Golang error unwrap

Wrapping of error In go, error can wrap another error as well.  What does the wrapping of error mean? It means to create a hierarchy of errors in which a  particular instance...

In go, error can wrap another error as well.  What does the wrapping of error mean? It means to create a hierarchy of errors in which a  particular instance of error wraps another error and that particular instance itself can be wrapped inside another error.  Below is the syntax for wrapping an error

e := fmt.Errorf("... %w ...", ..., err, ...)

%w directive Is used for wrapping the error.  The fmt.Errorf should be called with only one %w directive. Let’s see an example.

package main

import (
	"fmt"
)

type errorOne struct{}

func (e errorOne) Error() string {
	return "Error One happended"
}

func main() {

	e1 := errorOne{}

	e2 := fmt.Errorf("E2: %w", e1)

	e3 := fmt.Errorf("E3: %w", e2)

	fmt.Println(e2)

	fmt.Println(e3)

}

Output

E2: Error One happended
E3: E2: Error One happended

In the above program, we created a struct errorOne that has an Error method hence it implements the error interface. Then we created an instance of the errorOne struct named e1. Then we wrapped that instance e1 into another error e2 like this

e2 := fmt.Errorf("E2: %w", e1)

Then we wrapped e2 into e3 like below. 

e3 := fmt.Errorf("E3: %w", e2)

So so we created a hierarchy of errors in which e3 wraps e2 and e2 wraps e1.  Thus e3 also wraps e1 transitively. When we print e2  it also prints the error from e1 and gives the output.

E2: Error One happended

When we print e3 it prints the error from e2 as well as e1 and gives the output.

E3: E2: Error One happended

Now the question which comes to the mind that whats the use case of wrapping the errors. To understand it let’s see an example

package main

import (
	"fmt"
)

type notPositive struct {
	num int
}

func (e notPositive) Error() string {
	return fmt.Sprintf("checkPositive: Given number %d is not a positive number", e.num)
}

type notEven struct {
	num int
}

func (e notEven) Error() string {
	return fmt.Sprintf("checkEven: Given number %d is not an even number", e.num)
}

func checkPositive(num int) error {
	if num < 0 {
		return notPositive{num: num}
	}
	return nil
}

func checkEven(num int) error {
	if num%2 == 1 {
		return notEven{num: num}
	}
	return nil
}

func checkPostiveAndEven(num int) error {
	if num > 100 {
		return fmt.Errorf("checkPostiveAndEven: Number %d is greater than 100", num)
	}

	err := checkPositive(num)
	if err != nil {
		return err
	}

	err = checkEven(num)
	if err != nil {
		return err
	}

	return nil
}

func main() {
	num := 3
	err := checkPostiveAndEven(num)
	if err != nil {
		fmt.Println(err)
	} else {
		fmt.Println("Givennnumber is positive and even")
	}

}

Output

checkEven: Given number 3 is not an even number

In the above program, we have a function checkPostiveAndEven that checks whether a number is even and positive. In turn, it calls the checkEven function to check if the number is even. And then it calls checkPositive function to check if the number is positive. If a number is not even and positive it an error is raised.

In the above program, it is impossible to tell stack trace of the error. We know that this error came from checkEven function for the above output. But which function called the checkEven function is not clear from the error. This is where wrapping the error comes in the picture.  This becomes more useful when the project is big and there are a lot of functions calling each other.  Let’s rewrite the program by wrapping the error.

package main

import (
	"fmt"
)

type notPositive struct {
	num int
}

func (e notPositive) Error() string {
	return fmt.Sprintf("checkPositive: Given number %d is not a positive number", e.num)
}

type notEven struct {
	num int
}

func (e notEven) Error() string {
	return fmt.Sprintf("checkEven: Given number %d is not an even number", e.num)
}

func checkPositive(num int) error {
	if num < 0 {
		return notPositive{num: num}
	}
	return nil
}

func checkEven(num int) error {
	if num%2 == 1 {
		return notEven{num: num}
	}
	return nil
}

func checkPostiveAndEven(num int) error {
	if num > 100 {
		return fmt.Errorf("checkPostiveAndEven: Number %d is greater than 100", num)
	}

	err := checkPositive(num)
	if err != nil {
		return fmt.Errorf("checkPostiveAndEven: %w", err)
	}

	err = checkEven(num)
	if err != nil {
		return fmt.Errorf("checkPostiveAndEven: %w", err)
	}

	return nil
}

func main() {
	num := 3
	err := checkPostiveAndEven(num)
	if err != nil {
		fmt.Println(err)
	} else {
		fmt.Println("Given number is positive and even")
	}

