Handling errors is an essential feature of solid code. In this section, you’ll
add a bit of code to return an error from the greetings module, then handle it
in the caller.
-
In greetings/greetings.go, add the code highlighted below.
There’s no sense sending a greeting back if you don’t know who to greet.
Return an error to the caller if the name is empty. Copy the following
code into greetings.go and save the file.package greetings import ( "errors" "fmt" ) // Hello returns a greeting for the named person. func Hello(name string) (string, error) { // If no name was given, return an error with a message. if name == "" { return "", errors.New("empty name") } // If a name was received, return a value that embeds the name // in a greeting message. message := fmt.Sprintf("Hi, %v. Welcome!", name) return message, nil }
In this code, you:
-
Change the function so that it returns two values: a
string
and anerror
. Your caller will check
the second value to see if an error occurred. (Any Go function can
return multiple values. For more, see
Effective Go.) -
Import the Go standard library
errors
package so you can
use its
errors.New
function. -
Add an
if
statement to check for an invalid request (an
empty string where the name should be) and return an error if the
request is invalid. Theerrors.New
function returns an
error
with your message inside. -
Add
nil
(meaning no error) as a second value in the
successful return. That way, the caller can see that the function
succeeded.
-
Change the function so that it returns two values: a
-
In your hello/hello.go file, handle the error now returned by the
Hello
function, along with the non-error value.Paste the following code into hello.go.
package main import ( "fmt" "log" "example.com/greetings" ) func main() { // Set properties of the predefined Logger, including // the log entry prefix and a flag to disable printing // the time, source file, and line number. log.SetPrefix("greetings: ") log.SetFlags(0) // Request a greeting message. message, err := greetings.Hello("") // If an error was returned, print it to the console and // exit the program. if err != nil { log.Fatal(err) } // If no error was returned, print the returned message // to the console. fmt.Println(message) }
In this code, you:
-
Configure the
log
package to
print the command name («greetings: «) at the start of its log messages,
without a time stamp or source file information. -
Assign both of the
Hello
return values, including the
error
, to variables. -
Change the
Hello
argument from Gladys’s name to an empty
string, so you can try out your error-handling code. -
Look for a non-nil
error
value. There’s no sense continuing
in this case. -
Use the functions in the standard library’s
log package
to
output error information. If you get an error, you use the
log
package’s
Fatal
function
to print the error and stop the program.
-
Configure the
-
At the command line in the
hello
directory, run hello.go to
confirm that the code works.Now that you’re passing in an empty name, you’ll get an error.
$ go run . greetings: empty name exit status 1
That’s common error handling in Go: Return an error as a value so the caller
can check for it.
Next, you’ll use a Go slice to return a randomly-selected greeting.
< Call your code from another module
Return a random greeting >
Welcome to tutorial no. 30 in Golang tutorial series.
What are errors?
Errors indicate any abnormal condition occurring in the program. Let’s say we are trying to open a file and the file does not exist in the file system. This is an abnormal condition and it’s represented as an error.
Errors in Go are plain old values. Just like any other built-in type such as int, float64, … error values can be stored in variables, passed as parameters to functions, returned from functions, and so on.
Errors are represented using the built-in error
type. We will learn more about the error
type later in this tutorial.
Example
Let’s start right away with an example program that tries to open a file that does not exist.
package main
import (
"fmt"
"os"
)
func main() {
f, err := os.Open("/test.txt")
if err != nil {
fmt.Println(err)
return
}
fmt.Println(f.Name(), "opened successfully")
}
Run in playground
In line no. 9 of the program above, we are trying to open the file at path /test.txt
(which will obviously not exist in the playground). The Open function of the os
package has the following signature,
func Open(name string) (*File, error)
If the file has been opened successfully, then the Open function will return the file handler and error will be nil. If there is an error while opening the file, a non-nil error will be returned.
If a function or method returns an error, then by convention it has to be the last value returned from the function. Hence the Open
function returns error
as the last value.
