch._C._cuda_init()
RuntimeError: CUDA error: unknown error
Using cuda with torch but without importing torch_geometric, works. It seems that importing torch_geometric is corrupting the use of cuda. I also tried with cuda 10.0 but it did not make a difference.
Thank you in advance
Jonas
I’m using Anaconda and I have installed PyTorch using the following command: pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
Now I’m getting the following error in torch/utils/cpp_extension.py:
UserWarning: Error checking compiler version for cl: [WinError 2] The system cannot find the file specified
I’m using Windows 10 and I have installed Visual Studio Community 2022 and Visual Studio Build Tools 2022, please see screenshots below.
Does somebody what is wrong or missing?
Edit: I’m using Cuda 11.6. I have now also installed Visual Studio 2019 including the build tools. Now the above error is gone but I have a new error:
Traceback (most recent call last):
File "C:UsersmyUserAnaconda3envsparlailibsite-packagestorchutilscpp_extension.py", line 1808, in _run_ninja_build
subprocess.run(
File "C:UsersmyUserAnaconda3envsparlailibsubprocess.py", line 528, in run
raise CalledProcessError(retcode, process.args,
subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1.
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "C:UsersmyUserParlAIserverserver.py", line 3, in <module>
from parlai.utils.safety import OffensiveStringMatcher, OffensiveLanguageClassifier
File "c:usersmyUserparlaiparlaiutilssafety.py", line 10, in <module>
from parlai.agents.transformer.transformer import TransformerClassifierAgent
File "c:usersmyUserparlaiparlaiagentstransformertransformer.py", line 15, in <module>
from parlai.core.torch_generator_agent import TorchGeneratorAgent
File "c:usersmyUserparlaiparlaicoretorch_generator_agent.py", line 48, in <module>
from parlai.ops.ngram_repeat_block import NGramRepeatBlock
File "c:usersmyUserparlaiparlaiopsngram_repeat_block.py", line 23, in <module>
ngram_repeat_block_cuda = load(
File "C:UsersmyUserAnaconda3envsparlailibsite-packagestorchutilscpp_extension.py", line 1202, in load
return _jit_compile(
File "C:UsersmyUserAnaconda3envsparlailibsite-packagestorchutilscpp_extension.py", line 1425, in _jit_compile
_write_ninja_file_and_build_library(
File "C:UsersmyUserAnaconda3envsparlailibsite-packagestorchutilscpp_extension.py", line 1537, in _write_ninja_file_and_build_library
_run_ninja_build(
File "C:UsersmyUserAnaconda3envsparlailibsite-packagestorchutilscpp_extension.py", line 1824, in _run_ninja_build
raise RuntimeError(message) from e
RuntimeError: Error building extension 'ngram_repeat_block_cuda': [1/2] C:Program FilesNVIDIA GPU Computing ToolkitCUDAv11.6binnvcc --generate-dependencies-with-compile --dependency-output ngram_repeat_block_cuda_kernel.cuda.o.d -Xcudafe --diag_suppress=dll_interface_conflict_dllexport_assumed -Xcudafe --diag_suppress=dll_interface_conflict_none_assumed -Xcudafe --diag_suppress=field_without_dll_interface -Xcudafe --diag_suppress=base_class_has_different_dll_interface -Xcompiler /EHsc -Xcompiler /wd4190 -Xcompiler /wd4018 -Xcompiler /wd4275 -Xcompiler /wd4267 -Xcompiler /wd4244 -Xcompiler /wd4251 -Xcompiler /wd4819 -Xcompiler /MD -DTORCH_EXTENSION_NAME=ngram_repeat_block_cuda -DTORCH_API_INCLUDE_EXTENSION_H -IC:UsersmyUserAnaconda3envsparlailibsite-packagestorchinclude -IC:UsersmyUserAnaconda3envsparlailibsite-packagestorchincludetorchcsrcapiinclude -IC:UsersmyUserAnaconda3envsparlailibsite-packagestorchincludeTH -IC:UsersmyUserAnaconda3envsparlailibsite-packagestorchincludeTHC "-IC:Program FilesNVIDIA GPU Computing ToolkitCUDAv11.6include" -IC:UsersmyUserAnaconda3envsparlaiInclude -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_86,code=sm_86 -c c:usersmyUserparlaiparlaiclibcudangram_repeat_block_cuda_kernel.cu -o ngram_repeat_block_cuda_kernel.cuda.o
FAILED: ngram_repeat_block_cuda_kernel.cuda.o
C:Program FilesNVIDIA GPU Computing ToolkitCUDAv11.6binnvcc --generate-dependencies-with-compile --dependency-output ngram_repeat_block_cuda_kernel.cuda.o.d -Xcudafe --diag_suppress=dll_interface_conflict_dllexport_assumed -Xcudafe --diag_suppress=dll_interface_conflict_none_assumed -Xcudafe --diag_suppress=field_without_dll_interface -Xcudafe --diag_suppress=base_class_has_different_dll_interface -Xcompiler /EHsc -Xcompiler /wd4190 -Xcompiler /wd4018 -Xcompiler /wd4275 -Xcompiler /wd4267 -Xcompiler /wd4244 -Xcompiler /wd4251 -Xcompiler /wd4819 -Xcompiler /MD -DTORCH_EXTENSION_NAME=ngram_repeat_block_cuda -DTORCH_API_INCLUDE_EXTENSION_H -IC:UsersmyUserAnaconda3envsparlailibsite-packagestorchinclude -IC:UsersmyUserAnaconda3envsparlailibsite-packagestorchincludetorchcsrcapiinclude -IC:UsersmyUserAnaconda3envsparlailibsite-packagestorchincludeTH -IC:UsersmyUserAnaconda3envsparlailibsite-packagestorchincludeTHC "-IC:Program FilesNVIDIA GPU Computing ToolkitCUDAv11.6include" -IC:UsersmyUserAnaconda3envsparlaiInclude -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_86,code=compute_86 -gencode=arch=compute_86,code=sm_86 -c c:usersmyUserparlaiparlaiclibcudangram_repeat_block_cuda_kernel.cu -o ngram_repeat_block_cuda_kernel.cuda.o
C:/Users/myUser/Anaconda3/envs/parlai/lib/site-packages/torch/includec10/macros/Macros.h(143): warning C4067: unexpected tokens following preprocessor directive - expected a newline
C:/Users/myUser/Anaconda3/envs/parlai/lib/site-packages/torch/includec10/macros/Macros.h(143): warning C4067: unexpected tokens following preprocessor directive - expected a newline
C:/Users/myUser/Anaconda3/envs/parlai/lib/site-packages/torch/includec10/core/SymInt.h(84): warning #68-D: integer conversion resulted in a change of sign
C:UsersmyUserAnaconda3envsparlailibsite-packagestorchincludepybind11cast.h(1429): error: too few arguments for template template parameter "Tuple"
detected during instantiation of class "pybind11::detail::tuple_caster<Tuple, Ts...> [with Tuple=std::pair, Ts=<T1, T2>]"
(1507): here
C:UsersmyUserAnaconda3envsparlailibsite-packagestorchincludepybind11cast.h(1503): error: too few arguments for template template parameter "Tuple"
detected during instantiation of class "pybind11::detail::tuple_caster<Tuple, Ts...> [with Tuple=std::pair, Ts=<T1, T2>]"
(1507): here
2 errors detected in the compilation of "c:/users/myUser/parlai/parlai/clib/cuda/ngram_repeat_block_cuda_kernel.cu".
ngram_repeat_block_cuda_kernel.cu
ninja: build stopped: subcommand failed.
