Handling errors is an essential feature of solid code. In this section, you’ll
add a bit of code to return an error from the greetings module, then handle it
in the caller.
-
In greetings/greetings.go, add the code highlighted below.
There’s no sense sending a greeting back if you don’t know who to greet.
Return an error to the caller if the name is empty. Copy the following
code into greetings.go and save the file.package greetings import ( "errors" "fmt" ) // Hello returns a greeting for the named person. func Hello(name string) (string, error) { // If no name was given, return an error with a message. if name == "" { return "", errors.New("empty name") } // If a name was received, return a value that embeds the name // in a greeting message. message := fmt.Sprintf("Hi, %v. Welcome!", name) return message, nil }
In this code, you:
-
Change the function so that it returns two values: a
string
and anerror
. Your caller will check
the second value to see if an error occurred. (Any Go function can
return multiple values. For more, see
Effective Go.) -
Import the Go standard library
errors
package so you can
use its
errors.New
function. -
Add an
if
statement to check for an invalid request (an
empty string where the name should be) and return an error if the
request is invalid. Theerrors.New
function returns an
error
with your message inside. -
Add
nil
(meaning no error) as a second value in the
successful return. That way, the caller can see that the function
succeeded.
-
Change the function so that it returns two values: a
-
In your hello/hello.go file, handle the error now returned by the
Hello
function, along with the non-error value.Paste the following code into hello.go.
package main import ( "fmt" "log" "example.com/greetings" ) func main() { // Set properties of the predefined Logger, including // the log entry prefix and a flag to disable printing // the time, source file, and line number. log.SetPrefix("greetings: ") log.SetFlags(0) // Request a greeting message. message, err := greetings.Hello("") // If an error was returned, print it to the console and // exit the program. if err != nil { log.Fatal(err) } // If no error was returned, print the returned message // to the console. fmt.Println(message) }
In this code, you:
-
Configure the
log
package to
print the command name («greetings: «) at the start of its log messages,
without a time stamp or source file information. -
Assign both of the
Hello
return values, including the
error
, to variables. -
Change the
Hello
argument from Gladys’s name to an empty
string, so you can try out your error-handling code. -
Look for a non-nil
error
value. There’s no sense continuing
in this case. -
Use the functions in the standard library’s
log package
to
output error information. If you get an error, you use the
log
package’s
Fatal
function
to print the error and stop the program.
-
Configure the
-
At the command line in the
hello
directory, run hello.go to
confirm that the code works.Now that you’re passing in an empty name, you’ll get an error.
$ go run . greetings: empty name exit status 1
That’s common error handling in Go: Return an error as a value so the caller
can check for it.
Next, you’ll use a Go slice to return a randomly-selected greeting.
< Call your code from another module
Return a random greeting >
Привет, хабровчане! Уже сегодня в ОТУС стартует курс «Разработчик Golang» и мы считаем это отличным поводом, чтобы поделиться еще одной полезной публикацией по теме. Сегодня поговорим о подходе Go к ошибкам. Начнем!
Освоение прагматической обработки ошибок в вашем Go-коде
Этот пост является частью серии «Перед тем как приступать к Go», где мы исследуем мир Golang, делимся советами и идеями, которые вы должны знать при написании кода на Go, чтобы вам не пришлось набивать собственные шишки.
Я предполагаю, что у вас уже имеется хотя бы базовый опыт работы с Go, но если вы чувствуете, что в какой-то момент вы столкнулись с незнакомым обсуждаемым материалом, не стесняйтесь делать паузу, исследовать тему и возвращаться.
Теперь, когда мы расчистили себе путь, поехали!
Подход Go к обработке ошибок — одна из самых спорных и неправильно используемых фич. В этой статье вы узнаете подход Go к ошибкам, и поймете, как они работают “под капотом”. Вы изучите несколько различных подходов, рассмотрите исходный код Go и стандартную библиотеку, чтобы узнать, как обрабатываются ошибки и как с ними работать. Вы узнаете, почему утверждения типа (Type Assertions) играют важную роль в их обработке, и увидите предстоящие изменения в обработке ошибок, которые планируется ввести в Go 2.
Вступление
Сперва-наперво: ошибки в Go не являются исключениями. Дэйв Чейни написал эпический блогпост об этом, поэтому я отсылаю вас к нему и резюмирую: на других языках вы не можете быть уверены, может ли функция вызвать исключение или нет. Вместо генерации исключений функции Go поддерживают множественные возвращаемые значения, и по соглашению эта возможность обычно используется для возврата результата функции наряду с переменной ошибки.
Если по какой-то причине ваша функция может дать сбой, вам, вероятно, следует вернуть из нее предварительно объявленный error
-тип. По соглашению, возврат ошибки сигнализирует вызывающей стороне о проблеме, а возврат nil не считается ошибкой. Таким образом, вы дадите вызывающему понять, что возникла проблема, и ему нужно разобраться с ней: кто бы ни вызвал вашу функцию, он знает, что не должен полагаться на результат до проверки на наличие ошибки. Если ошибка не nil, он обязан проверить ее и обработать (логировать, возвращать, обслуживать, вызвать какой-либо механизм повторной попытки/очистки и т. д.).
(3 // обработка ошибки
5 // продолжение)
Эти фрагменты очень распространены в Go, и некоторые рассматривают их в качестве шаблонного кода. Компилятор рассматривает неиспользуемые переменные как ошибки компиляции, поэтому, если вы не собираетесь проверять наличие ошибок, вы должны назначить их пустому идентификатору. Но как бы удобно это ни было, ошибки не следует игнорировать.
( 4 // игнорирование ошибок небезопасно, и вы не должны полагаться на результат прежде, чем проверите наличие ошибок)
результату нельзя доверять до проверки на наличие ошибок
Возврат ошибки вместе с результатами, наряду со строгой системой типов Go, значительно усложняет написание забагованного кода. Вы всегда должны полагать, что значение функции повреждено, если только вы не проверили ошибку, которую она возвратила, и, присваивая ошибку пустому идентификатору, вы явно игнорируете, что значение вашей функции может быть повреждено.
Пустой идентификатор темен и полон ужасов.
У Go действительно есть panic
и recover
механизмы, которые также описаны в другом подробном посте в блоге Go. Но они не предназначены для имитации исключений. По словам Дейва, «Когда вы паникуете в Go — вы действительно паникуете: это не проблема кого-то другого, это уже геймовер». Они фатальны и приводят к сбою в вашей программе. Роб Пайк придумал поговорку «Не паникуйте», которая говорит сама за себя: вам, вероятно, следует избегать эти механизмы и вместо них возвращать ошибки.
«Ошибки — значения».
«Не просто проверяйте наличие ошибок, а элегантно их обрабатывайте»
«Не паникуйте»
все поговорки Роба Пайка
Под капотом
Интерфейс ошибки
Под капотом тип error — это простой интерфейс с одним методом, и если вы с ним не знакомы, я настоятельно рекомендую просмотреть этот пост в официальном блоге Go.
интерфейс error из исходного кода
Свои собственные ошибки реализовать не сложно. Существуют различные подходы к пользовательским структурам, реализующим метод Error()
string
. Любая структура, реализующая этот единственный метод, считается допустимым значением ошибки и может быть возвращена как таковая.
Давайте рассмотрим несколько таких подходов.
Встроенная структура errorString
Наиболее часто используемая и широко распространенная реализация интерфейса ошибок — это встроенная структура errorString
. Это самая простая реализация, о которой вы только можете подумать.
Источник: исходный код Go
Вы можете лицезреть ее упрощенную реализацию здесь. Все, что она делает, это содержит string
, и эта строка возвращается методом Error
. Эта стринговая ошибка может быть нами отформатирована на основе некоторых данных, скажем, с помощью fmt.Sprintf
. Но кроме этого, она не содержит никаких других возможностей. Если вы применили errors.New или fmt.Errorf, значит вы уже использовали ее.
(13// вывод:)
попробуйте
github.com/pkg/errors
Другой простой пример — пакет pkg/errors. Не путать со встроенным пакетом errors
, о котором вы узнали ранее, этот пакет предоставляет дополнительные важные возможности, такие как обертка ошибок, развертка, форматирование и запись стек-трейса. Вы можете установить пакет, запустив go get github.com/pkg/errors
.
В тех случаях, когда вам нужно прикрепить стек-трейс или необходимую информацию об отладке к вашим ошибкам, использование функций New
или Errorf
этого пакета предоставляет ошибки, которые уже записываются в ваш стек-трейс, и вы так же можете прикрепить простые метаданные, используя его возможности форматирования. Errorf
реализует интерфейс fmt.Formatter, то есть вы можете отформатировать его, используя руны пакета fmt
( %s
, %v
, %+v
и т. д.).
(//6 или альтернатива)
Этот пакет также представляет функции errors.Wrap
и errors.Wrapf
. Эти функции добавляют контекст к ошибке с помощью сообщения и стек-трейса в том месте, где они были вызваны. Таким образом, вместо простого возврата ошибки, вы можете обернуть ее контекстом и важными отладочными данными.
Обертки ошибок другими ошибками поддерживают Cause() error
метод, который возвращает их внутреннюю ошибку. Кроме того, они могут использоваться сerrors.Cause(err error) error
функцией, которая извлекает основную внутреннюю ошибку в оборачивающей ошибке.
Работа с ошибками
Утверждение типа
Утверждения типа (Type Assertion) играют важную роль при работе с ошибками. Вы будете использовать их для извлечения информации из интерфейсного значения, а поскольку обработка ошибок связана с пользовательскими реализациями интерфейса error
, реализация утверждений на ошибках является очень удобным инструментом.
