Golang error types

In this article, we'll take a look at how to handle errors using build-in Golang functionality, how you can extract information from the errors you are receiving and the best practices to do so.

In this article, we’ll take a look at how to handle errors using build-in Golang functionality, how you can extract information from the errors you are receiving and the best practices to do so.

Error handling in Golang is unconventional when compared to other mainstream languages like Javascript, Java and Python. This can make it very difficult for new programmers to grasp Golangs approach of tackling error handling.

In this article, we’ll take a look at how to handle errors using build-in Golang functionality, how you can extract information from the errors you are receiving and the best practices to do so. A basic understanding of Golang is therefore required to follow this article. If you are unsure about any concepts, you can look them up here.

Errors in Golang

Errors indicate an unwanted condition occurring in your application. Let’s say you want to create a temporary directory where you can store some files for your application, but the directory’s creation fails. This is an unwanted condition and is therefore represented using an error.

package main

import (  
    "fmt"
    "ioutil"
)

func main() {  
    dir, err := ioutil.TempDir("", "temp")
		if err != nil {
			return fmt.Errorf("failed to create temp dir: %v", err)
		}
}

Golang represents errors using the built-in error type, which we will look at closer in the next section. The error is often returned as a second argument of the function, as shown in the example above. Here the TempDir function returns the name of the directory as well as an error variable.

Creating custom errors

As already mentioned errors are represented using the built-in error interface type, which has the following definition:

type error interface {  
    Error() string
}

The interface contains a single method Error() that returns an error message as a string. Every type that implements the error interface can be used as an error. When printing the error using methods like fmt.Println the Error() method is automatically called by Golang.

There are multiple ways of creating custom error messages in Golang, each with its own advantages and disadvantages.

String-based errors

String-based errors can be created using two out-of-the-box options in Golang and are used for simple errors that just need to return an error message.

err := errors.New("math: divided by zero")

The errors.New() method can be used to create new errors and takes the error message as its only parameter.

err2 := fmt.Errorf("math: %g cannot be divided by zero", x)

fmt.Errorf on the other hand also provides the ability to add formatting to your error message. Above you can see that a parameter can be passed which will be included in the error message.

Custom error with data

You can create your own error type by implementing the Error() function defined in the error interface on your struct. Here is an example:

type PathError struct {
    Path string
}

func (e *PathError) Error() string {
	return fmt.Sprintf("error in path: %v", e.Path)
}

The PathError implements the Error() function and therefore satisfies the error interface. The implementation of the Error() function now returns a string with the path of the PathError struct. You can now use PathError whenever you want to throw an error.

Here is an elementary example:

package main

import(
	"fmt"
)

type PathError struct {
    Path string
}

func (e *PathError) Error() string {
	return fmt.Sprintf("error in path: %v", e.Path)
}

func throwError() error {
	return &PathError{Path: "/test"}
}

func main() {
	err := throwError()

	if err != nil {
		fmt.Println(err)
	}
}

You can also check if the error has a specific type using either an if or switch statement:

if err != nil {
    switch e := err.(type) {
    case *PathError :
        // Do something with the path
    default:
        log.Println(e)
    }
}

This will allow you to extract more information from your errors because you can then call all functions that are implemented on the specific error type. For example, if the PathError had a second method called GetInfo you could call it like this.

e.GetInfo()

Error handling in functions

Now that you know how to create your own custom errors and extract as much information as possible from errors let’s take a look at how you can handle errors in functions.

Most of the time errors are not directly handled in functions but are returned as a return value instead. Here we can take advantage of the fact that Golang supports multiple return values for a function. Thus you can return your error alongside the normal result — errors are always returned as the last argument — of the function as follows:

func divide(a, b float64) (float64, error) {
	if b == 0 {
		return 0.0, errors.New("cannot divide through zero")
	}

	return a/b, nil
}

The function call will then look similar to this:

func main() {
	num, err := divide(100, 0)

	if err != nil {
		fmt.Printf("error: %s", err.Error())
	} else {
		fmt.Println("Number: ", num)
	}
}

If the returned error is not nil it usually means that there is a problem and you need to handle the error appropriately. This can mean that you use some kind of log message to warn the user, retry the function until it works or close the application entirely depending on the situation. The only drawback is that Golang does not enforce handling the retuned errors, which means that you could just ignore handling errors completely.

