I’ve spent a little more than a month working with Git now. I can honestly say that while there are many things that I like about Git, there are just as many things that I personally find to be a pain in the butt.
Submodules specifically have managed to be a thorn in my side on many occasions. While the concept of submodules is simple, figuring out how to actually work with them can be a chore. I say “figuring out” because not everything about working with submodules is well documented. I’ll cover two of the more difficult things to figure out: removing and updating submodules from your repository.
What are Submodules?
The concept of submodules is brilliant. It essentially allows you to attach an external repository inside another repository at a specific path. In order to illustrate the value of submodules, it will probably be helpful for me to explain how I am using them.
My profession is working with WordPress themes. Basically, I develop feature enhancements to the themes. I develop the code for these enhancements in modules that are completely contained in their own folder. This allows for the code to be easily added to other themes and also simplifies code updates/improvements as the code for specific features is consistent across all the themes that use that specific module.
Each theme that we produce is kept in its own Git repository. In addition, I’ve created a separate repository for each one of these feature modules. Rather than actually putting the feature module code directly into the theme repositories, I simply add the needed feature module repositories as submodules.
For example, we have a theme called FlexxBold. FlexxBold currently includes a total of seven submodules: billboard, contact-page-plugin, featured-images, feedburner-widget, file-utility, flexx-layout-editor, and tutorials. Since I’m using submodules, the code can be pulled directly from the relevant submodule repositories rather than requiring me to manually update each individual theme repository.
As I mentioned before, not everything in Git is easy to work with. There are four main functions you will need to understand in order to work with Git submodules. In order, you will need to know how to add, make use of, remove, and update submodules. I’ll cover each of those uses below.
Adding Submodules to a Git Repository
Fortunately, adding a submodule to a git repository is actually quite simple. For example, if I’m in the repository working directory of a new theme called SampleTheme and need to add the billboard repository to the path lib/billboard, I can do so with the following command:
[user@office SampleTheme]$ git submodule add git@mygithost:billboard lib/billboard Initialized empty Git repository in ~/git_dev/SampleTheme/lib/billboard/.git/ remote: Counting objects: 1006, done. remote: Compressing objects: 100% (978/978), done. remote: Total 1006 (delta 631), reused 0 (delta 0) Receiving objects: 100% (1006/1006), 408.22 KiB, done. Resolving deltas: 100% (631/631), done.
There are three main parts to this command:
git submodule add
– This simply tells Git that we are adding a submodule. This syntax will always remain the same.git@mygithost:billboard
– This is the external repository that is to be added as a submodule. The exact syntax will vary depending on the setup of the Git repository you are connecting to. You need to ensure that you have the ability to clone the given repository.lib/billboard
– This is the path where the submodule repository will be added to the main repository.
Let’s check to see how the repository is doing.
[user@office SampleTheme]$ git status # On branch master # Changes to be committed: # (use "git reset HEAD <file>..." to unstage) # # new file: .gitmodules # new file: lib/billboard #
Notice how the supplied path was created and added to the changes to be committed. In addition, a new file called .gitmodules was created. This new file contains the details we supplied about the new submodule. Out of curiosity, let’s check out the contents of that new file:
[user@office SampleTheme]$ cat .gitmodules [submodule "lib/billboard"] path = lib/billboard url = git@mygithost:billboard
Being able to modify this file later will come in handy later.
All that is left to do now is to commit the changes and then push the commit to a remote system if necessary.
Using Submodules
Having submodules in a repository is great and all, but if I look in my repository, all I have is an empty folder rather than the actual contents of the submodule’s repository. In order to fill in the submodule’s path with the files from the external repository, you must first initialize the submodules and then update them.
Note: This has changed in newer versions of Git. Now the submodule’s repository will be cloned with master checked out. If that repository also has submodules, then your submodule’s submodules will have to be populated by following the steps below from within your project’s submodule directory (confusing yet?).
For instance, if you are working in project called phone-app
, add a submodule called graphics-lib
, and graphics-lib
has a submodule called renderer
, when you add graphics-lib
to phone-app
, the phone-app/graphics-lib
directory will be populated as a cloned repo but the phone-app/graphics-lib/renderer
directory will be empty. To populate phone-app/graphics-lib/renderer
, first change directories to phone-app/graphics-lib
and follow the instructions below.
First, we need to initialize the submodule(s). We can do that with the following command:
[user@office SampleTheme]$ git submodule init Submodule 'lib/billboard' (git@mygithost:billboard) registered for path 'lib/billboard'
Then we need to run the update in order to pull down the files.
[user@office SampleTheme]$ git submodule update Initialized empty Git repository in ~/git_dev/SampleTheme/lib/billboard/.git/ remote: Counting objects: 26, done. remote: Compressing objects: 100% (22/22), done. remote: Total 26 (delta 5), reused 0 (delta 0) Receiving objects: 100% (26/26), 17.37 KiB, done. Resolving deltas: 100% (5/5), done. Submodule path 'lib/billboard': checked out '1c407cb2315z0847facb57d79d680f88ca004332'
Looking in the lib/billboard directory now shows a nice listing of the needed files.
Removing Submodules
What happens if we need to remove a submodule? Maybe I made a mistake. It could also be that the design of the project has changed, and the submodules need to change with it. No problem, I’ll simply run git submodule rm [submodule path]
and everything will be great, right?
[user@office SampleTheme]$ git submodule rm lib/billboard error: pathspec 'rm' did not match any file(s) known to git. Did you forget to 'git add'? b8ff8f68eb56938b9b4bf993619218fa848c5848 lib/billboard (1.2.25)
Unfortunately, this is wrong. Git does not have a built in way to remove submodules. Hopefully this will be resolved in the future, because we now have to do submodule removal manually.
Sticking with the example, we’ll remove the lib/billboard module from SampleTheme. All the instructions will be run from the working directory of the SampleTheme repository. In order, we need to do the following:
- Remove the submodule’s entry in the .gitmodules file. Since lib/billboard is the only submodule in the SampleTheme repository, we can simply remove the file entirely by running
git rm .gitmodules
. If lib/billboard isn’t the only submodule, the .gitmodules file will have to be modified by hand. Open it up in vi, or your favorite text editor, and remove the three lines relevant to the submodule being removed. In this case, these lines will be removed:[submodule "lib/billboard"] path = lib/billboard url = git@mygithost:billboard
- Remove the submodule’s entry in the .git/config. This step isn’t strictly necessary, but it does keep your config file tidy and will help prevent problems in the future. The submodule’s entry in .git/config will only be present if you’ve run
git submodule init
on the repository. If you haven’t, you can skip this step. In this example, the following lines will be removed:[submodule "billboard"] url = git@mygithost:billboard
- Remove the path created for the submodule. This one is easy. Simply run
git rm --cached [plugin path]
. In this example, I will rungit rm --cached lib/billboard
. As I’ve seen noted elsewhere, do not put a trailing slash as the command will fail. For example, if I rungit rm --cached lib/billboard/
, I get an error:fatal: pathspec 'lib/billboard/' did not match any files
.[user@office SampleTheme]$ git rm --cached lib/billboard rm 'lib/billboard'
Updating Submodules
There is an aspect about submodules that some may not realize when first working with Git submodules. When you add the submodule, the most recent commit of the submodule is stored in the main repository’s index. That means that as the code in the submodule’s repository updates, the same code will still be pulled on the repositories relying on the submodule.
This makes a lot of sense when you consider how your code will have been tested and verified (or at least should be) against a specific version of the submodule code, but the main repository’s code may not work well with new submodule updates before the changes are tested.
Unfortunately, like removing submodules, Git does not make it clear how to update a submodule to a later commit. Fortunately though, it’s not that tough.
- Initialize the repository’s submodules by running
git submodule init
followed bygit submodule update
.[user@office SampleTheme]$ git submodule init Submodule 'lib/billboard' (git@mygithost:billboard) registered for path 'lib/billboard' [user@office SampleTheme]$ git submodule update Initialized empty Git repository in ~/git_dev/SampleTheme/lib/billboard/.git/ remote: Counting objects: 26, done. remote: Compressing objects: 100% (22/22), done. remote: Total 26 (delta 5), reused 0 (delta 0) Receiving objects: 100% (26/26), 17.37 KiB, done. Resolving deltas: 100% (5/5), done. Submodule path 'lib/billboard': checked out '1c407cb2315z0847facb57d79d680f88ca004332'
- Change into the submodule’s directory. In this example,
cd lib/billboard
.[user@office SampleTheme]$ cd lib/billboard [user@office SampleTheme/lib/billboard]$
- The submodule repositories added by
git submodule update
are “headless”. This means that they aren’t on a current branch. To fix this, we simply need to switch to a branch. In this example, that would be the master branch. We switch with the following command:git checkout master
.[user@office SampleTheme/lib/billboard]$ git status # Not currently on any branch. nothing to commit (working directory clean) [user@office SampleTheme/lib/billboard]$ git checkout master Previous HEAD position was b8ff8f6... re-ordering Switched to branch 'master' Your branch is behind 'origin/master' by 8 commits, and can be fast-forwarded. [user@office SampleTheme/lib/billboard]$ git status # On branch master # Your branch is behind 'origin/master' by 8 commits, and can be fast-forwarded. # nothing to commit (working directory clean)
- Next, we simply need to update the repository to ensure that we have the latest updates. We can do that with a pull:
git pull
.[user@office SampleTheme/lib/billboard]$ git pull remote: Counting objects: 31, done. remote: Compressing objects: 100% (24/24), done. remote: Total 24 (delta 15), reused 0 (delta 0) Unpacking objects: 100% (24/24), done. From mygithost:billboard b8ff8f6..5cab93f master -> origin/master * [new tag] 1.2.28 -> 1.2.28 From mygithost:billboard * [new tag] 1.2.26 -> 1.2.26 * [new tag] 1.2.27 -> 1.2.27 Updating c547e0d..5cab93f Fast-forward billboard.php | 109 ++++++++++++++- classes/view_gettingstarted.php | 107 ++++++++++++++ classes/view_gettingstarted_content.php | 38 +++++ css/admin.css | 26 ++++ history.txt | 22 +++- js/admin.js | 17 +++ lib/updater/get.php | 94 +++++++----- lib/updater/history.txt | 9 ++ lib/updater/updater.php | 241 ++++++++++++++++++------------- 9 files changed, 519 insertions(+), 144 deletions(-) create mode 100644 classes/view_gettingstarted.php create mode 100644 classes/view_gettingstarted_content.php create mode 100644 css/admin.css create mode 100644 js/admin.js create mode 100644 lib/updater/history.txt
- Now switch back to the root working directory of the repository. In our example, we are two directories in, so we run
cd ../..
.[user@office SampleTheme/lib/billboard]$ cd ../.. [user@office SampleTheme]$
- Everything is now ready to be commit and pushed back in (if there is a remote repository to push to that is). If you run
git status
, you’ll notice that the path to the submodule is listed as modified. This is what you should expect to see. Simply add the path to be commit and do a commit. When you do the commit, the index will update the commit string for the submodule.[user@office SampleTheme]$ git status # On branch master # Changed but not updated: # (use "git add ..." to update what will be committed) # (use "git checkout -- ..." to discard changes in working directory) # # modified: lib/billboard (new commits) # no changes added to commit (use "git add" and/or "git commit -a") [user@office SampleTheme]$ git add lib/billboard [user@office SampleTheme]$ git status # On branch master # Changes to be committed: # (use "git reset HEAD ..." to unstage) # # modified: lib/billboard #
Closing Thoughts
I’ve learned a lot in my short time with Git. Expect to see more details about working with Git in the future. I have a series of pitfalls I’ve discovered that I should organize together and post about. I’ve also created some really slick scripts to help me automate numerous things when working with the repositories that I’d like to share.
If there is anything specific you’d like to know about Git, please add a comment or contact me.
Did I help you?
- Send me a tip via Paypal.
- Help with this site’s hosting with my Linode referral code.
Содержание
- Programmer Help
- pathspec ‘master’ did not match any files known to git
- Scenarios that emerge
- Reasons for the problem
- Command parsing
- problem analysis
- How to solve
- Git errors: cannot checkout branch — error: pathspec ‘branch_name’ did not match any file(s) known to git
- Git: невозможно оформить ветку — ошибка: pathspec ‘…’ не соответствует ни одному из файлов, известных git
- 40 ответов
Programmer Help
Where programmers get help
pathspec ‘master’ did not match any files known to git
Scenarios that emerge
In the local init, a repository is created, and then a develop ment branch is created, on which file operations are performed, followed by changes made by commit.
Then you cut to the master branch and do the file operation. Then the following mistakes will occur:
Reasons for the problem
Command parsing
The git init command creates a master branch by default and points the HEAD (which is a special pointer to the current local branch) to that branch. Nevertheless, you can’t see any branches when you view local and remote branches through the GIT branch-a command.
The git checkout master command actually does two things: one is to make HEAD refer back to the master branch; the other is to restore the working directory to the snapshot content that the master branch refers to.
problem analysis
After HEAD refers back to the master branch, it is necessary to restore the working directory to the content that the master branch refers to. But since you’ve been working on the develop ment branch since the beginning, the working directory corresponding to the master branch is equivalent to nothing, so that no files can be matched.
How to solve
You just need to initialize a repository, first do some commit operations on the master branch, such as adding a README.md file, so that you really create a master branch. For example:
When push ing, you can see the prompt to create a master branch in the remote warehouse, and the local master branch points to the remote master branch.
Then you can see all local and remote branches through git branch-a. Then you can create other branches and switch between master branches at will.
When switching branches, be aware that the files in your working directory will be changed. If you switch to an older branch, your working directory will be restored to what it looked like when it was last submitted. If Git can’t do this cleanly, it will prohibit branch switching.
Posted on Tue, 07 May 2019 20:50:38 -0400 by lorenzo-s
Источник
Git errors: cannot checkout branch — error: pathspec ‘branch_name’ did not match any file(s) known to git
Sometimes after repository checkout you can encounter the error trying to switch branches:
Exit fullscreen mode
To fix that you can remove remote origin and link it again.
First, check the remote origin:
Exit fullscreen mode
Then remove origin:
Exit fullscreen mode
And add remote origin again with correct path from your repository (copy from GitHub/GitLab/etc.):
Exit fullscreen mode
Exit fullscreen mode
And set upstream to origin branch:
Exit fullscreen mode
After this you should be able to switch between the branches as usual.
This error message indicates that Git was unable to checkout the specified branch because it does not exist. This can happen for a few different reasons, including the following:
- The branch name is misspelled or mistyped.
- The branch has already been deleted or is no longer available.
- The branch exists in a remote repository, but it has not yet been pulled or fetched to the local repository.
To fix this error, you will need to verify that the branch name is correct and that the branch exists in the local repository. If the branch name is correct and the branch still does not exist, you may need to pull or fetch the branch from the remote repository where it exists.
If the branch has already been deleted or is no longer available, you will need to create a new branch with a different name or switch to a different existing branch.
Overall, this error can be resolved by checking the branch name and ensuring that the branch exists in the local repository. If necessary, you can also try pulling or fetching the branch from the remote repository where it exists.
Источник
Git: невозможно оформить ветку — ошибка: pathspec ‘…’ не соответствует ни одному из файлов, известных git
Я не уверен, почему я не смог проверить ветку, с которой я работал раньше. См. Приведенные ниже команды (примечание: co является псевдонимом для checkout ):
Я не уверен, что это значит, и я не могу найти ничего, что я могу понять в Google.
Как проверить эту ветку и что я могу сделать, чтобы сломать это?
UPDATE
Я нашел этот пост, и запуск git show-ref дает мне:
UPDATE в каталоге .git ( user_controlled_site_layouts находится в refs/heads/feature folder ):
ОБНОВЛЕНИЕ на git show 3af84fcf1508c44013844dcd0998a14e61455034
40 ответов
Попробуйте git fetch , чтобы ваш локальный репозиторий получал всю новую информацию от github. Он просто берет информацию о новых ветких и фактическом коде. После этого git checkout должен работать нормально.
Я получал эту ошибку, когда пытался оформить заказ на новую ветку:
ошибка: pathspec ‘BRANCH-NAME’ не соответствует ни одному из файлов, известных git.
Когда я попробовал git checkout origin/
, я получил отдельную ГОЛОВУ:
Наконец, я сделал следующее, чтобы решить проблему:
Я получил эту ошибку для ветки, которая была удаленной и не имела локальной ветки отслеживания. Хотя я уверен, что проверил удаленные ветки через простой
в прошлом, чтобы обойти эту ошибку, я должен был
Я не знаю, что я сделал, чтобы попасть в эту ситуацию.
Если вы удалили ветку с помощью git branch -D yourbranchname и снова вытащили/клонировали свое репо, вам может понадобиться снова создать локальную ветку.
Git Пользователи Windows остерегаются — без параметров —icase-pathspecs или GIT_ICASE_PATHSPECS = 1 env var, что git pathspecs будут чувствительны к регистру, в которых case
У меня есть те же вопросы, и я получил некоторую информацию по этой ссылке: git fetch не извлекает все ветки
Итак, теперь я не уверен, как эта ситуация произошла, по крайней мере, мы можем ее решить:
Шаг 1. Проверьте настройку «remote.origin.fetch», должно быть как
+ ссылки/головки/private_dev_branch: ссылки/пультов ДУ/происхождение/private_dev_branch
Шаг 2. Измените «remote.origin.fetch», чтобы получить все
$git config remote.origin.fetch «+ refs/heads/*: refs/remotes/origin/*»
$git config —get remote.origin.fetch
+ ссылки/главы/*: ссылки/пультов ДУ/происхождение/*
Затем вы можете попробовать «git pull» (возможно, «git fetch origin» также работает, но я не пробовал), чтобы получить всю ветвь.
Если имя ветки отсутствует, и у вас нет никакого файла с ограниченным доступом, попробуйте это
Это просто исправило это для меня 🙂
Я получил это, когда сделал следующее:
- Используемая IntelliJ IDE, подключенная к git
- Создан новый файл и добавлен в git
- Переименован новый файл
Когда я попытался проверить каталог, я получил эту ошибку.
Я открыл репо в расширениях git. Я увидел, что файл (со старым именем) был поставлен. Но поскольку он больше не существует, он не может быть зафиксирован.
Я просто отключил этот файл.
Затем я снова добавил файл (на этот раз правильно названный) в git и зафиксировал без ошибок.
У меня была эта проблема сегодня, я пытался git checkout foo и получил error: pathspec ‘foo’ did not match any file(s) known to git.
Оказывается, я ошибался в репо. Итак, извлеченный урок: проверьте, на каком репо вы смотрите, прежде чем волноваться.
У меня такая же проблема, потому что я использовал git clone —depth=1 , что подразумевает —single-branch .
Выполняет завершенный git clone .
Во-первых, проверьте родительскую ветвь. Затем введите
В ОС Windows по умолчанию git устанавливается
Это означает, что файлы git repo будут нечувствительны к регистру, чтобы изменить это, которое вам нужно выполнить:
эту конфигурацию можно найти в файле .gitconfig
В моем случае у меня есть TWO branch 1) master (для живого сервера) 2) dev (тестовый сервер). Я установил несколько удаленных программ для ввода кода на соответствующем сервере. Когда я попытался переключить ветвь, я получил ошибку, например error: pathspec ‘master’ did not match any file(s) known to git.
Вы можете увидеть их на git remote -v . Я удалил другой удаленный, кроме origin remote, с помощью git remote remove
Тогда git fetch
Теперь я могу проверить ветвь на git checkout
.
Если это происходит в Windows, это, вероятно, проблема с именем файла.
У меня была эта ошибка сегодня — я создал новый файл, добавленный в GIT, затем я сменил одну букву в имени файла с нижнего на верхний, а затем я ничего не мог — зафиксировать, вернуть, удалить файл из репо,
Единственное решение, которое я нашел, это снова изменить имя файла обратно в тот же самый случай, когда я добавил этот файл в GIT, а затем сделав GIT revert, чтобы удалить этот файл из GIT, а затем сменив имя файла снова, как я хочу, После этих изменений я мог бы выполнить репо, а затем нажать без проблем.
Произошло со мной после переименования незафиксированного файла в Android Studio.
У Git, похоже, была старая версия в своем хранилище, даже если ее больше не существовало.
Поэтому я открыл графический интерфейс Git TortoiseGit, который показал мне точный файл, вызвавший проблемы.
После этого я удалил файл из хранилища с помощью
и проблема исчезла
У меня была такая же проблема. Я думал, что у меня есть ветвь с именем foo , когда я пытаюсь:
Затем я попробовал имя полной ветки:
тогда работал у меня.
Я сделал глупую ошибку, не указав флаг -m во время совершения (lol)
в моем случае я вхожу в каталог подмодулей, не делая
- git submodule init
- git submodule update
Итак, git был связан с родительской папкой, которая действительно пропустила эту ветвь.
Ни один из этих ответов не решил мою проблему:
Я пытался вернуться и построить фиксацию для Version object v2.0.1 . К счастью, у меня возникла идея попробовать весь хеш-код, и это сработало! Это означает, что я использовал неправильный конец хэш-кода.
Как показано выше, для частичных хеш-кодов вы должны предоставить интерфейс, а не внешний.
В моем случае я переименовал файл, изменяющий случай файла, т.е. SomeFile.js → someFile.js
Я думаю, что это было связано с проблемой. Выполнение git fetch не помогло решить проблему.
Я вытащил файлы из своего проекта, сделал выборку и без толчка. Затем я сделал выборку, добавил их обратно и сделал толчок, и это сработало. Я не знаю, нужны ли все эти шаги, но это в конечном итоге сработало.
Я скопировал url удаленного источника из другого файла .git/config , поэтому в моем новом файле .git/config отсутствовала следующая строка в разделе [remote «origin»]
Добавление вышеуказанной строки исправило error: pathspec ‘master’ did not match any file(s) known to git.
Для меня это была проблема с моими полномочиями
Попробовав некоторые ответы, один из них помог мне решить проблему:
Запустив git fetch выдал следующую ошибку:
Не удалось разрешить хост: bitbucket.org
Все, что мне нужно было сделать, это заставить мою IDE (VS Code в моем случае) запомнить мои учетные данные:
Git немедленно синхронизировал все изменения, и git checkout
теперь работает нормально!
Я столкнулся с этой же проблемой, когда я впервые играл с git. При попытке моего первого совершения.
Я получил ошибку, упомянутую OP.
Я думал, что, возможно, запутался git, используя ключевое слово в сообщении commit, поэтому я попробовал несколько других слов и получил ту же ошибку.
Наконец, я использовал двойные кавычки в сообщении.
Это оказалось успешным.
Хорошо, ответов уже слишком много. Но в моем случае я столкнулся с этой проблемой, когда работал над Eclipse и использовал git-bash для переключения между ветками/извлечениями. Как только я закрыл затмение и перезапустил git-bash для проверки, все работало хорошо.
Поэтому я предлагаю вам дважды проверить, не используется ли ваш репозиторий другим приложением.
Одна возможная причина. Если вы работаете с машиной Windows с MINGW *
Проверьте имя ветки, которую вы хотите проверить. Windows опускает символ ‘ из имени ветки во время разбора команды.
например: если у вас есть имя ветки, например bugfix/some-‘branch’-name
Когда вы выдаете команду: > git checkout bugfix/some-‘branch’-name , она будет анализировать ее как bugfix/some-branch-name , заметьте, что она пропускает символ ‘ .
Чтобы проверить это имя ветки, добавить escape-символ при выдаче команды.
Тип: > git checkout bugfix/some-’branch’-name
Затем он работает!!
В моем случае я запускаю «git fetch» до «git branch. но получил ту же ошибку. Затем я проанализировал его и нашел ошибку в имени моей ветки. Исправлено и успешно переключилось на ветвь.
Я столкнулся с этой проблемой в прошлый раз, и то, что я сделал, это удалить папку (или исходный код), связанную с этой веткой.
Ex: начало ветки /foo создает папку foo на вашем локальном, поэтому я просто удаляю ее и использую git fetch $ checkout , чтобы получить код с удаленного.
Или вы можете сделать это, создав папку на том же месте, что и ветка, которую вы планировали проверить.
Ex: создайте папку foo на локальном компьютере, после этого используйте команду Git: git branch —set-upstream-to=origin/foo foo , что все. Используйте git pull для получения кода.