Его синтаксис одинаков для всех его целей — x.(T)
, если x
имеет тип интерфейса. x.(T)
утверждает, что x
не равен nil
и что значение, хранящееся в x
, относится к типу T
. В следующих нескольких разделах мы рассмотрим два способа использования утверждений типа — с конкретным типом T
и с интерфейсом типа T
.
(2//сокращенный синтаксис, пропускающий логическую переменную ok
3//паника: преобразование интерфейса: интерфейс {} равен nil, а не string
6//удлиненный синтаксис с логической переменной ok
8//не паникует, вместо этого присваивает ok false, когда утверждение ложно
9// теперь мы можем безопасно использовать s как строку)
песочница: panic при укороченном синтаксисе, безопасный удлинённый синтаксис
Дополнительное примечание, касающееся синтаксиса: утверждение типа может использоваться как с укороченным синтаксисом (который паникует при неудачном утверждении), так и с удлиненным синтаксисом (который использует логическое значение OK для указания успеха или неудачи). Я всегда рекомендую брать удлиненный вместо укороченного, так как я предпочитаю проверять переменную OK, а не разбираться с паникой.
Утверждение с интерфейсом типа T
Выполнение утверждения типа x.(T)
с интерфейсом типа T
подтверждает, что x
реализует интерфейс T
. Таким образом, вы можете гарантировать, что интерфейсное значение реализует интерфейс, и только если это так, вы сможете использовать его методы.
(5…// утверждаем, что x реализует интерфейс resolver
6…// здесь мы уже можем безопасно использовать этот метод)
Чтобы понять, как это можно использовать, давайте снова взглянем на pkg/errors
. Вы уже знаете этот пакет ошибок, так что давайте углубимся в errors.Cause(err error) error
функцию.
Эта функция получает ошибку и извлекает самую внутреннюю ошибку, которую та переносит (ту, которая уже не служит оберткой для другой ошибки). Это может показаться примитивным, но есть много замечательных вещей, которые вы можете извлечь из этой реализации:
источник: pkg/errors
Функция получает значение ошибки, и она не может предполагать, что получаемый ею err
аргумент является ошибкой-оберткой (поддерживаемой Cause
методом). Поэтому перед вызовом метода Cause
необходимо убедиться, что вы имеете дело с ошибкой, которая реализует этот метод. Выполняя утверждение типа в каждой итерации цикла for, вы можете убедиться, что cause
переменная поддерживает метод Cause
, и может продолжать извлекать из него внутренние ошибки до тех пор, пока не найдете ошибку, у которой нет Cause
.
Создавая простой локальный интерфейс, содержащий только те методы, которые вам нужны, и применяя на нем утверждение, ваш код отделен от других зависимостей. Полученный вами аргумент не обязательно должен быть известной структурой, он просто должен быть ошибкой. Любой тип, реализующий методы Error
и Cause
, подойдет. Таким образом, если вы реализуете Cause
метод в своем типе ошибки, вы можете использовать эту функцию с ним без замедлений.
Однако следует помнить об одном небольшом недостатке: интерфейсы могут изменяться, поэтому вам следует тщательно поддерживать код, чтобы ваши утверждения не нарушались. Не забудьте определить свои интерфейсы там, где вы их используете, поддерживать их стройными и аккуратными, и у вас все будет хорошо.
Наконец, если вам нужен только один метод, иногда удобнее сделать утверждение на анонимном интерфейсе, содержащем только метод, на который вы полагаетесь, т. е. v, ok := x.(interface{ F() (int, error) })
. Использование анонимных интерфейсов может помочь отделить ваш код от возможных зависимостей и защитить его от возможных изменений в интерфейсах.
Утверждение с конкретным типом T и Type Switch
Я предваряю этот раздел введением двух похожих шаблонов обработки ошибок, которые страдают от нескольких недостатков и ловушек. Это не значит, что они не распространенные. Оба они могут быть удобными инструментами в небольших проектах, но они плохо масштабируются.
Первый — это второй вариант утверждения типа: выполняется утверждение типа x.(T)
с конкретным типом T
. Он утверждает, что значение x
имеет тип T
, или оно может быть преобразовано в тип T
.
(2//мы можем использовать v как mypkg.SomeErrorType)
Другой — это шаблон Type Switch. Type Switch объединяют оператор switch с утверждением типа, используя зарезервированное ключевое слово type
. Они особенно распространены в обработке ошибок, где знание основного типа переменной ошибки может быть очень полезным.
(3// обработка…
5// обработка…)
Большим недостатком обоих подходов является то, что оба они приводят к связыванию кода со своими зависимостями. Оба примера должны быть знакомы со структурой SomeErrorType
(которая, очевидно, должна быть экспортирована) и должны импортировать пакет mypkg
.
В обоих подходах при обработке ваших ошибок вы должны быть знакомы с типом и импортировать его пакет. Ситуация усугубляется, когда вы имеете дело с ошибками в обертках, где причиной ошибки может быть ошибка, возникшая из-за внутренней зависимости, о которой вы не знаете и не должны знать.
(7// обработка…
9// обработка…)
Type Switch различают *MyStruct
и MyStruct
. Поэтому, если вы не уверены, имеете ли вы дело с указателем или фактическим экземпляром структуры, вам придется предоставить оба варианта. Более того, как и в случае с обычными switch, кейсы в Type Switch не проваливаются, но в отличие от обычных Type Switch, использование fallthrough
запрещено в Type Switch, поэтому вам придется использовать запятую и предоставлять обе опции, что легко забыть.
Подытожим
Вот и все! Теперь вы знакомы с ошибками и должны быть готовы к устранению любых ошибок, которые ваше приложение Go может выбросить (или фактически вернуть) на ваш путь!
Оба пакета errors
представляют простые, но важные подходы к ошибкам в Go, и, если они удовлетворяют вашим потребностям, они являются отличным выбором. Вы можете легко реализовать свои собственные структуры ошибок и пользоваться преимуществами обработки ошибок Go, комбинируя их с pkg/errors
.
Когда вы масштабируете простые ошибки, правильное использование утверждений типа может быть отличным инструментом для обработки различных ошибок. Либо с помощью Type Switch, либо путем утверждения поведения ошибки и проверки интерфейсов, которые она реализует.
Что дальше?
Обработка ошибок в Go сейчас очень актуальна. Теперь, когда вы получили основы, вам может быть интересно, что ждет нас в будущем для обработки ошибок Go!
В следующей версии Go 2 этому уделяется много внимания, и вы уже можете взглянуть на черновой вариант. Кроме того, во время dotGo 2019 Марсель ван Лохуизен провел отличную беседу на тему, которую я просто не могу не рекомендовать — «Значения ошибок GO 2 уже сегодня».
Очевидно, есть еще множество подходов, советов и хитростей, и я не могу включить их все в один пост! Несмотря на это, я надеюсь, что вам он понравился, и я увижу вас в следующем выпуске серии «Перед тем как приступать к Go»!
А теперь традиционно ждем ваши комментарии.
Александр Тихоненко
Ведущий разработчик трайба «Автоматизация бизнес-процессов» МТС Диджитал
Механизм обработки ошибок в Go отличается от обработки исключений в большинстве языков программирования, ведь в Golang ошибки исключениями не являются. Если говорить в целом, то ошибка в Go — это возвращаемое значение с типомerror
, которое демонстрирует сбой. А с точки зрения кода — интерфейс. В качестве ошибки может выступать любой объект, который этому интерфейсу удовлетворяет.
Выглядит это так:
type error interface {
Error() string
}
В данной статье мы рассмотрим наиболее популярные способы работы с ошибками в Golang.
- Как обрабатывать ошибки в Go?
- Создание ошибок
- Оборачивание ошибок
- Проверка типов с Is и As
- Сторонние пакеты по работе с ошибками в Go
- Defer, panic and recover
- После изложенного
Чтобы обработать ошибку в Golang, необходимо сперва вернуть из функции переменную с объявленным типом error
и проверить её на nil
:
if err != nil {
return err
}
Если метод возвращает ошибку, значит, потенциально в его работе может возникнуть проблема, которую нужно обработать. В качестве реализации обработчика может выступать логирование ошибки или более сложные сценарии. Например, переоткрытие установленного сетевого соединения, повторный вызов метода и тому подобные операции.
Если метод возвращает разные типы ошибок, то их нужно проверять отдельно. То есть сначала происходит определение ошибки, а потом для каждого типа пишется свой обработчик.
В Go ошибки возвращаются и проверяются явно. Разработчик сам определяет, какие ошибки метод может вернуть, и реализовать их обработку на вызывающей стороне.
Создание ошибок
Перед тем как обработать ошибку, нужно её создать. В стандартной библиотеке для этого есть две встроенные функции — обе позволяют указывать и отображать сообщение об ошибке:
errors.New
fmt.Errorf
Метод errors.New()
создаёт ошибку, принимая в качестве параметра текстовое сообщение.
package main
import (
"errors"
"fmt"
)
func main() {
err := errors.New("emit macho dwarf: elf header corrupted")
fmt.Print(err)
}
С помощью метода fmt.Errorf
можно добавить дополнительную информацию об ошибке. Данные будут храниться внутри одной конкретной строки.
package main
import (
"fmt"
)
func main() {
const name, id = "bueller", 17
err := fmt.Errorf("user %q (id %d) not found", name, id)
fmt.Print(err)
}
Такой способ подходит, если эта дополнительная информация нужна только для логирования на вызывающей стороне. Если же с ней предстоит работать, можно воспользоваться другими механизмами.