}

Output

checkPostiveAndEven: checkEven: Given number 3 is not an even number

 The above program is same as the previous program just that in the checkPostiveAndEven function , we wrap the errors like below.

fmt.Errorf("checkPostiveAndEven: %w", err)

So the output is more clear and the error is more informative. The output clearly mentions the sequence of calling as well

checkPostiveAndEven: checkEven: Given number 3 is not an even number

Unwrap an error

In the above section, we studied about wrapping the error. It is also possible to unwrap the error. Unwrap function of errors package can be used to unwrap an error. Below is the syntax of the function.

func Unwrap(err error) error

If the err wraps another error, then the wrapped error will be returned otherwise Unwrap function will return nil.

Let’s see a program to illustrate the same

import (
    "errors"
    "fmt"
)
type errorOne struct{}
func (e errorOne) Error() string {
    return "Error One happended"
}
func main() {
    e1 := errorOne{}
    e2 := fmt.Errorf("E2: %w", e1)
    e3 := fmt.Errorf("E3: %w", e2)
    fmt.Println(errors.Unwrap(e3))
    fmt.Println(errors.Unwrap(e2))
    fmt.Println(errors.Unwrap(e1))
}

Output

E2: Error One happended
Error One happended

In the above program, we created a struct errorOne that has an Error method hence it implements the error interface. Then we created an instance of the errorOne struct named e1. Then we wrapped that instance e1 into another error e2 like this

e2 := fmt.Errorf("E2: %w", e1)

Then we wrapped e2 into e3 like below. 

e3 := fmt.Errorf("E3: %w", e2)

Hence

fmt.Println(errors.Unwrap(e3))

will return wrapped error e2, as e3 wraps e2 and output will be

E2: Error One happended

Also,

fmt.Println(errors.Unwrap(e2))

will return wrapped error e1 as e2 further wraps e1 and output will be

Error One happened

While

fmt.Println(errors.Unwrap(e1))

will output nil as e1 does not wraps any error

{nil}
  • go
  • golang
  • // Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package errors import ( «internal/reflectlite» ) // Unwrap returns the result of calling the Unwrap method on err, if err’s // type contains an Unwrap method returning error. // Otherwise, Unwrap returns nil. // // Unwrap returns nil if the Unwrap method returns []error. func Unwrap(err error) error { u, ok := err.(interface { Unwrap() error }) if !ok { return nil } return u.Unwrap() } // Is reports whether any error in err’s tree matches target. // // The tree consists of err itself, followed by the errors obtained by repeatedly // calling Unwrap. When err wraps multiple errors, Is examines err followed by a // depth-first traversal of its children. // // An error is considered to match a target if it is equal to that target or if // it implements a method Is(error) bool such that Is(target) returns true. // // An error type might provide an Is method so it can be treated as equivalent // to an existing error. For example, if MyError defines // // func (m MyError) Is(target error) bool { return target == fs.ErrExist } // // then Is(MyError{}, fs.ErrExist) returns true. See syscall.Errno.Is for // an example in the standard library. An Is method should only shallowly // compare err and the target and not call Unwrap on either. func Is(err, target error) bool { if target == nil { return err == target } isComparable := reflectlite.TypeOf(target).Comparable() for { if isComparable && err == target { return true } if x, ok := err.(interface{ Is(error) bool }); ok && x.Is(target) { return true } switch x := err.(type) { case interface{ Unwrap() error }: err = x.Unwrap() if err == nil { return false } case interface{ Unwrap() []error }: for _, err := range x.Unwrap() { if Is(err, target) { return true } } return false default: return false } } } // As finds the first error in err’s tree that matches target, and if one is found, sets // target to that error value and returns true. Otherwise, it returns false. // // The tree consists of err itself, followed by the errors obtained by repeatedly // calling Unwrap. When err wraps multiple errors, As examines err followed by a // depth-first traversal of its children. // // An error matches target if the error’s concrete value is assignable to the value // pointed to by target, or if the error has a method As(interface{}) bool such that // As(target) returns true. In the latter case, the As method is responsible for // setting target. // // An error type might provide an As method so it can be treated as if it were a // different error type. // // As panics if target is not a non-nil pointer to either a type that implements // error, or to any interface type. func As(err error, target any) bool { if err == nil { return false } if target == nil { panic(«errors: target cannot be nil») } val := reflectlite.ValueOf(target) typ := val.Type() if typ.Kind() != reflectlite.Ptr || val.IsNil() { panic(«errors: target must be a non-nil pointer») } targetType := typ.Elem() if targetType.Kind() != reflectlite.Interface && !targetType.Implements(errorType) { panic(«errors: *target must be interface or implement error») } for { if reflectlite.TypeOf(err).AssignableTo(targetType) { val.Elem().Set(reflectlite.ValueOf(err)) return true } if x, ok := err.(interface{ As(any) bool }); ok && x.As(target) { return true } switch x := err.(type) { case interface{ Unwrap() error }: err = x.Unwrap() if err == nil { return false } case interface{ Unwrap() []error }: for _, err := range x.Unwrap() { if As(err, target) { return true } } return false default: return false } } } var errorType = reflectlite.TypeOf((*error)(nil)).Elem()