У меня была эта проблема при работе с Git в Windows. В моем случае это была проблема. Я уже добавил и перенял файл в мой репозиторий, а потом изменил только его случай. Чтобы решить проблему, я переименовал файл в соответствии с исходным случаем и снова переименовал его с помощью команды git mv . По-видимому, это позволяет Git отслеживать переименование.
Примечание. Я использовал Cygwin.
Я столкнулся с подобной проблемой. Что привело меня в эту беду: У меня было несколько удаленных веток, и я удалил папку с кодом. Я потянулся.:
Затем я добавил удаленный репозиторий:
Затем я попытался изменить ветвь на другую ветку, скажем, AAAA, и я получил ошибку
Проведя час, я нашел решение. Я снова удалил исходную папку. Затем я сделал git pull:
Затем я изменил ветвь, прежде чем связывать ее с удаленным репозиторием:
то я добавил его в удаленный репозиторий
После этого я могу легко переключать ветки. Хотя это не стандартный способ, но он работал у меня после того, как я попробовал все вышеперечисленные варианты.
Это может быть вызвано тем, что восходящий поток перезаписывает историю.
Когда это произойдет, я бросаю все затронутые репозитории, клонирую их свежими из восходящего потока и использую ‘git format-patch’/’git am’, чтобы переправлять любые выполняемые работы из старого мира в новый.
Я получил тот же pathspec error на git — bash. Я использовал Tortoise git в окнах для переключения/проверки ветки.
У меня была та же проблема (с версией git-latest) и я обнаружил, что это связано с кодами escape-цветов, используемыми git. Интересно, может ли это объяснить, почему эта проблема возникает так часто.
Это демонстрирует, что может происходить, хотя цвет обычно задается в конфигурации git, а не в командной строке (в противном случае это будет очевидно):
Я полагаю, что git-конфигурация, которая не играет с настройками цвета, должна работать color = auto должна делать правильные вещи. Моя конкретная проблема заключалась в том, что git recent я использовал, был определен как псевдоним с жестко закодированными цветами, и я пытался создавать команды поверх этого.
Я получил это на столе Github после нажатия «Обновить из. «, когда было выбрано неправильное репо. Затем я изменил репо на правильный, но когда я попытался удалить изменения, я получил эту ошибку. Это потому, что это были новые файлы в репо, которые я ошибочно выбрал, но не тот, который я хотел обновить.
Я просто сменил селектор репо на тот, который я неправильно выбрал в первый раз, после чего смог удалить изменения.
Затем я сменил селектор репо на тот, который я хотел.
Можете ли вы подтвердить, что следующие работы:
Возможно, кто-то переписал историю и что это обязательство больше не существует (по какой-либо причине).
Это случилось со мной также в Windows на двух локальных ветких, которые я создал сам. После выхода из ветки я не смог проверить
вы можете увидеть на скриншоте из Git bash ниже.
Когда я попытался использовать графический интерфейс Git, я даже не мог видеть ветки вообще. Однако, когда я использовал инструмент Pycharms Git, я увидел это:
Итак, почему-то окна решили добавить некоторую неразличимую персонаж к моим именам ветвей, и именно по этой причине это не сработало. Переименование ветвей в Pycharm сделал трюк, поэтому угадайте, что это будет работать и на других IDE.
Вот как я решил свою ошибку!
Сначала я удалил свое репо локально, а также из моего Github. Затем я раздвоил и клонировал в свой локальный репозиторий.
После этого я сделал свое изменение и наконец
Создана Моя ветка с помощью
$git checkout -b moh_branch
изменить рабочую ветвь
$git checkout moh_branch
нажмите ветку на GitHub
$git push origin moh_branch
После этого я могу выполнить свои изменения следующим образом: —
Источник
Introduction
Git is a fast distributed revision control system.
This manual is designed to be readable by someone with basic UNIX
command-line skills, but no previous knowledge of Git.
Repositories and Branches and Exploring Git history explain how
to fetch and study a project using git—read these chapters to learn how
to build and test a particular version of a software project, search for
regressions, and so on.
People needing to do actual development will also want to read
Developing with Git and Sharing development with others.
Further chapters cover more specialized topics.
Comprehensive reference documentation is available through the man
pages, or git-help[1] command. For example, for the command
git clone <repo>
, you can either use:
or:
With the latter, you can use the manual viewer of your choice; see
git-help[1] for more information.
See also Git Quick Reference for a brief overview of Git commands,
without any explanation.
Finally, see Notes and todo list for this manual for ways that you can help make this manual more
complete.
Repositories and Branches
How to get a Git repository
It will be useful to have a Git repository to experiment with as you
read this manual.
The best way to get one is by using the git-clone[1] command to
download a copy of an existing repository. If you don’t already have a
project in mind, here are some interesting examples:
# Git itself (approx. 40MB download): $ git clone git://git.kernel.org/pub/scm/git/git.git # the Linux kernel (approx. 640MB download): $ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
The initial clone may be time-consuming for a large project, but you
will only need to clone once.
The clone command creates a new directory named after the project
(git
or linux
in the examples above). After you cd into this
directory, you will see that it contains a copy of the project files,
called the working tree, together with a special
top-level directory named .git
, which contains all the information
about the history of the project.
How to check out a different version of a project
Git is best thought of as a tool for storing the history of a collection
of files. It stores the history as a compressed collection of
interrelated snapshots of the project’s contents. In Git each such
version is called a commit.
Those snapshots aren’t necessarily all arranged in a single line from
oldest to newest; instead, work may simultaneously proceed along
parallel lines of development, called branches, which may
merge and diverge.
A single Git repository can track development on multiple branches. It
does this by keeping a list of heads which reference the
latest commit on each branch; the git-branch[1] command shows
you the list of branch heads:
A freshly cloned repository contains a single branch head, by default
named «master», with the working directory initialized to the state of
the project referred to by that branch head.
Most projects also use tags. Tags, like heads, are
references into the project’s history, and can be listed using the
git-tag[1] command:
$ git tag -l v2.6.11 v2.6.11-tree v2.6.12 v2.6.12-rc2 v2.6.12-rc3 v2.6.12-rc4 v2.6.12-rc5 v2.6.12-rc6 v2.6.13 ...
Tags are expected to always point at the same version of a project,
while heads are expected to advance as development progresses.
Create a new branch head pointing to one of these versions and check it
out using git-switch[1]:
$ git switch -c new v2.6.13
The working directory then reflects the contents that the project had
when it was tagged v2.6.13, and git-branch[1] shows two
branches, with an asterisk marking the currently checked-out branch:
$ git branch master * new
If you decide that you’d rather see version 2.6.17, you can modify
the current branch to point at v2.6.17 instead, with
$ git reset --hard v2.6.17
Note that if the current branch head was your only reference to a
particular point in history, then resetting that branch may leave you
with no way to find the history it used to point to; so use this command
carefully.
Understanding History: Commits
Every change in the history of a project is represented by a commit.
The git-show[1] command shows the most recent commit on the
current branch:
$ git show commit 17cf781661e6d38f737f15f53ab552f1e95960d7 Author: Linus Torvalds <torvalds@ppc970.osdl.org.(none)> Date: Tue Apr 19 14:11:06 2005 -0700 Remove duplicate getenv(DB_ENVIRONMENT) call Noted by Tony Luck. diff --git a/init-db.c b/init-db.c index 65898fa..b002dc6 100644 --- a/init-db.c +++ b/init-db.c @@ -7,7 +7,7 @@ int main(int argc, char **argv) { - char *sha1_dir = getenv(DB_ENVIRONMENT), *path; + char *sha1_dir, *path; int len, i; if (mkdir(".git", 0755) < 0) {
As you can see, a commit shows who made the latest change, what they
did, and why.
Every commit has a 40-hexdigit id, sometimes called the «object name» or the
«SHA-1 id», shown on the first line of the git show
output. You can usually
refer to a commit by a shorter name, such as a tag or a branch name, but this
longer name can also be useful. Most importantly, it is a globally unique
name for this commit: so if you tell somebody else the object name (for
example in email), then you are guaranteed that name will refer to the same
commit in their repository that it does in yours (assuming their repository
has that commit at all). Since the object name is computed as a hash over the
contents of the commit, you are guaranteed that the commit can never change
without its name also changing.
In fact, in Git concepts we shall see that everything stored in Git
history, including file data and directory contents, is stored in an object
with a name that is a hash of its contents.
Understanding history: commits, parents, and reachability
Every commit (except the very first commit in a project) also has a
parent commit which shows what happened before this commit.
Following the chain of parents will eventually take you back to the
beginning of the project.
However, the commits do not form a simple list; Git allows lines of
development to diverge and then reconverge, and the point where two
lines of development reconverge is called a «merge». The commit
representing a merge can therefore have more than one parent, with
each parent representing the most recent commit on one of the lines
of development leading to that point.
The best way to see how this works is using the gitk[1]
command; running gitk now on a Git repository and looking for merge
commits will help understand how Git organizes history.
In the following, we say that commit X is «reachable» from commit Y
if commit X is an ancestor of commit Y. Equivalently, you could say
that Y is a descendant of X, or that there is a chain of parents
leading from commit Y to commit X.
Understanding history: History diagrams
We will sometimes represent Git history using diagrams like the one
below. Commits are shown as «o», and the links between them with
lines drawn with — / and . Time goes left to right:
o--o--o <-- Branch A / o--o--o <-- master o--o--o <-- Branch B
If we need to talk about a particular commit, the character «o» may
be replaced with another letter or number.
Understanding history: What is a branch?
When we need to be precise, we will use the word «branch» to mean a line
of development, and «branch head» (or just «head») to mean a reference
to the most recent commit on a branch. In the example above, the branch
head named «A» is a pointer to one particular commit, but we refer to
the line of three commits leading up to that point as all being part of
«branch A».
However, when no confusion will result, we often just use the term
«branch» both for branches and for branch heads.
Manipulating branches
Creating, deleting, and modifying branches is quick and easy; here’s
a summary of the commands:
-
git branch
-
list all branches.
-
git branch <branch>
-
create a new branch named
<branch>
, referencing the same
point in history as the current branch. -
git branch <branch> <start-point>
-
create a new branch named
<branch>
, referencing
<start-point>
, which may be specified any way you like,
including using a branch name or a tag name. -
git branch -d <branch>
-
delete the branch
<branch>
; if the branch is not fully
merged in its upstream branch or contained in the current branch,
this command will fail with a warning. -
git branch -D <branch>
-
delete the branch
<branch>
irrespective of its merged status. -
git switch <branch>
-
make the current branch
<branch>
, updating the working
directory to reflect the version referenced by<branch>
. -
git switch -c <new> <start-point>
-
create a new branch
<new>
referencing<start-point>
, and
check it out.
The special symbol «HEAD» can always be used to refer to the current
branch. In fact, Git uses a file named HEAD
in the .git
directory
to remember which branch is current:
$ cat .git/HEAD ref: refs/heads/master
Examining an old version without creating a new branch
The git switch
command normally expects a branch head, but will also
accept an arbitrary commit when invoked with —detach; for example,
you can check out the commit referenced by a tag:
$ git switch --detach v2.6.17 Note: checking out 'v2.6.17'. You are in 'detached HEAD' state. You can look around, make experimental changes and commit them, and you can discard any commits you make in this state without impacting any branches by performing another switch. If you want to create a new branch to retain commits you create, you may do so (now or later) by using -c with the switch command again. Example: git switch -c new_branch_name HEAD is now at 427abfa Linux v2.6.17
The HEAD then refers to the SHA-1 of the commit instead of to a branch,
and git branch shows that you are no longer on a branch:
$ cat .git/HEAD 427abfa28afedffadfca9dd8b067eb6d36bac53f $ git branch * (detached from v2.6.17) master
In this case we say that the HEAD is «detached».
This is an easy way to check out a particular version without having to
make up a name for the new branch. You can still create a new branch
(or tag) for this version later if you decide to.
Examining branches from a remote repository
The «master» branch that was created at the time you cloned is a copy
of the HEAD in the repository that you cloned from. That repository
may also have had other branches, though, and your local repository
keeps branches which track each of those remote branches, called
remote-tracking branches, which you
can view using the -r
option to git-branch[1]:
$ git branch -r origin/HEAD origin/html origin/maint origin/man origin/master origin/next origin/seen origin/todo
In this example, «origin» is called a remote repository, or «remote»
for short. The branches of this repository are called «remote
branches» from our point of view. The remote-tracking branches listed
above were created based on the remote branches at clone time and will
be updated by git fetch
(hence git pull
) and git push
. See
Updating a repository with git fetch for details.
You might want to build on one of these remote-tracking branches
on a branch of your own, just as you would for a tag:
$ git switch -c my-todo-copy origin/todo
You can also check out origin/todo
directly to examine it or
write a one-off patch. See detached head.
Note that the name «origin» is just the name that Git uses by default
to refer to the repository that you cloned from.
Naming branches, tags, and other references
Branches, remote-tracking branches, and tags are all references to
commits. All references are named with a slash-separated path name
starting with refs
; the names we’ve been using so far are actually
shorthand:
-
The branch
test
is short forrefs/heads/test
. -
The tag
v2.6.18
is short forrefs/tags/v2.6.18
. -
origin/master
is short forrefs/remotes/origin/master
.
The full name is occasionally useful if, for example, there ever
exists a tag and a branch with the same name.
(Newly created refs are actually stored in the .git/refs
directory,
under the path given by their name. However, for efficiency reasons
they may also be packed together in a single file; see
git-pack-refs[1]).
As another useful shortcut, the «HEAD» of a repository can be referred
to just using the name of that repository. So, for example, «origin»
is usually a shortcut for the HEAD branch in the repository «origin».
For the complete list of paths which Git checks for references, and
the order it uses to decide which to choose when there are multiple
references with the same shorthand name, see the «SPECIFYING
REVISIONS» section of gitrevisions[7].
Updating a repository with git fetch
After you clone a repository and commit a few changes of your own, you
may wish to check the original repository for updates.
The git-fetch
command, with no arguments, will update all of the
remote-tracking branches to the latest version found in the original
repository. It will not touch any of your own branches—not even the
«master» branch that was created for you on clone.
Fetching branches from other repositories
You can also track branches from repositories other than the one you
cloned from, using git-remote[1]:
$ git remote add staging git://git.kernel.org/.../gregkh/staging.git $ git fetch staging ... From git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging * [new branch] master -> staging/master * [new branch] staging-linus -> staging/staging-linus * [new branch] staging-next -> staging/staging-next
New remote-tracking branches will be stored under the shorthand name
that you gave git remote add
, in this case staging
:
$ git branch -r origin/HEAD -> origin/master origin/master staging/master staging/staging-linus staging/staging-next
If you run git fetch <remote>
later, the remote-tracking branches
for the named <remote>
will be updated.
If you examine the file .git/config
, you will see that Git has added
a new stanza:
$ cat .git/config ... [remote "staging"] url = git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging.git fetch = +refs/heads/*:refs/remotes/staging/* ...
This is what causes Git to track the remote’s branches; you may modify
or delete these configuration options by editing .git/config
with a
text editor. (See the «CONFIGURATION FILE» section of
git-config[1] for details.)
Exploring Git history
Git is best thought of as a tool for storing the history of a
collection of files. It does this by storing compressed snapshots of
the contents of a file hierarchy, together with «commits» which show
the relationships between these snapshots.
Git provides extremely flexible and fast tools for exploring the
history of a project.
We start with one specialized tool that is useful for finding the
commit that introduced a bug into a project.
How to use bisect to find a regression
Suppose version 2.6.18 of your project worked, but the version at
«master» crashes. Sometimes the best way to find the cause of such a
regression is to perform a brute-force search through the project’s
history to find the particular commit that caused the problem. The
git-bisect[1] command can help you do this:
$ git bisect start $ git bisect good v2.6.18 $ git bisect bad master Bisecting: 3537 revisions left to test after this [65934a9a028b88e83e2b0f8b36618fe503349f8e] BLOCK: Make USB storage depend on SCSI rather than selecting it [try #6]
If you run git branch
at this point, you’ll see that Git has
temporarily moved you in «(no branch)». HEAD is now detached from any
branch and points directly to a commit (with commit id 65934) that
is reachable from «master» but not from v2.6.18. Compile and test it,
and see whether it crashes. Assume it does crash. Then:
$ git bisect bad Bisecting: 1769 revisions left to test after this [7eff82c8b1511017ae605f0c99ac275a7e21b867] i2c-core: Drop useless bitmaskings
checks out an older version. Continue like this, telling Git at each
stage whether the version it gives you is good or bad, and notice
that the number of revisions left to test is cut approximately in
half each time.
After about 13 tests (in this case), it will output the commit id of
the guilty commit. You can then examine the commit with
git-show[1], find out who wrote it, and mail them your bug
report with the commit id. Finally, run
to return you to the branch you were on before.
Note that the version which git bisect
checks out for you at each
point is just a suggestion, and you’re free to try a different
version if you think it would be a good idea. For example,
occasionally you may land on a commit that broke something unrelated;
run
which will run gitk and label the commit it chose with a marker that
says «bisect». Choose a safe-looking commit nearby, note its commit
id, and check it out with:
$ git reset --hard fb47ddb2db
then test, run bisect good
or bisect bad
as appropriate, and
continue.
Instead of git bisect visualize
and then git reset --hard
, you might just want to tell Git that you want to skip
fb47ddb2db
the current commit:
In this case, though, Git may not eventually be able to tell the first
bad one between some first skipped commits and a later bad commit.
There are also ways to automate the bisecting process if you have a
test script that can tell a good from a bad commit. See
git-bisect[1] for more information about this and other git
features.
bisect
Naming commits
We have seen several ways of naming commits already:
-
40-hexdigit object name
-
branch name: refers to the commit at the head of the given
branch -
tag name: refers to the commit pointed to by the given tag
(we’ve seen branches and tags are special cases of
references). -
HEAD: refers to the head of the current branch
There are many more; see the «SPECIFYING REVISIONS» section of the
gitrevisions[7] man page for the complete list of ways to
name revisions. Some examples:
$ git show fb47ddb2 # the first few characters of the object name # are usually enough to specify it uniquely $ git show HEAD^ # the parent of the HEAD commit $ git show HEAD^^ # the grandparent $ git show HEAD~4 # the great-great-grandparent
Recall that merge commits may have more than one parent; by default,
^
and ~
follow the first parent listed in the commit, but you can
also choose:
$ git show HEAD^1 # show the first parent of HEAD $ git show HEAD^2 # show the second parent of HEAD
In addition to HEAD, there are several other special names for
commits:
Merges (to be discussed later), as well as operations such as
git reset
, which change the currently checked-out commit, generally
set ORIG_HEAD to the value HEAD had before the current operation.
The git fetch
operation always stores the head of the last fetched
branch in FETCH_HEAD. For example, if you run git fetch
without
specifying a local branch as the target of the operation
$ git fetch git://example.com/proj.git theirbranch
the fetched commits will still be available from FETCH_HEAD.
When we discuss merges we’ll also see the special name MERGE_HEAD,
which refers to the other branch that we’re merging in to the current
branch.
The git-rev-parse[1] command is a low-level command that is
occasionally useful for translating some name for a commit to the object
name for that commit:
$ git rev-parse origin e05db0fd4f31dde7005f075a84f96b360d05984b
Creating tags
We can also create a tag to refer to a particular commit; after
running
$ git tag stable-1 1b2e1d63ff
You can use stable-1
to refer to the commit 1b2e1d63ff.
This creates a «lightweight» tag. If you would also like to include a
comment with the tag, and possibly sign it cryptographically, then you
should create a tag object instead; see the git-tag[1] man page
for details.
Browsing revisions
The git-log[1] command can show lists of commits. On its
own, it shows all commits reachable from the parent commit; but you
can also make more specific requests:
$ git log v2.5.. # commits since (not reachable from) v2.5 $ git log test..master # commits reachable from master but not test $ git log master..test # ...reachable from test but not master $ git log master...test # ...reachable from either test or master, # but not both $ git log --since="2 weeks ago" # commits from the last 2 weeks $ git log Makefile # commits which modify Makefile $ git log fs/ # ... which modify any file under fs/ $ git log -S'foo()' # commits which add or remove any file data # matching the string 'foo()'
And of course you can combine all of these; the following finds
commits since v2.5 which touch the Makefile
or any file under fs
:
$ git log v2.5.. Makefile fs/
You can also ask git log to show patches:
See the --pretty
option in the git-log[1] man page for more
display options.
Note that git log starts with the most recent commit and works
backwards through the parents; however, since Git history can contain
multiple independent lines of development, the particular order that
commits are listed in may be somewhat arbitrary.
Generating diffs
You can generate diffs between any two versions using
git-diff[1]:
That will produce the diff between the tips of the two branches. If
you’d prefer to find the diff from their common ancestor to test, you
can use three dots instead of two:
Sometimes what you want instead is a set of patches; for this you can
use git-format-patch[1]:
$ git format-patch master..test
will generate a file with a patch for each commit reachable from test
but not from master.
Viewing old file versions
You can always view an old version of a file by just checking out the
correct revision first. But sometimes it is more convenient to be
able to view an old version of a single file without checking
anything out; this command does that:
$ git show v2.5:fs/locks.c
Before the colon may be anything that names a commit, and after it
may be any path to a file tracked by Git.
Examples
Counting the number of commits on a branch
Suppose you want to know how many commits you’ve made on mybranch
since it diverged from origin
:
$ git log --pretty=oneline origin..mybranch | wc -l
Alternatively, you may often see this sort of thing done with the
lower-level command git-rev-list[1], which just lists the SHA-1’s
of all the given commits:
$ git rev-list origin..mybranch | wc -l
Check whether two branches point at the same history
Suppose you want to check whether two branches point at the same point
in history.
$ git diff origin..master
will tell you whether the contents of the project are the same at the
two branches; in theory, however, it’s possible that the same project
contents could have been arrived at by two different historical
routes. You could compare the object names:
$ git rev-list origin e05db0fd4f31dde7005f075a84f96b360d05984b $ git rev-list master e05db0fd4f31dde7005f075a84f96b360d05984b
Or you could recall that the ...
operator selects all commits
reachable from either one reference or the other but not
both; so
$ git log origin...master
will return no commits when the two branches are equal.
Find first tagged version including a given fix
Suppose you know that the commit e05db0fd fixed a certain problem.
You’d like to find the earliest tagged release that contains that
fix.
Of course, there may be more than one answer—if the history branched
after commit e05db0fd, then there could be multiple «earliest» tagged
releases.
You could just visually inspect the commits since e05db0fd:
or you can use git-name-rev[1], which will give the commit a
name based on any tag it finds pointing to one of the commit’s
descendants:
$ git name-rev --tags e05db0fd e05db0fd tags/v1.5.0-rc1^0~23
The git-describe[1] command does the opposite, naming the
revision using a tag on which the given commit is based:
$ git describe e05db0fd v1.5.0-rc0-260-ge05db0f
but that may sometimes help you guess which tags might come after the
given commit.
If you just want to verify whether a given tagged version contains a
given commit, you could use git-merge-base[1]:
$ git merge-base e05db0fd v1.5.0-rc1 e05db0fd4f31dde7005f075a84f96b360d05984b
The merge-base command finds a common ancestor of the given commits,
and always returns one or the other in the case where one is a
descendant of the other; so the above output shows that e05db0fd
actually is an ancestor of v1.5.0-rc1.
Alternatively, note that
$ git log v1.5.0-rc1..e05db0fd
will produce empty output if and only if v1.5.0-rc1 includes e05db0fd,
because it outputs only commits that are not reachable from v1.5.0-rc1.
As yet another alternative, the git-show-branch[1] command lists
the commits reachable from its arguments with a display on the left-hand
side that indicates which arguments that commit is reachable from.
So, if you run something like
$ git show-branch e05db0fd v1.5.0-rc0 v1.5.0-rc1 v1.5.0-rc2 ! [e05db0fd] Fix warnings in sha1_file.c - use C99 printf format if available ! [v1.5.0-rc0] GIT v1.5.0 preview ! [v1.5.0-rc1] GIT v1.5.0-rc1 ! [v1.5.0-rc2] GIT v1.5.0-rc2 ...
then a line like
+ ++ [e05db0fd] Fix warnings in sha1_file.c - use C99 printf format if available
shows that e05db0fd is reachable from itself, from v1.5.0-rc1,
and from v1.5.0-rc2, and not from v1.5.0-rc0.