The idiomatic way of handling errors in Go is to compare the returned error to nil
. A nil value indicates that no error has occurred and a non-nil value indicates the presence of an error. In our case, we check whether the error is not nil
in line no. 10. If it is not nil
, we simply print the error and return from the main function.
Running this program will print
open /test.txt: No such file or directory
Perfect 😃. We get an error stating that the file does not exist.
Error type representation
Let’s dig a little deeper and see how the built in error
type is defined. error is an interface type with the following definition,
type error interface {
Error() string
}
It contains a single method with the signature Error() string
. Any type which implements this interface can be used as an error. This method provides the description of the error.
When printing the error, fmt.Println
function calls the Error() string
method internally to get the description of the error. This is how the error description was printed in line no. 11 of the above sample program.
Now that we know error
is an interface type, let’s see how we can extract more information about an error.
In the example we saw above, we have just printed the description of the error. What if we wanted the actual path of the file which caused the error. One possible way to get this is to parse the error string. This was the output of our program,
open /test.txt: No such file or directory
We can parse this error message and get the file path «/test.txt» of the file which caused the error, but this is a dirty way of doing it. The error description can change at any time in newer versions of Go and our code will break.
Is there a better way to get the file name 🤔? The answer is yes, it can be done and the Go standard library uses different ways to provide more information about errors. Let’s look at them one by one.
1. Converting the error to the underlying type and retrieving more information from the struct fields
If you read the documentation of the Open function carefully, you can see that it returns an error of type *PathError.
PathError is a struct type and its implementation in the standard library is as follows,
type PathError struct {
Op string
Path string
Err error
}
func (e *PathError) Error() string { return e.Op + " " + e.Path + ": " + e.Err.Error() }
In case you are interested to know where the above source code exists, it can be found here https://cs.opensource.google/go/go/+/refs/tags/go1.19:src/io/fs/fs.go;l=250
From the above code, you can understand that *PathError
implements the error interface
by declaring the Error() string
method. This method concatenates the operation, path, and the actual error and returns it. Thus we got the error message,
open /test.txt: No such file or directory
The Path
field of PathError
struct contains the path of the file which caused the error.
We can use the As function from errors package to convert the error to it’s underlying type. The As
function’s description talks about error chain. Please ignore it for now. We will understand how error chain and wrapping works in a separate tutorial.
A simple description of As
is that it tries to convert the error to a error type and returns either true or false indicating whether the conversion is successful or not.
A program will make things clear. Let’s modify the program we wrote above and print the path using the As
function.
package main
import (
"errors"
"fmt"
"os"
)
func main() {
f, err := os.Open("test.txt")
if err != nil {
var pErr *os.PathError
if errors.As(err, &pErr) {
fmt.Println("Failed to open file at path", pErr.Path)
return
}
fmt.Println("Generic error", err)
return
}
fmt.Println(f.Name(), "opened successfully")
}
Run in Playground
In the above program, we first check whether the error is not nil
in line no. 11 and then we use the As
function in line no. 13 to convert err
to *os.PathError
. If the conversion is successful, As
will return true
. Then we print the path using pErr.Path
in line no. 14.
If you are wondering why pErr
is a pointer, the reason is, the error interface is implemented by the pointer of PathError
and hence pErr
is a pointer. The below code shows that *PathError
implements the error interface.
func (e *PathError) Error() string { return e.Op + " " + e.Path + ": " + e.Err.Error() }
The As
function requires the second argument to be a pointer to the type that implements the error. Hence we pass &perr
.
This program outputs,
Failed to open file at path test.txt
In case the underlying error is not of type *os.PathError
, the control will reach line no. 17 and a generic error message will be printed.
Great 😃. We have successfully used the As
function to get the file path from the error.
2. Retrieving more information using methods
The second way to get more information from the error is to find out the underlying type and get more information by calling methods on the struct type.
Let’s understand this better by means of an example.
The DNSError struct type in the standard library is defined as follows,
type DNSError struct {
...
}
func (e *DNSError) Error() string {
...
}
func (e *DNSError) Timeout() bool {
...
}
func (e *DNSError) Temporary() bool {
...