Оборачивание ошибок
Поскольку Error
— это интерфейс, можно создать удовлетворяющую ему структуру с собственными полями. Тогда на вызывающей стороне этими самыми полями можно будет оперировать.
package main
import (
"fmt"
)
type NotFoundError struct {
UserId int
}
func (err NotFoundError) Error() string {
return fmt.Sprintf("user with id %d not found", err.UserId)
}
func SearchUser(id int) error {
// some logic for search
// ...
// if not found
var err NotFoundError
err.UserId = id
return err
}
func main() {
const id = 17
err := SearchUser(id)
if err != nil {
fmt.Println(err)
//type error checking
notFoundErr, ok := err.(NotFoundError)
if ok {
fmt.Println(notFoundErr.UserId)
}
}
}
Представим другую ситуацию. У нас есть метод, который вызывает внутри себя ещё один метод. В каждом из них проверяется своя ошибка. Иногда требуется в метод верхнего уровня передать сразу обе эти ошибки.
В Go есть соглашение о том, что ошибка, которая содержит внутри себя другую ошибку, может реализовать метод Unwrap
, который будет возвращать исходную ошибку.
Также для оборачивания ошибок в fmt.Errorf
есть плейсхолдер %w
, который и позволяет произвести такую упаковку.:
package main
import (
"errors"
"fmt"
"os"
)
func main() {
err := openFile("non-existing")
if err != nil {
fmt.Println(err.Error())
// get internal error
fmt.Println(errors.Unwrap(err))
}
}
func openFile(filename string) error {
if _, err := os.Open(filename); err != nil {
return fmt.Errorf("error opening %s: %w", filename, err)
}
return nil
}
Проверка типов с Is и As
В Go 1.13 в пакете Errors появились две функции, которые позволяют определить тип ошибки — чтобы написать тот или иной обработчик:
errors.Is
errors.As
Метод errors.Is
, по сути, сравнивает текущую ошибку с заранее заданным значением ошибки:
package main
import (
"errors"
"fmt"
"io/fs"
"os"
)
func main() {
if _, err := os.Open("non-existing"); err != nil {
if errors.Is(err, fs.ErrNotExist) {
fmt.Println("file does not exist")
} else {
fmt.Println(err)
}
}
}
Если это будет та же самая ошибка, то функция вернёт true
, если нет — false
.
errors.As
проверяет, относится ли ошибка к конкретному типу (раньше надо было явно приводить тип ошибки к тому типу, который хотим проверить):
package main
import (
"errors"
"fmt"
"io/fs"
"os"
)
func main() {
if _, err := os.Open("non-existing"); err != nil {
var pathError *fs.PathError
if errors.As(err, &pathError) {
fmt.Println("Failed at path:", pathError.Path)
} else {
fmt.Println(err)
}
}
}
Помимо прочего, эти методы удобны тем, что упрощают работу с упакованными ошибками, позволяя проверить каждую из них за один вызов.
Сторонние пакеты по работе с ошибками в Go
Помимо стандартного пакета Go, есть различные внешние библиотеки, которые расширяют функционал. При принятии решения об их использовании следует отталкиваться от задачи — использование может привести к падению производительности.
В качестве примера можно посмотреть на пакет pkg/errors
. Одной из его способностей является логирование stack trace:
package main
import (
"fmt"
"github.com/pkg/errors"
)
func main() {
err := errors.Errorf("whoops: %s", "foo")
fmt.Printf("%+v", err)
}
// Example output:
// whoops: foo
// github.com/pkg/errors_test.ExampleErrorf
// /home/dfc/src/github.com/pkg/errors/example_test.go:101
// testing.runExample
// /home/dfc/go/src/testing/example.go:114
// testing.RunExamples
// /home/dfc/go/src/testing/example.go:38
// testing.(*M).Run
// /home/dfc/go/src/testing/testing.go:744
// main.main
// /github.com/pkg/errors/_test/_testmain.go:102
// runtime.main
// /home/dfc/go/src/runtime/proc.go:183
// runtime.goexit
// /home/dfc/go/src/runtime/asm_amd64.s:2059
Defer, panic and recover
Помимо ошибок, о которых позаботился разработчик, в Go существуют аварии (похожи на исключительные ситуации, например, в Java). По сути, это те ошибки, которые разработчик не предусмотрел.
При возникновении таких ошибок Go останавливает выполнение программы и начинает раскручивать стек вызовов до тех пор, пока не завершит работу приложения или не найдёт функцию обработки аварии.
Для работы с такими ошибками существует механизм «defer, panic, recover»
Defer
Defer
помещает все вызовы функции в стек приложения. При этом отложенные функции выполняются в обратном порядке — независимо от того, вызвана паника или нет. Это бывает полезно при очистке ресурсов:
package main
import (
"fmt"
"os"
)
func main() {
f := createFile("/tmp/defer.txt")
defer closeFile(f)
writeFile(f)
}
func createFile(p string) *os.File {
fmt.Println("creating")
f, err := os.Create(p)
if err != nil {
panic(err)
}
return f
}
func writeFile(f *os.File) {
fmt.Println("writing")
fmt.Fprintln(f, "data")
}
func closeFile(f *os.File) {
fmt.Println("closing")
err := f.Close()
if err != nil {
fmt.Fprintf(os.Stderr, "error: %vn", err)
os.Exit(1)
}
}
Panic
Panic
сигнализирует о том, что код не может решить текущую проблему, и останавливает выполнение приложения. После вызова оператора выполняются все отложенные функции, и программа завершается с сообщением о причине паники и трассировки стека.
Например, Golang будет «паниковать», когда число делится на ноль:
panic: runtime error: integer divide by zero
goroutine 1 [running]:
main.divide(0x0)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:16 +0xe6
main.divide(0x1)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x2)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x3)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x4)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x5)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.main()
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:11 +0x31
exit status 2
Также панику можно вызвать явно с помощью метода panic()
. Обычно его используют на этапе разработки и тестирования кода — а в конечном варианте убирают.
Recover
Эта функция нужна, чтобы вернуть контроль при панике. В таком случае работа приложения не прекращается, а восстанавливается и продолжается в нормальном режиме.
Recover всегда должна вызываться в функции defer
. Чтобы сообщить об ошибке как возвращаемом значении, вы должны вызвать функцию recover в той же горутине, что и паника, получить структуру ошибки из функции восстановления и передать её в переменную:
package main
import (
"errors"
"fmt"
)
func A() {
defer fmt.Println("Then we can't save the earth!")
defer func() {
if x := recover(); x != nil {
fmt.Printf("Panic: %+vn", x)
}
}()
B()
}
func B() {
defer fmt.Println("And if it keeps getting hotter...")
C()
}
func C() {
defer fmt.Println("Turn on the air conditioner...")
Break()
}
func Break() {
defer fmt.Println("If it's more than 30 degrees...")
panic(errors.New("Global Warming!!!"))
}
func main() {
A()
}
После изложенного
Можно ли игнорировать ошибки? В теории — да. Но делать это нежелательно. Во-первых, наличие ошибки позволяет узнать, успешно ли выполнился метод. Во-вторых, если метод возвращает полезное значение и ошибку, то, не проверив её, нельзя утверждать, что полезное значение корректно.
Надеемся, приведённые методы обработки ошибок в Go будут вам полезны. Читайте также статью о 5 главных ошибках Junior-разработчика, чтобы не допускать их в начале своего карьерного пути.
Слышатся сирены. Студенты и учителя быстро выскочили из классов и столпились у точки сбора. Никакой опасности в поле зрения нет и ничего не горит. Это очередная учебная пожарная тревога. В случае реальной чрезвычайной ситуации все точно будут знать, что делать.
Премиум 👑 канал по Golang
Рекомендуем вам супер TELEGRAM канал по Golang где собраны все материалы для качественного изучения языка. Удивите всех своими знаниями на собеседовании! 😎
Подписаться на канал
Уроки, статьи и Видео
Мы публикуем в паблике ВК и Telegram качественные обучающие материалы для быстрого изучения Go. Подпишитесь на нас в ВК и в Telegram. Поддержите сообщество Go программистов.
Go в ВК
ЧАТ в Telegram
Содержание статьи
- Исправление ошибок в Golang
- Элегантная обработка ошибок
- Запись данных в файле
- Применяем defer — отложенные действия
- Креативная обработка ошибок
- Новые ошибки в программе на Golang
- Причины каждой ошибки в Go
- Настраиваемые типы ошибок
- Множество ошибок в Golang
- Утверждение типа Go
- Принцип работы panic
- Есть ли исключения в Golang?
- Как использовать panic
- Тонкости работы с panic в Go
Файл не найден, неверный формат, сервер недоступен. Что делает программа, когда что-то идет не так? Возможно, проблему можно решить, и тогда операции будут выполняться должным образом. Иногда лучше всего просто выйти и закрыть двери — или на крайний случай разбить окно и выскочить наружу.
План всегда важен. Рассмотрим возможные ошибки и способы их исправления. Go всегда ответственно подходит к вопросу устранения ошибок, побуждая вас задуматься о причинах ошибки, что поможет ее решить. Как и десятая пожарная тренировка, обработка ошибок может показаться монотонной, однако результат того стоит.
В данном уроке будут рассмотрены способы исправления ошибок и выяснения причины их появления. Под конец сравним стиль исправления ошибок Go и в других языках программирования.
В начала 18 века английский поэт Александр Поуп написал поэму, строчка которой известна по сей день: to err is human, то есть человеку свойственно ошибаться. Подумайте, как данную строку можно сравнить с программированием.
To err is human; to forgive, divine.