|
#41 | Link |
Registered User
Join Date: Oct 2001 Location: Germany Posts: 6,914 |
Also did anyone manage to install this in a portable Vapoursynth environment on Windows? Code: python -m pip install --upgrade vsbasicvsrpp first failed with Code: ERROR: Could not find a version that satisfies the requirement vapoursynth==54 (from versions: 39, 40, 41, 42, 43, 44, 45, 46, 47, 47.1, 47.2, 48, 49, 50, 51) ERROR: No matching distribution found for vapoursynth==54 after renaming the dummy ‘VapourSynth-53.dist-info’, I created to install VSGAN, to ‘VapourSynth-54.dist-info’, calling: Code: python -m pip install --upgrade vsbasicvsrpp failed with: Code: OSError: CUDA_HOME environment variable is not set. Please set it to your CUDA install root. calling: Code: set CUDA_HOME=I:/Hybrid/64bit/Vapoursynth/Lib/site-packages/torch/cuda (not toally sure this is correct) Code: python -m pip install --upgrade vsbasicvsrpp it fails with: Code: I:Hybrid64bitVapoursynthLibsite-packagestorchutilscpp_extension.py:305: UserWarning: Error checking compiler version for cl: [WinError 2] Das System kann die angegebene Datei nicht finden warnings.warn(f'Error checking compiler version for {compiler}: {error}') I get the same error when calling: Code: python -m pip install mmcv-full==1.3.12 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.htm -> that’s the point where I gave up, so if anyone figures out how to install vsbasicvsrpp in a protable Vapoursynth environment please let me know. Cu Selur
__________________
Last edited by Selur; 5th September 2021 at 11:05.
|
|
|
|
#42 | Link |
Registered User Join Date: Sep 2007 Posts: 5,096 |
Quote:
Originally Posted by Selur Is there a difference between BasicVSR and BasicVSR++ if model 0-2 are used, or is it the same resizing as BasicVSR (model 0-2) and additional models for cleaning? I’ve only done a few tests so far , but some early observations/comments — basicvsrpp is marginally better with the same model interval size compared to basicvsr. Not a major difference. The default interval size is different, 30 for ++, vs 7*2+1=15 Models 3-5 are from the NTIRE 2021 Quality enhancement of heavily compressed videos Challenge , which take HEVC compressed videos using fixed qp and low bitrate encodings — so those pre-trained models should factor in some compression degredation (at least HEVC type, not necessarily MPEG2, or AVC). It’ s nice to see some other types of degradation training and models, but 3 and 5 tend to be very smooth (ie. no detail) . 4 has more detail but more artifacts. Models 3-5 don’t upscale I haven’t done enough testing to see if using a much larger interval size helps or hinders in general. It appears a very small interval size is worse. Larger sizes take more memory and are slower |
|
|
|
#43 | Link |
Registered User Join Date: Sep 2007 Posts: 5,096 |
Quote:
Originally Posted by Selur -> that’s the point where I gave up, so if anyone figures out how to install vsbasicvsrpp in a protable Vapoursynth environment please let me know. Quote: I:Hybrid64bitVapoursynthLibsite-packagestorchutilscpp_extension.py:305: UserWarning: Error checking compiler version for cl: [WinError 2] Das System kann die angegebene Datei nicht finden Not sure, I used installed environment, but I had problems at first. My errors msg was slightly different — it needed MS Visual C++ compiler to build the «wheels» to install other components. I’m wondering how the compiler is accessed in a «portable» environment ? |
|
|
|
#44 | Link |
Registered User
Join Date: Oct 2001 Location: Germany Posts: 6,914 |
Quote: I’m wondering how the compiler is accessed in a «portable» environment ? No clue either, haven’t run into the problem before. Cu Selur
__________________ |
|
|
|
#45 | Link |
Registered User Join Date: Sep 2007 Posts: 5,096 |
HolyWu added update a few hours ago and made install «easier» on Windows. Maybe try this new one Quote: Installing mmcv-full on Windows is a bit complicated as it requires Visual Studio and other tools to compile CUDA ops. So I have uploaded the built file compiled with CUDA 11.1 for Windows users and you can install it by executing the following command. Code: pip install https://github.com/HolyWu/vs-basicvsrpp/releases/download/v1.0.0/mmcv_full-1.3.12-cp39-cp39-win_amd64.whl |
|
|
|
#46 | Link |
Registered User
Join Date: Oct 2001 Location: Germany Posts: 6,914 |
Thanks ! using that call it works for me too. Cu Selur
__________________ |
|
|
|
#47 | Link |
Registered User
Join Date: Oct 2001 Location: Germany Posts: 6,914 |
Has anyone tried https://github.com/HolyWu/vs-swinir ? (didn’t want to create a new thread
__________________
Last edited by Selur; 5th November 2021 at 22:21.