Showing commits unique to a given branch
Suppose you would like to see all the commits reachable from the branch
head named master
but not from any other head in your repository.
We can list all the heads in this repository with
git-show-ref[1]:
$ git show-ref --heads bf62196b5e363d73353a9dcf094c59595f3153b7 refs/heads/core-tutorial db768d5504c1bb46f63ee9d6e1772bd047e05bf9 refs/heads/maint a07157ac624b2524a059a3414e99f6f44bebc1e7 refs/heads/master 24dbc180ea14dc1aebe09f14c8ecf32010690627 refs/heads/tutorial-2 1e87486ae06626c2f31eaa63d26fc0fd646c8af2 refs/heads/tutorial-fixes
We can get just the branch-head names, and remove master
, with
the help of the standard utilities cut and grep:
$ git show-ref --heads | cut -d' ' -f2 | grep -v '^refs/heads/master' refs/heads/core-tutorial refs/heads/maint refs/heads/tutorial-2 refs/heads/tutorial-fixes
And then we can ask to see all the commits reachable from master
but not from these other heads:
$ gitk master --not $( git show-ref --heads | cut -d' ' -f2 | grep -v '^refs/heads/master' )
Obviously, endless variations are possible; for example, to see all
commits reachable from some head but not from any tag in the repository:
$ gitk $( git show-ref --heads ) --not $( git show-ref --tags )
(See gitrevisions[7] for explanations of commit-selecting
syntax such as --not
.)
Creating a changelog and tarball for a software release
The git-archive[1] command can create a tar or zip archive from
any version of a project; for example:
$ git archive -o latest.tar.gz --prefix=project/ HEAD
will use HEAD to produce a gzipped tar archive in which each filename
is preceded by project/
. The output file format is inferred from
the output file extension if possible, see git-archive[1] for
details.
Versions of Git older than 1.7.7 don’t know about the tar.gz
format,
you’ll need to use gzip explicitly:
$ git archive --format=tar --prefix=project/ HEAD | gzip >latest.tar.gz
If you’re releasing a new version of a software project, you may want
to simultaneously make a changelog to include in the release
announcement.
Linus Torvalds, for example, makes new kernel releases by tagging them,
then running:
$ release-script 2.6.12 2.6.13-rc6 2.6.13-rc7
where release-script is a shell script that looks like:
#!/bin/sh stable="$1" last="$2" new="$3" echo "# git tag v$new" echo "git archive --prefix=linux-$new/ v$new | gzip -9 > ../linux-$new.tar.gz" echo "git diff v$stable v$new | gzip -9 > ../patch-$new.gz" echo "git log --no-merges v$new ^v$last > ../ChangeLog-$new" echo "git shortlog --no-merges v$new ^v$last > ../ShortLog" echo "git diff --stat --summary -M v$last v$new > ../diffstat-$new"
and then he just cut-and-pastes the output commands after verifying that
they look OK.
Finding commits referencing a file with given content
Somebody hands you a copy of a file, and asks which commits modified a
file such that it contained the given content either before or after the
commit. You can find out with this:
$ git log --raw --abbrev=40 --pretty=oneline | grep -B 1 `git hash-object filename`
Developing with Git
Telling Git your name
Before creating any commits, you should introduce yourself to Git.
The easiest way to do so is to use git-config[1]:
$ git config --global user.name 'Your Name Comes Here' $ git config --global user.email 'you@yourdomain.example.com'
Which will add the following to a file named .gitconfig
in your
home directory:
[user] name = Your Name Comes Here email = you@yourdomain.example.com
See the «CONFIGURATION FILE» section of git-config[1] for
details on the configuration file. The file is plain text, so you can
also edit it with your favorite editor.
Creating a new repository
Creating a new repository from scratch is very easy:
$ mkdir project $ cd project $ git init
If you have some initial content (say, a tarball):
$ tar xzvf project.tar.gz $ cd project $ git init $ git add . # include everything below ./ in the first commit: $ git commit
How to make a commit
Creating a new commit takes three steps:
-
Making some changes to the working directory using your
favorite editor. -
Telling Git about your changes.
-
Creating the commit using the content you told Git about
in step 2.
In practice, you can interleave and repeat steps 1 and 2 as many
times as you want: in order to keep track of what you want committed
at step 3, Git maintains a snapshot of the tree’s contents in a
special staging area called «the index.»
At the beginning, the content of the index will be identical to
that of the HEAD. The command git diff --cached
, which shows
the difference between the HEAD and the index, should therefore
produce no output at that point.
Modifying the index is easy:
To update the index with the contents of a new or modified file, use
To remove a file from the index and from the working tree, use
After each step you can verify that
always shows the difference between the HEAD and the index file—this
is what you’d commit if you created the commit now—and that
shows the difference between the working tree and the index file.
Note that git add
always adds just the current contents of a file
to the index; further changes to the same file will be ignored unless
you run git add
on the file again.
When you’re ready, just run
and Git will prompt you for a commit message and then create the new
commit. Check to make sure it looks like what you expected with
As a special shortcut,
will update the index with any files that you’ve modified or removed
and create a commit, all in one step.
A number of commands are useful for keeping track of what you’re
about to commit:
$ git diff --cached # difference between HEAD and the index; what # would be committed if you ran "commit" now. $ git diff # difference between the index file and your # working directory; changes that would not # be included if you ran "commit" now. $ git diff HEAD # difference between HEAD and working tree; what # would be committed if you ran "commit -a" now. $ git status # a brief per-file summary of the above.
You can also use git-gui[1] to create commits, view changes in
the index and the working tree files, and individually select diff hunks
for inclusion in the index (by right-clicking on the diff hunk and
choosing «Stage Hunk For Commit»).
Creating good commit messages
Though not required, it’s a good idea to begin the commit message
with a single short (less than 50 character) line summarizing the
change, followed by a blank line and then a more thorough
description. The text up to the first blank line in a commit
message is treated as the commit title, and that title is used
throughout Git. For example, git-format-patch[1] turns a
commit into email, and it uses the title on the Subject line and the
rest of the commit in the body.
Ignoring files
A project will often generate files that you do not want to track with Git.
This typically includes files generated by a build process or temporary
backup files made by your editor. Of course, not tracking files with Git
is just a matter of not calling git add
on them. But it quickly becomes
annoying to have these untracked files lying around; e.g. they make
git add .
practically useless, and they keep showing up in the output of
git status
.
You can tell Git to ignore certain files by creating a file called
.gitignore
in the top level of your working directory, with contents
such as:
# Lines starting with '#' are considered comments. # Ignore any file named foo.txt. foo.txt # Ignore (generated) html files, *.html # except foo.html which is maintained by hand. !foo.html # Ignore objects and archives. *.[oa]
See gitignore[5] for a detailed explanation of the syntax. You can
also place .gitignore files in other directories in your working tree, and they
will apply to those directories and their subdirectories. The .gitignore
files can be added to your repository like any other files (just run git add
and
.gitignoregit commit
, as usual), which is convenient when the exclude
patterns (such as patterns matching build output files) would also make sense
for other users who clone your repository.
If you wish the exclude patterns to affect only certain repositories
(instead of every repository for a given project), you may instead put
them in a file in your repository named .git/info/exclude
, or in any
file specified by the core.excludesFile
configuration variable.
Some Git commands can also take exclude patterns directly on the
command line. See gitignore[5] for the details.
How to merge
You can rejoin two diverging branches of development using
git-merge[1]:
merges the development in the branch branchname
into the current
branch.
A merge is made by combining the changes made in branchname
and the
changes made up to the latest commit in your current branch since
their histories forked. The work tree is overwritten by the result of
the merge when this combining is done cleanly, or overwritten by a
half-merged results when this combining results in conflicts.
Therefore, if you have uncommitted changes touching the same files as
the ones impacted by the merge, Git will refuse to proceed. Most of
the time, you will want to commit your changes before you can merge,
and if you don’t, then git-stash[1] can take these changes
away while you’re doing the merge, and reapply them afterwards.
If the changes are independent enough, Git will automatically complete
the merge and commit the result (or reuse an existing commit in case
of fast-forward, see below). On the other hand,
if there are conflicts—for example, if the same file is
modified in two different ways in the remote branch and the local
branch—then you are warned; the output may look something like this:
$ git merge next 100% (4/4) done Auto-merged file.txt CONFLICT (content): Merge conflict in file.txt Automatic merge failed; fix conflicts and then commit the result.
Conflict markers are left in the problematic files, and after
you resolve the conflicts manually, you can update the index
with the contents and run Git commit, as you normally would when
creating a new file.
If you examine the resulting commit using gitk, you will see that it
has two parents, one pointing to the top of the current branch, and
one to the top of the other branch.
Resolving a merge
When a merge isn’t resolved automatically, Git leaves the index and
the working tree in a special state that gives you all the
information you need to help resolve the merge.
Files with conflicts are marked specially in the index, so until you
resolve the problem and update the index, git-commit[1] will
fail:
$ git commit file.txt: needs merge
Also, git-status[1] will list those files as «unmerged», and the
files with conflicts will have conflict markers added, like this:
<<<<<<< HEAD:file.txt Hello world ======= Goodbye >>>>>>> 77976da35a11db4580b80ae27e8d65caf5208086:file.txt
All you need to do is edit the files to resolve the conflicts, and then
$ git add file.txt $ git commit
Note that the commit message will already be filled in for you with
some information about the merge. Normally you can just use this
default message unchanged, but you may add additional commentary of
your own if desired.
The above is all you need to know to resolve a simple merge. But Git
also provides more information to help resolve conflicts:
Getting conflict-resolution help during a merge
All of the changes that Git was able to merge automatically are
already added to the index file, so git-diff[1] shows only
the conflicts. It uses an unusual syntax:
$ git diff diff --cc file.txt index 802992c,2b60207..0000000 --- a/file.txt +++ b/file.txt @@@ -1,1 -1,1 +1,5 @@@ ++<<<<<<< HEAD:file.txt +Hello world ++======= + Goodbye ++>>>>>>> 77976da35a11db4580b80ae27e8d65caf5208086:file.txt
Recall that the commit which will be committed after we resolve this
conflict will have two parents instead of the usual one: one parent
will be HEAD, the tip of the current branch; the other will be the
tip of the other branch, which is stored temporarily in MERGE_HEAD.
During the merge, the index holds three versions of each file. Each of
these three «file stages» represents a different version of the file:
$ git show :1:file.txt # the file in a common ancestor of both branches $ git show :2:file.txt # the version from HEAD. $ git show :3:file.txt # the version from MERGE_HEAD.
When you ask git-diff[1] to show the conflicts, it runs a
three-way diff between the conflicted merge results in the work tree with
stages 2 and 3 to show only hunks whose contents come from both sides,
mixed (in other words, when a hunk’s merge results come only from stage 2,
that part is not conflicting and is not shown. Same for stage 3).
The diff above shows the differences between the working-tree version of
file.txt and the stage 2 and stage 3 versions. So instead of preceding
each line by a single +
or -
, it now uses two columns: the first
column is used for differences between the first parent and the working
directory copy, and the second for differences between the second parent
and the working directory copy. (See the «COMBINED DIFF FORMAT» section
of git-diff-files[1] for a details of the format.)
After resolving the conflict in the obvious way (but before updating the
index), the diff will look like:
$ git diff diff --cc file.txt index 802992c,2b60207..0000000 --- a/file.txt +++ b/file.txt @@@ -1,1 -1,1 +1,1 @@@ - Hello world -Goodbye ++Goodbye world
This shows that our resolved version deleted «Hello world» from the
first parent, deleted «Goodbye» from the second parent, and added
«Goodbye world», which was previously absent from both.
Some special diff options allow diffing the working directory against
any of these stages:
$ git diff -1 file.txt # diff against stage 1 $ git diff --base file.txt # same as the above $ git diff -2 file.txt # diff against stage 2 $ git diff --ours file.txt # same as the above $ git diff -3 file.txt # diff against stage 3 $ git diff --theirs file.txt # same as the above.
The git-log[1] and gitk[1] commands also provide special help
for merges:
$ git log --merge $ gitk --merge
These will display all commits which exist only on HEAD or on
MERGE_HEAD, and which touch an unmerged file.
You may also use git-mergetool[1], which lets you merge the
unmerged files using external tools such as Emacs or kdiff3.
Each time you resolve the conflicts in a file and update the index:
the different stages of that file will be «collapsed», after which
git diff
will (by default) no longer show diffs for that file.
Undoing a merge
If you get stuck and decide to just give up and throw the whole mess
away, you can always return to the pre-merge state with
Or, if you’ve already committed the merge that you want to throw away,
$ git reset --hard ORIG_HEAD
However, this last command can be dangerous in some cases—never
throw away a commit you have already committed if that commit may
itself have been merged into another branch, as doing so may confuse
further merges.
Fast-forward merges
There is one special case not mentioned above, which is treated
differently. Normally, a merge results in a merge commit, with two
parents, one pointing at each of the two lines of development that
were merged.
However, if the current branch is an ancestor of the other—so every commit
present in the current branch is already contained in the other branch—then Git
just performs a «fast-forward»; the head of the current branch is moved forward
to point at the head of the merged-in branch, without any new commits being
created.
Fixing mistakes
If you’ve messed up the working tree, but haven’t yet committed your
mistake, you can return the entire working tree to the last committed
state with
$ git restore --staged --worktree :/
If you make a commit that you later wish you hadn’t, there are two
fundamentally different ways to fix the problem:
-
You can create a new commit that undoes whatever was done
by the old commit. This is the correct thing if your
mistake has already been made public. -
You can go back and modify the old commit. You should
never do this if you have already made the history public;
Git does not normally expect the «history» of a project to
change, and cannot correctly perform repeated merges from
a branch that has had its history changed.
Fixing a mistake with a new commit
Creating a new commit that reverts an earlier change is very easy;
just pass the git-revert[1] command a reference to the bad
commit; for example, to revert the most recent commit:
This will create a new commit which undoes the change in HEAD. You
will be given a chance to edit the commit message for the new commit.
You can also revert an earlier change, for example, the next-to-last:
In this case Git will attempt to undo the old change while leaving
intact any changes made since then. If more recent changes overlap
with the changes to be reverted, then you will be asked to fix
conflicts manually, just as in the case of resolving a merge.
Fixing a mistake by rewriting history
If the problematic commit is the most recent commit, and you have not
yet made that commit public, then you may just
destroy it using git reset
.
Alternatively, you
can edit the working directory and update the index to fix your
mistake, just as if you were going to create a
new commit, then run
which will replace the old commit by a new commit incorporating your
changes, giving you a chance to edit the old commit message first.
Again, you should never do this to a commit that may already have
been merged into another branch; use git-revert[1] instead in
that case.
It is also possible to replace commits further back in the history, but
this is an advanced topic to be left for
another chapter.
Checking out an old version of a file
In the process of undoing a previous bad change, you may find it
useful to check out an older version of a particular file using
git-restore[1]. The command
$ git restore --source=HEAD^ path/to/file
replaces path/to/file by the contents it had in the commit HEAD^, and
also updates the index to match. It does not change branches.
If you just want to look at an old version of the file, without
modifying the working directory, you can do that with
git-show[1]:
$ git show HEAD^:path/to/file
which will display the given version of the file.
Temporarily setting aside work in progress
While you are in the middle of working on something complicated, you
find an unrelated but obvious and trivial bug. You would like to fix it
before continuing. You can use git-stash[1] to save the current
state of your work, and after fixing the bug (or, optionally after doing
so on a different branch and then coming back), unstash the
work-in-progress changes.
$ git stash push -m "work in progress for foo feature"
This command will save your changes away to the stash
, and
reset your working tree and the index to match the tip of your
current branch. Then you can make your fix as usual.
... edit and test ... $ git commit -a -m "blorpl: typofix"
After that, you can go back to what you were working on with
git stash pop
:
Ensuring good performance
On large repositories, Git depends on compression to keep the history
information from taking up too much space on disk or in memory. Some
Git commands may automatically run git-gc[1], so you don’t
have to worry about running it manually. However, compressing a large
repository may take a while, so you may want to call gc
explicitly
to avoid automatic compression kicking in when it is not convenient.
Ensuring reliability
Checking the repository for corruption
The git-fsck[1] command runs a number of self-consistency checks
on the repository, and reports on any problems. This may take some
time.
$ git fsck dangling commit 7281251ddd2a61e38657c827739c57015671a6b3 dangling commit 2706a059f258c6b245f298dc4ff2ccd30ec21a63 dangling commit 13472b7c4b80851a1bc551779171dcb03655e9b5 dangling blob 218761f9d90712d37a9c5e36f406f92202db07eb dangling commit bf093535a34a4d35731aa2bd90fe6b176302f14f dangling commit 8e4bec7f2ddaa268bef999853c25755452100f8e dangling tree d50bb86186bf27b681d25af89d3b5b68382e4085 dangling tree b24c2473f1fd3d91352a624795be026d64c8841f ...
You will see informational messages on dangling objects. They are objects
that still exist in the repository but are no longer referenced by any of
your branches, and can (and will) be removed after a while with gc
.
You can run git fsck --no-dangling
to suppress these messages, and still
view real errors.
Recovering lost changes
Reflogs
Say you modify a branch with git reset --hard
,
and then realize that the branch was the only reference you had to
that point in history.
Fortunately, Git also keeps a log, called a «reflog», of all the
previous values of each branch. So in this case you can still find the
old history using, for example,
This lists the commits reachable from the previous version of the
master
branch head. This syntax can be used with any Git command
that accepts a commit, not just with git log
. Some other examples:
$ git show master@{2} # See where the branch pointed 2, $ git show master@{3} # 3, ... changes ago. $ gitk master@{yesterday} # See where it pointed yesterday, $ gitk master@{"1 week ago"} # ... or last week $ git log --walk-reflogs master # show reflog entries for master
A separate reflog is kept for the HEAD, so
$ git show HEAD@{"1 week ago"}
will show what HEAD pointed to one week ago, not what the current branch
pointed to one week ago. This allows you to see the history of what
you’ve checked out.
The reflogs are kept by default for 30 days, after which they may be
pruned. See git-reflog[1] and git-gc[1] to learn
how to control this pruning, and see the «SPECIFYING REVISIONS»
section of gitrevisions[7] for details.
Note that the reflog history is very different from normal Git history.
While normal history is shared by every repository that works on the
same project, the reflog history is not shared: it tells you only about
how the branches in your local repository have changed over time.
Examining dangling objects
In some situations the reflog may not be able to save you. For example,
suppose you delete a branch, then realize you need the history it
contained. The reflog is also deleted; however, if you have not yet
pruned the repository, then you may still be able to find the lost
commits in the dangling objects that git fsck
reports. See
Dangling objects for the details.
$ git fsck dangling commit 7281251ddd2a61e38657c827739c57015671a6b3 dangling commit 2706a059f258c6b245f298dc4ff2ccd30ec21a63 dangling commit 13472b7c4b80851a1bc551779171dcb03655e9b5 ...
You can examine
one of those dangling commits with, for example,
$ gitk 7281251ddd --not --all
which does what it sounds like: it says that you want to see the commit
history that is described by the dangling commit(s), but not the
history that is described by all your existing branches and tags. Thus
you get exactly the history reachable from that commit that is lost.
(And notice that it might not be just one commit: we only report the
«tip of the line» as being dangling, but there might be a whole deep
and complex commit history that was dropped.)
If you decide you want the history back, you can always create a new
reference pointing to it, for example, a new branch:
$ git branch recovered-branch 7281251ddd
Other types of dangling objects (blobs and trees) are also possible, and
dangling objects can arise in other situations.
Sharing development with others
Getting updates with git pull
After you clone a repository and commit a few changes of your own, you
may wish to check the original repository for updates and merge them
into your own work.
We have already seen how to
keep remote-tracking branches up to date with git-fetch[1],
and how to merge two branches. So you can merge in changes from the
original repository’s master branch with:
$ git fetch $ git merge origin/master
However, the git-pull[1] command provides a way to do this in
one step:
In fact, if you have master
checked out, then this branch has been
configured by git clone
to get changes from the HEAD branch of the
origin repository. So often you can
accomplish the above with just a simple
This command will fetch changes from the remote branches to your
remote-tracking branches origin/*
, and merge the default branch into
the current branch.
More generally, a branch that is created from a remote-tracking branch
will pull
by default from that branch. See the descriptions of the
branch.<name>.remote
and branch.<name>.merge
options in
git-config[1], and the discussion of the --track
option in
git-checkout[1], to learn how to control these defaults.
In addition to saving you keystrokes, git pull
also helps you by
producing a default commit message documenting the branch and
repository that you pulled from.
(But note that no such commit will be created in the case of a
fast-forward; instead, your branch will just be
updated to point to the latest commit from the upstream branch.)
The git pull
command can also be given .
as the «remote» repository,
in which case it just merges in a branch from the current repository; so
the commands
$ git pull . branch $ git merge branch
are roughly equivalent.
Submitting patches to a project
If you just have a few changes, the simplest way to submit them may
just be to send them as patches in email:
$ git format-patch origin
will produce a numbered series of files in the current directory, one
for each patch in the current branch but not in origin/HEAD
.
git format-patch
can include an initial «cover letter». You can insert
commentary on individual patches after the three dash line which
format-patch
places after the commit message but before the patch
itself. If you use git notes
to track your cover letter material,
git format-patch --notes
will include the commit’s notes in a similar
manner.
You can then import these into your mail client and send them by
hand. However, if you have a lot to send at once, you may prefer to
use the git-send-email[1] script to automate the process.
Consult the mailing list for your project first to determine
their requirements for submitting patches.
Importing patches to a project
Git also provides a tool called git-am[1] (am stands for
«apply mailbox»), for importing such an emailed series of patches.
Just save all of the patch-containing messages, in order, into a
single mailbox file, say patches.mbox
, then run
Git will apply each patch in order; if any conflicts are found, it
will stop, and you can fix the conflicts as described in
«Resolving a merge». (The -3
option tells
Git to perform a merge; if you would prefer it just to abort and
leave your tree and index untouched, you may omit that option.)
Once the index is updated with the results of the conflict
resolution, instead of creating a new commit, just run
and Git will create the commit for you and continue applying the
remaining patches from the mailbox.
The final result will be a series of commits, one for each patch in
the original mailbox, with authorship and commit log message each
taken from the message containing each patch.
Public Git repositories
Another way to submit changes to a project is to tell the maintainer
of that project to pull the changes from your repository using
git-pull[1]. In the section «Getting updates with git pull
» we described this as a way to get
updates from the «main» repository, but it works just as well in the
other direction.
If you and the maintainer both have accounts on the same machine, then
you can just pull changes from each other’s repositories directly;
commands that accept repository URLs as arguments will also accept a
local directory name:
$ git clone /path/to/repository $ git pull /path/to/other/repository
or an ssh URL:
$ git clone ssh://yourhost/~you/repository
For projects with few developers, or for synchronizing a few private
repositories, this may be all you need.
However, the more common way to do this is to maintain a separate public
repository (usually on a different host) for others to pull changes
from. This is usually more convenient, and allows you to cleanly
separate private work in progress from publicly visible work.
You will continue to do your day-to-day work in your personal
repository, but periodically «push» changes from your personal
repository into your public repository, allowing other developers to
pull from that repository. So the flow of changes, in a situation
where there is one other developer with a public repository, looks
like this:
you push your personal repo ------------------> your public repo ^ | | | | you pull | they pull | | | | | they push V their public repo <------------------- their repo
We explain how to do this in the following sections.
Setting up a public repository
Assume your personal repository is in the directory ~/proj
. We
first create a new clone of the repository and tell git daemon
that it
is meant to be public:
$ git clone --bare ~/proj proj.git $ touch proj.git/git-daemon-export-ok
The resulting directory proj.git contains a «bare» git repository—it is
just the contents of the .git
directory, without any files checked out
around it.
Next, copy proj.git
to the server where you plan to host the
public repository. You can use scp, rsync, or whatever is most
convenient.
Exporting a Git repository via the Git protocol
This is the preferred method.
If someone else administers the server, they should tell you what
directory to put the repository in, and what git://
URL it will
appear at. You can then skip to the section
«Pushing changes to a public
repository», below.