Take the following code for example:

package main

import (
	"errors"
	"fmt"
)

func main() {
	num2, _ := divide(100, 0)
	
	fmt.Println("Number: ", num2)
}

The so-called blank identifier is used as an anonymous placeholder and therefore provides a way to ignore values in an assignment and avoid compiler errors in the process. But remember that using the blank identifier instead of probably handling errors is dangerous and should not be done if it can be avoided.

Defer, panic and recover

Go does not have exceptions like many other programming languages, including Java and Javascript but has a comparable mechanism know as ,,Defer, panic and recover». Still the use-cases of panic and recover are very different from exceptions in other programming languages as they should only be used in unexpected and unrecoverable situations.

Defer

A defer statement is a mechanism used to defer a function by putting it into an executed stack once the function that contains the defer statement has finished, either normally by executing a return statement or abnormally panicking. Deferred functions will then be executed in reverse order in which they were deferred.

Take the following function for example:

func processHTML(url string) error {
  resp, err := http.Get(url)

  if err != nil {
    	return err
	}

	ct := resp.Header.Get("Content-Type")
	if ct != "text/html" && !strings.HasPrefix(ct, "text/html;") {
		resp.Body.Close()
		return fmt.Errorf("%s has content type %s which does not match text/html", url, ct)
	}

	doc, err := html.Parse(resp.Body)
	resp.Body.Close()

	// ... Process HTML ...
	
	return nil
}

Here you can notice the duplicated resp.Body.Close call, which ensures that the response is properly closed. Once functions grow more complex and have more errors that need to be handled such duplications get more and more problematic to maintain.

Since deferred calls get called once the function has ended, no matter if it succeeded or not it can be used to simplify such calls.

func processHTMLDefer(url string) error {
  resp, err := http.Get(url)

  if err != nil {
    	return err
	}
  defer resp.Body.Close()

	ct := resp.Header.Get("Content-Type")
	if ct != "text/html" && !strings.HasPrefix(ct, "text/html;") {
		return fmt.Errorf("%s has content type %s which does not match text/html", url, ct)
	}

	doc, err := html.Parse(resp.Body)

	// ... Process HTML ...

	return nil
}

All deferred functions are executed in reverse order in which they were deferred when the function finishes.

package main

import (
        "fmt"
)

func main() {
	first()
}

func first() {
	defer fmt.Println("first")
	second()
}

func second() {
	defer fmt.Println("second")
	third()
}

func third() {
	defer fmt.Println("third")
}

Here is the result of running the above program:

third
second
first

Panic

A panic statement signals Golang that your code cannot solve the current problem and it therefore stops the normal execution flow of your code. Once a panic is called, all deferred functions are executed and the program crashes with a log message that includes the panic values (usually an error message) and a stack trace.

As an example Golang will panic when a number is divided by zero.

package main

import "fmt"

func main() {
	divide(5)
}

func divide(x int) {
	fmt.Printf("divide(%d) n", x+0/x)
	divide(x-1)
}

Once the divide function is called using zero, the program will panic, resulting in the following output.

panic: runtime error: integer divide by zero

goroutine 1 [running]:
main.divide(0x0)
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:16 +0xe6
main.divide(0x1)
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x2)
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x3)
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x4)
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x5)
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.main()
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:11 +0x31
exit status 2

You can also use the built-in panic function to panic in your own programms. A panic should mostly only be used when something happens that the program didn’t expect and cannot handle.

func getArguments() {
	if len(os.Args) == 1 {
		panic("Not enough arguments!")
	}
}

As already mentioned, deferred functions will be executed before terminating the application, as shown in the following example.

package main

import (
	"fmt"
)

func main() {
	accessSlice([]int{1,2,5,6,7,8}, 0)
}

func accessSlice(slice []int, index int) {
	fmt.Printf("item %d, value %d n", index, slice[index])
	defer fmt.Printf("defer %d n", index)
	accessSlice(slice, index+1)
}

Here is the output of the programm:

item 0, value 1 
item 1, value 2 
item 2, value 5
item 3, value 6
item 4, value 7
item 5, value 8
defer 5
defer 4
defer 3
defer 2
defer 1
defer 0
panic: runtime error: index out of range [6] with length 6

goroutine 1 [running]:
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x6)
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:29 +0x250
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x5)
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x4)
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x3)
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x2)
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x1)
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x0)
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.main()
        C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:9 +0x99
exit status 2

Recover

In some rare cases panics should not terminate the application but be recovered instead. For example, a socket server that encounters an unexpected problem could report the error to the clients and then close all connections rather than leaving the clients wondering what just happened.