|
|
|
|
#48 | Link |
Registered User
Join Date: Aug 2002 Location: Italy Posts: 275 |
Quote:
Originally Posted by Selur Normal resizing using i.e. Lanczos and adding some contrast sharpening seems to produce more impressive results. HolyWu has just ported — after my request — SwinIR to VS, can someone make some «real world» test with it ? https://github.com/HolyWu/vs-swinir Quote:
Originally Posted by Selur man this is too slow on my machine to be useful for normal usage on my gpu (Geforce GTX 1070ti) For individual frames (= pics) you can test it here, but a video-oriented colab notebook like this would be great (I don’t own a discrete GPU at all) ! EDIT
Last edited by PatchWorKs; 6th November 2021 at 08:50.
|
|
|
|
#49 | Link |
Registered User
Join Date: Oct 2001 Location: Germany Posts: 6,914 |
Quote: Out of curiosity: do you think the new Apple chips (M1 Pro / Max) could speed up operations? Without: Quote: For individual frames (= pics) I can run it for single pics fine, but I get like 0.005fps for sd->hd on my system, which simply is too slow for me to be usable.
__________________ |
|
|
|
#50 | Link |
Registered User Join Date: Oct 2001 Posts: 422 |
Quote:
Originally Posted by Selur I can run it for single pics fine, but I get like 0.005fps for sd->hd on my system, which simply is too slow for me to be usable. thanx for testing |
|
|
|
#51 | Link |
Registered User
Join Date: Aug 2002 Location: Italy Posts: 275 |
Quote:
Originally Posted by Selur Without: Well, pytorch support SEEMS on the go: Quote:
Originally Posted by Selur I can run it for single pics fine, but I get like 0.005fps for sd->hd on my system, which simply is too slow for me to be usable. Of course (that’s why a colab can help), but can you please post some visual results ? Thx ! |
|
|
|
#52 | Link |
Registered User
Join Date: Oct 2001 Location: Germany Posts: 6,914 |
here are a few examples: Code: # Imports import vapoursynth as vs # getting Vapoursynth core core = vs.core # Loading Plugins core.std.LoadPlugin(path="I:/Hybrid/64bit/vsfilters/Support/fmtconv.dll") core.std.LoadPlugin(path="I:/Hybrid/64bit/vsfilters/DeinterlaceFilter/TIVTC/libtivtc.dll") core.std.LoadPlugin(path="I:/Hybrid/64bit/vsfilters/SourceFilter/d2vSource/d2vsource.dll") # source: 'E:clipsVTS_02_1-Sample-Beginning.demuxed.m2v' # current color space: YUV420P8, bit depth: 8, resolution: 720x480, fps: 29.97, color matrix: 470bg, yuv luminance scale: limited, scanorder: telecine # Loading E:clipsVTS_02_1-Sample-Beginning.demuxed.m2v using D2VSource clip = core.d2v.Source(input="E:/Temp/m2v_5d36292e1f7f53fd6e26be51d50bbf8c_853323747.d2v") # making sure input color matrix is set as 470bg clip = core.resize.Bicubic(clip, matrix_in_s="470bg",range_s="limited") # making sure frame rate is set to 29.97 clip = core.std.AssumeFPS(clip=clip, fpsnum=30000, fpsden=1001) # Setting color range to TV (limited) range. clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1) # Deinterlacing using TIVTC clip = core.tivtc.TFM(clip=clip) clip = core.tivtc.TDecimate(clip=clip)# new fps: 23.976 # make sure content is preceived as frame based clip = core.std.SetFieldBased(clip, 0) # DEBUG: vsTIVTC changed scanorder to: progressive # cropping the video to 704x480 clip = core.std.CropRel(clip=clip, left=8, right=8, top=0, bottom=0) from vsswinir import SwinIR # adjusting color space from YUV420P8 