Александ Поуп, “An Essay on Criticism: Part 2”
Все делают ошибки. Системы не исключение. Ошибки повсеместны. Они не считаются редким явлением, поэтому лучше быть готовым. Принимайте ошибки, не игнорируйте их. Работайте над исправлением и двигайтесь дальше.
Исправление ошибок в Golang
В языках программирования прошлого лимитация на одно возвращаемое значение делали исправление ошибок не совсем понятным. Функции переполняли бы одинаковое возвращаемое значение для указания как ошибки, так и успешного значения, или запрашивали бы побочный канал для обращения к ошибки вроде глобальной переменной errno
. Что еще хуже, механизм сообщения об ошибках было непоследовательным от функции к функции.
У Go есть несколько возвращаемых значений, как упоминалось в уроке о функциях. Хотя это не относится к обработке ошибок, несколько возвращаемых значений обеспечивают простой и последовательный механизм возврата ошибки к вызову функций. Если функция может вернуть ошибку, соглашение состоит в том, чтобы использовать последнее возвращаемое значение для ошибок. Вызывающий элемент должен проверить, произошла ли ошибка сразу после вызова функции. Если ошибок не было, значение ошибки будет равно nil
.
Чтобы продемонстрировать обработку ошибок, Листинг 1 вызывает функцию ReadDir
. Если возникает ошибка, переменная err
не будет равна nil, что заставит программу вывести ошибку и немедленно завершить работу. Ненулевое значение, переданное os.Exit
, сообщает операционной системе, что произошла ошибка.
Если ReadDir
успешно выполнена, files
будет назначен к срезу os.FileInfo
, предоставляющий информацию о файлах и каталогах по указанному пути. В данном случае точка уточняет путь, указывающий текущую директорию.
files, err := ioutil.ReadDir(«.») if err != nil { fmt.Println(err) os.Exit(1) } for _, file := range files { fmt.Println(file.Name()) } |
Когда возникает ошибка, не стоит полагаться на другие возвращаемые значения. Они могут быть нулевыми для своего типа, но некоторые функции возвращают данные частично или же совершенно иные значения.
При запуске Листинга 1 на Go Playground в выводе будет список директорий:
Для создания списка содержимого другой директории замените текущую директорию ("."
) в Листинге 1 названием другой директории вроде "etc"
. Список может содержать как файлы, так и директории. Вы можете использовать file.IsDir()
для того, чтобы различить их.
Вопросы для проверки:
- Переделайте Листинг 1 для чтения воображаемой директории под названием
"unicorns"
. Какая ошибка выйдет? - Какое сообщение об ошибке выйдет при использовании
ReadDir
над файлом"/etc/hosts"
вместо директории.
Элегантная обработка ошибок в Golang
Разработчикам Go рекомендуется учитывать и обрабатывать любые ошибки, которые возвращают функции. Количество кода для обработки ошибок увеличивается довольно быстро. К счастью, есть несколько способов уменьшить размер кода обработки ошибок без ущерба надежности.
Некоторые функции выполняют вычисления, преобразования данных и другую логику, где ошибки будут некстати. Есть функции, которые взаимодействуют с файлами, базами данных и серверами. Связь несколько ненадежна и может потерпеть неудачу. Одной из стратегий уменьшения кода обработки ошибок является изоляция безошибочного подмножества программы от изначально подверженного ошибкам кода.
Но как насчет кода, который возвращает ошибки? Мы не можем удалить ошибки, но можем упростить код обработки ошибок. Чтобы продемонстрировать это, напишем небольшую программу для записи в файл следующих английских слоганов Go (Go Proverbs), а затем улучшим обработку ошибок, пока код не станет приемлемым.
Errors are values.
Don’t just check errors, handle them gracefully.
Don’t panic.
Make the zero value useful.
The bigger the interface, the weaker the abstraction.
interface{} says nothing.
Gofmt’s style is no one’s favorite, yet gofmt is everyone’s favorite.
Documentation is for users.
A little copying is better than a little dependency.
Clear is better than clever.
Concurrency is not parallelism.
Don’t communicate by sharing memory, share memory by communicating.
Channels orchestrate; mutexes serialize.Rob Pike, Go Proverbs
Запись данных в файле
При записи файла множество вещей может пойти не так. Если путь неправильный, или есть проблемы с разрешением, столкнуться с ошибкой можно еще перед началом записи. По окончании записи на диске устройства может закончится место, или же съемный диск может быть случайно извлечен. В дополнении ко всему в конце файл должен быть закрыт, это позволяет убедиться, что все успешно записано на диск, а также избежать утечки информации.
На заметку: Операционная система ограничивает число открытых файлов, поэтому при открытии каждого нового файла память уменьшается. Когда файл не используется, но при этом остается открытым, расход ресурсов является примером утечки.
Главная функция в Листинге 2 вызывает proverbs
для создания файла и обрабатывает любые ошибки, отображая ее и затем выходя. Другая имплементация может обрабатывать ошибки иначе, возможно, подсказывая пользователю другой путь или название файла. Хотя функция proverbs
может быть написана так, чтобы она выходила при возникновении ошибок, полезно разрешить вызывающему элементу решать, как обрабатывать ошибки.
err := proverbs(«proverbs.txt») if err != nil { fmt.Println(err) os.Exit(1) } |
Функция proverbs
может вернуть error
, что является специальным встроенным типом для ошибок. Функция повременит с созданием файла из за ошибки. Если в данный момент возникает ошибка, нет нужды закрывать файл, поэтому процесс обрывается. Оставшаяся часть функции записывает строки в файл и гарантирует, что файл закрыт, независимо от его успешности, как показано в коде ниже.
func proverbs(name string) error { f, err := os.Create(name) if err != nil { return err } _, err = fmt.Fprintln(f, «Errors are values.») if err != nil { f.Close() return err } _, err = fmt.Fprintln(f, «Don’t just check errors, handle them gracefully.») f.Close() return err } |
В предыдущем коде много моментов для обработки ошибок — так много, что запись каждого выражения из «Go Proverbs» может стать довольно утомительной.
Плюсом является тот факт, что у кода для обработки ошибок есть отступ, это позволяет легче ориентироваться в коде. Отступы для ошибок являются общим паттерном Go, что во время имплементации можно усовершенствовать.
Вопрос для проверки:
Почему функции должны возвращать ошибку вместо выхода из программы?
Применяем defer — отложенные действия в Golang
Убедиться, что файл правильно закрыт, можно с помощью ключевого слова defer
. Go гарантирует, что все отложенные действия будут выполнены до возврата содержащей функции. В следующем листинге каждый возвращаемый оператор, следующий за defer
, приведет к вызывающему методу f.Close()
.
func proverbs(name string) error { f, err := os.Create(name) if err != nil { return err } defer f.Close() _, err = fmt.Fprintln(f, «Errors are values.») if err != nil { return err } _, err = fmt.Fprintln(f, «Don’t just check errors, handle them gracefully.») return err } |
На заметку: Поведение предыдущего кода похоже тому, что в Листинге 3. Изменение кода без изменения его поведения называется рефакторингом. Как и переосмысление первого черновика сочинения, рефакторинг является важным навыком для написания лучшего кода.
Вы можете отложить любую функцию или метод, и как множество возвращаемых значений, отсрочка нужна не для уточнения обработки ошибки. Она улучшает обработку ошибок, избавляясь от необходимости постоянно помнить об очистке. Благодаря defer
, код для обработки ошибок может сфокусироваться только на своей задачи и больше ни о чем.
Ключевое слово defer
облегчает процесс, однако проверка на наличие ошибок после каждой строки кода очень утомительна. Пришло время для креативности!
Вопрос для проверки:
Когда будет вызвано отсроченное действие?
Креативная обработка ошибок в Golang
15 января 2015 года в блоге Go была опубликована отличная статья об обработке ошибок. В статье описывается простой способ для записи в файл без повторения одинакового кода для обработки ошибок после каждой строчки.
Для применения данной техники вам понадобится объявить новый тип, что вызывается в Листинге 5. Если при записи safeWriter
в файл возникает ошибка, он сохраняет ошибку вместо ее возвращения. Следующие попытки записи в одинаковый файл будут пропущены, если writeln
видит, что раньше была ошибка.
type safeWriter struct { w io.Writer err error // Место для хранения первой ошибки } func (sw *safeWriter) writeln(s string) { if sw.err != nil { return // Пропускает запись, если раньше была ошибка } _, sw.err = fmt.Fprintln(sw.w, s) // Записывает строку и затем хранить любую ошибку } |
Через использование safeWriter
следующий листинг записывает несколько строк без репетативной обработки ошибок, но по-прежнему возвращает все возникшие ошибки.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
func proverbs(name string) error { f, err := os.Create(name) if err != nil { return err } defer f.Close() sw := safeWriter{w: f} sw.writeln(«Errors are values.») sw.writeln(«Don’t just check errors, handle them gracefully.») sw.writeln(«Don’t panic.») sw.writeln(«Make the zero value useful.») sw.writeln(«The bigger the interface, the weaker the abstraction.») sw.writeln(«interface{} says nothing.») sw.writeln(«Gofmt’s style is no one’s favorite, yet gofmt is everyone’s favorite.») sw.writeln(«Documentation is for users.») sw.writeln(«A little copying is better than a little dependency.») sw.writeln(«Clear is better than clever.») sw.writeln(«Concurrency is not parallelism.») sw.writeln(«Don’t communicate by sharing memory, share memory by communicating.») sw.writeln(«Channels orchestrate; mutexes serialize.») return sw.err // Возвращает ошибку в случае ее возникновения } |
Это более простой и чистый способ для записи текстового файла, но смысл не в этом. Такая же техника может использоваться для создания zip-файлов или для совершенно разных задач. Крупная идея становится значительнее одной техники:
… ошибки являются значениями, и сила языка программирования Go в том, что он может обработать их.