Panics can therefore be recovered by calling the built-in recover function within a deferred function in the function that is panicking. Recover will then end the current state of panic and return the panic error value.

package main

import "fmt"

func main(){
	accessSlice([]int{1,2,5,6,7,8}, 0)
}

func accessSlice(slice []int, index int) {
	defer func() {
		if p := recover(); p != nil {
			fmt.Printf("internal error: %v", p)
		}
	}()

	fmt.Printf("item %d, value %d n", index, slice[index])
	defer fmt.Printf("defer %d n", index)
	accessSlice(slice, index+1)
}

As you can see after adding a recover function to the function we coded above the program doesn’t exit anymore when the index is out of bounds by recovers instead.

Output:

item 0, value 1 
item 1, value 2
item 2, value 5
item 3, value 6
item 4, value 7
item 5, value 8
internal error: runtime error: index out of range [6] with length 6defer 5 
defer 4
defer 3
defer 2
defer 1
defer 0

Recovering from panics can be useful in some cases, but as a general rule you should try to avoid recovering from panics.

Error wrapping

Golang also allows errors to wrap other errors which provides the functionality to provide additional context to your error messages. This is often used to provide specific information like where the error originated in your program.

You can create wrapped errors by using the %w flag with the fmt.Errorf function as shown in the following example.

package main

import (
	"errors"
	"fmt"
	"os"
)

func main() {
	err := openFile("non-existing")

	if err != nil {
		fmt.Printf("error running program: %s n", err.Error())
	}
}

func openFile(filename string) error {
	if _, err := os.Open(filename); err != nil {
		return fmt.Errorf("error opening %s: %w", filename, err)
	}

	return nil
}

The output of the application would now look like the following:

error running program: error opening non-existing: open non-existing: no such file or directory

As you can see the application prints both the new error created using fmt.Errorf as well as the old error message that was passed to the %w flag. Golang also provides the functionality to get the old error message back by unwrapping the error using errors.Unwrap.

package main

import (
	"errors"
	"fmt"
	"os"
)

func main() {
	err := openFile("non-existing")

	if err != nil {
		fmt.Printf("error running program: %s n", err.Error())

		// Unwrap error
		unwrappedErr := errors.Unwrap(err)
		fmt.Printf("unwrapped error: %v n", unwrappedErr)
	}
}

func openFile(filename string) error {
	if _, err := os.Open(filename); err != nil {
		return fmt.Errorf("error opening %s: %w", filename, err)
	}

	return nil
}

As you can see the output now also displays the original error.

error running program: error opening non-existing: open non-existing: no such file or directory 
unwrapped error: open non-existing: no such file or directory

Errors can be wrapped and unwrapped multiple times, but in most cases wrapping them more than a few times does not make sense.

Casting Errors

Sometimes you will need a way to cast between different error types to for example, access unique information that only that type has. The errors.As function provides an easy and safe way to do so by looking for the first error in the error chain that fits the requirements of the error type. If no match is found the function returns false.

Let’s look at the official errors.As docs example to better understand what is happening.

package main

import (
	"errors"
	"fmt"
	"io/fs"
	"os"
)

func main(){
	// Casting error
	if _, err := os.Open("non-existing"); err != nil {
		var pathError *os.PathError
		if errors.As(err, &pathError) {
			fmt.Println("Failed at path:", pathError.Path)
		} else {
			fmt.Println(err)
		}
	}
}

Here we try to cast our generic error type to os.PathError so we can access the Path variable that that specific error contains.

Another useful functionality is checking if an error has a specific type. Golang provides the errors.Is function to do exactly that. Here you provide your error as well as the particular error type you want to check. If the error matches the specific type the function will return true, if not it will return false.

package main

import (
	"errors"
	"fmt"
	"io/fs"
	"os"
)

func main(){
	// Check if error is a specific type
	if _, err := os.Open("non-existing"); err != nil {
		if errors.Is(err, fs.ErrNotExist) {
			fmt.Println("file does not exist")
		} else {
			fmt.Println(err)
		}
	}
}

After checking, you can adapt your error message accordingly.

Sources

  • Golang Blog — Working with Errors in Go 1.13
  • The Go Programming language book
  • Golang Blog — Defer, Panic, and Recover
  • LogRocket — Error handling in Golang
  • GolangByExample — Wrapping and Un-wrapping of error in Go
  • Golang Documentation — Package errors

Conclusion

You made it all the way until the end! I hope this article helped you understand the basics of Go error handling and why it is an essential topic in application/software development.