}
The DNSError
struct has two methods Timeout() bool
and Temporary() bool
which return a boolean value that indicates whether the error is because of a timeout or is it a temporary one.
Let’s write a program that converts the error to *DNSError
type and calls the above mentioned methods to determine whether the error is temporary or due to timeout.
package main
import (
"errors"
"fmt"
"net"
)
func main() {
addr, err := net.LookupHost("golangbot123.com")
if err != nil {
var dnsErr *net.DNSError
if errors.As(err, &dnsErr) {
if dnsErr.Timeout() {
fmt.Println("operation timed out")
return
}
if dnsErr.Temporary() {
fmt.Println("temporary error")
return
}
fmt.Println("Generic DNS error", err)
return
}
fmt.Println("Generic error", err)
return
}
fmt.Println(addr)
}
Note: DNS lookups do not work in the playground. Please run this program in your local machine.
In the program above, in line no. 9, we are trying to get the IP address of an invalid domain name golangbot123.com
. In line no. 13 we get the underlying value of the error by using the As
function and converting it to *net.DNSError
. Then we check whether the error is due to timeout or is temporary in line nos. 14 and 18 respectively.
In our case, the error is neither temporary nor due to timeout and hence the program will print,
Generic DNS error lookup golangbot123.com: no such host
If the error was temporary or due to a timeout, then the corresponding if statement would have executed and we can handle it appropriately.
3. Direct comparison
The third way to get more details about an error is the direct comparison with a variable of type error
. Let’s understand this by means of an example.
The Glob function of the filepath
package is used to return the names of all files that matches a pattern. This function returns an error ErrBadPattern
when the pattern is malformed.
ErrBadPattern is defined in the filepath
package as a global variable.
var ErrBadPattern = errors.New("syntax error in pattern")
errors.New() is used to create a new error. We will discuss this in detail in the next tutorial.
ErrBadPattern is returned by the Glob function when the pattern is malformed.
Let’s write a small program to check for this error.
package main
import (
"errors"
"fmt"
"path/filepath"
)
func main() {
files, err := filepath.Glob("[")
if err != nil {
if errors.Is(err, filepath.ErrBadPattern) {
fmt.Println("Bad pattern error:", err)
return
}
fmt.Println("Generic error:", err)
return
}
fmt.Println("matched files", files)
}
Run in playground
In the program above we search for files of pattern [
which is a malformed pattern. We check whether the error is not nil. To get more information about the error, we directly compare it to filepath.ErrBadPattern
in line. no 11 using the Is function. Similar to As
, the Is
function works on an error chain. We will learn more about this in our next tutorial.
For the purposes of this tutorial, the Is
function can be thought of as returning true
if both the errors passed to it are the same.
The Is
returns true in line no. 12 since the error is due to a malformed pattern. This program will print,
Bad pattern error: syntax error in pattern
The standard library uses any of the above-mentioned ways to provide more information about an error. We will use these ways in the next tutorial to create our own custom errors.
Do not ignore errors
Never ever ignore an error. Ignoring errors is inviting for trouble. Let me rewrite the example which lists the name of all files that match a pattern ignoring errors.
package main
import (
"fmt"
"path/filepath"
)
func main() {
files, _ := filepath.Glob("[")
fmt.Println("matched files", files)
}
Run in playground
We already know from the previous example that the pattern is invalid. I have ignored the error returned by the Glob
function by using the _
blank identifier in line no. 9. I simply print the matched files in line no. 10. This program will print,
matched files []
Since we ignored the error, the output seems as if no files have matched the pattern but actually the pattern itself is malformed. So never ignore errors.
This brings us to the end of this tutorial.
In this tutorial, we discussed how to handle errors that occur in our program and also how to inspect the errors to get more information from them. A quick recap of what we discussed in this tutorial,
- What are errors?
- Error representation
- Various ways of extracting more information from errors
- Do not ignore errors
In the next tutorial, we will create our own custom errors and also add more context to our custom errors.
Thanks for reading. Please leave your comments and feedback.
Like my tutorials? Please support the content.