Роб Пайк, «Ошибки — это значения«
Перед вами элегантный способ обработки ошибок в Go.
Вопрос для проверки:
Если бы сообщение об ошибке в Листинге 6 сообщало файлу “Clear is better than clever.”, какие бы событие последовали за этим?
Новые ошибки в программе на Golang
Если функция получает неверные параметры, или если что-то другое идет не так, вы можете создать и вернуть новые значения ошибок, чтобы оповестить вызывающий элемент о проблеме.
Для демонстрации новых ошибок Листинг 7 создает основу для Судоку, что представляет собой сетку 9 на 9. Каждый квадрат сетки может содержать цифру от 1 до 9. Имплементация использует массив с фиксированным размером, ноль указывает на пустой квадрат.
const rows, columns = 9, 9 // Grid является сеткой Судоку type Grid [rows][columns]int8 |
Пакет errors содержит функцию конструктора, что принимает строку для сообщения об ошибке. Используя ее, метод Set
в «Листинге 8» может создать и возвратить ошибку "out of bounds"
.
Проверка параметров в начале метода защищает оставшуюся часть метода от неправильного ввода.
func (g *Grid) Set(row, column int, digit int8) error { if !inBounds(row, column) { return errors.New(«out of bounds») } g[row][column] = digit return nil } |
Функция inBounds
в следующем листинге помогает убедиться, что row
и column
находятся в пределах границ сетки. Она не дает методу Set
забиться лишними деталями.
func inBounds(row, column int) bool { if row < 0 || row >= rows { return false } if column < 0 || column >= columns { return false } return true } |
Наконец функция main
в следующем листинге создает сетку и отображает любую ошибку, возникшую в результате неправильной замены.
func main() { var g Grid err := g.Set(10, 0, 5) if err != nil { fmt.Printf(«An error occurred: %v.n», err) os.Exit(1) } } |
На заметку: Для сообщений ошибок часто используются части предложений, чтобы перед отображением к ним можно было добавить дополнительный текст.
Всегда читайте сообщения об ошибках. Рассматривайте их как часть пользовательского интерфейса программы, будь он для конечных пользователей и разработчиков. Фраза «out of bounds» неплоха, но более точное «outside of grid boundaries» может быть лучше. А сообщение «error 37» вообще ни о чем не говорит.
Вопрос для проверки:
В чем преимущество защит от плохого ввода перед функцией?
Причины каждой ошибки в Go
Многие пакеты Go объявляют и экспортируют переменные для ошибок, которые они могут вернуть. Для использования этого с сеткой Судоку следующий листинг объявляет две переменные для ошибок на уровне пакета.
var ( ErrBounds = errors.New(«out of bounds») ErrDigit = errors.New(«invalid digit») ) |
На заметку: Принято присваивать сообщения об ошибках переменным, что начинаются со слова
Err
.
По объявлении ErrBounds
вы можете изменить метод Set
для возвращения его вместо создания новой ошибки, как показано в следующем коде.
if !inBounds(row, column) { return ErrBounds } |
Если метод Set
возвращает ошибку, вызывающая сторона может различить возможные ошибки и обрабатывать определенные ошибки по-разному, как показано в следующем листинге. Вы можете сравнить ошибку, возвращаемую с переменными ошибки, используя ==
или оператор switch.
var g Grid err := g.Set(0, 0, 15) if err != nil { switch err { case ErrBounds, ErrDigit: fmt.Println(«Les erreurs de paramètres hors limites.») default: fmt.Println(err) } os.Exit(1) } |
На заметку: Конструктор
errors.New
имплементируется через использование указателя, поэтому операторswitch
в предыдущем примере сравнивает адреса памяти, текст не содержит сообщения об ошибке.
Задание для проверки:
Напишите функцию validDigit
и используйте ее, чтобы убедиться, что метод Set
принимает только цифры между 1 и 9.
Настраиваемые типы ошибок в Golang
Каким бы полезным не был errors.New
, иногда нужно, чтобы ошибки описывались не просто сообщением. Go достаточно свободен в этом плане.
Тип error
является встроенным интерфейсом, как показано в следующем примере. Любой тип, что имплементирует метод Error()
для возвращения строки, неявно удовлетворяет интерфейс. В качестве интерфейса возможно создать новые типы ошибок.
type error interface { Error() string } |
Множество ошибок в Golang
Есть несколько причин, по которым цифра не может быть помещена в определенное место в Судоку. В предыдущем разделе мы установили два правила: строки и столбцы находятся внутри сеткии, и цифры находятся в промежутке от 1 до 9. Что будет, если вызывающий элемент передаст множество неверных аргументов?
Вместо возвращения одной ошибки за раз, метод Set
может сделать несколько проверок и вернуть все ошибки сразу. Тип SudokuError
в Листинге 15 является срезом error
. Он удовлетворяет интерфейсу error
с методом, что соединяет ошибки вместе в одну строку.
На заметку: Принято, что настраиваемые типы ошибок вроде
SudokuError
заканчиваются словомError
. Иногда это просто словоError
вродеurl.Error
из пакетаurl
.
type SudokuError []error // Error возвращает одну или несколько ошибок через запятые. func (se SudokuError) Error() string { var s []string for _, err := range se { s = append(s, err.Error()) // Конвертирует ошибки в строки } return strings.Join(s, «, «) } |
Чтобы использовать SudokuError
, метод Set
можно модифицировать для валидации границ и цифр, возвращая обе ошибки сразу, как показано в следующем примере.
func (g *Grid) Set(row, column int, digit int8) error { // Возвращает тип ошибки var errs SudokuError if !inBounds(row, column) { errs = append(errs, ErrBounds) } if !validDigit(digit) { errs = append(errs, ErrDigit) } if len(errs) > 0 { return errs } g[row][column] = digit return nil // Возвращает nil } |
Если ошибок нет, метод Set
возвращает nil
. Это не изменилось по сравнению с Листингом 8, но важно отметить, что пустой срез errs
здесь не возвращается. Для подробностей можете почитать об интерфейсах nil.
Сигнатура метода для Set
также не изменилась по сравнению с Листингом 8. Всегда используйте тип интерфейса error
при возвращении ошибок, а не конкретные типы вроде SudokuError
.
Вопрос для проверки:
Что произойдет, если метод Set
успешно вернет пустой срез errs
?
Утверждение типа в Go
Так как Листинг 16 конвертирует SudokuError
в тип интерфейса error
перед его возвращением, может возникнуть вопрос, как получить доступ к отдельным ошибкам. Решением станет утверждение типа, или type assertion. Используя утверждение типа, вы можете конвертировать интерфейс в конкретный базовый тип.
Утверждение типа в Листинге 17 утверждает err
для типа SudokuError
через код err.(SudokuError)
. Это так и есть, то ok
будет истинным, а err
будет SudokuError
, давая доступ к срезам ошибок в данном случае. Помните, что отдельные ошибки для SudokuError
являются переменными ErrBounds
и ErrDigit
, что могут сравниваться в случае необходимости.
var g Grid err := g.Set(10, 0, 15) if err != nil { if errs, ok := err.(SudokuError); ok { fmt.Printf(«%d error(s) occurred:n», len(errs)) for _, e := range errs { fmt.Printf(«- %vn», e) } } os.Exit(1) } |
В выводе предыдущего кода будут следующие ошибки:
2 error(s) occurred: — out of bounds — invalid digit |
На заметку: Если тип удовлетворяет нескольким интерфейсам, утверждение типа также может конвертировать из одного интерфейса в другой.
Вопрос для проверки:
Что делает утверждение типа err.(SudokuError)
?
Принцип работы panic в Golang
При обработке ошибок некоторые языки программирования сильно полагаются на исключения. В Go нет исключений, но в нем есть похожий механизм, который называется panic
. При задействовании panic
в программе происходит сбой. Это похоже на случаи необработанных исключений в других языках.
Есть ли исключения в Golang?
Исключения в других языках значительно отличаются от значений ошибок в Go. Это заметно как в поведении, так и в имплементации.
Если функция выдает исключение, и никто не собирается его перехватить, это исключение доходит до вызывающей функции, затем до вызывающей ту функцию и так далее, пока достигает вершины стека вызовов (например, функция main
).
Исключения — это стиль обработки ошибок, который можно считать включенным. Часто они не занимают код, тогда как выбор обработки исключений может привлекать изрядное количество специализированного кода. Это связано с тем, что вместо использования существующих возможностей языка исключения обычно имеют специальные ключевые слова, такие как try
, catch
, throw
, finally
, raise
, rescue
, except
и так далее.
Значения ошибок в Go предоставляют простую, гибкую альтернативу исключениям, которые могут помочь вам создать надежное программное обеспечение. Игнорирование значений ошибок в Go — это сознательное решение, которое становится очевидным каждому, кто читает полученный код.
Вопрос для проверки:
В чем преимущество значений ошибок Go по сравнению с исключениями?
Как использовать panic в Golang
Как упоминалось ранее, в Go есть механизм, похожий на исключения, что называется panic
. В то время, как неправильная цифра в Судоку в другом языке может стать причиной исключения, panic
в Go является редкостью.
При осознании того, что, отправившись в поездку, вы забыли полотенце, вы можете запаниковать. Аргумент, переданный panic
, может быть любого типа, не только строкой, как показано ниже:
panic(«Я забыл свое полотенце») |
На заметку: Хотя значения ошибок обычно предпочтительнее
panic
,panic
часто лучше, чемos.Exit
в том, чтоpanic
запустит любую отсроченную функцию, аos.Exit
этого делать не станет.