If you have found this helpful, please consider recommending and sharing it with other fellow developers and subscribing to my newsletter. If you have any questions or feedback, let me know using my contact form or contact me on Twitter.

Errors are a language-agnostic part that helps to write code in such a way that no unexpected thing happens. When something occurs which is not supported by any means then an error occurs. Errors help to write clean code that increases the maintainability of the program.

What is an error?

An error is a well developed abstract concept which occurs when an exception happens. That is whenever something unexpected happens an error is thrown. Errors are common in every language which basically means it is a concept in the realm of programming.

Why do we need Error?

Errors are a part of any program. An error tells if something unexpected happens. Errors also help maintain code stability and maintainability. Without errors, the programs we use today will be extremely buggy due to a lack of testing.

Golang has support for errors in a really simple way. Go functions returns errors as a second return value. That is the standard way of implementing and using errors in Go. That means the error can be checked immediately before proceeding to the next steps.

Simple Error Methods

There are multiple methods for creating errors. Here we will discuss the simple ones that can be created without much effort.

1. Using the New function

Golang errors package has a function called New() which can be used to create errors easily. Below it is in action.

package main

import (
	"fmt"
	"errors"
)

func e(v int) (int, error) {
	if v == 0 {
		return 0, errors.New("Zero cannot be used")
	} else {
		return 2*v, nil
	}
}

func main() {
	v, err := e(0)
	
	if err != nil {
		fmt.Println(err, v)      // Zero cannot be used 0
	}	
}

2. Using the Errorf function

The fmt package has an Errorf() method that allows formatted errors as shown below.

fmt.Errorf("Error: Zero not allowed! %v", v)    // Error: Zero not allowed! 0

Checking for an Error

To check for an error we simply get the second value of the function and then check the value with the nil. Since the zero value of an error is nil. So, we check if an error is a nil. If it is then no error has occurred and all other cases the error has occurred.

package main

import (
	"fmt"
	"errors"
)

func e(v int) (int, error) {
	return 42, errors.New("42 is unexpected!")
}

func main() {
	_, err := e(0)
	
	if err != nil {   // check error here
		fmt.Println(err)      // 42 is unexpected!
	}	
}

Panic and recover

Panic occurs when an unexpected wrong thing happens. It stops the function execution. Recover is the opposite of it. It allows us to recover the execution from stopping. Below shown code illustrates the concept.

package main

import (
	"fmt"
)

func f(s string) {
	panic(s)      // throws panic
}

func main() {
        // defer makes the function run at the end
	defer func() {      // recovers panic
		if e := recover(); e != nil {
            		fmt.Println("Recovered from panic")
        	}
	}()
	
	f("Panic occurs!!!") // throws panic 
	
	// output:
	// Recovered from panic
}

Creating custom errors

As we have seen earlier the function errors.New() and fmt.Errorf() both can be used to create new errors. But there is another way we can do that. And that is implementing the error interface.

type CustomError struct {
	data string
}

func (e *CustomError) Error() string {
	return fmt.Sprintf("Error occured due to... %s", e.data)
}

Returning error alongside values

Returning errors are pretty easy in Go. Go supports multiple return values. So we can return any value and error both at the same time and then check the error. Here is a way to do that.

import (
	"fmt"
	"errors"
)

func returnError() (int, error) {  // declare return type here
	return 42, errors.New("Error occured!")  // return it here
}

func main() {
	v, e := returnError()
	if e != nil {
		fmt.Println(e, v)  // Error occured! 42
	}
}

Ignoring errors in Golang

Go has the skip (-) operator which allows skipping returned errors at all. Simply using the skip operator helps here.

package main

import (
	"fmt"
	"errors"
)

func returnError() (int, error) {  // declare return type here
	return 42, errors.New("Error occured!")  // return it here
}

func main() {
	v, _ := returnError()   // skip error with skip operator
	
	fmt.Println(v)    // 42
}

Welcome to tutorial no. 30 in Golang tutorial series.

What are errors?

Errors indicate any abnormal condition occurring in the program. Let’s say we are trying to open a file and the file does not exist in the file system. This is an abnormal condition and it’s represented as an error.

Errors in Go are plain old values. Just like any other built-in type such as int, float64, … error values can be stored in variables, passed as parameters to functions, returned from functions, and so on.

Errors are represented using the built-in error type. We will learn more about the error type later in this tutorial.