Next tutorial — Custom Errors
In this article, we’ll take a look at how to handle errors using build-in Golang functionality, how you can extract information from the errors you are receiving and the best practices to do so.
Error handling in Golang is unconventional when compared to other mainstream languages like Javascript, Java and Python. This can make it very difficult for new programmers to grasp Golangs approach of tackling error handling.
In this article, we’ll take a look at how to handle errors using build-in Golang functionality, how you can extract information from the errors you are receiving and the best practices to do so. A basic understanding of Golang is therefore required to follow this article. If you are unsure about any concepts, you can look them up here.
Errors in Golang
Errors indicate an unwanted condition occurring in your application. Let’s say you want to create a temporary directory where you can store some files for your application, but the directory’s creation fails. This is an unwanted condition and is therefore represented using an error.
package main
import (
"fmt"
"ioutil"
)
func main() {
dir, err := ioutil.TempDir("", "temp")
if err != nil {
return fmt.Errorf("failed to create temp dir: %v", err)
}
}
Golang represents errors using the built-in error type, which we will look at closer in the next section. The error is often returned as a second argument of the function, as shown in the example above. Here the TempDir function returns the name of the directory as well as an error variable.
Creating custom errors
As already mentioned errors are represented using the built-in error interface type, which has the following definition:
type error interface {
Error() string
}
The interface contains a single method Error() that returns an error message as a string. Every type that implements the error interface can be used as an error. When printing the error using methods like fmt.Println the Error() method is automatically called by Golang.
There are multiple ways of creating custom error messages in Golang, each with its own advantages and disadvantages.
String-based errors
String-based errors can be created using two out-of-the-box options in Golang and are used for simple errors that just need to return an error message.
err := errors.New("math: divided by zero")
The errors.New() method can be used to create new errors and takes the error message as its only parameter.
err2 := fmt.Errorf("math: %g cannot be divided by zero", x)
fmt.Errorf on the other hand also provides the ability to add formatting to your error message. Above you can see that a parameter can be passed which will be included in the error message.
Custom error with data
You can create your own error type by implementing the Error() function defined in the error interface on your struct. Here is an example:
type PathError struct {
Path string
}
func (e *PathError) Error() string {
return fmt.Sprintf("error in path: %v", e.Path)
}
The PathError implements the Error() function and therefore satisfies the error interface. The implementation of the Error() function now returns a string with the path of the PathError struct. You can now use PathError whenever you want to throw an error.
Here is an elementary example:
package main
import(
"fmt"
)
type PathError struct {
Path string
}
func (e *PathError) Error() string {
return fmt.Sprintf("error in path: %v", e.Path)
}
func throwError() error {
return &PathError{Path: "/test"}
}
func main() {
err := throwError()
if err != nil {
fmt.Println(err)
}
}
You can also check if the error has a specific type using either an if or switch statement:
if err != nil {
switch e := err.(type) {
case *PathError :
// Do something with the path
default:
log.Println(e)
}
}
This will allow you to extract more information from your errors because you can then call all functions that are implemented on the specific error type. For example, if the PathError had a second method called GetInfo you could call it like this.
e.GetInfo()
Error handling in functions
Now that you know how to create your own custom errors and extract as much information as possible from errors let’s take a look at how you can handle errors in functions.
Most of the time errors are not directly handled in functions but are returned as a return value instead. Here we can take advantage of the fact that Golang supports multiple return values for a function. Thus you can return your error alongside the normal result — errors are always returned as the last argument — of the function as follows:
func divide(a, b float64) (float64, error) {
if b == 0 {
return 0.0, errors.New("cannot divide through zero")
}
return a/b, nil
}
The function call will then look similar to this:
func main() {
num, err := divide(100, 0)
if err != nil {
fmt.Printf("error: %s", err.Error())
} else {
fmt.Println("Number: ", num)
}
}
If the returned error is not nil it usually means that there is a problem and you need to handle the error appropriately. This can mean that you use some kind of log message to warn the user, retry the function until it works or close the application entirely depending on the situation. The only drawback is that Golang does not enforce handling the retuned errors, which means that you could just ignore handling errors completely.