    In this article, we’ll take a look at how to handle errors using build-in Golang functionality, how you can extract information from the errors you are receiving and the best practices to do so.

    Error handling in Golang is unconventional when compared to other mainstream languages like Javascript, Java and Python. This can make it very difficult for new programmers to grasp Golangs approach of tackling error handling.

    In this article, we’ll take a look at how to handle errors using build-in Golang functionality, how you can extract information from the errors you are receiving and the best practices to do so. A basic understanding of Golang is therefore required to follow this article. If you are unsure about any concepts, you can look them up here.

    Errors in Golang

    Errors indicate an unwanted condition occurring in your application. Let’s say you want to create a temporary directory where you can store some files for your application, but the directory’s creation fails. This is an unwanted condition and is therefore represented using an error.

    package main
    
    import (  
        "fmt"
        "ioutil"
    )
    
    func main() {  
        dir, err := ioutil.TempDir("", "temp")
    		if err != nil {
    			return fmt.Errorf("failed to create temp dir: %v", err)
    		}
    }
    

    Golang represents errors using the built-in error type, which we will look at closer in the next section. The error is often returned as a second argument of the function, as shown in the example above. Here the TempDir function returns the name of the directory as well as an error variable.

    Creating custom errors

    As already mentioned errors are represented using the built-in error interface type, which has the following definition:

    type error interface {  
        Error() string
    }
    

    The interface contains a single method Error() that returns an error message as a string. Every type that implements the error interface can be used as an error. When printing the error using methods like fmt.Println the Error() method is automatically called by Golang.

    There are multiple ways of creating custom error messages in Golang, each with its own advantages and disadvantages.

    String-based errors

    String-based errors can be created using two out-of-the-box options in Golang and are used for simple errors that just need to return an error message.

    err := errors.New("math: divided by zero")
    

    The errors.New() method can be used to create new errors and takes the error message as its only parameter.

    err2 := fmt.Errorf("math: %g cannot be divided by zero", x)
    

    fmt.Errorf on the other hand also provides the ability to add formatting to your error message. Above you can see that a parameter can be passed which will be included in the error message.

    Custom error with data

    You can create your own error type by implementing the Error() function defined in the error interface on your struct. Here is an example:

    type PathError struct {
        Path string
    }
    
    func (e *PathError) Error() string {
    	return fmt.Sprintf("error in path: %v", e.Path)
    }
    

    The PathError implements the Error() function and therefore satisfies the error interface. The implementation of the Error() function now returns a string with the path of the PathError struct. You can now use PathError whenever you want to throw an error.