Example

Let’s start right away with an example program that tries to open a file that does not exist.

package main

import (  
    "fmt"
    "os"
)

func main() {  
    f, err := os.Open("/test.txt")
    if err != nil {
        fmt.Println(err)
        return
    }
    fmt.Println(f.Name(), "opened successfully")
}

Run in playground

In line no. 9 of the program above, we are trying to open the file at path /test.txt(which will obviously not exist in the playground). The Open function of the os package has the following signature,

func Open(name string) (*File, error)

If the file has been opened successfully, then the Open function will return the file handler and error will be nil. If there is an error while opening the file, a non-nil error will be returned.

If a function or method returns an error, then by convention it has to be the last value returned from the function. Hence the Open function returns error as the last value.

The idiomatic way of handling errors in Go is to compare the returned error to nil. A nil value indicates that no error has occurred and a non-nil value indicates the presence of an error. In our case, we check whether the error is not nil in line no. 10. If it is not nil, we simply print the error and return from the main function.

Running this program will print

open /test.txt: No such file or directory  

Perfect 😃. We get an error stating that the file does not exist.

Error type representation

Let’s dig a little deeper and see how the built in error type is defined. error is an interface type with the following definition,

type error interface {  
    Error() string
}

It contains a single method with the signature Error() string. Any type which implements this interface can be used as an error. This method provides the description of the error.

When printing the error, fmt.Println function calls the Error() string method internally to get the description of the error. This is how the error description was printed in line no. 11 of the above sample program.

Now that we know error is an interface type, let’s see how we can extract more information about an error.

In the example we saw above, we have just printed the description of the error. What if we wanted the actual path of the file which caused the error. One possible way to get this is to parse the error string. This was the output of our program,

open /test.txt: No such file or directory  

We can parse this error message and get the file path «/test.txt» of the file which caused the error, but this is a dirty way of doing it. The error description can change at any time in newer versions of Go and our code will break.

Is there a better way to get the file name 🤔? The answer is yes, it can be done and the Go standard library uses different ways to provide more information about errors. Let’s look at them one by one.

1. Converting the error to the underlying type and retrieving more information from the struct fields

If you read the documentation of the Open function carefully, you can see that it returns an error of type *PathError. PathError is a struct type and its implementation in the standard library is as follows,

type PathError struct {  
    Op   string
    Path string
    Err  error
}

func (e *PathError) Error() string { return e.Op + " " + e.Path + ": " + e.Err.Error() }  

In case you are interested to know where the above source code exists, it can be found here https://cs.opensource.google/go/go/+/refs/tags/go1.19:src/io/fs/fs.go;l=250

From the above code, you can understand that *PathError implements the error interface by declaring the Error() string method. This method concatenates the operation, path, and the actual error and returns it. Thus we got the error message,

open /test.txt: No such file or directory  

The Path field of PathError struct contains the path of the file which caused the error.

We can use the As function from errors package to convert the error to it’s underlying type. The As function’s description talks about error chain. Please ignore it for now. We will understand how error chain and wrapping works in a separate tutorial.
A simple description of As is that it tries to convert the error to a error type and returns either true or false indicating whether the conversion is successful or not.

A program will make things clear. Let’s modify the program we wrote above and print the path using the As function.

package main

import (  
    "errors"
    "fmt"
    "os"
)

func main() {  
    f, err := os.Open("test.txt")
    if err != nil {
        var pErr *os.PathError
        if errors.As(err, &pErr) {
            fmt.Println("Failed to open file at path", pErr.Path)
            return
        }
        fmt.Println("Generic error", err)
        return
    }
    fmt.Println(f.Name(), "opened successfully")
}

Run in Playground

In the above program, we first check whether the error is not nil in line no. 11 and then we use the As function in line no. 13 to convert err to *os.PathError. If the conversion is successful, As will return true. Then we print the path using pErr.Path in line no. 14.

If you are wondering why pErr is a pointer, the reason is, the error interface is implemented by the pointer of PathError and hence pErr is a pointer. The below code shows that *PathError implements the error interface.

func (e *PathError) Error() string { return e.Op + " " + e.Path + ": " + e.Err.Error() }  

The As function requires the second argument to be a pointer to the type that implements the error. Hence we pass &perr.

This program outputs,

Failed to open file at path test.txt  

In case the underlying error is not of type *os.PathError, the control will reach line no. 17 and a generic error message will be printed.

Great 😃. We have successfully used the As function to get the file path from the error.

2. Retrieving more information using methods

The second way to get more information from the error is to find out the underlying type and get more information by calling methods on the struct type.

Let’s understand this better by means of an example.