Take the following code for example:
package main
import (
"errors"
"fmt"
)
func main() {
num2, _ := divide(100, 0)
fmt.Println("Number: ", num2)
}
The so-called blank identifier is used as an anonymous placeholder and therefore provides a way to ignore values in an assignment and avoid compiler errors in the process. But remember that using the blank identifier instead of probably handling errors is dangerous and should not be done if it can be avoided.
Defer, panic and recover
Go does not have exceptions like many other programming languages, including Java and Javascript but has a comparable mechanism know as ,,Defer, panic and recover». Still the use-cases of panic and recover are very different from exceptions in other programming languages as they should only be used in unexpected and unrecoverable situations.
Defer
A defer statement is a mechanism used to defer a function by putting it into an executed stack once the function that contains the defer statement has finished, either normally by executing a return statement or abnormally panicking. Deferred functions will then be executed in reverse order in which they were deferred.
Take the following function for example:
func processHTML(url string) error {
resp, err := http.Get(url)
if err != nil {
return err
}
ct := resp.Header.Get("Content-Type")
if ct != "text/html" && !strings.HasPrefix(ct, "text/html;") {
resp.Body.Close()
return fmt.Errorf("%s has content type %s which does not match text/html", url, ct)
}
doc, err := html.Parse(resp.Body)
resp.Body.Close()
// ... Process HTML ...
return nil
}
Here you can notice the duplicated resp.Body.Close call, which ensures that the response is properly closed. Once functions grow more complex and have more errors that need to be handled such duplications get more and more problematic to maintain.
Since deferred calls get called once the function has ended, no matter if it succeeded or not it can be used to simplify such calls.
func processHTMLDefer(url string) error {
resp, err := http.Get(url)
if err != nil {
return err
}
defer resp.Body.Close()
ct := resp.Header.Get("Content-Type")
if ct != "text/html" && !strings.HasPrefix(ct, "text/html;") {
return fmt.Errorf("%s has content type %s which does not match text/html", url, ct)
}
doc, err := html.Parse(resp.Body)
// ... Process HTML ...
return nil
}
All deferred functions are executed in reverse order in which they were deferred when the function finishes.
package main
import (
"fmt"
)
func main() {
first()
}
func first() {
defer fmt.Println("first")
second()
}
func second() {
defer fmt.Println("second")
third()
}
func third() {
defer fmt.Println("third")
}
Here is the result of running the above program:
third
second
first
Panic
A panic statement signals Golang that your code cannot solve the current problem and it therefore stops the normal execution flow of your code. Once a panic is called, all deferred functions are executed and the program crashes with a log message that includes the panic values (usually an error message) and a stack trace.
As an example Golang will panic when a number is divided by zero.
package main
import "fmt"
func main() {
divide(5)
}
func divide(x int) {
fmt.Printf("divide(%d) n", x+0/x)
divide(x-1)
}
Once the divide function is called using zero, the program will panic, resulting in the following output.
panic: runtime error: integer divide by zero
goroutine 1 [running]:
main.divide(0x0)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:16 +0xe6
main.divide(0x1)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x2)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x3)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x4)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.divide(0x5)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:17 +0xd6
main.main()
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:11 +0x31
exit status 2
You can also use the built-in panic function to panic in your own programms. A panic should mostly only be used when something happens that the program didn’t expect and cannot handle.
func getArguments() {
if len(os.Args) == 1 {
panic("Not enough arguments!")