    Here is an elementary example:

    package main
    
    import(
    	"fmt"
    )
    
    type PathError struct {
        Path string
    }
    
    func (e *PathError) Error() string {
    	return fmt.Sprintf("error in path: %v", e.Path)
    }
    
    func throwError() error {
    	return &PathError{Path: "/test"}
    }
    
    func main() {
    	err := throwError()
    
    	if err != nil {
    		fmt.Println(err)
    	}
    }
    

    You can also check if the error has a specific type using either an if or switch statement:

    if err != nil {
        switch e := err.(type) {
        case *PathError :
            // Do something with the path
        default:
            log.Println(e)
        }
    }
    

    This will allow you to extract more information from your errors because you can then call all functions that are implemented on the specific error type. For example, if the PathError had a second method called GetInfo you could call it like this.

    e.GetInfo()
    

    Error handling in functions

    Now that you know how to create your own custom errors and extract as much information as possible from errors let’s take a look at how you can handle errors in functions.

    Most of the time errors are not directly handled in functions but are returned as a return value instead. Here we can take advantage of the fact that Golang supports multiple return values for a function. Thus you can return your error alongside the normal result — errors are always returned as the last argument — of the function as follows:

    func divide(a, b float64) (float64, error) {
    	if b == 0 {
    		return 0.0, errors.New("cannot divide through zero")
    	}
    
    	return a/b, nil
    }
    

    The function call will then look similar to this:

    func main() {
    	num, err := divide(100, 0)
    
    	if err != nil {
    		fmt.Printf("error: %s", err.Error())
    	} else {
    		fmt.Println("Number: ", num)
    	}
    }
    

    If the returned error is not nil it usually means that there is a problem and you need to handle the error appropriately. This can mean that you use some kind of log message to warn the user, retry the function until it works or close the application entirely depending on the situation. The only drawback is that Golang does not enforce handling the retuned errors, which means that you could just ignore handling errors completely.

    Take the following code for example:

    package main
    
    import (
    	"errors"
    	"fmt"
    )
    
    func main() {
    	num2, _ := divide(100, 0)
    	
    	fmt.Println("Number: ", num2)
    }
    

    The so-called blank identifier is used as an anonymous placeholder and therefore provides a way to ignore values in an assignment and avoid compiler errors in the process. But remember that using the blank identifier instead of probably handling errors is dangerous and should not be done if it can be avoided.

    Defer, panic and recover

    Go does not have exceptions like many other programming languages, including Java and Javascript but has a comparable mechanism know as ,,Defer, panic and recover». Still the use-cases of panic and recover are very different from exceptions in other programming languages as they should only be used in unexpected and unrecoverable situations.

    Defer

    A defer statement is a mechanism used to defer a function by putting it into an executed stack once the function that contains the defer statement has finished, either normally by executing a return statement or abnormally panicking. Deferred functions will then be executed in reverse order in which they were deferred.

    Take the following function for example:

    func processHTML(url string) error {
      resp, err := http.Get(url)
    
      if err != nil {
        	return err
    	}
    
    	ct := resp.Header.Get("Content-Type")
    	if ct != "text/html" && !strings.HasPrefix(ct, "text/html;") {
    		resp.Body.Close()
    		return fmt.Errorf("%s has content type %s which does not match text/html", url, ct)
    	}
    
    	doc, err := html.Parse(resp.Body)
    	resp.Body.Close()
    
    	// ... Process HTML ...
    	
    	return nil
    }
    

    Here you can notice the duplicated resp.Body.Close call, which ensures that the response is properly closed. Once functions grow more complex and have more errors that need to be handled such duplications get more and more problematic to maintain.

    Since deferred calls get called once the function has ended, no matter if it succeeded or not it can be used to simplify such calls.

    func processHTMLDefer(url string) error {
      resp, err := http.Get(url)
    
      if err != nil {
        	return err
    	}
      defer resp.Body.Close()
    
    	ct := resp.Header.Get("Content-Type")
    	if ct != "text/html" && !strings.HasPrefix(ct, "text/html;") {
    		return fmt.Errorf("%s has content type %s which does not match text/html", url, ct)
    	}
    
    	doc, err := html.Parse(resp.Body)
    
    	// ... Process HTML ...
    
    	return nil
    }
    

    All deferred functions are executed in reverse order in which they were deferred when the function finishes.

    package main
    
    import (
            "fmt"
    )
    
    func main() {
    	first()
    }
    
    func first() {
    	defer fmt.Println("first")
    	second()
    }
    
    func second() {
    	defer fmt.Println("second")
    	third()
    }
    
    func third() {
    	defer fmt.Println("third")
    }
    

    Here is the result of running the above program:

    third
    second
    first
    

    Panic

    A panic statement signals Golang that your code cannot solve the current problem and it therefore stops the normal execution flow of your code. Once a panic is called, all deferred functions are executed and the program crashes with a log message that includes the panic values (usually an error message) and a stack trace.