В некоторых ситуациях Go предпочтет panic
вместо значений ошибок, это может быть деление на ноль:
var zero int _ = 42 / zero // Runtime error: integer divide by zero — целое число делится на ноль |
Вопрос для проверки:
Как программа может использовать panic
?
Тонкости работы с panic в Golang
Чтобы panic
не привел к сбою программы, Go предоставляет функцию recover
, что показано в Листинге 18.
Отсроченные функции выполняются перед возвращением функции, даже в том случае, если задействуется panic
. Если отсроченная функция вызывает recover
, panic
остановится, и программа продолжит выполняться. В таком случае цель у recover похожа на catch
, except
и rescue
в других языках.
defer func() { if e := recover(); e != nil { // Приходит в себя после panic fmt.Println(e) // Выводит: Я забыл свое полотенце } }() panic(«Я забыл свое полотенце») // Приводит к panic |
Данный код использует анонимную функцию.
Вопрос для проверки:
Где может использоваться встроенная функция recover
?
Заключение
- Ошибки являются значениями, что внутренне оперируют с несколькими возвращаемыми значениями и другой частью языка Go;
- Будучи креативным, можно найти множество способов для обработки ошибок;
- Настраиваемые типы ошибок могут удовлетворить интерфейсу
error
; - Ключевое слово
defer
помогает выполнить очистку перед возвращением функции; - Утверждение типа может конвертировать интерфейс в конкретный тип или другой интерфейс;
- Не паникуйте — изучите ошибку.
Итоговое задание для проверки:
В стандартной библиотеке Go есть функция для парсинга веб адресов (см. golang.org/pkg/net/url/#Parse). Отобразите ошибку, которая возникает, когда url.Parse
используется для неправильного веб адреса вроде того, что содержит пробелы: https://a b.com/
.
Используйте специальный символ %#v
с Printf для изучения ошибки. Затем выполните утверждение типа *url.Error
для получения доступа и вывода полей базовой структуры.
На заметку: URL, или Uniform Resource Locator — адрес страницы в Интернете.
Администрирую данный сайт с целью распространения как можно большего объема обучающего материала для языка программирования Go. В IT с 2008 года, с тех пор изучаю и применяю интересующие меня технологии. Проявляю огромный интерес к машинному обучению и анализу данных.
E-mail: vasile.buldumac@ati.utm.md
Образование
Технический Университет Молдовы (utm.md), Факультет Вычислительной Техники, Информатики и Микроэлектроники
- 2014 — 2018 Universitatea Tehnică a Moldovei, ИТ-Инженер. Тема дипломной работы «Автоматизация покупки и продажи криптовалюты используя технический анализ»
- 2018 — 2020 Universitatea Tehnică a Moldovei, Магистр, Магистерская диссертация «Идентификация человека в киберпространстве по фотографии лица»
Деление на ноль, сбой сети, недостаток средств на счету пользователя для совершения оплаты – все это примеры проблемных ситуаций, требующих специальной обработки. Обработка исключений и ошибок является неотъемлемой частью программирования, но в разных языках такие ситуации могут обозначаться разными терминами и обрабатываться различными методами.
В Go используется термин обработка ошибок и подход к ней серьезно отличается от практикующихся в других широко используемых языках программирования. Этот подход часто критикуют, но и хвалят его не реже.
Проверка возвращаемых ошибок
Рассмотрим базовую обработку ошибок в Go на примере функции, вычисляющей частное хранящихся в двух переменных типа string
чисел:
func divide(a, b string) (int, error) {
firstNumber, err := strconv.Atoi(a)
if err != nil {
return 0, fmt.Errorf("преобразовать строку %s в число: %w", a, err)
}
secondNumber, err := strconv.Atoi(b)
if err != nil {
return 0, fmt.Errorf("преобразовать строку %s в число: %w", b, err)
}
division := firstNumber / secondNumber
return division, nil
}
Функция strconv.Atoi
конвертирует строку в целое число. Переданный ей параметр может оказаться и не числом, поэтому функция возвращает два значения: первое – результат при успешном выполнении; второе – значение ошибки, если она возникла. После вызова функции проверяется, произошла ли ошибка и если да, производятся следующие действия:
- К ошибке добавляется дополнительная информация, которая будет полезна для поиска причины ее появления (с помощью функции
fmt.Errorf
и специальной последовательности символов%w
). - Функция прерывает нормальное выполнение и возвращает ошибку как значение (в Go принято возвращать ее последним значением).
Если проблем не возникло, функция продолжит работу и по завершении вернет результат (если он есть) и пустое значение ошибки. Есть и другой вариант: к примеру, strconv.Itoa
преобразует число в строку и не возвращает ошибок.
Механизм паники
Когда проблема становится критичной и дальнейшее нормальное выполнение программы невозможно, используется механизм паники. В предыдущем примере паника возникнет, если делитель равен нулю. Если ничего не предпринять, приложение будет завершено. Чтобы избежать этого, нужно добавить следующую проверку:
if secondNumber == 0 {
return 0, ErrZeroDivisionAttempt
}
division := firstNumber / secondNumber
return division, nil
где
var ErrZeroDivisionAttempt = errors.New("divide by zero is not allowed")
По сути все сводится к возвращению из функций значений ошибок и последующей их проверке. Явная обработка упрощает разрешение проблемных ситуаций, но требует добавления многословного повторяющегося кода проверки на err != nil
после вызова почти каждой функции или метода. Это увеличивает количество строк в исходных текстах и создает помехи в понимании основной логики кода. Обработка ошибок в такой форме вызывает негодование у привыкших к более традиционному подходу обработки исключений программистов.
Этот подход использовать проще: при возникновении проблемной ситуации вместо явного возврата значения ошибки из функции бросается исключение. Оно неявно возвращается вверх по стеку вызовов функций и может быть обработано в специальном блоке. Если блок обработки исключения не найден, программа (немного упрощенно, на самом деле – программный поток) завершается с сообщением об исключении. При возникновении исключения в него также записывается состояние стека вызовов функций.
При этом пропадает нужда в проверке на возникновение ошибки при каждом вызове функции. Если представить, что в Go когда-нибудь появятся исключения, они будут выглядеть следующим образом:
func divide(a, b string) int {
firstNumber := strconv.Atoi(a)
secondNumber := strconv.Atoi(b)
division := firstNumber / secondNumber
return division
}
Пропала проверка на возникновении ошибки. Функция strconv.Atoi
теперь возвращает только одно значение и при проблемной ситуации вместо возврата ошибки бросает исключение с помощью оператора throw
:
func Atoi(s string) int {
if s == "" {
throw ErrEmptyArgument
}
// ...
}
где
var ErrEmptyArgument = errors.New("empty argument")
Деление на ноль в этом случае также порождает исключение. Вызывающий эту функцию код выглядел бы следующим образом:
try {
result := divide("15", "10")
fmt.Println(result)
} catch (e ErrZeroDivisionAttempt) {
fmt.Println("Делить на ноль нельзя")
} catch (e ErrEmptyArgument) {
fmt.Println("Невозможно конвертировать пустую строку в число")
}
В блоке try
код способный породить исключение. Если исключение будет брошено, оно перехватится одним из блоков catch
и будет выполнен соответствующий типу исключения код. Если для типа исключения (или переменной в нашем случае) не найден подходящий блок catch
, исключение поднимается дальше в вызывающую функцию и далее до тех пор, пока подходящий catch
не будет найден или программа (поток) не завершится. Функция divide
стала бы короче и легче для чтения.
Реализация исключений через панику
Примеры кода с “исключениями” не запустятся сейчас и, вероятнее всего, в будущем, поскольку их добавления нет в планах создателей Go. Однако мы можем попробовать имитировать механизм исключений сами.
Конечный результат будет выглядеть так:
Try(func() {
result := divide("15", "10")
fmt.Println(result)
}, func(err error) {
if err == ErrZeroDivisionAttempt {
fmt.Println("Делить на ноль нельзя")
} else if err == ErrEmptyArgument {
fmt.Println("Невозможно конвертировать пустую строку в число")
}
})
Чтобы это работало, нужно также изменить функции следующим образом:
func divide(a, b string) int {
firstNumber := Atoi(a)
secondNumber := Atoi(b)
if secondNumber == 0 {
panic(ErrZeroDivisionAttempt)
}
division := firstNumber / secondNumber
return division
}
func Atoi(s string) int {
if s == "" {
panic(ErrEmptyArgument)
}
converted, err := strconv.Atoi(s)
if err != nil {
panic(err)
}
return converted
}
И код функции Try
:
var ErrNotAnError = errors.New("not an error")
func Try(code func(), Catch func(err error)) {
defer func() {
e := recover()
if e != nil {
err, ok := e.(error)
if !ok {
err = ErrNotAnError
}
Catch(err)
}
}()
code()
}
Механизм паники в Go очень похож на исключения. Функции неявным образом завершаются и паника идет по стеку вызовов обратно, пока программа аварийно не завершится. При этом панику можно перехватить и остановить с помощью функции recover
. Более того, благодаря встроенной функции panic
ее несложно и вызвать. Функция принимает один аргумент типа interface{}
, который можно будет получить после вызова recover
. Функция recover
должна вызываться в отложенной через defer
функции, так как только отложенные функции исполняются даже при панике.
Используя эти знания, мы можем поступить так: при возникновении проблемы искусственно вызывать панику, передавая ей в качестве аргумента произошедшую ошибку. Чтобы отловить эту ошибку будем использовать вспомогательную функцию Try
. Первым аргументом передаем анонимную функцию с нашим кодом, а вторым – функцию обработки любой возникшей ошибки. Если функция в первом аргументе паникует, то Try
перехватывает панику через recover
, извлекает из возвращаемого значения тип error
и передает в нашу функцию обработчик.