Otherwise, all you need to do is start git-daemon[1]; it will
listen on port 9418. By default, it will allow access to any directory
that looks like a Git directory and contains the magic file
git-daemon-export-ok. Passing some directory paths as git daemon
arguments will further restrict the exports to those paths.
You can also run git daemon
as an inetd service; see the
git-daemon[1] man page for details. (See especially the
examples section.)
Exporting a git repository via HTTP
The Git protocol gives better performance and reliability, but on a
host with a web server set up, HTTP exports may be simpler to set up.
All you need to do is place the newly created bare Git repository in
a directory that is exported by the web server, and make some
adjustments to give web clients some extra information they need:
$ mv proj.git /home/you/public_html/proj.git $ cd proj.git $ git --bare update-server-info $ mv hooks/post-update.sample hooks/post-update
Advertise the URL of proj.git
. Anybody else should then be able to
clone or pull from that URL, for example with a command line like:
$ git clone http://yourserver.com/~you/proj.git
(See also
setup-git-server-over-http
for a slightly more sophisticated setup using WebDAV which also
allows pushing over HTTP.)
Pushing changes to a public repository
Note that the two techniques outlined above (exporting via
http or git) allow other
maintainers to fetch your latest changes, but they do not allow write
access, which you will need to update the public repository with the
latest changes created in your private repository.
The simplest way to do this is using git-push[1] and ssh; to
update the remote branch named master
with the latest state of your
branch named master
, run
$ git push ssh://yourserver.com/~you/proj.git master:master
or just
$ git push ssh://yourserver.com/~you/proj.git master
As with git fetch
, git push
will complain if this does not result in a
fast-forward; see the following section for details on
handling this case.
Note that the target of a push
is normally a
bare repository. You can also push to a
repository that has a checked-out working tree, but a push to update the
currently checked-out branch is denied by default to prevent confusion.
See the description of the receive.denyCurrentBranch option
in git-config[1] for details.
As with git fetch
, you may also set up configuration options to
save typing; so, for example:
$ git remote add public-repo ssh://yourserver.com/~you/proj.git
adds the following to .git/config
:
[remote "public-repo"] url = yourserver.com:proj.git fetch = +refs/heads/*:refs/remotes/example/*
which lets you do the same push with just
$ git push public-repo master
See the explanations of the remote.<name>.url
,
branch.<name>.remote
, and remote.<name>.push
options in
git-config[1] for details.
What to do when a push fails
If a push would not result in a fast-forward of the
remote branch, then it will fail with an error like:
! [rejected] master -> master (non-fast-forward) error: failed to push some refs to '...' hint: Updates were rejected because the tip of your current branch is behind hint: its remote counterpart. Integrate the remote changes (e.g. hint: 'git pull ...') before pushing again. hint: See the 'Note about fast-forwards' in 'git push --help' for details.
This can happen, for example, if you:
-
use
git reset --hard
to remove already-published commits, or -
use
git commit --amend
to replace already-published commits
(as in Fixing a mistake by rewriting history), or -
use
git rebase
to rebase any already-published commits (as
in Keeping a patch series up to date using git rebase).
You may force git push
to perform the update anyway by preceding the
branch name with a plus sign:
$ git push ssh://yourserver.com/~you/proj.git +master
Note the addition of the +
sign. Alternatively, you can use the
-f
flag to force the remote update, as in:
$ git push -f ssh://yourserver.com/~you/proj.git master
Normally whenever a branch head in a public repository is modified, it
is modified to point to a descendant of the commit that it pointed to
before. By forcing a push in this situation, you break that convention.
(See Problems with rewriting history.)
Nevertheless, this is a common practice for people that need a simple
way to publish a work-in-progress patch series, and it is an acceptable
compromise as long as you warn other developers that this is how you
intend to manage the branch.
It’s also possible for a push to fail in this way when other people have
the right to push to the same repository. In that case, the correct
solution is to retry the push after first updating your work: either by a
pull, or by a fetch followed by a rebase; see the
next section and
gitcvs-migration[7] for more.
Setting up a shared repository
Another way to collaborate is by using a model similar to that
commonly used in CVS, where several developers with special rights
all push to and pull from a single shared repository. See
gitcvs-migration[7] for instructions on how to
set this up.
However, while there is nothing wrong with Git’s support for shared
repositories, this mode of operation is not generally recommended,
simply because the mode of collaboration that Git supports—by
exchanging patches and pulling from public repositories—has so many
advantages over the central shared repository:
-
Git’s ability to quickly import and merge patches allows a
single maintainer to process incoming changes even at very
high rates. And when that becomes too much,git pull
provides
an easy way for that maintainer to delegate this job to other
maintainers while still allowing optional review of incoming
changes. -
Since every developer’s repository has the same complete copy
of the project history, no repository is special, and it is
trivial for another developer to take over maintenance of a
project, either by mutual agreement, or because a maintainer
becomes unresponsive or difficult to work with. -
The lack of a central group of «committers» means there is
less need for formal decisions about who is «in» and who is
«out».
Allowing web browsing of a repository
The gitweb cgi script provides users an easy way to browse your
project’s revisions, file contents and logs without having to install
Git. Features like RSS/Atom feeds and blame/annotation details may
optionally be enabled.
The git-instaweb[1] command provides a simple way to start
browsing the repository using gitweb. The default server when using
instaweb is lighttpd.
See the file gitweb/INSTALL in the Git source tree and
gitweb[1] for instructions on details setting up a permanent
installation with a CGI or Perl capable server.
How to get a Git repository with minimal history
A shallow clone, with its truncated
history, is useful when one is interested only in recent history
of a project and getting full history from the upstream is
expensive.
A shallow clone is created by specifying
the git-clone[1] --depth
switch. The depth can later be
changed with the git-fetch[1] --depth
switch, or full
history restored with --unshallow
.
Merging inside a shallow clone will work as long
as a merge base is in the recent history.
Otherwise, it will be like merging unrelated histories and may
have to result in huge conflicts. This limitation may make such
a repository unsuitable to be used in merge based workflows.
Examples
Maintaining topic branches for a Linux subsystem maintainer
This describes how Tony Luck uses Git in his role as maintainer of the
IA64 architecture for the Linux kernel.
He uses two public branches:
-
A «test» tree into which patches are initially placed so that they
can get some exposure when integrated with other ongoing development.
This tree is available to Andrew for pulling into -mm whenever he
wants. -
A «release» tree into which tested patches are moved for final sanity
checking, and as a vehicle to send them upstream to Linus (by sending
him a «please pull» request.)
He also uses a set of temporary branches («topic branches»), each
containing a logical grouping of patches.
To set this up, first create your work tree by cloning Linus’s public
tree:
$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git work $ cd work
Linus’s tree will be stored in the remote-tracking branch named origin/master,
and can be updated using git-fetch[1]; you can track other
public trees using git-remote[1] to set up a «remote» and
git-fetch[1] to keep them up to date; see
Repositories and Branches.
Now create the branches in which you are going to work; these start out
at the current tip of origin/master branch, and should be set up (using
the --track
option to git-branch[1]) to merge changes in from
Linus by default.
$ git branch --track test origin/master $ git branch --track release origin/master
These can be easily kept up to date using git-pull[1].
$ git switch test && git pull $ git switch release && git pull
Important note! If you have any local changes in these branches, then
this merge will create a commit object in the history (with no local
changes Git will simply do a «fast-forward» merge). Many people dislike
the «noise» that this creates in the Linux history, so you should avoid
doing this capriciously in the release
branch, as these noisy commits
will become part of the permanent history when you ask Linus to pull
from the release branch.
A few configuration variables (see git-config[1]) can
make it easy to push both branches to your public tree. (See
Setting up a public repository.)
$ cat >> .git/config <<EOF [remote "mytree"] url = master.kernel.org:/pub/scm/linux/kernel/git/aegl/linux.git push = release push = test EOF
Then you can push both the test and release trees using
git-push[1]:
or push just one of the test and release branches using:
or
$ git push mytree release
Now to apply some patches from the community. Think of a short
snappy name for a branch to hold this patch (or related group of
patches), and create a new branch from a recent stable tag of
Linus’s branch. Picking a stable base for your branch will:
1) help you: by avoiding inclusion of unrelated and perhaps lightly
tested changes
2) help future bug hunters that use git bisect
to find problems
$ git switch -c speed-up-spinlocks v2.6.35
Now you apply the patch(es), run some tests, and commit the change(s). If
the patch is a multi-part series, then you should apply each as a separate
commit to this branch.
$ ... patch ... test ... commit [ ... patch ... test ... commit ]*
When you are happy with the state of this change, you can merge it into the
«test» branch in preparation to make it public:
$ git switch test && git merge speed-up-spinlocks
It is unlikely that you would have any conflicts here … but you might if you
spent a while on this step and had also pulled new versions from upstream.
Sometime later when enough time has passed and testing done, you can pull the
same branch into the release
tree ready to go upstream. This is where you
see the value of keeping each patch (or patch series) in its own branch. It
means that the patches can be moved into the release
tree in any order.
$ git switch release && git merge speed-up-spinlocks
After a while, you will have a number of branches, and despite the
well chosen names you picked for each of them, you may forget what
they are for, or what status they are in. To get a reminder of what
changes are in a specific branch, use:
$ git log linux..branchname | git shortlog
To see whether it has already been merged into the test or release branches,
use:
$ git log test..branchname
or
$ git log release..branchname
(If this branch has not yet been merged, you will see some log entries.
If it has been merged, then there will be no output.)
Once a patch completes the great cycle (moving from test to release,
then pulled by Linus, and finally coming back into your local
origin/master
branch), the branch for this change is no longer needed.
You detect this when the output from:
$ git log origin..branchname
is empty. At this point the branch can be deleted:
$ git branch -d branchname
Some changes are so trivial that it is not necessary to create a separate
branch and then merge into each of the test and release branches. For
these changes, just apply directly to the release
branch, and then
merge that into the test
branch.
After pushing your work to mytree
, you can use
git-request-pull[1] to prepare a «please pull» request message
to send to Linus:
$ git push mytree $ git request-pull origin mytree release
Here are some of the scripts that simplify all this even further.
==== update script ==== # Update a branch in my Git tree. If the branch to be updated # is origin, then pull from kernel.org. Otherwise merge # origin/master branch into test|release branch case "$1" in test|release) git checkout $1 && git pull . origin ;; origin) before=$(git rev-parse refs/remotes/origin/master) git fetch origin after=$(git rev-parse refs/remotes/origin/master) if [ $before != $after ] then git log $before..$after | git shortlog fi ;; *) echo "usage: $0 origin|test|release" 1>&2 exit 1 ;; esac
==== merge script ==== # Merge a branch into either the test or release branch pname=$0 usage() { echo "usage: $pname branch test|release" 1>&2 exit 1 } git show-ref -q --verify -- refs/heads/"$1" || { echo "Can't see branch <$1>" 1>&2 usage } case "$2" in test|release) if [ $(git log $2..$1 | wc -c) -eq 0 ] then echo $1 already merged into $2 1>&2 exit 1 fi git checkout $2 && git pull . $1 ;; *) usage ;; esac
==== status script ==== # report on status of my ia64 Git tree gb=$(tput setab 2) rb=$(tput setab 1) restore=$(tput setab 9) if [ `git rev-list test..release | wc -c` -gt 0 ] then echo $rb Warning: commits in release that are not in test $restore git log test..release fi for branch in `git show-ref --heads | sed 's|^.*/||'` do if [ $branch = test -o $branch = release ] then continue fi echo -n $gb ======= $branch ====== $restore " " status= for ref in test release origin/master do if [ `git rev-list $ref..$branch | wc -c` -gt 0 ] then status=$status${ref:0:1} fi done case $status in trl) echo $rb Need to pull into test $restore ;; rl) echo "In test" ;; l) echo "Waiting for linus" ;; "") echo $rb All done $restore ;; *) echo $rb "<$status>" $restore ;; esac git log origin/master..$branch | git shortlog done
Rewriting history and maintaining patch series
Normally commits are only added to a project, never taken away or
replaced. Git is designed with this assumption, and violating it will
cause Git’s merge machinery (for example) to do the wrong thing.
However, there is a situation in which it can be useful to violate this
assumption.
Creating the perfect patch series
Suppose you are a contributor to a large project, and you want to add a
complicated feature, and to present it to the other developers in a way
that makes it easy for them to read your changes, verify that they are
correct, and understand why you made each change.
If you present all of your changes as a single patch (or commit), they
may find that it is too much to digest all at once.
If you present them with the entire history of your work, complete with
mistakes, corrections, and dead ends, they may be overwhelmed.
So the ideal is usually to produce a series of patches such that:
-
Each patch can be applied in order.
-
Each patch includes a single logical change, together with a
message explaining the change. -
No patch introduces a regression: after applying any initial
part of the series, the resulting project still compiles and
works, and has no bugs that it didn’t have before. -
The complete series produces the same end result as your own
(probably much messier!) development process did.
We will introduce some tools that can help you do this, explain how to
use them, and then explain some of the problems that can arise because
you are rewriting history.
Keeping a patch series up to date using git rebase
Suppose that you create a branch mywork
on a remote-tracking branch
origin
, and create some commits on top of it:
$ git switch -c mywork origin $ vi file.txt $ git commit $ vi otherfile.txt $ git commit ...
You have performed no merges into mywork, so it is just a simple linear
sequence of patches on top of origin
:
o--o--O <-- origin a--b--c <-- mywork
Some more interesting work has been done in the upstream project, and
origin
has advanced:
o--o--O--o--o--o <-- origin a--b--c <-- mywork
At this point, you could use pull
to merge your changes back in;
the result would create a new merge commit, like this:
o--o--O--o--o--o <-- origin a--b--c--m <-- mywork
However, if you prefer to keep the history in mywork a simple series of
commits without any merges, you may instead choose to use
git-rebase[1]:
$ git switch mywork $ git rebase origin
This will remove each of your commits from mywork, temporarily saving
them as patches (in a directory named .git/rebase-apply
), update mywork to
point at the latest version of origin, then apply each of the saved
patches to the new mywork. The result will look like:
o--o--O--o--o--o <-- origin a'--b'--c' <-- mywork
In the process, it may discover conflicts. In that case it will stop
and allow you to fix the conflicts; after fixing conflicts, use git add
to update the index with those contents, and then, instead of
running git commit
, just run
and Git will continue applying the rest of the patches.
At any point you may use the --abort
option to abort this process and
return mywork to the state it had before you started the rebase:
If you need to reorder or edit a number of commits in a branch, it may
be easier to use git rebase -i
, which allows you to reorder and
squash commits, as well as marking them for individual editing during
the rebase. See Using interactive rebases for details, and
Reordering or selecting from a patch series for alternatives.
Rewriting a single commit
We saw in Fixing a mistake by rewriting history that you can replace the
most recent commit using
which will replace the old commit by a new commit incorporating your
changes, giving you a chance to edit the old commit message first.
This is useful for fixing typos in your last commit, or for adjusting
the patch contents of a poorly staged commit.
If you need to amend commits from deeper in your history, you can
use interactive rebase’s edit
instruction.
Reordering or selecting from a patch series
Sometimes you want to edit a commit deeper in your history. One
approach is to use git format-patch
to create a series of patches
and then reset the state to before the patches:
$ git format-patch origin $ git reset --hard origin
Then modify, reorder, or eliminate patches as needed before applying
them again with git-am[1]:
Using interactive rebases
You can also edit a patch series with an interactive rebase. This is
the same as reordering a patch series using
format-patch
, so use whichever interface you like best.
Rebase your current HEAD on the last commit you want to retain as-is.
For example, if you want to reorder the last 5 commits, use:
This will open your editor with a list of steps to be taken to perform
your rebase.
pick deadbee The oneline of this commit pick fa1afe1 The oneline of the next commit ... # Rebase c0ffeee..deadbee onto c0ffeee # # Commands: # p, pick = use commit # r, reword = use commit, but edit the commit message # e, edit = use commit, but stop for amending # s, squash = use commit, but meld into previous commit # f, fixup = like "squash", but discard this commit's log message # x, exec = run command (the rest of the line) using shell # # These lines can be re-ordered; they are executed from top to bottom. # # If you remove a line here THAT COMMIT WILL BE LOST. # # However, if you remove everything, the rebase will be aborted. # # Note that empty commits are commented out
As explained in the comments, you can reorder commits, squash them
together, edit commit messages, etc. by editing the list. Once you
are satisfied, save the list and close your editor, and the rebase
will begin.
The rebase will stop where pick
has been replaced with edit
or
when a step in the list fails to mechanically resolve conflicts and
needs your help. When you are done editing and/or resolving conflicts
you can continue with git rebase --continue
. If you decide that
things are getting too hairy, you can always bail out with git rebase
. Even after the rebase is complete, you can still recover
--abort
the original branch by using the reflog.
For a more detailed discussion of the procedure and additional tips,
see the «INTERACTIVE MODE» section of git-rebase[1].
Other tools
There are numerous other tools, such as StGit, which exist for the
purpose of maintaining a patch series. These are outside of the scope of
this manual.
Problems with rewriting history
The primary problem with rewriting the history of a branch has to do
with merging. Suppose somebody fetches your branch and merges it into
their branch, with a result something like this:
o--o--O--o--o--o <-- origin t--t--t--m <-- their branch:
Then suppose you modify the last three commits:
o--o--o <-- new head of origin / o--o--O--o--o--o <-- old head of origin
If we examined all this history together in one repository, it will
look like:
o--o--o <-- new head of origin / o--o--O--o--o--o <-- old head of origin t--t--t--m <-- their branch:
Git has no way of knowing that the new head is an updated version of
the old head; it treats this situation exactly the same as it would if
two developers had independently done the work on the old and new heads
in parallel. At this point, if someone attempts to merge the new head
in to their branch, Git will attempt to merge together the two (old and
new) lines of development, instead of trying to replace the old by the
new. The results are likely to be unexpected.
You may still choose to publish branches whose history is rewritten,
and it may be useful for others to be able to fetch those branches in
order to examine or test them, but they should not attempt to pull such
branches into their own work.
For true distributed development that supports proper merging,
published branches should never be rewritten.
Why bisecting merge commits can be harder than bisecting linear history
The git-bisect[1] command correctly handles history that
includes merge commits. However, when the commit that it finds is a
merge commit, the user may need to work harder than usual to figure out
why that commit introduced a problem.
Imagine this history:
---Z---o---X---...---o---A---C---D / o---o---Y---...---o---B
Suppose that on the upper line of development, the meaning of one
of the functions that exists at Z is changed at commit X. The
commits from Z leading to A change both the function’s
implementation and all calling sites that exist at Z, as well
as new calling sites they add, to be consistent. There is no
bug at A.
Suppose that in the meantime on the lower line of development somebody
adds a new calling site for that function at commit Y. The
commits from Z leading to B all assume the old semantics of that
function and the callers and the callee are consistent with each
other. There is no bug at B, either.
Suppose further that the two development lines merge cleanly at C,
so no conflict resolution is required.
Nevertheless, the code at C is broken, because the callers added
on the lower line of development have not been converted to the new
semantics introduced on the upper line of development. So if all
you know is that D is bad, that Z is good, and that
git-bisect[1] identifies C as the culprit, how will you
figure out that the problem is due to this change in semantics?
When the result of a git bisect
is a non-merge commit, you should
normally be able to discover the problem by examining just that commit.
Developers can make this easy by breaking their changes into small
self-contained commits. That won’t help in the case above, however,
because the problem isn’t obvious from examination of any single
commit; instead, a global view of the development is required. To
make matters worse, the change in semantics in the problematic
function may be just one small part of the changes in the upper
line of development.
On the other hand, if instead of merging at C you had rebased the
history between Z to B on top of A, you would have gotten this
linear history:
---Z---o---X--...---o---A---o---o---Y*--...---o---B*--D*
Bisecting between Z and D* would hit a single culprit commit Y*,
and understanding why Y* was broken would probably be easier.
Partly for this reason, many experienced Git users, even when
working on an otherwise merge-heavy project, keep the history
linear by rebasing against the latest upstream version before
publishing.
Advanced branch management
Fetching individual branches
Instead of using git-remote[1], you can also choose just
to update one branch at a time, and to store it locally under an
arbitrary name:
$ git fetch origin todo:my-todo-work
The first argument, origin
, just tells Git to fetch from the
repository you originally cloned from. The second argument tells Git
to fetch the branch named todo
from the remote repository, and to
store it locally under the name refs/heads/my-todo-work
.
You can also fetch branches from other repositories; so
$ git fetch git://example.com/proj.git master:example-master
will create a new branch named example-master
and store in it the
branch named master
from the repository at the given URL. If you
already have a branch named example-master, it will attempt to
fast-forward to the commit given by example.com’s
master branch. In more detail:
git fetch and fast-forwards
In the previous example, when updating an existing branch, git fetch
checks to make sure that the most recent commit on the remote
branch is a descendant of the most recent commit on your copy of the
branch before updating your copy of the branch to point at the new
commit. Git calls this process a fast-forward.
A fast-forward looks something like this:
o--o--o--o <-- old head of the branch o--o--o <-- new head of the branch
In some cases it is possible that the new head will not actually be
a descendant of the old head. For example, the developer may have
realized a serious mistake was made and decided to backtrack,
resulting in a situation like:
o--o--o--o--a--b <-- old head of the branch o--o--o <-- new head of the branch
In this case, git fetch
will fail, and print out a warning.
In that case, you can still force Git to update to the new head, as
described in the following section. However, note that in the
situation above this may mean losing the commits labeled a
and b
,
unless you’ve already created a reference of your own pointing to
them.
Forcing git fetch to do non-fast-forward updates
If git fetch fails because the new head of a branch is not a
descendant of the old head, you may force the update with:
$ git fetch git://example.com/proj.git +master:refs/remotes/example/master
Note the addition of the +
sign. Alternatively, you can use the -f
flag to force updates of all the fetched branches, as in:
Be aware that commits that the old version of example/master pointed at
may be lost, as we saw in the previous section.
Configuring remote-tracking branches
We saw above that origin
is just a shortcut to refer to the
repository that you originally cloned from. This information is
stored in Git configuration variables, which you can see using
git-config[1]:
$ git config -l core.repositoryformatversion=0 core.filemode=true core.logallrefupdates=true remote.origin.url=git://git.kernel.org/pub/scm/git/git.git remote.origin.fetch=+refs/heads/*:refs/remotes/origin/* branch.master.remote=origin branch.master.merge=refs/heads/master
If there are other repositories that you also use frequently, you can
create similar configuration options to save typing; for example,
$ git remote add example git://example.com/proj.git
adds the following to .git/config
:
[remote "example"] url = git://example.com/proj.git fetch = +refs/heads/*:refs/remotes/example/*
Also note that the above configuration can be performed by directly
editing the file .git/config
instead of using git-remote[1].
After configuring the remote, the following three commands will do the
same thing:
$ git fetch git://example.com/proj.git +refs/heads/*:refs/remotes/example/* $ git fetch example +refs/heads/*:refs/remotes/example/* $ git fetch example
See git-config[1] for more details on the configuration
options mentioned above and git-fetch[1] for more details on
the refspec syntax.
Git concepts
Git is built on a small number of simple but powerful ideas. While it
is possible to get things done without understanding them, you will find
Git much more intuitive if you do.
We start with the most important, the object
database and the index.
The Object Database
We already saw in Understanding History: Commits that all commits are stored
under a 40-digit «object name». In fact, all the information needed to
represent the history of a project is stored in objects with such names.
In each case the name is calculated by taking the SHA-1 hash of the
contents of the object. The SHA-1 hash is a cryptographic hash function.
What that means to us is that it is impossible to find two different
objects with the same name. This has a number of advantages; among
others:
-
Git can quickly determine whether two objects are identical or not,
just by comparing names. -
Since object names are computed the same way in every repository, the
same content stored in two repositories will always be stored under
the same name. -
Git can detect errors when it reads an object, by checking that the
object’s name is still the SHA-1 hash of its contents.
(See Object storage format for the details of the object formatting and
SHA-1 calculation.)
There are four different types of objects: «blob», «tree», «commit», and
«tag».
-
A «blob» object is used to store file data.