    As an example Golang will panic when a number is divided by zero.

    package main
    
    import "fmt"
    
    func main() {
    	divide(5)
    }
    
    func divide(x int) {
    	fmt.Printf("divide(%d) n", x+0/x)
    	divide(x-1)
    }
    

    Once the divide function is called using zero, the program will panic, resulting in the following output.

    panic: runtime error: integer divide by zero
    
    goroutine 1 [running]:
    main.divide(0x0)
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:16 +0xe6
    main.divide(0x1)
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
    main.divide(0x2)
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
    main.divide(0x3)
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
    main.divide(0x4)
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
    main.divide(0x5)
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
    main.main()
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:11 +0x31
    exit status 2
    

    You can also use the built-in panic function to panic in your own programms. A panic should mostly only be used when something happens that the program didn’t expect and cannot handle.

    func getArguments() {
    	if len(os.Args) == 1 {
    		panic("Not enough arguments!")
    	}
    }
    

    As already mentioned, deferred functions will be executed before terminating the application, as shown in the following example.

    package main
    
    import (
    	"fmt"
    )
    
    func main() {
    	accessSlice([]int{1,2,5,6,7,8}, 0)
    }
    
    func accessSlice(slice []int, index int) {
    	fmt.Printf("item %d, value %d n", index, slice[index])
    	defer fmt.Printf("defer %d n", index)
    	accessSlice(slice, index+1)
    }
    

    Here is the output of the programm:

    item 0, value 1 
    item 1, value 2 
    item 2, value 5
    item 3, value 6
    item 4, value 7
    item 5, value 8
    defer 5
    defer 4
    defer 3
    defer 2
    defer 1
    defer 0
    panic: runtime error: index out of range [6] with length 6
    
    goroutine 1 [running]:
    main.accessSlice(0xc00011df48, 0x6, 0x6, 0x6)
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:29 +0x250
    main.accessSlice(0xc00011df48, 0x6, 0x6, 0x5)
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
    main.accessSlice(0xc00011df48, 0x6, 0x6, 0x4)
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
    main.accessSlice(0xc00011df48, 0x6, 0x6, 0x3)
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
    main.accessSlice(0xc00011df48, 0x6, 0x6, 0x2)
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
    main.accessSlice(0xc00011df48, 0x6, 0x6, 0x1)
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
    main.accessSlice(0xc00011df48, 0x6, 0x6, 0x0)
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
    main.main()
            C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:9 +0x99
    exit status 2
    

    Recover

    In some rare cases panics should not terminate the application but be recovered instead. For example, a socket server that encounters an unexpected problem could report the error to the clients and then close all connections rather than leaving the clients wondering what just happened.

    Panics can therefore be recovered by calling the built-in recover function within a deferred function in the function that is panicking. Recover will then end the current state of panic and return the panic error value.

    package main
    
    import "fmt"
    
    func main(){
    	accessSlice([]int{1,2,5,6,7,8}, 0)
    }
    
    func accessSlice(slice []int, index int) {
    	defer func() {
    		if p := recover(); p != nil {
    			fmt.Printf("internal error: %v", p)
    		}
    	}()
    
    	fmt.Printf("item %d, value %d n", index, slice[index])
    	defer fmt.Printf("defer %d n", index)
    	accessSlice(slice, index+1)
    }
    

    As you can see after adding a recover function to the function we coded above the program doesn’t exit anymore when the index is out of bounds by recovers instead.

    Output:

    item 0, value 1 
    item 1, value 2
    item 2, value 5
    item 3, value 6
    item 4, value 7
    item 5, value 8
    internal error: runtime error: index out of range [6] with length 6defer 5 
    defer 4
    defer 3
    defer 2
    defer 1
    defer 0
    

    Recovering from panics can be useful in some cases, but as a general rule you should try to avoid recovering from panics.

    Error wrapping

    Golang also allows errors to wrap other errors which provides the functionality to provide additional context to your error messages. This is often used to provide specific information like where the error originated in your program.