Подход имитирует обработку исключений в Go. Функцию Try
можно модифицировать таким образом, чтобы она принимала много отдельных обработчиков ошибок и сама вызывала нужный, хотя реализовать это довольно сложно. Для удобства и возможности повторного использования, функцию Try
стоит вынести в отдельный пакет и импортировать через dot import: например, import . "exception/try"
.
Теперь у нас есть возможность использовать подход обработки исключений, но так ли все хорошо на самом деле? Обработка исключений имеет и свои минусы, хотя она отделена от логики программы и позволяет писать более короткий код.
Нужны ли в Go исключения?
Основной код программы действительно стал понятнее, но обработку исключений сложнее использовать и что серьезнее – правильно обрабатывающий исключения код труднее отличить от обрабатывающего их неправильно. Разрешение проблемных ситуаций и так является тяжелым и ответственным занятием, а наш имитационный подход усложняет задачу еще больше. Разработчики Go решили, что создание надежных программ требует иной методики со своими минусами и плюсами. И не только они: альтернативы исключениям есть и в других языках программирования.
Из дополнительных побочных эффектов исключений стоит отметить потерю производительности. Именно поэтому разработчики игр отказываются от них в пользу альтернативных решений.
***
Писать код на основе исключений в Go в определенной мере возможно, но в сообществе это даже порицается. Пытаясь использовать такой подход, вы столкнетесь с проблемой экосистемы языка. Стандартная библиотека и сторонние пакеты используют обработку ошибок в форме возвращаемых значений, а смешение методов усложнит написание кода вдвойне.
Обработка ошибок – важная часть работы программиста и какой бы метод вы бы не применяли, тщательно продумывайте поведение программы в проблемных ситуациях. Удачи!
Полный листинг кода:
package main
import (
"errors"
"fmt"
"strconv"
)
func main() {
Try(func() {
result := divide("15", "0")
fmt.Println(result)
}, func(err error) {
switch err {
case ErrZeroDivisionAttempt:
fmt.Println("Делить на ноль нельзя")
case ErrEmptyArgument:
fmt.Println("Невозможно конвертировать пустую строку в число")
}
})
}
var ErrZeroDivisionAttempt = errors.New("divide by zero is not allowed")
var ErrEmptyArgument = errors.New("empty argument")
func divide(a, b string) int {
firstNumber := Atoi(a)
secondNumber := Atoi(b)
if secondNumber == 0 {
panic(ErrZeroDivisionAttempt)
}
division := firstNumber / secondNumber
return division
}
func Atoi(s string) int {
if s == "" {
panic(ErrEmptyArgument)
}
converted, err := strconv.Atoi(s)
if err != nil {
panic(err)
}
return converted
}
var ErrNotAnError = errors.New("not an error")
func Try(code func(), Catch func(err error)) {
defer func() {
e := recover()
if e != nil {
err, ok := e.(error)
if !ok {
err = ErrNotAnError
}
Catch(err)
}
}()
code()
}
In this article, we’ll take a look at how to handle errors using build-in Golang functionality, how you can extract information from the errors you are receiving and the best practices to do so.
Error handling in Golang is unconventional when compared to other mainstream languages like Javascript, Java and Python. This can make it very difficult for new programmers to grasp Golangs approach of tackling error handling.
In this article, we’ll take a look at how to handle errors using build-in Golang functionality, how you can extract information from the errors you are receiving and the best practices to do so. A basic understanding of Golang is therefore required to follow this article. If you are unsure about any concepts, you can look them up here.
Errors in Golang
Errors indicate an unwanted condition occurring in your application. Let’s say you want to create a temporary directory where you can store some files for your application, but the directory’s creation fails. This is an unwanted condition and is therefore represented using an error.
package main
import (
"fmt"
"ioutil"
)
func main() {
dir, err := ioutil.TempDir("", "temp")
if err != nil {
return fmt.Errorf("failed to create temp dir: %v", err)
}
}
Golang represents errors using the built-in error type, which we will look at closer in the next section. The error is often returned as a second argument of the function, as shown in the example above. Here the TempDir function returns the name of the directory as well as an error variable.
Creating custom errors
As already mentioned errors are represented using the built-in error interface type, which has the following definition:
type error interface {
Error() string
}
The interface contains a single method Error() that returns an error message as a string. Every type that implements the error interface can be used as an error. When printing the error using methods like fmt.Println the Error() method is automatically called by Golang.
There are multiple ways of creating custom error messages in Golang, each with its own advantages and disadvantages.
String-based errors
String-based errors can be created using two out-of-the-box options in Golang and are used for simple errors that just need to return an error message.
err := errors.New("math: divided by zero")
The errors.New() method can be used to create new errors and takes the error message as its only parameter.
err2 := fmt.Errorf("math: %g cannot be divided by zero", x)
fmt.Errorf on the other hand also provides the ability to add formatting to your error message. Above you can see that a parameter can be passed which will be included in the error message.
Custom error with data
You can create your own error type by implementing the Error() function defined in the error interface on your struct. Here is an example:
type PathError struct {
Path string
}
func (e *PathError) Error() string {
return fmt.Sprintf("error in path: %v", e.Path)
}
The PathError implements the Error() function and therefore satisfies the error interface. The implementation of the Error() function now returns a string with the path of the PathError struct. You can now use PathError whenever you want to throw an error.
Here is an elementary example:
package main
import(
"fmt"
)
type PathError struct {
Path string
}
func (e *PathError) Error() string {
return fmt.Sprintf("error in path: %v", e.Path)
}
func throwError() error {
return &PathError{Path: "/test"}
}
func main() {
err := throwError()
if err != nil {
fmt.Println(err)
}
}
You can also check if the error has a specific type using either an if or switch statement:
if err != nil {
switch e := err.(type) {
case *PathError :
// Do something with the path
default:
log.Println(e)
}
}
This will allow you to extract more information from your errors because you can then call all functions that are implemented on the specific error type. For example, if the PathError had a second method called GetInfo you could call it like this.
e.GetInfo()
Error handling in functions
Now that you know how to create your own custom errors and extract as much information as possible from errors let’s take a look at how you can handle errors in functions.
Most of the time errors are not directly handled in functions but are returned as a return value instead. Here we can take advantage of the fact that Golang supports multiple return values for a function. Thus you can return your error alongside the normal result — errors are always returned as the last argument — of the function as follows:
func divide(a, b float64) (float64, error) {
if b == 0 {
return 0.0, errors.New("cannot divide through zero")
}
return a/b, nil
}
The function call will then look similar to this:
func main() {
num, err := divide(100, 0)
if err != nil {
fmt.Printf("error: %s", err.Error())
} else {
fmt.Println("Number: ", num)
}
}
If the returned error is not nil it usually means that there is a problem and you need to handle the error appropriately. This can mean that you use some kind of log message to warn the user, retry the function until it works or close the application entirely depending on the situation. The only drawback is that Golang does not enforce handling the retuned errors, which means that you could just ignore handling errors completely.
Take the following code for example:
package main
import (
"errors"
"fmt"
)
func main() {
num2, _ := divide(100, 0)
fmt.Println("Number: ", num2)
}
The so-called blank identifier is used as an anonymous placeholder and therefore provides a way to ignore values in an assignment and avoid compiler errors in the process. But remember that using the blank identifier instead of probably handling errors is dangerous and should not be done if it can be avoided.
Defer, panic and recover
Go does not have exceptions like many other programming languages, including Java and Javascript but has a comparable mechanism know as ,,Defer, panic and recover». Still the use-cases of panic and recover are very different from exceptions in other programming languages as they should only be used in unexpected and unrecoverable situations.
Defer
A defer statement is a mechanism used to defer a function by putting it into an executed stack once the function that contains the defer statement has finished, either normally by executing a return statement or abnormally panicking. Deferred functions will then be executed in reverse order in which they were deferred.
Take the following function for example:
func processHTML(url string) error {
resp, err := http.Get(url)
if err != nil {
return err
}
ct := resp.Header.Get("Content-Type")
if ct != "text/html" && !strings.HasPrefix(ct, "text/html;") {
resp.Body.Close()
return fmt.Errorf("%s has content type %s which does not match text/html", url, ct)
}
doc, err := html.Parse(resp.Body)
resp.Body.Close()
// ... Process HTML ...
return nil
}
Here you can notice the duplicated resp.Body.Close call, which ensures that the response is properly closed. Once functions grow more complex and have more errors that need to be handled such duplications get more and more problematic to maintain.
Since deferred calls get called once the function has ended, no matter if it succeeded or not it can be used to simplify such calls.
func processHTMLDefer(url string) error {
resp, err := http.Get(url)
if err != nil {
return err
}
defer resp.Body.Close()
ct := resp.Header.Get("Content-Type")
if ct != "text/html" && !strings.HasPrefix(ct, "text/html;") {
return fmt.Errorf("%s has content type %s which does not match text/html", url, ct)
}
doc, err := html.Parse(resp.Body)
// ... Process HTML ...
return nil
}
All deferred functions are executed in reverse order in which they were deferred when the function finishes.
package main
import (
"fmt"
)
func main() {
first()
}
func first() {
defer fmt.Println("first")
second()
}
func second() {
defer fmt.Println("second")
third()
}
func third() {
defer fmt.Println("third")
}
Here is the result of running the above program:
third
second
first
Panic
A panic statement signals Golang that your code cannot solve the current problem and it therefore stops the normal execution flow of your code. Once a panic is called, all deferred functions are executed and the program crashes with a log message that includes the panic values (usually an error message) and a stack trace.