-
A «tree» object ties one or more
«blob» objects into a directory structure. In addition, a tree object
can refer to other tree objects, thus creating a directory hierarchy. -
A «commit» object ties such directory hierarchies
together into a directed acyclic graph of revisions—each
commit contains the object name of exactly one tree designating the
directory hierarchy at the time of the commit. In addition, a commit
refers to «parent» commit objects that describe the history of how we
arrived at that directory hierarchy. -
A «tag» object symbolically identifies and can be
used to sign other objects. It contains the object name and type of
another object, a symbolic name (of course!) and, optionally, a
signature.
The object types in some more detail:
Commit Object
The «commit» object links a physical state of a tree with a description
of how we got there and why. Use the --pretty=raw
option to
git-show[1] or git-log[1] to examine your favorite
commit:
$ git show -s --pretty=raw 2be7fcb476 commit 2be7fcb4764f2dbcee52635b91fedb1b3dcf7ab4 tree fb3a8bdd0ceddd019615af4d57a53f43d8cee2bf parent 257a84d9d02e90447b149af58b271c19405edb6a author Dave Watson <dwatson@mimvista.com> 1187576872 -0400 committer Junio C Hamano <gitster@pobox.com> 1187591163 -0700 Fix misspelling of 'suppress' in docs Signed-off-by: Junio C Hamano <gitster@pobox.com>
As you can see, a commit is defined by:
-
a tree: The SHA-1 name of a tree object (as defined below), representing
the contents of a directory at a certain point in time. -
parent(s): The SHA-1 name(s) of some number of commits which represent the
immediately previous step(s) in the history of the project. The
example above has one parent; merge commits may have more than
one. A commit with no parents is called a «root» commit, and
represents the initial revision of a project. Each project must have
at least one root. A project can also have multiple roots, though
that isn’t common (or necessarily a good idea). -
an author: The name of the person responsible for this change, together
with its date. -
a committer: The name of the person who actually created the commit,
with the date it was done. This may be different from the author, for
example, if the author was someone who wrote a patch and emailed it
to the person who used it to create the commit. -
a comment describing this commit.
Note that a commit does not itself contain any information about what
actually changed; all changes are calculated by comparing the contents
of the tree referred to by this commit with the trees associated with
its parents. In particular, Git does not attempt to record file renames
explicitly, though it can identify cases where the existence of the same
file data at changing paths suggests a rename. (See, for example, the
-M
option to git-diff[1]).
A commit is usually created by git-commit[1], which creates a
commit whose parent is normally the current HEAD, and whose tree is
taken from the content currently stored in the index.
Tree Object
The ever-versatile git-show[1] command can also be used to
examine tree objects, but git-ls-tree[1] will give you more
details:
$ git ls-tree fb3a8bdd0ce 100644 blob 63c918c667fa005ff12ad89437f2fdc80926e21c .gitignore 100644 blob 5529b198e8d14decbe4ad99db3f7fb632de0439d .mailmap 100644 blob 6ff87c4664981e4397625791c8ea3bbb5f2279a3 COPYING 040000 tree 2fb783e477100ce076f6bf57e4a6f026013dc745 Documentation 100755 blob 3c0032cec592a765692234f1cba47dfdcc3a9200 GIT-VERSION-GEN 100644 blob 289b046a443c0647624607d471289b2c7dcd470b INSTALL 100644 blob 4eb463797adc693dc168b926b6932ff53f17d0b1 Makefile 100644 blob 548142c327a6790ff8821d67c2ee1eff7a656b52 README ...
As you can see, a tree object contains a list of entries, each with a
mode, object type, SHA-1 name, and name, sorted by name. It represents
the contents of a single directory tree.
The object type may be a blob, representing the contents of a file, or
another tree, representing the contents of a subdirectory. Since trees
and blobs, like all other objects, are named by the SHA-1 hash of their
contents, two trees have the same SHA-1 name if and only if their
contents (including, recursively, the contents of all subdirectories)
are identical. This allows Git to quickly determine the differences
between two related tree objects, since it can ignore any entries with
identical object names.
(Note: in the presence of submodules, trees may also have commits as
entries. See Submodules for documentation.)
Note that the files all have mode 644 or 755: Git actually only pays
attention to the executable bit.
Blob Object
You can use git-show[1] to examine the contents of a blob; take,
for example, the blob in the entry for COPYING
from the tree above:
$ git show 6ff87c4664 Note that the only valid version of the GPL as far as this project is concerned is _this_ particular version of the license (ie v2, not v2.2 or v3.x or whatever), unless explicitly otherwise stated. ...
A «blob» object is nothing but a binary blob of data. It doesn’t refer
to anything else or have attributes of any kind.
Since the blob is entirely defined by its data, if two files in a
directory tree (or in multiple different versions of the repository)
have the same contents, they will share the same blob object. The object
is totally independent of its location in the directory tree, and
renaming a file does not change the object that file is associated with.
Note that any tree or blob object can be examined using
git-show[1] with the <revision>:<path> syntax. This can
sometimes be useful for browsing the contents of a tree that is not
currently checked out.
Trust
If you receive the SHA-1 name of a blob from one source, and its contents
from another (possibly untrusted) source, you can still trust that those
contents are correct as long as the SHA-1 name agrees. This is because
the SHA-1 is designed so that it is infeasible to find different contents
that produce the same hash.
Similarly, you need only trust the SHA-1 name of a top-level tree object
to trust the contents of the entire directory that it refers to, and if
you receive the SHA-1 name of a commit from a trusted source, then you
can easily verify the entire history of commits reachable through
parents of that commit, and all of those contents of the trees referred
to by those commits.
So to introduce some real trust in the system, the only thing you need
to do is to digitally sign just one special note, which includes the
name of a top-level commit. Your digital signature shows others
that you trust that commit, and the immutability of the history of
commits tells others that they can trust the whole history.
In other words, you can easily validate a whole archive by just
sending out a single email that tells the people the name (SHA-1 hash)
of the top commit, and digitally sign that email using something
like GPG/PGP.
To assist in this, Git also provides the tag object…
Tag Object
A tag object contains an object, object type, tag name, the name of the
person («tagger») who created the tag, and a message, which may contain
a signature, as can be seen using git-cat-file[1]:
$ git cat-file tag v1.5.0 object 437b1b20df4b356c9342dac8d38849f24ef44f27 type commit tag v1.5.0 tagger Junio C Hamano <junkio@cox.net> 1171411200 +0000 GIT 1.5.0 -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.6 (GNU/Linux) iD8DBQBF0lGqwMbZpPMRm5oRAuRiAJ9ohBLd7s2kqjkKlq1qqC57SbnmzQCdG4ui nLE/L9aUXdWeTFPron96DLA= =2E+0 -----END PGP SIGNATURE-----
See the git-tag[1] command to learn how to create and verify tag
objects. (Note that git-tag[1] can also be used to create
«lightweight tags», which are not tag objects at all, but just simple
references whose names begin with refs/tags/
).
How Git stores objects efficiently: pack files
Newly created objects are initially created in a file named after the
object’s SHA-1 hash (stored in .git/objects
).
Unfortunately this system becomes inefficient once a project has a
lot of objects. Try this on an old project:
$ git count-objects 6930 objects, 47620 kilobytes
The first number is the number of objects which are kept in
individual files. The second is the amount of space taken up by
those «loose» objects.
You can save space and make Git faster by moving these loose objects in
to a «pack file», which stores a group of objects in an efficient
compressed format; the details of how pack files are formatted can be
found in gitformat-pack[5].
To put the loose objects into a pack, just run git repack:
$ git repack Counting objects: 6020, done. Delta compression using up to 4 threads. Compressing objects: 100% (6020/6020), done. Writing objects: 100% (6020/6020), done. Total 6020 (delta 4070), reused 0 (delta 0)
This creates a single «pack file» in .git/objects/pack/
containing all currently unpacked objects. You can then run
to remove any of the «loose» objects that are now contained in the
pack. This will also remove any unreferenced objects (which may be
created when, for example, you use git reset
to remove a commit).
You can verify that the loose objects are gone by looking at the
.git/objects
directory or by running
$ git count-objects 0 objects, 0 kilobytes
Although the object files are gone, any commands that refer to those
objects will work exactly as they did before.
The git-gc[1] command performs packing, pruning, and more for
you, so is normally the only high-level command you need.
Dangling objects
The git-fsck[1] command will sometimes complain about dangling
objects. They are not a problem.
The most common cause of dangling objects is that you’ve rebased a
branch, or you have pulled from somebody else who rebased a branch—see
Rewriting history and maintaining patch series. In that case, the old head of the original
branch still exists, as does everything it pointed to. The branch
pointer itself just doesn’t, since you replaced it with another one.
There are also other situations that cause dangling objects. For
example, a «dangling blob» may arise because you did a git add
of a
file, but then, before you actually committed it and made it part of the
bigger picture, you changed something else in that file and committed
that updated thing—the old state that you added originally ends up
not being pointed to by any commit or tree, so it’s now a dangling blob
object.
Similarly, when the «ort» merge strategy runs, and finds that
there are criss-cross merges and thus more than one merge base (which is
fairly unusual, but it does happen), it will generate one temporary
midway tree (or possibly even more, if you had lots of criss-crossing
merges and more than two merge bases) as a temporary internal merge
base, and again, those are real objects, but the end result will not end
up pointing to them, so they end up «dangling» in your repository.
Generally, dangling objects aren’t anything to worry about. They can
even be very useful: if you screw something up, the dangling objects can
be how you recover your old tree (say, you did a rebase, and realized
that you really didn’t want to—you can look at what dangling objects
you have, and decide to reset your head to some old dangling state).
For commits, you can just use:
$ gitk <dangling-commit-sha-goes-here> --not --all
This asks for all the history reachable from the given commit but not
from any branch, tag, or other reference. If you decide it’s something
you want, you can always create a new reference to it, e.g.,
$ git branch recovered-branch <dangling-commit-sha-goes-here>
For blobs and trees, you can’t do the same, but you can still examine
them. You can just do
$ git show <dangling-blob/tree-sha-goes-here>
to show what the contents of the blob were (or, for a tree, basically
what the ls
for that directory was), and that may give you some idea
of what the operation was that left that dangling object.
Usually, dangling blobs and trees aren’t very interesting. They’re
almost always the result of either being a half-way mergebase (the blob
will often even have the conflict markers from a merge in it, if you
have had conflicting merges that you fixed up by hand), or simply
because you interrupted a git fetch
with ^C or something like that,
leaving some of the new objects in the object database, but just
dangling and useless.
Anyway, once you are sure that you’re not interested in any dangling
state, you can just prune all unreachable objects:
and they’ll be gone. (You should only run git prune
on a quiescent
repository—it’s kind of like doing a filesystem fsck recovery: you
don’t want to do that while the filesystem is mounted.
git prune
is designed not to cause any harm in such cases of concurrent
accesses to a repository but you might receive confusing or scary messages.)
Recovering from repository corruption
By design, Git treats data trusted to it with caution. However, even in
the absence of bugs in Git itself, it is still possible that hardware or
operating system errors could corrupt data.
The first defense against such problems is backups. You can back up a
Git directory using clone, or just using cp, tar, or any other backup
mechanism.
As a last resort, you can search for the corrupted objects and attempt
to replace them by hand. Back up your repository before attempting this
in case you corrupt things even more in the process.
We’ll assume that the problem is a single missing or corrupted blob,
which is sometimes a solvable problem. (Recovering missing trees and
especially commits is much harder).
Before starting, verify that there is corruption, and figure out where
it is with git-fsck[1]; this may be time-consuming.
Assume the output looks like this:
$ git fsck --full --no-dangling broken link from tree 2d9263c6d23595e7cb2a21e5ebbb53655278dff8 to blob 4b9458b3786228369c63936db65827de3cc06200 missing blob 4b9458b3786228369c63936db65827de3cc06200
Now you know that blob 4b9458b3 is missing, and that the tree 2d9263c6
points to it. If you could find just one copy of that missing blob
object, possibly in some other repository, you could move it into
.git/objects/4b/9458b3...
and be done. Suppose you can’t. You can
still examine the tree that pointed to it with git-ls-tree[1],
which might output something like:
$ git ls-tree 2d9263c6d23595e7cb2a21e5ebbb53655278dff8 100644 blob 8d14531846b95bfa3564b58ccfb7913a034323b8 .gitignore 100644 blob ebf9bf84da0aab5ed944264a5db2a65fe3a3e883 .mailmap 100644 blob ca442d313d86dc67e0a2e5d584b465bd382cbf5c COPYING ... 100644 blob 4b9458b3786228369c63936db65827de3cc06200 myfile ...
So now you know that the missing blob was the data for a file named
myfile
. And chances are you can also identify the directory—let’s
say it’s in somedirectory
. If you’re lucky the missing copy might be
the same as the copy you have checked out in your working tree at
somedirectory/myfile
; you can test whether that’s right with
git-hash-object[1]:
$ git hash-object -w somedirectory/myfile
which will create and store a blob object with the contents of
somedirectory/myfile, and output the SHA-1 of that object. if you’re
extremely lucky it might be 4b9458b3786228369c63936db65827de3cc06200, in
which case you’ve guessed right, and the corruption is fixed!
Otherwise, you need more information. How do you tell which version of
the file has been lost?
The easiest way to do this is with:
$ git log --raw --all --full-history -- somedirectory/myfile
Because you’re asking for raw output, you’ll now get something like
commit abc Author: Date: ... :100644 100644 4b9458b newsha M somedirectory/myfile commit xyz Author: Date: ... :100644 100644 oldsha 4b9458b M somedirectory/myfile
This tells you that the immediately following version of the file was
«newsha», and that the immediately preceding version was «oldsha».
You also know the commit messages that went with the change from oldsha
to 4b9458b and with the change from 4b9458b to newsha.
If you’ve been committing small enough changes, you may now have a good
shot at reconstructing the contents of the in-between state 4b9458b.
If you can do that, you can now recreate the missing object with
$ git hash-object -w <recreated-file>
and your repository is good again!
(Btw, you could have ignored the fsck
, and started with doing a
and just looked for the sha of the missing object (4b9458b) in that
whole thing. It’s up to you—Git does have a lot of information, it is
just missing one particular blob version.
The index
The index is a binary file (generally kept in .git/index
) containing a
sorted list of path names, each with permissions and the SHA-1 of a blob
object; git-ls-files[1] can show you the contents of the index:
$ git ls-files --stage 100644 63c918c667fa005ff12ad89437f2fdc80926e21c 0 .gitignore 100644 5529b198e8d14decbe4ad99db3f7fb632de0439d 0 .mailmap 100644 6ff87c4664981e4397625791c8ea3bbb5f2279a3 0 COPYING 100644 a37b2152bd26be2c2289e1f57a292534a51a93c7 0 Documentation/.gitignore 100644 fbefe9a45b00a54b58d94d06eca48b03d40a50e0 0 Documentation/Makefile ... 100644 2511aef8d89ab52be5ec6a5e46236b4b6bcd07ea 0 xdiff/xtypes.h 100644 2ade97b2574a9f77e7ae4002a4e07a6a38e46d07 0 xdiff/xutils.c 100644 d5de8292e05e7c36c4b68857c1cf9855e3d2f70a 0 xdiff/xutils.h
Note that in older documentation you may see the index called the
«current directory cache» or just the «cache». It has three important
properties:
-
The index contains all the information necessary to generate a single
(uniquely determined) tree object.For example, running git-commit[1] generates this tree object
from the index, stores it in the object database, and uses it as the
tree object associated with the new commit. -
The index enables fast comparisons between the tree object it defines
and the working tree.It does this by storing some additional data for each entry (such as
the last modified time). This data is not displayed above, and is not
stored in the created tree object, but it can be used to determine
quickly which files in the working directory differ from what was
stored in the index, and thus save Git from having to read all of the
data from such files to look for changes. -
It can efficiently represent information about merge conflicts
between different tree objects, allowing each pathname to be
associated with sufficient information about the trees involved that
you can create a three-way merge between them.We saw in Getting conflict-resolution help during a merge that during a merge the index can
store multiple versions of a single file (called «stages»). The third
column in the git-ls-files[1] output above is the stage
number, and will take on values other than 0 for files with merge
conflicts.
The index is thus a sort of temporary staging area, which is filled with
a tree which you are in the process of working on.
If you blow the index away entirely, you generally haven’t lost any
information as long as you have the name of the tree that it described.
Submodules
Large projects are often composed of smaller, self-contained modules. For
example, an embedded Linux distribution’s source tree would include every
piece of software in the distribution with some local modifications; a movie
player might need to build against a specific, known-working version of a
decompression library; several independent programs might all share the same
build scripts.
With centralized revision control systems this is often accomplished by
including every module in one single repository. Developers can check out
all modules or only the modules they need to work with. They can even modify
files across several modules in a single commit while moving things around
or updating APIs and translations.
Git does not allow partial checkouts, so duplicating this approach in Git
would force developers to keep a local copy of modules they are not
interested in touching. Commits in an enormous checkout would be slower
than you’d expect as Git would have to scan every directory for changes.
If modules have a lot of local history, clones would take forever.
On the plus side, distributed revision control systems can much better
integrate with external sources. In a centralized model, a single arbitrary
snapshot of the external project is exported from its own revision control
and then imported into the local revision control on a vendor branch. All
the history is hidden. With distributed revision control you can clone the
entire external history and much more easily follow development and re-merge
local changes.
Git’s submodule support allows a repository to contain, as a subdirectory, a
checkout of an external project. Submodules maintain their own identity;
the submodule support just stores the submodule repository location and
commit ID, so other developers who clone the containing project
(«superproject») can easily clone all the submodules at the same revision.
Partial checkouts of the superproject are possible: you can tell Git to
clone none, some or all of the submodules.
The git-submodule[1] command is available since Git 1.5.3. Users
with Git 1.5.2 can look up the submodule commits in the repository and
manually check them out; earlier versions won’t recognize the submodules at
all.
To see how submodule support works, create four example
repositories that can be used later as a submodule:
$ mkdir ~/git $ cd ~/git $ for i in a b c d do mkdir $i cd $i git init echo "module $i" > $i.txt git add $i.txt git commit -m "Initial commit, submodule $i" cd .. done
Now create the superproject and add all the submodules:
$ mkdir super $ cd super $ git init $ for i in a b c d do git submodule add ~/git/$i $i done
Note |
Do not use local URLs here if you plan to publish your superproject! |
See what files git submodule
created:
$ ls -a . .. .git .gitmodules a b c d
The git submodule add <repo> <path>
command does a couple of things:
-
It clones the submodule from
<repo>
to the given<path>
under the
current directory and by default checks out the master branch. -
It adds the submodule’s clone path to the gitmodules[5] file and
adds this file to the index, ready to be committed. -
It adds the submodule’s current commit ID to the index, ready to be
committed.
Commit the superproject:
$ git commit -m "Add submodules a, b, c and d."
Now clone the superproject:
$ cd .. $ git clone super cloned $ cd cloned
The submodule directories are there, but they’re empty:
$ ls -a a . .. $ git submodule status -d266b9873ad50488163457f025db7cdd9683d88b a -e81d457da15309b4fef4249aba9b50187999670d b -c1536a972b9affea0f16e0680ba87332dc059146 c -d96249ff5d57de5de093e6baff9e0aafa5276a74 d
Note |
The commit object names shown above would be different for you, but they should match the HEAD commit object names of your repositories. You can check it by running git ls-remote ../a .
|
Pulling down the submodules is a two-step process. First run git submodule
to add the submodule repository URLs to
init.git/config
:
Now use git submodule update
to clone the repositories and check out the
commits specified in the superproject:
$ git submodule update $ cd a $ ls -a . .. .git a.txt
One major difference between git submodule update
and git submodule add
is
that git submodule update
checks out a specific commit, rather than the tip
of a branch. It’s like checking out a tag: the head is detached, so you’re not
working on a branch.
$ git branch * (detached from d266b98) master
If you want to make a change within a submodule and you have a detached head,
then you should create or checkout a branch, make your changes, publish the
change within the submodule, and then update the superproject to reference the
new commit:
or
then
$ echo "adding a line again" >> a.txt $ git commit -a -m "Updated the submodule from within the superproject." $ git push $ cd .. $ git diff diff --git a/a b/a index d266b98..261dfac 160000 --- a/a +++ b/a @@ -1 +1 @@ -Subproject commit d266b9873ad50488163457f025db7cdd9683d88b +Subproject commit 261dfac35cb99d380eb966e102c1197139f7fa24 $ git add a $ git commit -m "Updated submodule a." $ git push
You have to run git submodule update
after git pull
if you want to update
submodules, too.
Pitfalls with submodules
Always publish the submodule change before publishing the change to the
superproject that references it. If you forget to publish the submodule change,
others won’t be able to clone the repository:
$ cd ~/git/super/a $ echo i added another line to this file >> a.txt $ git commit -a -m "doing it wrong this time" $ cd .. $ git add a $ git commit -m "Updated submodule a again." $ git push $ cd ~/git/cloned $ git pull $ git submodule update error: pathspec '261dfac35cb99d380eb966e102c1197139f7fa24' did not match any file(s) known to git. Did you forget to 'git add'? Unable to checkout '261dfac35cb99d380eb966e102c1197139f7fa24' in submodule path 'a'
In older Git versions it could be easily forgotten to commit new or modified
files in a submodule, which silently leads to similar problems as not pushing
the submodule changes. Starting with Git 1.7.0 both git status
and git diff
in the superproject show submodules as modified when they contain new or
modified files to protect against accidentally committing such a state. git
will also add a
diff-dirty
to the work tree side when generating patch
output or used with the --submodule
option:
$ git diff diff --git a/sub b/sub --- a/sub +++ b/sub @@ -1 +1 @@ -Subproject commit 3f356705649b5d566d97ff843cf193359229a453 +Subproject commit 3f356705649b5d566d97ff843cf193359229a453-dirty $ git diff --submodule Submodule sub 3f35670..3f35670-dirty:
You also should not rewind branches in a submodule beyond commits that were
ever recorded in any superproject.
It’s not safe to run git submodule update
if you’ve made and committed
changes within a submodule without checking out a branch first. They will be
silently overwritten:
$ cat a.txt module a $ echo line added from private2 >> a.txt $ git commit -a -m "line added inside private2" $ cd .. $ git submodule update Submodule path 'a': checked out 'd266b9873ad50488163457f025db7cdd9683d88b' $ cd a $ cat a.txt module a
Note |
The changes are still visible in the submodule’s reflog. |
If you have uncommitted changes in your submodule working tree, git
will not overwrite them. Instead, you get the usual
submodule update
warning about not being able switch from a dirty branch.
Low-level Git operations
Many of the higher-level commands were originally implemented as shell
scripts using a smaller core of low-level Git commands. These can still
be useful when doing unusual things with Git, or just as a way to
understand its inner workings.
Object access and manipulation
The git-cat-file[1] command can show the contents of any object,
though the higher-level git-show[1] is usually more useful.
The git-commit-tree[1] command allows constructing commits with
arbitrary parents and trees.
The Workflow
High-level operations such as git-commit[1] and
git-restore[1] work by moving data
between the working tree, the index, and the object database. Git
provides low-level operations which perform each of these steps
individually.
Generally, all Git operations work on the index file. Some operations
work purely on the index file (showing the current state of the
index), but most operations move data between the index file and either
the database or the working directory. Thus there are four main
combinations:
working directory → index
The git-update-index[1] command updates the index with
information from the working directory. You generally update the
index information by just specifying the filename you want to update,
like so:
$ git update-index filename
but to avoid common mistakes with filename globbing etc., the command
will not normally add totally new entries or remove old entries,
i.e. it will normally just update existing cache entries.
To tell Git that yes, you really do realize that certain files no
longer exist, or that new files should be added, you
should use the --remove
and --add
flags respectively.
NOTE! A --remove
flag does not mean that subsequent filenames will
necessarily be removed: if the files still exist in your directory
structure, the index will be updated with their new status, not
removed. The only thing --remove
means is that update-index will be
considering a removed file to be a valid thing, and if the file really
does not exist any more, it will update the index accordingly.