    You can create wrapped errors by using the %w flag with the fmt.Errorf function as shown in the following example.

    package main
    
    import (
    	"errors"
    	"fmt"
    	"os"
    )
    
    func main() {
    	err := openFile("non-existing")
    
    	if err != nil {
    		fmt.Printf("error running program: %s n", err.Error())
    	}
    }
    
    func openFile(filename string) error {
    	if _, err := os.Open(filename); err != nil {
    		return fmt.Errorf("error opening %s: %w", filename, err)
    	}
    
    	return nil
    }
    

    The output of the application would now look like the following:

    error running program: error opening non-existing: open non-existing: no such file or directory
    

    As you can see the application prints both the new error created using fmt.Errorf as well as the old error message that was passed to the %w flag. Golang also provides the functionality to get the old error message back by unwrapping the error using errors.Unwrap.

    package main
    
    import (
    	"errors"
    	"fmt"
    	"os"
    )
    
    func main() {
    	err := openFile("non-existing")
    
    	if err != nil {
    		fmt.Printf("error running program: %s n", err.Error())
    
    		// Unwrap error
    		unwrappedErr := errors.Unwrap(err)
    		fmt.Printf("unwrapped error: %v n", unwrappedErr)
    	}
    }
    
    func openFile(filename string) error {
    	if _, err := os.Open(filename); err != nil {
    		return fmt.Errorf("error opening %s: %w", filename, err)
    	}
    
    	return nil
    }
    

    As you can see the output now also displays the original error.

    error running program: error opening non-existing: open non-existing: no such file or directory 
    unwrapped error: open non-existing: no such file or directory
    

    Errors can be wrapped and unwrapped multiple times, but in most cases wrapping them more than a few times does not make sense.

    Casting Errors

    Sometimes you will need a way to cast between different error types to for example, access unique information that only that type has. The errors.As function provides an easy and safe way to do so by looking for the first error in the error chain that fits the requirements of the error type. If no match is found the function returns false.

    Let’s look at the official errors.As docs example to better understand what is happening.

    package main
    
    import (
    	"errors"
    	"fmt"
    	"io/fs"
    	"os"
    )
    
    func main(){
    	// Casting error
    	if _, err := os.Open("non-existing"); err != nil {
    		var pathError *os.PathError
    		if errors.As(err, &pathError) {
    			fmt.Println("Failed at path:", pathError.Path)
    		} else {
    			fmt.Println(err)
    		}
    	}
    }
    

    Here we try to cast our generic error type to os.PathError so we can access the Path variable that that specific error contains.

    Another useful functionality is checking if an error has a specific type. Golang provides the errors.Is function to do exactly that. Here you provide your error as well as the particular error type you want to check. If the error matches the specific type the function will return true, if not it will return false.

    package main
    
    import (
    	"errors"
    	"fmt"
    	"io/fs"
    	"os"
    )
    
    func main(){
    	// Check if error is a specific type
    	if _, err := os.Open("non-existing"); err != nil {
    		if errors.Is(err, fs.ErrNotExist) {
    			fmt.Println("file does not exist")
    		} else {
    			fmt.Println(err)
    		}
    	}
    }
    

    After checking, you can adapt your error message accordingly.

    Sources

    • Golang Blog — Working with Errors in Go 1.13
    • The Go Programming language book
    • Golang Blog — Defer, Panic, and Recover
    • LogRocket — Error handling in Golang
    • GolangByExample — Wrapping and Un-wrapping of error in Go
    • Golang Documentation — Package errors

    Conclusion

    You made it all the way until the end! I hope this article helped you understand the basics of Go error handling and why it is an essential topic in application/software development.

    If you have found this helpful, please consider recommending and sharing it with other fellow developers and subscribing to my newsletter. If you have any questions or feedback, let me know using my contact form or contact me on Twitter.

    PRAVEEN YADAV

    Alt Text
    Recently, I was working on a project which required to handle custom errors in golang. unlike other language, golang does explicit error checking.

    An error is just a value that a function can return if something unexpected happened.

    In golang, errors are values which return errors as normal return value then we handle errors like if err != nil compare to other conventional try/catch method in another language.

    Error in Golang

    type error interface {
        Error() string
    }
    

    Enter fullscreen mode

    Exit fullscreen mode

    In Go, The error built-in interface type is the conventional interface for representing an error condition, with the nil value representing no error.