As an example Golang will panic when a number is divided by zero.
package main
import "fmt"
func main() {
divide(5)
}
func divide(x int) {
fmt.Printf("divide(%d) n", x+0/x)
divide(x-1)
}
Once the divide function is called using zero, the program will panic, resulting in the following output.
panic: runtime error: integer divide by zero
goroutine 1 [running]:
main.divide(0x0)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:16 +0xe6
main.divide(0x1)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x2)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x3)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x4)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x5)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.main()
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:11 +0x31
exit status 2
You can also use the built-in panic function to panic in your own programms. A panic should mostly only be used when something happens that the program didn’t expect and cannot handle.
func getArguments() {
if len(os.Args) == 1 {
panic("Not enough arguments!")
}
}
As already mentioned, deferred functions will be executed before terminating the application, as shown in the following example.
package main
import (
"fmt"
)
func main() {
accessSlice([]int{1,2,5,6,7,8}, 0)
}
func accessSlice(slice []int, index int) {
fmt.Printf("item %d, value %d n", index, slice[index])
defer fmt.Printf("defer %d n", index)
accessSlice(slice, index+1)
}
Here is the output of the programm:
item 0, value 1
item 1, value 2
item 2, value 5
item 3, value 6
item 4, value 7
item 5, value 8
defer 5
defer 4
defer 3
defer 2
defer 1
defer 0
panic: runtime error: index out of range [6] with length 6
goroutine 1 [running]:
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x6)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:29 +0x250
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x5)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x4)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x3)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x2)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x1)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x0)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.main()
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:9 +0x99
exit status 2
Recover
In some rare cases panics should not terminate the application but be recovered instead. For example, a socket server that encounters an unexpected problem could report the error to the clients and then close all connections rather than leaving the clients wondering what just happened.
Panics can therefore be recovered by calling the built-in recover function within a deferred function in the function that is panicking. Recover will then end the current state of panic and return the panic error value.
package main
import "fmt"
func main(){
accessSlice([]int{1,2,5,6,7,8}, 0)
}
func accessSlice(slice []int, index int) {
defer func() {
if p := recover(); p != nil {
fmt.Printf("internal error: %v", p)
}
}()
fmt.Printf("item %d, value %d n", index, slice[index])
defer fmt.Printf("defer %d n", index)
accessSlice(slice, index+1)
}
As you can see after adding a recover function to the function we coded above the program doesn’t exit anymore when the index is out of bounds by recovers instead.
Output:
item 0, value 1
item 1, value 2
item 2, value 5
item 3, value 6
item 4, value 7
item 5, value 8
internal error: runtime error: index out of range [6] with length 6defer 5
defer 4
defer 3
defer 2
defer 1
defer 0
Recovering from panics can be useful in some cases, but as a general rule you should try to avoid recovering from panics.
Error wrapping
Golang also allows errors to wrap other errors which provides the functionality to provide additional context to your error messages. This is often used to provide specific information like where the error originated in your program.
You can create wrapped errors by using the %w flag with the fmt.Errorf function as shown in the following example.
package main
import (
"errors"
"fmt"
"os"
)
func main() {
err := openFile("non-existing")
if err != nil {
fmt.Printf("error running program: %s n", err.Error())
}
}
func openFile(filename string) error {
if _, err := os.Open(filename); err != nil {
return fmt.Errorf("error opening %s: %w", filename, err)
}
return nil
}
The output of the application would now look like the following:
error running program: error opening non-existing: open non-existing: no such file or directory
As you can see the application prints both the new error created using fmt.Errorf as well as the old error message that was passed to the %w flag. Golang also provides the functionality to get the old error message back by unwrapping the error using errors.Unwrap.
package main
import (
"errors"
"fmt"
"os"
)
func main() {
err := openFile("non-existing")
if err != nil {
fmt.Printf("error running program: %s n", err.Error())
// Unwrap error
unwrappedErr := errors.Unwrap(err)
fmt.Printf("unwrapped error: %v n", unwrappedErr)
}
}
func openFile(filename string) error {
if _, err := os.Open(filename); err != nil {
return fmt.Errorf("error opening %s: %w", filename, err)
}
return nil
}
As you can see the output now also displays the original error.
error running program: error opening non-existing: open non-existing: no such file or directory
unwrapped error: open non-existing: no such file or directory
Errors can be wrapped and unwrapped multiple times, but in most cases wrapping them more than a few times does not make sense.
Casting Errors
Sometimes you will need a way to cast between different error types to for example, access unique information that only that type has. The errors.As function provides an easy and safe way to do so by looking for the first error in the error chain that fits the requirements of the error type. If no match is found the function returns false.
Let’s look at the official errors.As docs example to better understand what is happening.
package main
import (
"errors"
"fmt"
"io/fs"
"os"
)
func main(){
// Casting error
if _, err := os.Open("non-existing"); err != nil {
var pathError *os.PathError
if errors.As(err, &pathError) {
fmt.Println("Failed at path:", pathError.Path)
} else {
fmt.Println(err)
}
}
}
Here we try to cast our generic error type to os.PathError so we can access the Path variable that that specific error contains.
Another useful functionality is checking if an error has a specific type. Golang provides the errors.Is function to do exactly that. Here you provide your error as well as the particular error type you want to check. If the error matches the specific type the function will return true, if not it will return false.
package main
import (
"errors"
"fmt"
"io/fs"
"os"
)
func main(){
// Check if error is a specific type
if _, err := os.Open("non-existing"); err != nil {
if errors.Is(err, fs.ErrNotExist) {
fmt.Println("file does not exist")
} else {
fmt.Println(err)
}
}
}
After checking, you can adapt your error message accordingly.
Sources
- Golang Blog — Working with Errors in Go 1.13
- The Go Programming language book
- Golang Blog — Defer, Panic, and Recover
- LogRocket — Error handling in Golang
- GolangByExample — Wrapping and Un-wrapping of error in Go
- Golang Documentation — Package errors
Conclusion
You made it all the way until the end! I hope this article helped you understand the basics of Go error handling and why it is an essential topic in application/software development.
If you have found this helpful, please consider recommending and sharing it with other fellow developers and subscribing to my newsletter. If you have any questions or feedback, let me know using my contact form or contact me on Twitter.
Errors are a language-agnostic part that helps to write code in such a way that no unexpected thing happens. When something occurs which is not supported by any means then an error occurs. Errors help to write clean code that increases the maintainability of the program.
What is an error?
An error is a well developed abstract concept which occurs when an exception happens. That is whenever something unexpected happens an error is thrown. Errors are common in every language which basically means it is a concept in the realm of programming.
Why do we need Error?
Errors are a part of any program. An error tells if something unexpected happens. Errors also help maintain code stability and maintainability. Without errors, the programs we use today will be extremely buggy due to a lack of testing.
Golang has support for errors in a really simple way. Go functions returns errors as a second return value. That is the standard way of implementing and using errors in Go. That means the error can be checked immediately before proceeding to the next steps.
Simple Error Methods
There are multiple methods for creating errors. Here we will discuss the simple ones that can be created without much effort.
1. Using the New function
Golang errors package has a function called New() which can be used to create errors easily. Below it is in action.
package main import ( "fmt" "errors" ) func e(v int) (int, error) { if v == 0 { return 0, errors.New("Zero cannot be used") } else { return 2*v, nil } } func main() { v, err := e(0) if err != nil { fmt.Println(err, v) // Zero cannot be used 0 } }
2. Using the Errorf function
The fmt package has an Errorf() method that allows formatted errors as shown below.
fmt.Errorf("Error: Zero not allowed! %v", v) // Error: Zero not allowed! 0
Checking for an Error
To check for an error we simply get the second value of the function and then check the value with the nil. Since the zero value of an error is nil. So, we check if an error is a nil. If it is then no error has occurred and all other cases the error has occurred.
package main import ( "fmt" "errors" ) func e(v int) (int, error) { return 42, errors.New("42 is unexpected!") } func main() { _, err := e(0) if err != nil { // check error here fmt.Println(err) // 42 is unexpected! } }
Panic and recover
Panic occurs when an unexpected wrong thing happens. It stops the function execution. Recover is the opposite of it. It allows us to recover the execution from stopping. Below shown code illustrates the concept.
package main import ( "fmt" ) func f(s string) { panic(s) // throws panic } func main() { // defer makes the function run at the end defer func() { // recovers panic if e := recover(); e != nil { fmt.Println("Recovered from panic") } }() f("Panic occurs!!!") // throws panic // output: // Recovered from panic }
Creating custom errors
As we have seen earlier the function errors.New() and fmt.Errorf() both can be used to create new errors. But there is another way we can do that. And that is implementing the error interface.
type CustomError struct { data string } func (e *CustomError) Error() string { return fmt.Sprintf("Error occured due to... %s", e.data) }
Returning error alongside values
Returning errors are pretty easy in Go. Go supports multiple return values. So we can return any value and error both at the same time and then check the error. Here is a way to do that.
import ( "fmt" "errors" ) func returnError() (int, error) { // declare return type here return 42, errors.New("Error occured!") // return it here } func main() { v, e := returnError() if e != nil { fmt.Println(e, v) // Error occured! 42 } }
Ignoring errors in Golang
Go has the skip (-) operator which allows skipping returned errors at all. Simply using the skip operator helps here.
package main import ( "fmt" "errors" ) func returnError() (int, error) { // declare return type here return 42, errors.New("Error occured!") // return it here } func main() { v, _ := returnError() // skip error with skip operator fmt.Println(v) // 42 }