As a special case, you can also do git update-index --refresh
, which
will refresh the «stat» information of each index to match the current
stat information. It will not update the object status itself, and
it will only update the fields that are used to quickly test whether
an object still matches its old backing store object.
index → object database
You write your current index file to a «tree» object with the program
that doesn’t come with any options—it will just write out the
current index into the set of tree objects that describe that state,
and it will return the name of the resulting top-level tree. You can
use that tree to re-generate the index at any time by going in the
other direction:
object database → index
You read a «tree» file from the object database, and use that to
populate (and overwrite—don’t do this if your index contains any
unsaved state that you might want to restore later!) your current
index. Normal operation is just
$ git read-tree <SHA-1 of tree>
and your index file will now be equivalent to the tree that you saved
earlier. However, that is only your index file: your working
directory contents have not been modified.
index → working directory
You update your working directory from the index by «checking out»
files. This is not a very common operation, since normally you’d just
keep your files updated, and rather than write to your working
directory, you’d tell the index files about the changes in your
working directory (i.e. git update-index
).
However, if you decide to jump to a new version, or check out somebody
else’s version, or just restore a previous tree, you’d populate your
index file with read-tree, and then you need to check out the result
with
$ git checkout-index filename
or, if you want to check out all of the index, use -a
.
NOTE! git checkout-index
normally refuses to overwrite old files, so
if you have an old version of the tree already checked out, you will
need to use the -f
flag (before the -a
flag or the filename) to
force the checkout.
Finally, there are a few odds and ends which are not purely moving
from one representation to the other:
Tying it all together
To commit a tree you have instantiated with git write-tree
, you’d
create a «commit» object that refers to that tree and the history
behind it—most notably the «parent» commits that preceded it in
history.
Normally a «commit» has one parent: the previous state of the tree
before a certain change was made. However, sometimes it can have two
or more parent commits, in which case we call it a «merge», due to the
fact that such a commit brings together («merges») two or more
previous states represented by other commits.
In other words, while a «tree» represents a particular directory state
of a working directory, a «commit» represents that state in time,
and explains how we got there.
You create a commit object by giving it the tree that describes the
state at the time of the commit, and a list of parents:
$ git commit-tree <tree> -p <parent> [(-p <parent2>)...]
and then giving the reason for the commit on stdin (either through
redirection from a pipe or file, or by just typing it at the tty).
git commit-tree
will return the name of the object that represents
that commit, and you should save it away for later use. Normally,
you’d commit a new HEAD
state, and while Git doesn’t care where you
save the note about that state, in practice we tend to just write the
result to the file pointed at by .git/HEAD
, so that we can always see
what the last committed state was.
Here is a picture that illustrates how various pieces fit together:
commit-tree commit obj +----+ | | | | V V +-----------+ | Object DB | | Backing | | Store | +-----------+ ^ write-tree | | tree obj | | | | read-tree | | tree obj V +-----------+ | Index | | "cache" | +-----------+ update-index ^ blob obj | | | | checkout-index -u | | checkout-index stat | | blob obj V +-----------+ | Working | | Directory | +-----------+
Examining the data
You can examine the data represented in the object database and the
index with various helper tools. For every object, you can use
git-cat-file[1] to examine details about the
object:
$ git cat-file -t <objectname>
shows the type of the object, and once you have the type (which is
usually implicit in where you find the object), you can use
$ git cat-file blob|tree|commit|tag <objectname>
to show its contents. NOTE! Trees have binary content, and as a result
there is a special helper for showing that content, called
git ls-tree
, which turns the binary content into a more easily
readable form.
It’s especially instructive to look at «commit» objects, since those
tend to be small and fairly self-explanatory. In particular, if you
follow the convention of having the top commit name in .git/HEAD
,
you can do
$ git cat-file commit HEAD
to see what the top commit was.
Merging multiple trees
Git can help you perform a three-way merge, which can in turn be
used for a many-way merge by repeating the merge procedure several
times. The usual situation is that you only do one three-way merge
(reconciling two lines of history) and commit the result, but if
you like to, you can merge several branches in one go.
To perform a three-way merge, you start with the two commits you
want to merge, find their closest common parent (a third commit),
and compare the trees corresponding to these three commits.
To get the «base» for the merge, look up the common parent of two
commits:
$ git merge-base <commit1> <commit2>
This prints the name of a commit they are both based on. You should
now look up the tree objects of those commits, which you can easily
do with
$ git cat-file commit <commitname> | head -1
since the tree object information is always the first line in a commit
object.
Once you know the three trees you are going to merge (the one «original»
tree, aka the common tree, and the two «result» trees, aka the branches
you want to merge), you do a «merge» read into the index. This will
complain if it has to throw away your old index contents, so you should
make sure that you’ve committed those—in fact you would normally
always do a merge against your last commit (which should thus match what
you have in your current index anyway).
To do the merge, do
$ git read-tree -m -u <origtree> <yourtree> <targettree>
which will do all trivial merge operations for you directly in the
index file, and you can just write the result out with
git write-tree
.
Merging multiple trees, continued
Sadly, many merges aren’t trivial. If there are files that have
been added, moved or removed, or if both branches have modified the
same file, you will be left with an index tree that contains «merge
entries» in it. Such an index tree can NOT be written out to a tree
object, and you will have to resolve any such merge clashes using
other tools before you can write out the result.
You can examine such index state with git ls-files --unmerged
command. An example:
$ git read-tree -m $orig HEAD $target $ git ls-files --unmerged 100644 263414f423d0e4d70dae8fe53fa34614ff3e2860 1 hello.c 100644 06fa6a24256dc7e560efa5687fa84b51f0263c3a 2 hello.c 100644 cc44c73eb783565da5831b4d820c962954019b69 3 hello.c
Each line of the git ls-files --unmerged
output begins with
the blob mode bits, blob SHA-1, stage number, and the
filename. The stage number is Git’s way to say which tree it
came from: stage 1 corresponds to the $orig
tree, stage 2 to
the HEAD
tree, and stage 3 to the $target
tree.
Earlier we said that trivial merges are done inside
git read-tree -m
. For example, if the file did not change
from $orig
to HEAD
or $target
, or if the file changed
from $orig
to HEAD
and $orig
to $target
the same way,
obviously the final outcome is what is in HEAD
. What the
above example shows is that file hello.c
was changed from
$orig
to HEAD
and $orig
to $target
in a different way.
You could resolve this by running your favorite 3-way merge
program, e.g. diff3
, merge
, or Git’s own merge-file, on
the blob objects from these three stages yourself, like this:
$ git cat-file blob 263414f >hello.c~1 $ git cat-file blob 06fa6a2 >hello.c~2 $ git cat-file blob cc44c73 >hello.c~3 $ git merge-file hello.c~2 hello.c~1 hello.c~3
This would leave the merge result in hello.c~2
file, along
with conflict markers if there are conflicts. After verifying
the merge result makes sense, you can tell Git what the final
merge result for this file is by:
$ mv -f hello.c~2 hello.c $ git update-index hello.c
When a path is in the «unmerged» state, running git update-index
for
that path tells Git to mark the path resolved.
The above is the description of a Git merge at the lowest level,
to help you understand what conceptually happens under the hood.
In practice, nobody, not even Git itself, runs git cat-file
three times
for this. There is a git merge-index
program that extracts the
stages to temporary files and calls a «merge» script on it:
$ git merge-index git-merge-one-file hello.c
and that is what higher level git merge -s resolve
is implemented with.
Hacking Git
This chapter covers internal details of the Git implementation which
probably only Git developers need to understand.
Object storage format
All objects have a statically determined «type» which identifies the
format of the object (i.e. how it is used, and how it can refer to other
objects). There are currently four different object types: «blob»,
«tree», «commit», and «tag».
Regardless of object type, all objects share the following
characteristics: they are all deflated with zlib, and have a header
that not only specifies their type, but also provides size information
about the data in the object. It’s worth noting that the SHA-1 hash
that is used to name the object is the hash of the original data
plus this header, so sha1sum
file does not match the object name
for file.
As a result, the general consistency of an object can always be tested
independently of the contents or the type of the object: all objects can
be validated by verifying that (a) their hashes match the content of the
file and (b) the object successfully inflates to a stream of bytes that
forms a sequence of
<ascii type without space> + <space> + <ascii decimal size> +
.
<byte> + <binary object data>
The structured objects can further have their structure and
connectivity to other objects verified. This is generally done with
the git fsck
program, which generates a full dependency graph
of all objects, and verifies their internal consistency (in addition
to just verifying their superficial consistency through the hash).
A birds-eye view of Git’s source code
It is not always easy for new developers to find their way through Git’s
source code. This section gives you a little guidance to show where to
start.
A good place to start is with the contents of the initial commit, with:
$ git switch --detach e83c5163
The initial revision lays the foundation for almost everything Git has
today, but is small enough to read in one sitting.
Note that terminology has changed since that revision. For example, the
README in that revision uses the word «changeset» to describe what we
now call a commit.
Also, we do not call it «cache» any more, but rather «index»; however, the
file is still called cache.h
. Remark: Not much reason to change it now,
especially since there is no good single name for it anyway, because it is
basically the header file which is included by all of Git’s C sources.
If you grasp the ideas in that initial commit, you should check out a
more recent version and skim cache.h
, object.h
and commit.h
.
In the early days, Git (in the tradition of UNIX) was a bunch of programs
which were extremely simple, and which you used in scripts, piping the
output of one into another. This turned out to be good for initial
development, since it was easier to test new things. However, recently
many of these parts have become builtins, and some of the core has been
«libified», i.e. put into libgit.a for performance, portability reasons,
and to avoid code duplication.
By now, you know what the index is (and find the corresponding data
structures in cache.h
), and that there are just a couple of object types
(blobs, trees, commits and tags) which inherit their common structure from
struct object
, which is their first member (and thus, you can cast e.g.
(struct object *)commit
to achieve the same as &commit->object
, i.e.
get at the object name and flags).
Now is a good point to take a break to let this information sink in.
Next step: get familiar with the object naming. Read Naming commits.
There are quite a few ways to name an object (and not only revisions!).
All of these are handled in sha1_name.c
. Just have a quick look at
the function get_sha1()
. A lot of the special handling is done by
functions like get_sha1_basic()
or the likes.
This is just to get you into the groove for the most libified part of Git:
the revision walker.
Basically, the initial version of git log
was a shell script:
$ git-rev-list --pretty $(git-rev-parse --default HEAD "$@") | LESS=-S ${PAGER:-less}
What does this mean?
git rev-list
is the original version of the revision walker, which
always printed a list of revisions to stdout. It is still functional,
and needs to, since most new Git commands start out as scripts using
git rev-list
.
git rev-parse
is not as important any more; it was only used to filter out
options that were relevant for the different plumbing commands that were
called by the script.
Most of what git rev-list
did is contained in revision.c
and
revision.h
. It wraps the options in a struct named rev_info
, which
controls how and what revisions are walked, and more.
The original job of git rev-parse
is now taken by the function
setup_revisions()
, which parses the revisions and the common command-line
options for the revision walker. This information is stored in the struct
rev_info
for later consumption. You can do your own command-line option
parsing after calling setup_revisions()
. After that, you have to call
prepare_revision_walk()
for initialization, and then you can get the
commits one by one with the function get_revision()
.
If you are interested in more details of the revision walking process,
just have a look at the first implementation of cmd_log()
; call
git show v1.3.0~155^2~4
and scroll down to that function (note that you
no longer need to call setup_pager()
directly).
Nowadays, git log
is a builtin, which means that it is contained in the
command git
. The source side of a builtin is
-
a function called
cmd_<bla>
, typically defined inbuiltin/<bla.c>
(note that older versions of Git used to have it inbuiltin-<bla>.c
instead), and declared inbuiltin.h
. -
an entry in the
commands[]
array ingit.c
, and -
an entry in
BUILTIN_OBJECTS
in theMakefile
.
Sometimes, more than one builtin is contained in one source file. For
example, cmd_whatchanged()
and cmd_log()
both reside in builtin/log.c
,
since they share quite a bit of code. In that case, the commands which are
not named like the .c
file in which they live have to be listed in
BUILT_INS
in the Makefile
.
git log
looks more complicated in C than it does in the original script,
but that allows for a much greater flexibility and performance.
Here again it is a good point to take a pause.
Lesson three is: study the code. Really, it is the best way to learn about
the organization of Git (after you know the basic concepts).
So, think about something which you are interested in, say, «how can I
access a blob just knowing the object name of it?». The first step is to
find a Git command with which you can do it. In this example, it is either
git show
or git cat-file
.
For the sake of clarity, let’s stay with git cat-file
, because it
-
is plumbing, and
-
was around even in the initial commit (it literally went only through
some 20 revisions ascat-file.c
, was renamed tobuiltin/cat-file.c
when made a builtin, and then saw less than 10 versions).
So, look into builtin/cat-file.c
, search for cmd_cat_file()
and look what
it does.
git_config(git_default_config); if (argc != 3) usage("git cat-file [-t|-s|-e|-p|<type>] <sha1>"); if (get_sha1(argv[2], sha1)) die("Not a valid object name %s", argv[2]);
Let’s skip over the obvious details; the only really interesting part
here is the call to get_sha1()
. It tries to interpret argv[2]
as an
object name, and if it refers to an object which is present in the current
repository, it writes the resulting SHA-1 into the variable sha1
.
Two things are interesting here:
-
get_sha1()
returns 0 on success. This might surprise some new
Git hackers, but there is a long tradition in UNIX to return different
negative numbers in case of different errors—and 0 on success. -
the variable
sha1
in the function signature ofget_sha1()
isunsigned
, but is actually expected to be a pointer to
char *unsigned
. This variable will contain the 160-bit SHA-1 of the given
char[20]
commit. Note that whenever a SHA-1 is passed asunsigned char *
, it
is the binary representation, as opposed to the ASCII representation in
hex characters, which is passed aschar *
.
You will see both of these things throughout the code.
Now, for the meat:
case 0: buf = read_object_with_reference(sha1, argv[1], &size, NULL);
This is how you read a blob (actually, not only a blob, but any type of
object). To know how the function read_object_with_reference()
actually
works, find the source code for it (something like git grep
in the Git repository), and read
read_object_with | grep ":[a-z]"
the source.
To find out how the result can be used, just read on in cmd_cat_file()
:
write_or_die(1, buf, size);
Sometimes, you do not know where to look for a feature. In many such cases,
it helps to search through the output of git log
, and then git show
the
corresponding commit.
Example: If you know that there was some test case for git bundle
, but
do not remember where it was (yes, you could git grep bundle t/
, but that
does not illustrate the point!):
In the pager (less
), just search for «bundle», go a few lines back,
and see that it is in commit 18449ab0. Now just copy this object name,
and paste it into the command line
Voila.
Another example: Find out what to do in order to make some script a
builtin:
$ git log --no-merges --diff-filter=A builtin/*.c
You see, Git is actually the best tool to find out about the source of Git
itself!
Git Glossary
Git explained
- alternate object database
-
Via the alternates mechanism, a repository
can inherit part of its object database
from another object database, which is called an «alternate». - bare repository
-
A bare repository is normally an appropriately
named directory with a.git
suffix that does not
have a locally checked-out copy of any of the files under
revision control. That is, all of the Git
administrative and control files that would normally be present in the
hidden.git
sub-directory are directly present in the
repository.git
directory instead,
and no other files are present and checked out. Usually publishers of
public repositories make bare repositories available. - blob object
-
Untyped object, e.g. the contents of a file.
- branch
-
A «branch» is a line of development. The most recent
commit on a branch is referred to as the tip of
that branch. The tip of the branch is referenced by a branch
head, which moves forward as additional development
is done on the branch. A single Git
repository can track an arbitrary number of
branches, but your working tree is
associated with just one of them (the «current» or «checked out»
branch), and HEAD points to that branch. - cache
-
Obsolete for: index.
- chain
-
A list of objects, where each object in the list contains
a reference to its successor (for example, the successor of a
commit could be one of its parents). - changeset
-
BitKeeper/cvsps speak for «commit». Since Git does not
store changes, but states, it really does not make sense to use the term
«changesets» with Git. - checkout
-
The action of updating all or part of the
working tree with a tree object
or blob from the
object database, and updating the
index and HEAD if the whole working tree has
been pointed at a new branch. - cherry-picking
-
In SCM jargon, «cherry pick» means to choose a subset of
changes out of a series of changes (typically commits) and record them
as a new series of changes on top of a different codebase. In Git, this is
performed by the «git cherry-pick» command to extract the change introduced
by an existing commit and to record it based on the tip
of the current branch as a new commit. - clean
-
A working tree is clean, if it
corresponds to the revision referenced by the current
head. Also see «dirty». - commit
-
As a noun: A single point in the
Git history; the entire history of a project is represented as a
set of interrelated commits. The word «commit» is often
used by Git in the same places other revision control systems
use the words «revision» or «version». Also used as a short
hand for commit object.As a verb: The action of storing a new snapshot of the project’s
state in the Git history, by creating a new commit representing the current
state of the index and advancing HEAD
to point at the new commit. - commit graph concept, representations and usage
-
A synonym for the DAG structure formed by the commits
in the object database, referenced by branch tips,
using their chain of linked commits.
This structure is the definitive commit graph. The
graph can be represented in other ways, e.g. the
«commit-graph» file. - commit-graph file
-
The «commit-graph» (normally hyphenated) file is a supplemental
representation of the commit graph
which accelerates commit graph walks. The «commit-graph» file is
stored either in the .git/objects/info directory or in the info
directory of an alternate object database. - commit object
-
An object which contains the information about a
particular revision, such as parents, committer,
author, date and the tree object which corresponds
to the top directory of the stored
revision. - commit-ish (also committish)
-
A commit object or an
object that can be recursively dereferenced to
a commit object.
The following are all commit-ishes:
a commit object,
a tag object that points to a commit
object,
a tag object that points to a tag object that points to a
commit object,
etc. - core Git
-
Fundamental data structures and utilities of Git. Exposes only limited
source code management tools. - DAG
-
Directed acyclic graph. The commit objects form a
directed acyclic graph, because they have parents (directed), and the
graph of commit objects is acyclic (there is no chain
which begins and ends with the same object). - dangling object
-
An unreachable object which is not
reachable even from other unreachable objects; a
dangling object has no references to it from any
reference or object in the repository. - detached HEAD
-
Normally the HEAD stores the name of a
branch, and commands that operate on the
history HEAD represents operate on the history leading to the
tip of the branch the HEAD points at. However, Git also
allows you to check out an arbitrary
commit that isn’t necessarily the tip of any
particular branch. The HEAD in such a state is called
«detached».Note that commands that operate on the history of the current branch
(e.g.git commit
to build a new history on top of it) still work
while the HEAD is detached. They update the HEAD to point at the tip
of the updated history without affecting any branch. Commands that
update or inquire information about the current branch (e.g.git
that sets what remote-tracking branch the
branch --set-upstream-to
current branch integrates with) obviously do not work, as there is no
(real) current branch to ask about in this state. - directory
-
The list you get with «ls»
- dirty
-
A working tree is said to be «dirty» if
it contains modifications which have not been committed to the current
branch. - evil merge
-
An evil merge is a merge that introduces changes that
do not appear in any parent. - fast-forward
-
A fast-forward is a special type of merge where you have a
revision and you are «merging» another
branch’s changes that happen to be a descendant of what
you have. In such a case, you do not make a new merge
commit but instead just update your branch to point at the same
revision as the branch you are merging. This will happen frequently on a
remote-tracking branch of a remote
repository. - fetch
-
Fetching a branch means to get the
branch’s head ref from a remote
repository, to find out which objects are
missing from the local object database,
and to get them, too. See also git-fetch[1]. - file system
-
Linus Torvalds originally designed Git to be a user space file system,
i.e. the infrastructure to hold files and directories. That ensured the
efficiency and speed of Git. - Git archive
-
Synonym for repository (for arch people).
- gitfile
-
A plain file
.git
at the root of a working tree that
points at the directory that is the real repository. - grafts
-
Grafts enables two otherwise different lines of development to be joined
together by recording fake ancestry information for commits. This way
you can make Git pretend the set of parents a commit has
is different from what was recorded when the commit was
created. Configured via the.git/info/grafts
file.Note that the grafts mechanism is outdated and can lead to problems
transferring objects between repositories; see git-replace[1]
for a more flexible and robust system to do the same thing. - hash
-
In Git’s context, synonym for object name.
- head
-
A named reference to the commit at the tip of a
branch. Heads are stored in a file in
$GIT_DIR/refs/heads/
directory, except when using packed refs. (See
git-pack-refs[1].) - HEAD
-
The current branch. In more detail: Your working tree is normally derived from the state of the tree
referred to by HEAD. HEAD is a reference to one of the
heads in your repository, except when using a
detached HEAD, in which case it directly
references an arbitrary commit. - head ref
-
A synonym for head.
- hook
-
During the normal execution of several Git commands, call-outs are made
to optional scripts that allow a developer to add functionality or
checking. Typically, the hooks allow for a command to be pre-verified
and potentially aborted, and allow for a post-notification after the
operation is done. The hook scripts are found in the
$GIT_DIR/hooks/
directory, and are enabled by simply
removing the.sample
suffix from the filename. In earlier versions
of Git you had to make them executable. - index
-
A collection of files with stat information, whose contents are stored
as objects. The index is a stored version of your
working tree. Truth be told, it can also contain a second, and even
a third version of a working tree, which are used
when merging. - index entry
-
The information regarding a particular file, stored in the
index. An index entry can be unmerged, if a
merge was started, but not yet finished (i.e. if
the index contains multiple versions of that file). - master
-
The default development branch. Whenever you
create a Git repository, a branch named
«master» is created, and becomes the active branch. In most
cases, this contains the local development, though that is
purely by convention and is not required. - merge
-
As a verb: To bring the contents of another
branch (possibly from an external
repository) into the current branch. In the
case where the merged-in branch is from a different repository,
this is done by first fetching the remote branch
and then merging the result into the current branch. This
combination of fetch and merge operations is called a
pull. Merging is performed by an automatic process
that identifies changes made since the branches diverged, and
then applies all those changes together. In cases where changes
conflict, manual intervention may be required to complete the
merge.As a noun: unless it is a fast-forward, a
successful merge results in the creation of a new commit
representing the result of the merge, and having as
parents the tips of the merged branches.
This commit is referred to as a «merge commit», or sometimes just a
«merge». - object
-
The unit of storage in Git. It is uniquely identified by the
SHA-1 of its contents. Consequently, an
object cannot be changed. - object database
-
Stores a set of «objects», and an individual object is
identified by its object name. The objects usually
live in$GIT_DIR/objects/
. - object identifier (oid)
-
Synonym for object name.
- object name
-
The unique identifier of an object. The
object name is usually represented by a 40 character
hexadecimal string. Also colloquially called SHA-1. - object type
-
One of the identifiers «commit»,
«tree», «tag» or
«blob» describing the type of an
object. - octopus
-
To merge more than two branches.
- origin
-
The default upstream repository. Most projects have
at least one upstream project which they track. By default
origin is used for that purpose. New upstream updates
will be fetched into remote-tracking branches named
origin/name-of-upstream-branch, which you can see using
git branch -r
. - overlay
-
Only update and add files to the working directory, but don’t
delete them, similar to how cp -R would update the contents
in the destination directory. This is the default mode in a
checkout when checking out files from the
index or a tree-ish. In
contrast, no-overlay mode also deletes tracked files not
present in the source, similar to rsync —delete. - pack
-
A set of objects which have been compressed into one file (to save space
or to transmit them efficiently). - pack index
-
The list of identifiers, and other information, of the objects in a
pack, to assist in efficiently accessing the contents of a
pack. - pathspec
-
Pattern used to limit paths in Git commands.
Pathspecs are used on the command line of «git ls-files», «git
ls-tree», «git add», «git grep», «git diff», «git checkout»,
and many other commands to
limit the scope of operations to some subset of the tree or
working tree. See the documentation of each command for whether
paths are relative to the current directory or toplevel. The
pathspec syntax is as follows:-
any path matches itself
-
the pathspec up to the last slash represents a
directory prefix. The scope of that pathspec is
limited to that subtree. -
the rest of the pathspec is a pattern for the remainder
of the pathname. Paths relative to the directory
prefix will be matched against that pattern using fnmatch(3);
in particular, * and ? can match directory separators.