}
}
As already mentioned, deferred functions will be executed before terminating the application, as shown in the following example.
package main
import (
"fmt"
)
func main() {
accessSlice([]int{1,2,5,6,7,8}, 0)
}
func accessSlice(slice []int, index int) {
fmt.Printf("item %d, value %d n", index, slice[index])
defer fmt.Printf("defer %d n", index)
accessSlice(slice, index+1)
}
Here is the output of the programm:
item 0, value 1
item 1, value 2
item 2, value 5
item 3, value 6
item 4, value 7
item 5, value 8
defer 5
defer 4
defer 3
defer 2
defer 1
defer 0
panic: runtime error: index out of range [6] with length 6
goroutine 1 [running]:
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x6)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:29 +0x250
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x5)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x4)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x3)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x2)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x1)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.accessSlice(0xc00011df48, 0x6, 0x6, 0x0)
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:31 +0x1eb
main.main()
C:/Users/gabriel/articles/Golang Error handling/Code/panic/main.go:9 +0x99
exit status 2
Recover
In some rare cases panics should not terminate the application but be recovered instead. For example, a socket server that encounters an unexpected problem could report the error to the clients and then close all connections rather than leaving the clients wondering what just happened.
Panics can therefore be recovered by calling the built-in recover function within a deferred function in the function that is panicking. Recover will then end the current state of panic and return the panic error value.
package main
import "fmt"
func main(){
accessSlice([]int{1,2,5,6,7,8}, 0)
}
func accessSlice(slice []int, index int) {
defer func() {
if p := recover(); p != nil {
fmt.Printf("internal error: %v", p)
}
}()
fmt.Printf("item %d, value %d n", index, slice[index])
defer fmt.Printf("defer %d n", index)
accessSlice(slice, index+1)
}
As you can see after adding a recover function to the function we coded above the program doesn’t exit anymore when the index is out of bounds by recovers instead.
Output:
item 0, value 1
item 1, value 2
item 2, value 5
item 3, value 6
item 4, value 7
item 5, value 8
internal error: runtime error: index out of range [6] with length 6defer 5
defer 4
defer 3
defer 2
defer 1
defer 0
Recovering from panics can be useful in some cases, but as a general rule you should try to avoid recovering from panics.
Error wrapping
Golang also allows errors to wrap other errors which provides the functionality to provide additional context to your error messages. This is often used to provide specific information like where the error originated in your program.
You can create wrapped errors by using the %w flag with the fmt.Errorf function as shown in the following example.
package main
import (
"errors"
"fmt"
"os"
)
func main() {
err := openFile("non-existing")
if err != nil {
fmt.Printf("error running program: %s n", err.Error())
}
}
func openFile(filename string) error {
if _, err := os.Open(filename); err != nil {
return fmt.Errorf("error opening %s: %w", filename, err)
}
return nil
}
The output of the application would now look like the following:
error running program: error opening non-existing: open non-existing: no such file or directory
As you can see the application prints both the new error created using fmt.Errorf as well as the old error message that was passed to the %w flag. Golang also provides the functionality to get the old error message back by unwrapping the error using errors.Unwrap.
package main
import (
"errors"
"fmt"
"os"
)
func main() {
err := openFile("non-existing")
if err != nil {
fmt.Printf("error running program: %s n", err.Error())
// Unwrap error
unwrappedErr := errors.Unwrap(err)
fmt.Printf("unwrapped error: %v n", unwrappedErr)
}
}
func openFile(filename string) error {
if _, err := os.Open(filename); err != nil {
return fmt.Errorf("error opening %s: %w", filename, err)
}
return nil
}
As you can see the output now also displays the original error.
error running program: error opening non-existing: open non-existing: no such file or directory
unwrapped error: open non-existing: no such file or directory
Errors can be wrapped and unwrapped multiple times, but in most cases wrapping them more than a few times does not make sense.
Casting Errors
Sometimes you will need a way to cast between different error types to for example, access unique information that only that type has. The errors.As function provides an easy and safe way to do so by looking for the first error in the error chain that fits the requirements of the error type. If no match is found the function returns false.
Let’s look at the official errors.As docs example to better understand what is happening.
package main
import (
"errors"
"fmt"
"io/fs"
"os"
)
func main(){
// Casting error
if _, err := os.Open("non-existing"); err != nil {
var pathError *os.PathError
if errors.As(err, &pathError) {
fmt.Println("Failed at path:", pathError.Path)
} else {
fmt.Println(err)
}
}
}
Here we try to cast our generic error type to os.PathError so we can access the Path variable that that specific error contains.