The DNSError struct type in the standard library is defined as follows,

type DNSError struct {  
    ...
}

func (e *DNSError) Error() string {  
    ...
}
func (e *DNSError) Timeout() bool {  
    ... 
}
func (e *DNSError) Temporary() bool {  
    ... 
}

The DNSError struct has two methods Timeout() bool and Temporary() bool which return a boolean value that indicates whether the error is because of a timeout or is it a temporary one.

Let’s write a program that converts the error to *DNSError type and calls the above mentioned methods to determine whether the error is temporary or due to timeout.

package main

import (  
    "errors"
    "fmt"
    "net"
)

func main() {  
    addr, err := net.LookupHost("golangbot123.com")
    if err != nil {
        var dnsErr *net.DNSError
        if errors.As(err, &dnsErr) {
            if dnsErr.Timeout() {
                fmt.Println("operation timed out")
                return
            }
            if dnsErr.Temporary() {
                fmt.Println("temporary error")
                return
            }
            fmt.Println("Generic DNS error", err)
            return
        }
        fmt.Println("Generic error", err)
        return
    }
    fmt.Println(addr)
}

Note: DNS lookups do not work in the playground. Please run this program in your local machine.

In the program above, in line no. 9, we are trying to get the IP address of an invalid domain name golangbot123.com. In line no. 13 we get the underlying value of the error by using the As function and converting it to *net.DNSError. Then we check whether the error is due to timeout or is temporary in line nos. 14 and 18 respectively.

In our case, the error is neither temporary nor due to timeout and hence the program will print,

Generic DNS error lookup golangbot123.com: no such host  

If the error was temporary or due to a timeout, then the corresponding if statement would have executed and we can handle it appropriately.

3. Direct comparison

The third way to get more details about an error is the direct comparison with a variable of type error. Let’s understand this by means of an example.

The Glob function of the filepath package is used to return the names of all files that matches a pattern. This function returns an error ErrBadPattern when the pattern is malformed.

ErrBadPattern is defined in the filepath package as a global variable.

var ErrBadPattern = errors.New("syntax error in pattern")  

errors.New() is used to create a new error. We will discuss this in detail in the next tutorial.

ErrBadPattern is returned by the Glob function when the pattern is malformed.

Let’s write a small program to check for this error.

package main

import (  
    "errors"
    "fmt"
    "path/filepath"
)

func main() {  
    files, err := filepath.Glob("[")
    if err != nil {
        if errors.Is(err, filepath.ErrBadPattern) {
            fmt.Println("Bad pattern error:", err)
            return
        }
        fmt.Println("Generic error:", err)
        return
    }
    fmt.Println("matched files", files)
}

Run in playground

In the program above we search for files of pattern [ which is a malformed pattern. We check whether the error is not nil. To get more information about the error, we directly compare it to filepath.ErrBadPattern in line. no 11 using the Is function. Similar to As, the Is function works on an error chain. We will learn more about this in our next tutorial.
For the purposes of this tutorial, the Is function can be thought of as returning true if both the errors passed to it are the same.

The Is returns true in line no. 12 since the error is due to a malformed pattern. This program will print,

Bad pattern error: syntax error in pattern  

The standard library uses any of the above-mentioned ways to provide more information about an error. We will use these ways in the next tutorial to create our own custom errors.

Do not ignore errors

Never ever ignore an error. Ignoring errors is inviting for trouble. Let me rewrite the example which lists the name of all files that match a pattern ignoring errors.

package main

import (  
    "fmt"
    "path/filepath"
)

func main() {  
    files, _ := filepath.Glob("[")
    fmt.Println("matched files", files)
}

Run in playground

We already know from the previous example that the pattern is invalid. I have ignored the error returned by the Glob function by using the _ blank identifier in line no. 9. I simply print the matched files in line no. 10. This program will print,

matched files []  

Since we ignored the error, the output seems as if no files have matched the pattern but actually the pattern itself is malformed. So never ignore errors.

This brings us to the end of this tutorial.

In this tutorial, we discussed how to handle errors that occur in our program and also how to inspect the errors to get more information from them. A quick recap of what we discussed in this tutorial,

  • What are errors?
  • Error representation
  • Various ways of extracting more information from errors
  • Do not ignore errors

In the next tutorial, we will create our own custom errors and also add more context to our custom errors.

Thanks for reading. Please leave your comments and feedback.

Like my tutorials? Please support the content.

Next tutorial — Custom Errors

Понравилась статья? Поделить с друзьями:
  • Golang error handling best practice
  • Golang error group
  • Golang error codes
  • Golang error 1040 too many connections
  • Golang defer return error