For example, Documentation/*.jpg will match all .jpg files
in the Documentation subtree,
including Documentation/chapter_1/figure_1.jpg.A pathspec that begins with a colon
:
has special meaning. In the
short form, the leading colon:
is followed by zero or more «magic
signature» letters (which optionally is terminated by another colon:
),
and the remainder is the pattern to match against the path.
The «magic signature» consists of ASCII symbols that are neither
alphanumeric, glob, regex special characters nor colon.
The optional colon that terminates the «magic signature» can be
omitted if the pattern begins with a character that does not belong to
«magic signature» symbol set and is not a colon.In the long form, the leading colon
:
is followed by an open
parenthesis(
, a comma-separated list of zero or more «magic words»,
and a close parentheses)
, and the remainder is the pattern to match
against the path.A pathspec with only a colon means «there is no pathspec». This form
should not be combined with other pathspec.- top
-
The magic word
top
(magic signature:/
) makes the pattern
match from the root of the working tree, even when you are
running the command from inside a subdirectory. - literal
-
Wildcards in the pattern such as
*
or?
are treated
as literal characters. - icase
-
Case insensitive match.
- glob
-
Git treats the pattern as a shell glob suitable for
consumption by fnmatch(3) with the FNM_PATHNAME flag:
wildcards in the pattern will not match a / in the pathname.
For example, «Documentation/*.html» matches
«Documentation/git.html» but not «Documentation/ppc/ppc.html»
or «tools/perf/Documentation/perf.html».Two consecutive asterisks («
**
«) in patterns matched against
full pathname may have special meaning:-
A leading «
**
» followed by a slash means match in all
directories. For example, «**/foo
» matches file or directory
«foo
» anywhere, the same as pattern «foo
«. «**/foo/bar
»
matches file or directory «bar
» anywhere that is directly
under directory «foo
«. -
A trailing «
/**
» matches everything inside. For example,
«abc/**
» matches all files inside directory «abc», relative
to the location of the.gitignore
file, with infinite depth. -
A slash followed by two consecutive asterisks then a slash
matches zero or more directories. For example, «a/**/b
»
matches «a/b
«, «a/x/b
«, «a/x/y/b
» and so on. -
Other consecutive asterisks are considered invalid.
Glob magic is incompatible with literal magic.
-
- attr
-
After
attr:
comes a space separated list of «attribute
requirements», all of which must be met in order for the
path to be considered a match; this is in addition to the
usual non-magic pathspec pattern matching.
See gitattributes[5].Each of the attribute requirements for the path takes one of
these forms:-
«
ATTR
» requires that the attributeATTR
be set. -
«
-ATTR
» requires that the attributeATTR
be unset. -
«
ATTR=VALUE
» requires that the attributeATTR
be
set to the stringVALUE
. -
«
!ATTR
» requires that the attributeATTR
be
unspecified.Note that when matching against a tree object, attributes are still
obtained from working tree, not from the given tree object.
-
- exclude
-
After a path matches any non-exclude pathspec, it will be run
through all exclude pathspecs (magic signature:!
or its
synonym^
). If it matches, the path is ignored. When there
is no non-exclude pathspec, the exclusion is applied to the
result set as if invoked without any pathspec.
-
- parent
-
A commit object contains a (possibly empty) list
of the logical predecessor(s) in the line of development, i.e. its
parents. - pickaxe
-
The term pickaxe refers to an option to the diffcore
routines that help select changes that add or delete a given text
string. With the--pickaxe-all
option, it can be used to view the full
changeset that introduced or removed, say, a
particular line of text. See git-diff[1]. - plumbing
-
Cute name for core Git.
- porcelain
-
Cute name for programs and program suites depending on
core Git, presenting a high level access to
core Git. Porcelains expose more of a SCM
interface than the plumbing. - per-worktree ref
-
Refs that are per-worktree, rather than
global. This is presently only HEAD and any refs
that start withrefs/bisect/
, but might later include other
unusual refs. - pseudoref
-
Pseudorefs are a class of files under
$GIT_DIR
which behave
like refs for the purposes of rev-parse, but which are treated
specially by git. Pseudorefs both have names that are all-caps,
and always start with a line consisting of a
SHA-1 followed by whitespace. So, HEAD is not a
pseudoref, because it is sometimes a symbolic ref. They might
optionally contain some additional data.MERGE_HEAD
and
CHERRY_PICK_HEAD
are examples. Unlike
per-worktree refs, these files cannot
be symbolic refs, and never have reflogs. They also cannot be
updated through the normal ref update machinery. Instead,
they are updated by directly writing to the files. However,
they can be read as if they were refs, sogit rev-parse
will work.
MERGE_HEAD - pull
-
Pulling a branch means to fetch it and
merge it. See also git-pull[1]. - push
-
Pushing a branch means to get the branch’s
head ref from a remote repository,
find out if it is an ancestor to the branch’s local
head ref, and in that case, putting all
objects, which are reachable from the local
head ref, and which are missing from the remote
repository, into the remote
object database, and updating the remote
head ref. If the remote head is not an
ancestor to the local head, the push fails. - reachable
-
All of the ancestors of a given commit are said to be
«reachable» from that commit. More
generally, one object is reachable from
another if we can reach the one from the other by a chain
that follows tags to whatever they tag,
commits to their parents or trees, and
trees to the trees or blobs
that they contain. - reachability bitmaps
-
Reachability bitmaps store information about the
reachability of a selected set of commits in
a packfile, or a multi-pack index (MIDX), to speed up object search.
The bitmaps are stored in a «.bitmap» file. A repository may have at
most one bitmap file in use. The bitmap file may belong to either one
pack, or the repository’s multi-pack index (if it exists). - rebase
-
To reapply a series of changes from a branch to a
different base, and reset the head of that branch
to the result. - ref
-
A name that begins with
refs/
(e.g.refs/heads/master
)
that points to an object name or another
ref (the latter is called a symbolic ref).
For convenience, a ref can sometimes be abbreviated when used
as an argument to a Git command; see gitrevisions[7]
for details.
Refs are stored in the repository.The ref namespace is hierarchical.
Different subhierarchies are used for different purposes (e.g. the
refs/heads/
hierarchy is used to represent local branches).There are a few special-purpose refs that do not begin with
refs/
.
The most notable example isHEAD
. - reflog
-
A reflog shows the local «history» of a ref. In other words,
it can tell you what the 3rd last revision in this repository
was, and what was the current state in this repository,
yesterday 9:14pm. See git-reflog[1] for details. - refspec
-
A «refspec» is used by fetch and
push to describe the mapping between remote
ref and local ref. - remote repository
-
A repository which is used to track the same
project but resides somewhere else. To communicate with remotes,
see fetch or push. - remote-tracking branch
-
A ref that is used to follow changes from another
repository. It typically looks like
refs/remotes/foo/bar (indicating that it tracks a branch named
bar in a remote named foo), and matches the right-hand-side of
a configured fetch refspec. A remote-tracking
branch should not contain direct modifications or have local
commits made to it. - repository
-
A collection of refs together with an
object database containing all objects
which are reachable from the refs, possibly
accompanied by meta data from one or more porcelains. A
repository can share an object database with other repositories
via alternates mechanism. - resolve
-
The action of fixing up manually what a failed automatic
merge left behind. - revision
-
Synonym for commit (the noun).
- rewind
-
To throw away part of the development, i.e. to assign the
head to an earlier revision. - SCM
-
Source code management (tool).
- SHA-1
-
«Secure Hash Algorithm 1»; a cryptographic hash function.
In the context of Git used as a synonym for object name. - shallow clone
-
Mostly a synonym to shallow repository
but the phrase makes it more explicit that it was created by
runninggit clone --depth=...
command. - shallow repository
-
A shallow repository has an incomplete
history some of whose commits have parents cauterized away (in other
words, Git is told to pretend that these commits do not have the
parents, even though they are recorded in the commit
object). This is sometimes useful when you are interested only in the
recent history of a project even though the real history recorded in the
upstream is much larger. A shallow repository
is created by giving the--depth
option to git-clone[1], and
its history can be later deepened with git-fetch[1]. - stash entry
-
An object used to temporarily store the contents of a
dirty working directory and the index for future reuse. - submodule
-
A repository that holds the history of a
separate project inside another repository (the latter of
which is called superproject). - superproject
-
A repository that references repositories
of other projects in its working tree as submodules.
The superproject knows about the names of (but does not hold
copies of) commit objects of the contained submodules. - symref
-
Symbolic reference: instead of containing the SHA-1
id itself, it is of the format ref: refs/some/thing and when
referenced, it recursively dereferences to this reference.
HEAD is a prime example of a symref. Symbolic
references are manipulated with the git-symbolic-ref[1]
command. - tag
-
A ref under
refs/tags/
namespace that points to an
object of an arbitrary type (typically a tag points to either a
tag or a commit object).
In contrast to a head, a tag is not updated by
thecommit
command. A Git tag has nothing to do with a Lisp
tag (which would be called an object type
in Git’s context). A tag is most typically used to mark a particular
point in the commit ancestry chain. - tag object
-
An object containing a ref pointing to
another object, which can contain a message just like a
commit object. It can also contain a (PGP)
signature, in which case it is called a «signed tag object». - topic branch
-
A regular Git branch that is used by a developer to
identify a conceptual line of development. Since branches are very easy
and inexpensive, it is often desirable to have several small branches
that each contain very well defined concepts or small incremental yet
related changes. - tree
-
Either a working tree, or a tree
object together with the dependent blob and tree objects
(i.e. a stored representation of a working tree). - tree object
-
An object containing a list of file names and modes along
with refs to the associated blob and/or tree objects. A
tree is equivalent to a directory. - tree-ish (also treeish)
-
A tree object or an object
that can be recursively dereferenced to a tree object.
Dereferencing a commit object yields the
tree object corresponding to the revision’s
top directory.
The following are all tree-ishes:
a commit-ish,
a tree object,
a tag object that points to a tree object,
a tag object that points to a tag object that points to a tree
object,
etc. - unmerged index
-
An index which contains unmerged
index entries. - unreachable object
-
An object which is not reachable from a
branch, tag, or any other reference. - upstream branch
-
The default branch that is merged into the branch in
question (or the branch in question is rebased onto). It is configured
via branch.<name>.remote and branch.<name>.merge. If the upstream branch
of A is origin/B sometimes we say «A is tracking origin/B«. - working tree
-
The tree of actual checked out files. The working tree normally
contains the contents of the HEAD commit’s tree,
plus any local changes that you have made but not yet committed. - worktree
-
A repository can have zero (i.e. bare repository) or one or
more worktrees attached to it. One «worktree» consists of a
«working tree» and repository metadata, most of which are
shared among other worktrees of a single repository, and
some of which are maintained separately per worktree
(e.g. the index, HEAD and pseudorefs like MERGE_HEAD,
per-worktree refs and per-worktree configuration file).
Appendix A: Git Quick Reference
This is a quick summary of the major commands; the previous chapters
explain how these work in more detail.
Creating a new repository
From a tarball:
$ tar xzf project.tar.gz $ cd project $ git init Initialized empty Git repository in .git/ $ git add . $ git commit
From a remote repository:
$ git clone git://example.com/pub/project.git $ cd project
Managing branches
$ git branch # list all local branches in this repo $ git switch test # switch working directory to branch "test" $ git branch new # create branch "new" starting at current HEAD $ git branch -d new # delete branch "new"
Instead of basing a new branch on current HEAD (the default), use:
$ git branch new test # branch named "test" $ git branch new v2.6.15 # tag named v2.6.15 $ git branch new HEAD^ # commit before the most recent $ git branch new HEAD^^ # commit before that $ git branch new test~10 # ten commits before tip of branch "test"
Create and switch to a new branch at the same time:
$ git switch -c new v2.6.15
Update and examine branches from the repository you cloned from:
$ git fetch # update $ git branch -r # list origin/master origin/next ... $ git switch -c masterwork origin/master
Fetch a branch from a different repository, and give it a new
name in your repository:
$ git fetch git://example.com/project.git theirbranch:mybranch $ git fetch git://example.com/project.git v2.6.15:mybranch
Keep a list of repositories you work with regularly:
$ git remote add example git://example.com/project.git $ git remote # list remote repositories example origin $ git remote show example # get details * remote example URL: git://example.com/project.git Tracked remote branches master next ... $ git fetch example # update branches from example $ git branch -r # list all remote branches
Exploring history
$ gitk # visualize and browse history $ git log # list all commits $ git log src/ # ...modifying src/ $ git log v2.6.15..v2.6.16 # ...in v2.6.16, not in v2.6.15 $ git log master..test # ...in branch test, not in branch master $ git log test..master # ...in branch master, but not in test $ git log test...master # ...in one branch, not in both $ git log -S'foo()' # ...where difference contain "foo()" $ git log --since="2 weeks ago" $ git log -p # show patches as well $ git show # most recent commit $ git diff v2.6.15..v2.6.16 # diff between two tagged versions $ git diff v2.6.15..HEAD # diff with current head $ git grep "foo()" # search working directory for "foo()" $ git grep v2.6.15 "foo()" # search old tree for "foo()" $ git show v2.6.15:a.txt # look at old version of a.txt
Search for regressions:
$ git bisect start $ git bisect bad # current version is bad $ git bisect good v2.6.13-rc2 # last known good revision Bisecting: 675 revisions left to test after this # test here, then: $ git bisect good # if this revision is good, or $ git bisect bad # if this revision is bad. # repeat until done.
Making changes
Make sure Git knows who to blame:
$ cat >>~/.gitconfig <<EOF [user] name = Your Name Comes Here email = you@yourdomain.example.com EOF
Select file contents to include in the next commit, then make the
commit:
$ git add a.txt # updated file $ git add b.txt # new file $ git rm c.txt # old file $ git commit
Or, prepare and create the commit in one step:
$ git commit d.txt # use latest content only of d.txt $ git commit -a # use latest content of all tracked files
Merging
$ git merge test # merge branch "test" into the current branch $ git pull git://example.com/project.git master # fetch and merge in remote branch $ git pull . test # equivalent to git merge test
Sharing your changes
Importing or exporting patches:
$ git format-patch origin..HEAD # format a patch for each commit # in HEAD but not in origin $ git am mbox # import patches from the mailbox "mbox"
Fetch a branch in a different Git repository, then merge into the
current branch:
$ git pull git://example.com/project.git theirbranch
Store the fetched branch into a local branch before merging into the
current branch:
$ git pull git://example.com/project.git theirbranch:mybranch
After creating commits on a local branch, update the remote
branch with your commits:
$ git push ssh://example.com/project.git mybranch:theirbranch
When remote and local branch are both named «test»:
$ git push ssh://example.com/project.git test
Shortcut version for a frequently used remote repository:
$ git remote add example ssh://example.com/project.git $ git push example test
Repository maintenance
Check for corruption:
Recompress, remove unused cruft:
Appendix B: Notes and todo list for this manual
Todo list
This is a work in progress.
The basic requirements:
-
It must be readable in order, from beginning to end, by someone
intelligent with a basic grasp of the UNIX command line, but without
any special knowledge of Git. If necessary, any other prerequisites
should be specifically mentioned as they arise. -
Whenever possible, section headings should clearly describe the task
they explain how to do, in language that requires no more knowledge
than necessary: for example, «importing patches into a project» rather
than «thegit am
command»
Think about how to create a clear chapter dependency graph that will
allow people to get to important topics without necessarily reading
everything in between.
Scan Documentation/
for other stuff left out; in particular:
-
howto’s
-
some of
technical/
? -
hooks
-
list of commands in git[1]
Scan email archives for other stuff left out
Scan man pages to see if any assume more background than this manual
provides.
Add more good examples. Entire sections of just cookbook examples
might be a good idea; maybe make an «advanced examples» section a
standard end-of-chapter section?
Include cross-references to the glossary, where appropriate.
Add a section on working with other version control systems, including
CVS, Subversion, and just imports of series of release tarballs.
Write a chapter on using plumbing and writing scripts.
Alternates, clone -reference, etc.
Я не уверен, почему я не смог проверить ветку, с которой я работал раньше. См. Приведенные ниже команды (примечание: co
является псевдонимом для checkout
):
[email protected]:~/source/unstilted$ git branch -a
* develop
feature/datts_right
feature/user_controlled_menu
feature/user_controlled_site_layouts
master
remotes/origin/HEAD -> origin/master
remotes/origin/develop
remotes/origin/feature/datts_right
remotes/origin/master
[email protected]:~/source/unstilted$ git co feature/user_controlled_site_layouts
error: pathspec 'feature/user_controlled_site_layouts' did not match any file(s) known to git.
Я не уверен, что это значит, и я не могу найти ничего, что я могу понять в Google.
Как проверить эту ветку и что я могу сделать, чтобы сломать это?
UPDATE
Я нашел этот пост, и запуск git show-ref
дает мне:
97e2cb33914e763ff92bbe38531d3fd02408da46 refs/heads/develop
c438c439c66da3f2356d2449505c073549b221c1 refs/heads/feature/datts_right
11a90dae8897ceed318700b9af3019f4b4dceb1e refs/heads/feature/user_controlled_menu
c889b37a5ee690986935c9c74b71999e2cf3c6d7 refs/heads/master
c889b37a5ee690986935c9c74b71999e2cf3c6d7 refs/remotes/origin/HEAD
e7c17eb40610505eea4e6687e4572191216ad4c6 refs/remotes/origin/develop
c438c439c66da3f2356d2449505c073549b221c1 refs/remotes/origin/feature/datts_right
c889b37a5ee690986935c9c74b71999e2cf3c6d7 refs/remotes/origin/master
23768aa5425cbf29d10ff24274adad42d90d15cc refs/stash
e572cf91e95da03f04a5e51820f58a7306ce01de refs/tags/menu_shows_published_only
429ebaa895d9d41d835a34da72676caa75902e3d refs/tags/slow_dev
UPDATE в каталоге .git
(user_controlled_site_layouts
находится в refs/heads/feature folder
):
$ ls .git/refs/heads/feature/
datts_right user_controlled_menu user_controlled_site_layouts
$ cat .git/refs/heads/feature/user_controlled_site_layouts
3af84fcf1508c44013844dcd0998a14e61455034
ОБНОВЛЕНИЕ на git show 3af84fcf1508c44013844dcd0998a14e61455034
$ git show 3af84fcf1508c44013844dcd0998a14e61455034
commit 3af84fcf1508c44013844dcd0998a14e61455034
Author: Ramon Tayag <[email protected]>
Date: Thu May 12 19:00:03 2011 +0800
Removed site layouts migration
diff --git a/db/schema.rb b/db/schema.rb
index 1218fc8..2040b9f 100755
--- a/db/schema.rb
+++ b/db/schema.rb
@@ -10,7 +10,7 @@
#
# It strongly recommended to check this file into your version control system.
-ActiveRecord::Schema.define(:version => 20110511012647) do
+ActiveRecord::Schema.define(:version => 20110503040056) do
create_table "attachments", :force => true do |t|
t.string "name"
@@ -205,15 +205,6 @@ ActiveRecord::Schema.define(:version => 20110511012647) do
t.integer "old_id"
end
- create_table "site_layouts", :force => true do |t|
- t.string "name"
- t.text "description"
- t.text "content"
- t.integer "site_id"
- t.datetime "created_at"
- t.datetime "updated_at"
- end
-
create_table "site_styles", :force => true do |t|
t.text "published"
t.datetime "created_at"
13 май 2011, в 08:44
Поделиться
Источник
40 ответов
Попробуйте git fetch
, чтобы ваш локальный репозиторий получал всю новую информацию от github. Он просто берет информацию о новых ветких и фактическом коде. После этого git checkout
должен работать нормально.
MarkoHiel
07 сен. 2011, в 14:24
Поделиться
Я получал эту ошибку, когда пытался оформить заказ на новую ветку:
ошибка: pathspec ‘BRANCH-NAME’ не соответствует ни одному из файлов, известных git.
Когда я попробовал git checkout origin/<BRANCH-NAME>
, я получил отдельную ГОЛОВУ:
(отстранен от происхождения /)
Наконец, я сделал следующее, чтобы решить проблему:
git remote update
git fetch
git checkout --track origin/<BRANCH-NAME>
Mayank
15 сен. 2015, в 06:42
Поделиться
Я получил эту ошибку для ветки, которая была удаленной и не имела локальной ветки отслеживания. Хотя я уверен, что проверил удаленные ветки через простой
git checkout feature/foo
в прошлом, чтобы обойти эту ошибку, я должен был
git checkout -t -b feature/foo origin/feature/foo
Я не знаю, что я сделал, чтобы попасть в эту ситуацию.
Gregory McIntyre
31 май 2011, в 01:07
Поделиться
Если вы удалили ветку с помощью git branch -D yourbranchname
и снова вытащили/клонировали свое репо, вам может понадобиться снова создать локальную ветку.
Попробуйте:
git checkout -b yourbranchname
Francisco Alvarez
04 фев. 2014, в 00:14
Поделиться
Git Пользователи Windows остерегаются — без параметров --icase-pathspecs
или GIT_ICASE_PATHSPECS = 1
env var, что git pathspecs будут чувствительны к регистру, в которых case
git checkout origin/FooBranch "Some/Path/To/File.txt"
не совпадает с
git checkout origin/FooBranch "Some/Path/To/File.txt"
StuartLC
21 фев. 2014, в 09:36
Поделиться
У меня есть те же вопросы, и я получил некоторую информацию по этой ссылке: git fetch не извлекает все ветки
Итак, теперь я не уверен, как эта ситуация произошла, по крайней мере, мы можем ее решить:
Шаг 1. Проверьте настройку «remote.origin.fetch», должно быть как
$git config —get remote.origin.fetch
+ ссылки/головки/private_dev_branch: ссылки/пультов ДУ/происхождение/private_dev_branch
Шаг 2. Измените «remote.origin.fetch», чтобы получить все
$git config remote.origin.fetch «+ refs/heads/*: refs/remotes/origin/*»
$git config —get remote.origin.fetch
+ ссылки/главы/*: ссылки/пультов ДУ/происхождение/*
Затем вы можете попробовать «git pull» (возможно, «git fetch origin» также работает, но я не пробовал), чтобы получить всю ветвь.
bearzyj
08 авг. 2017, в 05:45
Поделиться
Если имя ветки отсутствует, и у вас нет никакого файла с ограниченным доступом, попробуйте это
git fetch && git checkout <branch name>
Sajin M Aboobakkar
18 май 2017, в 12:20
Поделиться
git pull
Это просто исправило это для меня
OpMt
29 авг. 2018, в 00:29
Поделиться
Я получил это, когда сделал следующее:
- Используемая IntelliJ IDE, подключенная к git
- Создан новый файл и добавлен в git
- Переименован новый файл
Когда я попытался проверить каталог, я получил эту ошибку.
Чтобы исправить:
Я открыл репо в расширениях git. Я увидел, что файл (со старым именем) был поставлен. Но поскольку он больше не существует, он не может быть зафиксирован.
Я просто отключил этот файл.
Затем я снова добавил файл (на этот раз правильно названный) в git и зафиксировал без ошибок.
Somaiah Kumbera
26 нояб. 2014, в 16:16
Поделиться
У меня была эта проблема сегодня, я пытался git checkout foo
и получил error: pathspec 'foo' did not match any file(s) known to git.
Оказывается, я ошибался в репо. Итак, извлеченный урок: проверьте, на каком репо вы смотрите, прежде чем волноваться.
James Harrington
16 дек. 2014, в 18:34
Поделиться
У меня такая же проблема, потому что я использовал git clone --depth=1
, что подразумевает --single-branch
.
Выполняет завершенный git clone
.
Huachao Huang
25 авг. 2016, в 12:08
Поделиться
Во-первых, проверьте родительскую ветвь. Затем введите
git fetch --all --prune
git checkout <your branch>
Надеюсь, поможет!.
Shradhey Tripathi
09 авг. 2018, в 15:51
Поделиться
В ОС Windows по умолчанию git устанавливается
core.ignorecase = true
Это означает, что файлы git repo будут нечувствительны к регистру, чтобы изменить это, которое вам нужно выполнить:
yourLocalRepo> git config core.ignorecase false
эту конфигурацию можно найти в файле .gitconfig
Vasile Bors
11 окт. 2015, в 16:21
Поделиться
В моем случае у меня есть TWO branch 1) master (для живого сервера) 2) dev (тестовый сервер). Я установил несколько удаленных программ для ввода кода на соответствующем сервере. Когда я попытался переключить ветвь, я получил ошибку, например error: pathspec 'master' did not match any file(s) known to git.