Another useful functionality is checking if an error has a specific type. Golang provides the errors.Is function to do exactly that. Here you provide your error as well as the particular error type you want to check. If the error matches the specific type the function will return true, if not it will return false.
package main
import (
"errors"
"fmt"
"io/fs"
"os"
)
func main(){
// Check if error is a specific type
if _, err := os.Open("non-existing"); err != nil {
if errors.Is(err, fs.ErrNotExist) {
fmt.Println("file does not exist")
} else {
fmt.Println(err)
}
}
}
After checking, you can adapt your error message accordingly.
Sources
- Golang Blog — Working with Errors in Go 1.13
- The Go Programming language book
- Golang Blog — Defer, Panic, and Recover
- LogRocket — Error handling in Golang
- GolangByExample — Wrapping and Un-wrapping of error in Go
- Golang Documentation — Package errors
Conclusion
You made it all the way until the end! I hope this article helped you understand the basics of Go error handling and why it is an essential topic in application/software development.
If you have found this helpful, please consider recommending and sharing it with other fellow developers and subscribing to my newsletter. If you have any questions or feedback, let me know using my contact form or contact me on Twitter.
Recently, I was working on a project which required to handle custom errors in golang. unlike other language, golang does explicit error checking.
An error is just a value that a function can return if something unexpected happened.
In golang, errors are values which return errors as normal return value then we handle errors like if err != nil compare to other conventional try/catch method in another language.
Error in Golang
type error interface {
Error() string
}
Enter fullscreen mode
Exit fullscreen mode
In Go, The error built-in interface type is the conventional interface for representing an error condition, with the nil value representing no error.
It has single Error() method which returns the error message as a string. By implementing this method, we can transform any type we define into an error of our own.
package main
import (
"io/ioutil"
"log"
)
func getFileContent(filename string) ([]byte, error) {
content, err := ioutil.ReadFile(filename)
if err != nil {
return nil, err
}
return content, nil
}
func main() {
content, err := getFileContent("filename.txt")
if err != nil {
log.SetFlags(0)
log.Fatal(err)
}
log.Println(string(content))
}
Enter fullscreen mode
Exit fullscreen mode
An idiomatic way to handle errors in Go is to return it as the last return value of the function and check for the nil condition.
Creating errors in go
error is an interface type
Golang provides two ways to create errors in standard library using errors.New and fmt.ErrorF.
errors.New
errors.New("new error")
Enter fullscreen mode
Exit fullscreen mode
Go provides the built-in errors package which exports the New function. This function expects an error text message and returns an error.
The returned error can be treated as a string by either accessing err.Error(), or using any of the fmt package functions. Error() method is automatically called by Golang when printing the error using methods like fmt.Println.
var (
ErrNotFound1 = errors.New("not found")
ErrNotFound2 = errors.New("not found")
)
func main() {
fmt.Printf("is identical? : %t", ErrNotFound1 == ErrNotFound2)
}
// Output:
// is identical? : false
Enter fullscreen mode
Exit fullscreen mode
Each call to New, returns a distinct error value even if the text is identical.
func New(text string) error {
return &errorString{text}
}
type errorString struct {
s string
}
func (e *errorString) Error() string {
return e.s
}
Enter fullscreen mode
Exit fullscreen mode
Internally, errors.New creates and returns a pointer to errors.errorString struct invoked with the string passed which implements the error interface.
fmt.ErrorF
number := 100
zero := 0
fmt.Errorf("math: %d cannot be divided by %d", number, zero)
Enter fullscreen mode
Exit fullscreen mode
fmt.Errorf provides ability to format your error message using format specifier and returns the string as a
value that satisfies error interface.
Custom errors with data in go
As mentioned above, error is an interface type.
Hence, you can create your own error type by implementing the Error() function defined in the error interface on your struct.