    It has single Error() method which returns the error message as a string. By implementing this method, we can transform any type we define into an error of our own.

    package main
    
    import (
        "io/ioutil"
        "log"
    )
    
    func getFileContent(filename string) ([]byte, error) {
        content, err := ioutil.ReadFile(filename)
        if err != nil {
            return nil, err
        }
        return content, nil
    }
    
    func main() {
        content, err := getFileContent("filename.txt")
        if err != nil {
            log.SetFlags(0)
            log.Fatal(err)
        }
        log.Println(string(content))
    }
    
    

    Enter fullscreen mode

    Exit fullscreen mode

    An idiomatic way to handle errors in Go is to return it as the last return value of the function and check for the nil condition.

    Creating errors in go

    error is an interface type

    Golang provides two ways to create errors in standard library using errors.New and fmt.ErrorF.

    errors.New

    errors.New("new error")
    

    Enter fullscreen mode

    Exit fullscreen mode

    Go provides the built-in errors package which exports the New function. This function expects an error text message and returns an error.

    The returned error can be treated as a string by either accessing err.Error(), or using any of the fmt package functions. Error() method is automatically called by Golang when printing the error using methods like fmt.Println.

    var (
        ErrNotFound1 = errors.New("not found")
        ErrNotFound2 = errors.New("not found")
    )
    
    func main() {
        fmt.Printf("is identical? : %t", ErrNotFound1 == ErrNotFound2)
    }
    
    // Output:
    // is identical? : false
    

    Enter fullscreen mode

    Exit fullscreen mode

    Each call to New, returns a distinct error value even if the text is identical.

    func New(text string) error {
        return &errorString{text}
    }
    
    type errorString struct {
        s string
    }
    
    func (e *errorString) Error() string {
        return e.s
    }
    
    

    Enter fullscreen mode

    Exit fullscreen mode

    Internally, errors.New creates and returns a pointer to errors.errorString struct invoked with the string passed which implements the error interface.

    fmt.ErrorF

    number := 100
    zero := 0
    fmt.Errorf("math: %d cannot be divided by %d", number, zero)
    

    Enter fullscreen mode

    Exit fullscreen mode

    fmt.Errorf provides ability to format your error message using format specifier and returns the string as a
    value that satisfies error interface.

    Custom errors with data in go

    As mentioned above, error is an interface type.

    Hence, you can create your own error type by implementing the Error() function defined in the error interface on your struct.

    So, let’s create our first custom error by implementing error interface.

    package main
    
    import (
        "fmt"
        "os"
    )
    
    type MyError struct {
        Code int
        Msg  string
    }
    
    func (m *MyError) Error() string {
        return fmt.Sprintf("%s: %d", m.Msg, m.Code)
    }
    
    func sayHello(name string) (string, error) {
        if name == "" {
            return "", &MyError{Code: 2002, Msg: "no name passed"}
        }
        return fmt.Sprintf("Hello, %s", name), nil
    }
    
    func main() {
        s, err := sayHello("")
        if err != nil {
            log.SetFlags(0)
            log.Fatal("unexpected error is ", err)
        }
        fmt.Println(s)
    }
    

    Enter fullscreen mode

    Exit fullscreen mode

    You’ll see the following output:

    unexpected error is no name passed: 2002
    exit status 1
    

    Enter fullscreen mode

    Exit fullscreen mode

    In above example, you are creating a custom error using a struct type MyError by implementing Error() function of error interface.

    Error wrapping

    Golang also allows errors to wrap other errors which is useful when you want to provide additional context to your error messages like providing specific information or more details about the error location in your code.

    You can create wrapped errors either with fmt.Errorf or by implementing a custom type. A simple way to create wrapped errors is to call fmt.Errorf with our error which we want to wrap using the %w verb

    package main
    
    import (
        "fmt"
        "io/ioutil"
        "log"
    )
    
    func getFileContent(filename string) ([]byte, error) {
        content, err := ioutil.ReadFile(filename)
        if err != nil {
            return nil, fmt.Errorf("error reading file %s: %w", filename, err)
        }
        return content, nil
    }
    
    func main() {
        content, err := getFileContent("filename.txt")
        if err != nil {
            log.SetFlags(0)
            log.Fatal(err)
        }
        log.Println(string(content))
    }
    
    