Вы можете увидеть их на git remote -v
.
Я удалил другой удаленный, кроме origin
remote, с помощью git remote remove <remote-name>
Тогда git fetch
Теперь я могу проверить ветвь на git checkout <branch-name>
.
ProCylon
10 дек. 2016, в 11:57
Поделиться
Если это происходит в Windows, это, вероятно, проблема с именем файла.
У меня была эта ошибка сегодня — я создал новый файл, добавленный в GIT, затем я сменил одну букву в имени файла с нижнего на верхний, а затем я ничего не мог — зафиксировать, вернуть, удалить файл из репо,
Единственное решение, которое я нашел, это снова изменить имя файла обратно в тот же самый случай, когда я добавил этот файл в GIT, а затем сделав GIT revert, чтобы удалить этот файл из GIT, а затем сменив имя файла снова, как я хочу, После этих изменений я мог бы выполнить репо, а затем нажать без проблем.
Marcin Nabiałek
03 март 2015, в 18:27
Поделиться
Произошло со мной после переименования незафиксированного файла в Android Studio.
У Git, похоже, была старая версия в своем хранилище, даже если ее больше не существовало.
fetch, pull, checkout, add all and so on did not help in my case!
Поэтому я открыл графический интерфейс Git TortoiseGit, который показал мне точный файл, вызвавший проблемы.
После этого я удалил файл из хранилища с помощью
git rm -r --cached /path/to/affected/file
и проблема исчезла
Marian Klühspies
25 март 2015, в 13:01
Поделиться
У меня была такая же проблема. Я думал, что у меня есть ветвь с именем foo
, когда я пытаюсь:
git checkout foo
Я получал:
error: pathspec 'foo' did not match any file(s) known to git.
Затем я попробовал имя полной ветки:
git checkout feature/foo
тогда работал у меня.
tokhi
10 июнь 2013, в 09:54
Поделиться
Я сделал глупую ошибку, не указав флаг -m во время совершения (lol)
git commit -m "commit message in here"
Ajain Vivek
23 март 2017, в 14:25
Поделиться
в моем случае я вхожу в каталог подмодулей, не делая
-
git submodule init
-
git submodule update
Итак, git был связан с родительской папкой, которая действительно пропустила эту ветвь.
Ilya Gazman
26 авг. 2015, в 13:12
Поделиться
Ни один из этих ответов не решил мою проблему:
[email protected] ~/Documents/NetBeansProjects/Version (master)
$ git log --format=oneline
b9cc6a9078312865280fb5432a43e17eff03a5c6 Formatted README
288772f36befe6bd60dd41b8185f1e24e0119668 Updated README documentation
d2bdbe18f4169358d46fad50eacfb89786df3bf8 Version object v3.0.0-SNAPSHOT
a46b1910a3f548b4fa254a6055d25f68d3f217dd VersionFactory is now Platform agnostic
24179ae569ec7bd28311389c0a7a85ea7b4f9594 Added internal.Platform abstraction
252b684417cf4edd71aed43a15da2c8a59c629a7 Added IPlugin implementation for Sponge
e3f8d21d6cf61ee4fc806791689c984c149b45e3 Added IPlugin implementation for Bukkit
aeb403914310b4b10dee9e980cf64472e2bfda79 Refactored Version.java
ef50efcff700c6438d57f70fac30846de2747a7e Refactored TesterFactory
a20808065878d4d28657ae362235c837cfa8e625 Added IPlugin abstraction
9712a3575a70060d7ecea8b62bb5e888fdc32d07 Heavily refactored Tester
02d025788ae740dbfe3ef76a132cea8ca4e47467 Added generic Predicate<T> interface
9c565777abea9be6767dfdab4ab94ed1173750dd Minor refactoring of testCompareTo()
2ff2a28c221681e256dcff28770782736d3a796a Version object v2.0.1
d4b2e2bd830f77cdbc2297112c2e46b6555d4393 Fix compareTo()
05fe7e012b07d1a5b8de29804f96d9a6b24229a1 Make compareTo() fail
6e85371414357a41c1fc0cec0e75adba92f96832 Fix VersionFactory passing null
c1fd1f032f87d860d5ed9d6f6679c9fa522cff8d Version object v2.0
62c3a92c008a2ed11f0a4d016080afc3541d0700 Version object v1.2
c42e9e617128085e872c51b4d977a04e48d69e8f Deprecated, doc'd, future-proofed getNm
[email protected] ~/Documents/NetBeansProjects/Version (master)
$ git checkout 3a796a
error: pathspec '3a796a' did not match any file(s) known to git.
Я пытался вернуться и построить фиксацию для Version object v2.0.1
. К счастью, у меня возникла идея попробовать весь хеш-код, и это сработало! Это означает, что я использовал неправильный конец хэш-кода.
[email protected] ~/Documents/NetBeansProjects/Version (master)
$ git checkout 2ff2a
Note: checking out '2ff2a'.
You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.
If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:
git checkout -b new_branch_name
HEAD is now at 2ff2a28... Version object v2.0.1
[email protected] ~/Documents/NetBeansProjects/Version ((2ff2a28...))
$
Как показано выше, для частичных хеш-кодов вы должны предоставить интерфейс, а не внешний.
Nikolaii99
05 авг. 2015, в 23:30
Поделиться
В моем случае я переименовал файл, изменяющий случай файла, т.е. SomeFile.js → someFile.js
Я думаю, что это было связано с проблемой. Выполнение git fetch не помогло решить проблему.
Я вытащил файлы из своего проекта, сделал выборку и без толчка. Затем я сделал выборку, добавил их обратно и сделал толчок, и это сработало. Я не знаю, нужны ли все эти шаги, но это в конечном итоге сработало.
Kip
31 март 2015, в 23:51
Поделиться
Я скопировал url
удаленного источника из другого файла .git/config
, поэтому в моем новом файле .git/config
отсутствовала следующая строка в разделе [remote "origin"]
fetch = +refs/heads/*:refs/remotes/origin/*
Добавление вышеуказанной строки исправило error: pathspec 'master' did not match any file(s) known to git.
AamirR
09 дек. 2018, в 16:55
Поделиться
Для меня это была проблема с моими полномочиями
Попробовав некоторые ответы, один из них помог мне решить проблему:
Запустив git fetch
выдал следующую ошибку:
Не удалось разрешить хост: bitbucket.org
Все, что мне нужно было сделать, это заставить мою IDE (VS Code в моем случае) запомнить мои учетные данные:
git config --global credential.helper wincred
Git немедленно синхронизировал все изменения, и git checkout <branche>
теперь работает нормально!
Jeffrey Roosendaal
30 авг. 2018, в 19:13
Поделиться
Я столкнулся с этой же проблемой, когда я впервые играл с git. При попытке моего первого совершения…
git commit -m 'first commit!'
Я получил ошибку, упомянутую OP…
error: pathspec 'commit!'' did not match any file(s) known to git.
Я думал, что, возможно, запутался git, используя ключевое слово в сообщении commit, поэтому я попробовал несколько других слов и получил ту же ошибку.
Наконец, я использовал двойные кавычки в сообщении…
git commit -m "first commit!"
Это оказалось успешным…
[master (root commit) 0000000] first commit!
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 dummyDoc.txt
TheLastGIS
28 дек. 2016, в 00:44
Поделиться
Хорошо, ответов уже слишком много. Но в моем случае я столкнулся с этой проблемой, когда работал над Eclipse и использовал git-bash для переключения между ветками/извлечениями. Как только я закрыл затмение и перезапустил git-bash для проверки, все работало хорошо.
Поэтому я предлагаю вам дважды проверить, не используется ли ваш репозиторий другим приложением.
Mohammad Faisal
12 сен. 2018, в 16:46
Поделиться
Одна возможная причина. Если вы работаете с машиной Windows с MINGW *
ISSUE
Проверьте имя ветки, которую вы хотите проверить. Windows опускает символ '
из имени ветки во время разбора команды.
например: если у вас есть имя ветки, например bugfix/some-'branch'-name
Когда вы выдаете команду: > git checkout bugfix/some-'branch'-name
, она будет анализировать ее как bugfix/some-branch-name
, заметьте, что она пропускает символ '
.
REMEDY
Чтобы проверить это имя ветки, добавить escape-символ при выдаче команды.
Тип: > git checkout bugfix/some-'branch'-name
Затем он работает!!
Piyush Sagar
19 окт. 2016, в 12:51
Поделиться
В моем случае я запускаю «git fetch» до «git branch…:, но получил ту же ошибку.
Затем я проанализировал его и нашел ошибку в имени моей ветки. Исправлено и успешно переключилось на ветвь.
Viktor Chmel
19 июль 2016, в 10:34
Поделиться
Я столкнулся с этой проблемой в прошлый раз, и то, что я сделал, это удалить папку (или исходный код), связанную с этой веткой.
Ex: начало ветки /foo создает папку foo на вашем локальном, поэтому я просто удаляю ее и использую git fetch $ checkout
, чтобы получить код с удаленного.
Или вы можете сделать это, создав папку на том же месте, что и ветка, которую вы планировали проверить.
Ex: создайте папку foo на локальном компьютере, после этого используйте команду Git: git branch --set-upstream-to=origin/foo foo
, что все. Используйте git pull
для получения кода.
blackberry
25 янв. 2016, в 05:17
Поделиться
У меня была эта проблема при работе с Git в Windows. В моем случае это была проблема.
Я уже добавил и перенял файл в мой репозиторий, а потом изменил только его случай.
Чтобы решить проблему, я переименовал файл в соответствии с исходным случаем и снова переименовал его с помощью команды git mv
. По-видимому, это позволяет Git отслеживать переименование.
Примечание. Я использовал Cygwin.
Thomas Eizinger
16 сен. 2015, в 15:42
Поделиться
Я столкнулся с подобной проблемой. Что привело меня в эту беду:
У меня было несколько удаленных веток, и я удалил папку с кодом.
Я потянулся.:
git pull [email protected]
Затем я добавил удаленный репозиторий:
git remote add upstream [email protected]
Затем я попытался изменить ветвь на другую ветку, скажем, AAAA, и я получил ошибку
error: pathspec 'AAAA' did not match any file(s) known to git.
Проведя час, я нашел решение.
Я снова удалил исходную папку.
Затем я сделал git pull:
git pull [email protected]
Затем я изменил ветвь, прежде чем связывать ее с удаленным репозиторием:
git checkout AAA
то я добавил его в удаленный репозиторий
git remote add upstream [email protected]
После этого я могу легко переключать ветки.
Хотя это не стандартный способ, но он работал у меня после того, как я попробовал все вышеперечисленные варианты.
Amit Kumar
29 окт. 2014, в 11:21
Поделиться
Это может быть вызвано тем, что восходящий поток перезаписывает историю.
Когда это произойдет, я бросаю все затронутые репозитории, клонирую их свежими из восходящего потока и использую ‘git format-patch’/’git am’, чтобы переправлять любые выполняемые работы из старого мира в новый.
Dan Kegel
14 март 2014, в 00:27
Поделиться
Я получил тот же pathspec error
на git — bash. Я использовал Tortoise git в окнах для переключения/проверки ветки.
nouveau
17 апр. 2013, в 09:08
Поделиться
У меня была та же проблема (с версией git-latest) и я обнаружил, что это связано с кодами escape-цветов, используемыми git. Интересно, может ли это объяснить, почему эта проблема возникает так часто.
Это демонстрирует, что может происходить, хотя цвет обычно задается в конфигурации git, а не в командной строке (в противном случае это будет очевидно):
~/dev/trunk (master)$ git checkout 'git branch -l --color=always | grep django-1.11'
error: pathspec 'django-1.11' did not match any file(s) known to git.
~/dev/trunk (master)$ git branch -l --color=always | grep django-1.11
django-1.11
~/dev/trunk (master)$ git checkout 'git branch -l | grep django-1.11'
Switched to branch 'django-1.11'
Your branch is up-to-date with 'gerrit/django-1.11'.
~/dev/trunk (django-1.11)$
Я полагаю, что git-конфигурация, которая не играет с настройками цвета, должна работать color = auto должна делать правильные вещи. Моя конкретная проблема заключалась в том, что git recent
я использовал, был определен как псевдоним с жестко закодированными цветами, и я пытался создавать команды поверх этого.
Danimal
27 июль 2018, в 14:03
Поделиться
Я получил это на столе Github после нажатия «Обновить из…», когда было выбрано неправильное репо. Затем я изменил репо на правильный, но когда я попытался удалить изменения, я получил эту ошибку. Это потому, что это были новые файлы в репо, которые я ошибочно выбрал, но не тот, который я хотел обновить.
Я просто сменил селектор репо на тот, который я неправильно выбрал в первый раз, после чего смог удалить изменения.
Затем я сменил селектор репо на тот, который я хотел.
user2568374
24 авг. 2015, в 14:37
Поделиться
$ cat .git/refs/heads/feature/user_controlled_site_layouts
3af84fcf1508c44013844dcd0998a14e61455034
Можете ли вы подтвердить, что следующие работы:
$ git show 3af84fcf1508c44013844dcd0998a14e61455034
Возможно, кто-то переписал историю и что это обязательство больше не существует (по какой-либо причине).
ralphtheninja
13 май 2011, в 12:28
Поделиться
Это случилось со мной также в Windows на двух локальных ветких, которые я создал сам.
После выхода из ветки я не смог проверить
bugfix_ # 303_multiline_opmerkingen_not_displaying_correctly_in_viewer
и
bugfix_339_hidden_fields_still_validated
вы можете увидеть на скриншоте из Git bash ниже.
Когда я попытался использовать графический интерфейс Git, я даже не мог видеть ветки вообще. Однако, когда я использовал инструмент Pycharms Git, я увидел это:
Итак, почему-то окна решили добавить некоторую неразличимую персонаж к моим именам ветвей, и именно по этой причине это не сработало. Переименование ветвей в Pycharm сделал трюк, поэтому угадайте, что это будет работать и на других IDE.
tarikki
01 июнь 2016, в 07:08
Поделиться
Вот как я решил свою ошибку!
Сначала я удалил свое репо локально, а также из моего Github. Затем я раздвоил и клонировал в свой локальный репозиторий.
После этого я сделал свое изменение и наконец
Создана Моя ветка с помощью
$git checkout -b moh_branch
изменить рабочую ветвь
$git checkout moh_branch
нажмите ветку на GitHub
$git push origin moh_branch
После этого я могу выполнить свои изменения следующим образом: —
$git add .
$git commit -m "updated readme.md"
$git push origin moh_branch
Премию 100% для меня!!
Moh K
30 авг. 2017, в 17:19
Поделиться
Поскольку ваша ветвь функции существует в удаленном режиме, это повреждает локальное репо. Итак, удалите локальное репо и повторите клонирование. Теперь ‘git checkout <branch_name>
‘ должен работать для вас.
Ninos
18 апр. 2017, в 19:07
Поделиться
Это сработало для меня. Он отбрасывает все локальные изменения и сбрасывает их до последнего фиксации.
git reset --hard
timbo7io
21 янв. 2017, в 02:28
Поделиться
Если вы находитесь в Windows, вы, вероятно, можете изменить имя файла на нижний/верхний регистр, например File.txt — file.txt
Итак, проверьте, какой файл у вас есть в git и переименуйте его в нужное вам:
git status
Затем мне нужен файл file.txt → but git, который дает мне файл File.txt, поэтому просто переименуйте его
git mv File.txt file.txt
И проблема решена.
Manic Depression
07 июль 2017, в 19:04
Поделиться
Ещё вопросы
- 1минута даты JavaScript с ведущим нулем
- 1Javascript ожидает выполнения условия с помощью обещаний
- 1Android API Level 8 Приложение Установить Расположение Функция
- 0JQuery действует странно в IE, когда я НЕ в режиме совместимости
- 0не может запрашивать значения из реестра Windows
- 1Java Лучший способ вызвать методы с заданной строкой
- 0CouchDB с PHP (используя cURL), но как?
- 0Динамически читать значение поля ввода html: python
- 0MySQL — подзапрос / JOIN той же таблицы различных элементов ревизии
- 1Более обратный формат даты возврата
- 1Конвертировать число в месяц в d3js
- 1Почему я не могу разобрать вложение javamail с помощью toString?
- 0Почему эта * простая * KnockoutJS страница не работает?
- 1Как изменить цвет фона JFrame [дубликата]
- 0MySQL Исключить сверх Включить в FIND_IN_SET ()
- 1Подсчитайте, сколько раз каждый токен появляется в каждой строке DataFrame
- 1В Python добавление пустого списка в столбец dataframe с помощью лямбды повышает valueError
- 1API календаря Google не может получить идентификатор цвета
- 1Невозможно установить ItemsSource для XamComboEditor в XamDataGrid
- 0положить несколько значений в json_encode
- 1Черное поле под панелью приложения
- 0Инструмент для фиксации фигурных скобок
- 1Откуда берется «структура»?
- 0Как поместить прямоугольник в середину
- 0Что эквивалентно GNU TM в Visual Studio?
- 0Как установить кэш в false на httpget из действия контроллера mvc4
- 0Как использовать многомерный массив в запросе MySQL с PHP?
- 0Найти пары в таблице с двумя столбцами и объединить в таблицу с тремя столбцами
- 1Моя страница JSP не перенаправляет на Myservlet, используя форму
- 1Программа продолжает возвращаться, не может прочитать свойство toLowerCase из Undefined
- 1undefined и NaN, преобразовать в логическое значение неявно против явно
- 1Кнопка меню не работает на эмуляторе в приложении Карт
- 0Изменение цвета маршрута маршрута карты Google с перемещением навигатора от одной точки к другой.
- 1Метод клонирования Java
- 0Как передать ссылку на $ http в AngularJS?
- 0Угловой JS с ASP.NET Master Pages
- 1Нужна помощь в понимании этой проблемы относительно относительного и абсолютного импорта в Python
- 1Рабочая роль Azure Что пошло не так до метода OnRun ()?
- 0Передача / Отображение больших объемов данных во вкладках на стороне клиента
- 1Как вы делаете простой CRUD в Android?
- 0Перемещение объекта с использованием SFML
- 0C ++ Simple Thread Начать выпуск
- 1Как запустить PDFbookmarker в Python
- 0Неправильный цифровой ключ при использовании php array_merge_recursive
- 0Как изменить высоту div, если высота браузера меньше заданного количества пикселей?
- 0QTableWidget, заполненный QLineEdits, не запускает сигналы
- 1Android новички
- 1Как читать и записывать данные в P6DB через веб-сервис P6 с использованием C #
- 1Панды to_csv float_format не работает
- 0Не уверен, почему этот код JQuery не будет работать
Scenarios that emerge
In the local init, a repository is created, and then a develop ment branch is created, on which file operations are performed, followed by changes made by commit.
$ git init Initialized empty Git repository in D:/practice/testBranch/.git/ $ git checkout -b develop Switched to a new branch 'develop' $ vim a.txt $ git add a.txt $ git commit -m "add a new file" [develop (root-commit) f9ac3b8] add a new file 1 file changed, 1 insertion(+) create mode 100644 a.txt
Then you cut to the master branch and do the file operation. Then the following mistakes will occur:
$ git checkout master error: pathspec 'master' did not match any file(s) known to git.
Reasons for the problem
Command parsing
The git init command creates a master branch by default and points the HEAD (which is a special pointer to the current local branch) to that branch. Nevertheless, you can’t see any branches when you view local and remote branches through the GIT branch-a command.
The git checkout master command actually does two things: one is to make HEAD refer back to the master branch; the other is to restore the working directory to the snapshot content that the master branch refers to.
problem analysis
After HEAD refers back to the master branch, it is necessary to restore the working directory to the content that the master branch refers to. But since you’ve been working on the develop ment branch since the beginning, the working directory corresponding to the master branch is equivalent to nothing, so that no files can be matched.
How to solve
You just need to initialize a repository, first do some commit operations on the master branch, such as adding a README.md file, so that you really create a master branch. For example:
$ git init Reinitialized existing Git repository in D:/practice/testBranch/.git/ $ vim README.md $ git add README.md warning: LF will be replaced by CRLF in README.md. The file will have its original line endings in your working directory. $ git commit -m "add a new file" [master (root-commit) 0e8c7c3] add a new file 1 file changed, 1 insertion(+) create mode 100644 README.md $ git push Counting objects: 3, done. Writing objects: 100% (3/3), 219 bytes | 0 bytes/s, done. Total 3 (delta 0), reused 0 (delta 0) remote: remote: Create a pull request for 'master' on GitHub by visiting: remote: https://github.com/benben/testBranch/pull/new/master remote: To github.com:benben/testBranch.git * [new branch] master -> master
When push ing, you can see the prompt to create a master branch in the remote warehouse, and the local master branch points to the remote master branch.
Then you can see all local and remote branches through git branch-a. Then you can create other branches and switch between master branches at will.
$ git branch -a * master remotes/origin/master
When switching branches, be aware that the files in your working directory will be changed. If you switch to an older branch, your working directory will be restored to what it looked like when it was last submitted. If Git can’t do this cleanly, it will prohibit branch switching.
Open
Issue created Feb 11, 2022 by
Can’t checkout a submodule branch anymore
Summary
After upgrading our gitlab runners from 13.10.0 to 13.11.0 we can’t checkout a branch in a submodule anymore.
Steps to reproduce
One project named «mymodule» with two branches (main and dev)
One project named «test» with two branches (main and dev) and the project named «mymodule» as a submodule
Main branch :
[submodule "mymodule"]
path = mymodule
url = ../mymodule.git
Dev branch :
[submodule "mymodule"]
path = mymodule
url = ../mymodule.git
branch = dev
Main branch
variables:
GIT_SUBMODULE_STRATEGY: recursive
stages:
- test
test:
stage: test
script:
- cd mymodule
- git pull
Dev branch
variables:
GIT_SUBMODULE_STRATEGY: recursive
stages:
- test
test:
stage: test
script:
- cd mymodule
- git checkout dev
- git pull
Actual behavior
The git pull in the main branch can update the submodule OK.
The git checkout dev doesn’t work anymore :
$ git checkout dev
error: pathspec 'dev' did not match any file(s) known to git
Expected behavior
The same as before in 13.10.0
$ git checkout dev
Previous HEAD position was 31d631c Add new file
Branch 'dev' set up to track remote branch 'dev' from 'origin'.
Relevant logs and/or screenshots
Running with gitlab-runner 13.11.0 (58ba2b95)
on ************************ ZNjBtxc3
Preparing the "kubernetes" executor 00:00
Using Kubernetes namespace: *********************
Using Kubernetes executor with image ********************************* ...
Using attach strategy to execute scripts...
Preparing environment 00:06
Waiting for pod ********************* to be running, status is Pending
Waiting for pod ********************* to be running, status is Pending
ContainersNotReady: "containers with unready status: [build helper]"
ContainersNotReady: "containers with unready status: [build helper]"
Running on runner-znjbtxc3-project-1471-concurrent-0fwjvh via *********************...
Getting source from Git repository 00:02
Fetching changes with git depth set to 50...
Initialized empty Git repository in /builds/ZNjBtxc3/0/test/tes/.git/
Created fresh repository.
Checking out b15da79f as dev...
Updating/initializing submodules recursively with git depth set to 50...
Submodule 'mymodule' (https://gitlab-ci-token:[MASKED]@*************/test/mymodule.git) registered for path 'mymodule'
Cloning into '/builds/ZNjBtxc3/0/test/test/mymodule'...
From https://************/test/mymodule
* branch 31d631ca35bad5f5b9647500f3a7604b70501542 -> FETCH_HEAD
Submodule path 'mymodule': checked out '31d631ca35bad5f5b9647500f3a7604b70501542'
Entering 'mymodule'
Entering 'mymodule'
Executing "step_script" stage of the job script 00:01
$ cd mymodule
$ git checkout dev
error: pathspec 'dev' did not match any file(s) known to git
Cleaning up file based variables 00:00
ERROR: Job failed: command terminated with exit code 1
Environment description
Gitlab runner with the Kubernetes Executor.
config.toml contents
Add your configuration here
Used GitLab Runner version
Possible fixes
Edited Feb 11, 2022 by Johan S