to RGBS for VsSwinIR clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="470bg", range_s="limited") # resizing using SwinIR clip = SwinIR(clip=clip, task="real_sr_large", scale=4, tile_x=352, tile_y=240, tile_pad=16, device_type="cuda", device_index=0) # 2816x1920 # adjusting resizing clip = core.fmtc.resample(clip=clip, w=1920, h=1474, kernel="lanczos", interlaced=False, interlacedd=False) # adjusting output color from: RGB48 to YUV420P8 for x264Model clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="470bg", range_s="limited") # set output frame rate to 23.976fps clip = core.std.AssumeFPS(clip=clip, fpsnum=24000, fpsden=1001) # Output clip.set_output()
some more using RealSR_large: Cu Selur
__________________
Last edited by Selur; 8th November 2021 at 18:50.
|
|
|
|
#53 | Link |
Registered User
Join Date: Aug 2002 Location: Italy Posts: 275 |
Very nice results (especially on the faces), even if — of course — not yet optimal for everything… …btw I hope to see a SwinIR version optimized for videos too.
Last edited by PatchWorKs; 9th November 2021 at 08:25.
|
|
|
|
#54 | Link |
Registered User
Join Date: Oct 2001 Location: Germany Posts: 6,914 |
Quote: not yet optimal for everything… Espeically the last example shows some real issues Quote: …btw I hope to see a SwinIR version optimized for videos too. first a way faster version would be needed
__________________ |
|
|
|
#55 | Link |
Registered User
Join Date: Aug 2002 Location: Italy Posts: 275 |
Quote:
Originally Posted by Selur first a way faster version would be needed Already asked, of course: https://github.com/JingyunLiang/SwinIR/issues/47 Note: I’ve also just «fed» @HolyWu with this awesome collection, let’s see if other interesting «VS-ports» will come out…
Last edited by PatchWorKs; 10th November 2021 at 10:34.
|
|
|
|
#56 | Link |
Registered User Join Date: Oct 2001 Posts: 422 |
Quote:
Originally Posted by PatchWorKs Very nice results (especially on the faces), even if — of course — not yet optimal for everything… …btw I hope to see a SwinIR version optimized for videos too. Is a video version planed? for upscaling, algos like esrgan (single image) are not very suitable for real-life content. Too much flickering. So unless SwinIR doesn�t get some extensions for multi-frame usage / flow detection /whatever, one will always get flickering / stutters / inkonsistent movement… |
|
|
|
#57 | Link |
Registered User Join Date: Apr 2009 Posts: 478 |
Nvidia just open sourced Nvidia image scaling… Would this be a candidate for the next filter? |
|
|
|
#58 | Link |
Registered User
Join Date: Oct 2001 Location: Germany Posts: 6,914 |
Has anyone tested https://github.com/HolyWu/vs-hinet ? Here are a few screen shots: (not sure what to make of them and for what content this is really useful) Mode: Deblur GoPro
__________________
Last edited by Selur; 19th November 2021 at 21:32.
|
|
|
|
#59 | Link |
Registered User
Join Date: Aug 2002 Location: Italy Posts: 275 |
According to your tests on that frame, the highest fidelity seems to be achieved by derain model, btw here are some questions:
Last but not least (even if OT): did you tried RIFE ?
Last edited by PatchWorKs; 20th November 2021 at 16:31.
|
|
|
|
#60 | Link |
Registered User
Join Date: Oct 2001 Location: Germany Posts: 6,914 |
speed: ~2-3fps for sd content, so not that slow
__________________ |
|
|