    Enter fullscreen mode

    Exit fullscreen mode

    You’ll see the following output:

    error reading file filename.txt: open filename.txt: no such file or directory
    exit status 1
    

    Enter fullscreen mode

    Exit fullscreen mode

    Examining errors with Is and As

    errors.Is

    Unwrap, Is and As functions work on errors that may wrap other errors. An error wraps another error if its type has the method Unwrap() which returns a non-nil error.

    errors.Is unwraps its first argument sequentially looking for an error that matches the second and returns boolean true if it finds one.
    simple equality checks:

    if errors.Is(err, ErrNoNamePassed)
    

    Enter fullscreen mode

    Exit fullscreen mode

    is preferable to

    if err == ErrNoNamePassed
    

    Enter fullscreen mode

    Exit fullscreen mode

    because the former will succeed if err wraps ErrNoNamePassed.

    package main
    
    import (
        "errors"
        "fmt"
        "log"
    )
    
    type MyError struct {
        Code int
        Msg  string
    }
    
    func (m *MyError) Error() string {
        return fmt.Sprintf("%s: %d", m.Msg, m.Code)
    }
    
    func main() {
        e1 := &MyError{Code: 501, Msg: "new error"}
    
        // wrapping e1 with e2
        e2 := fmt.Errorf("E2: %w", e1)
        // wrapping e2 with e3
        e3 := fmt.Errorf("E3: %w", e2)
    
        fmt.Println(e1) // prints "new error: 501"
        fmt.Println(e2) // prints "E2: new error: 501"
        fmt.Println(e3) // prints "E3: E2: new error: 501"
    
    
        fmt.Println(errors.Unwrap(e1)) // prints <nil>
        fmt.Println(errors.Unwrap(e2)) // prints "new error: 501"
        fmt.Println(errors.Unwrap(e3)) // prints E2: new error: 501
    
        // errors.Is function compares an error to a value.
        if errors.Is(e3, e1) {
            log.SetFlags(0)
            log.Fatal(e3)
        }
    }
    

    Enter fullscreen mode

    Exit fullscreen mode

    We’ll see the following output:

    new error: 501
    E2: new error: 501
    E3: E2: new error: 501
    <nil>
    new error: 501
    E2: new error: 501
    E3: E2: new error: 501
    exit status 1
    

    Enter fullscreen mode

    Exit fullscreen mode

    errors.As

    errors.As unwraps its first argument sequentially looking for an error that can be assigned to its second argument, which must be a pointer. If it succeeds, it performs the assignment and returns true. Otherwise, it returns false.

    var e *MyError
    if errors.As(err, &e) {
        fmt.Println(e.code)
    }
    

    Enter fullscreen mode

    Exit fullscreen mode

    is preferable to

    if e, ok := err.(*MyError); ok {
        fmt.Println(e)
    }
    

    Enter fullscreen mode

    Exit fullscreen mode

    because the former will succeed if err wraps an *MyError

    package main
    
    import (
        "errors"
        "fmt"
        "log"
    )
    
    type MyError struct {
        Code int
        Msg  string
    }
    
    func (m *MyError) Error() string {
        return fmt.Sprintf("%s: %d", m.Msg, m.Code)
    }
    
    func main() {
        e1 := &MyError{Code: 501, Msg: "new error"}
        e2 := fmt.Errorf("E2: %w", e1)
    
        // errors.As function tests whether an error is a specific type.
        var e *MyError
        if errors.As(e2, &e) {
            log.SetFlags(0)
            log.Fatal(e2)
        }
    }
    

    Enter fullscreen mode

    Exit fullscreen mode

    We’ll see the following output:

    E2: new error: 501
    exit status 1
    

    Enter fullscreen mode

    Exit fullscreen mode

    Reference

    1. Standard library error package https://golang.org/pkg/errors/
    2. The Go Blog — Working with Errors in Go 1.13
    3. Error handling in Golang

    Conclusion

    I hope this article will help you to understand the basics of error handling in Go.

    If you have found this useful, please consider recommending and sharing it with other fellow developers and if you have any questions or suggestions, feel free to add a comment or contact me on twitter.

    Понравилась статья? Поделить с друзьями:
  • Golang error handling best practice
  • Golang error group
  • Golang error codes
  • Golang error 1040 too many connections
  • Golang defer return error