So, let’s create our first custom error by implementing error interface.
package main
import (
"fmt"
"os"
)
type MyError struct {
Code int
Msg string
}
func (m *MyError) Error() string {
return fmt.Sprintf("%s: %d", m.Msg, m.Code)
}
func sayHello(name string) (string, error) {
if name == "" {
return "", &MyError{Code: 2002, Msg: "no name passed"}
}
return fmt.Sprintf("Hello, %s", name), nil
}
func main() {
s, err := sayHello("")
if err != nil {
log.SetFlags(0)
log.Fatal("unexpected error is ", err)
}
fmt.Println(s)
}
Enter fullscreen mode
Exit fullscreen mode
You’ll see the following output:
unexpected error is no name passed: 2002
exit status 1
Enter fullscreen mode
Exit fullscreen mode
In above example, you are creating a custom error using a struct type MyError by implementing Error() function of error interface.
Error wrapping
Golang also allows errors to wrap other errors which is useful when you want to provide additional context to your error messages like providing specific information or more details about the error location in your code.
You can create wrapped errors either with fmt.Errorf or by implementing a custom type. A simple way to create wrapped errors is to call fmt.Errorf with our error which we want to wrap using the %w verb
package main
import (
"fmt"
"io/ioutil"
"log"
)
func getFileContent(filename string) ([]byte, error) {
content, err := ioutil.ReadFile(filename)
if err != nil {
return nil, fmt.Errorf("error reading file %s: %w", filename, err)
}
return content, nil
}
func main() {
content, err := getFileContent("filename.txt")
if err != nil {
log.SetFlags(0)
log.Fatal(err)
}
log.Println(string(content))
}
Enter fullscreen mode
Exit fullscreen mode
You’ll see the following output:
error reading file filename.txt: open filename.txt: no such file or directory
exit status 1
Enter fullscreen mode
Exit fullscreen mode
Examining errors with Is and As
errors.Is
Unwrap, Is and As functions work on errors that may wrap other errors. An error wraps another error if its type has the method Unwrap() which returns a non-nil error.
errors.Is unwraps its first argument sequentially looking for an error that matches the second and returns boolean true if it finds one.
simple equality checks:
if errors.Is(err, ErrNoNamePassed)
Enter fullscreen mode
Exit fullscreen mode
is preferable to
if err == ErrNoNamePassed
Enter fullscreen mode
Exit fullscreen mode
because the former will succeed if err wraps ErrNoNamePassed.
package main
import (
"errors"
"fmt"
"log"
)
type MyError struct {
Code int
Msg string
}
func (m *MyError) Error() string {
return fmt.Sprintf("%s: %d", m.Msg, m.Code)
}
func main() {
e1 := &MyError{Code: 501, Msg: "new error"}
// wrapping e1 with e2
e2 := fmt.Errorf("E2: %w", e1)
// wrapping e2 with e3
e3 := fmt.Errorf("E3: %w", e2)
fmt.Println(e1) // prints "new error: 501"
fmt.Println(e2) // prints "E2: new error: 501"
fmt.Println(e3) // prints "E3: E2: new error: 501"
fmt.Println(errors.Unwrap(e1)) // prints <nil>
fmt.Println(errors.Unwrap(e2)) // prints "new error: 501"
fmt.Println(errors.Unwrap(e3)) // prints E2: new error: 501
// errors.Is function compares an error to a value.
if errors.Is(e3, e1) {
log.SetFlags(0)
log.Fatal(e3)
}
}
Enter fullscreen mode
Exit fullscreen mode
We’ll see the following output:
new error: 501
E2: new error: 501
E3: E2: new error: 501
<nil>
new error: 501
E2: new error: 501
E3: E2: new error: 501
exit status 1
Enter fullscreen mode
Exit fullscreen mode
errors.As
errors.As unwraps its first argument sequentially looking for an error that can be assigned to its second argument, which must be a pointer. If it succeeds, it performs the assignment and returns true. Otherwise, it returns false.
var e *MyError
if errors.As(err, &e) {
fmt.Println(e.code)
}
Enter fullscreen mode
Exit fullscreen mode
is preferable to
if e, ok := err.(*MyError); ok {
fmt.Println(e)
}
Enter fullscreen mode
Exit fullscreen mode
because the former will succeed if err wraps an *MyError
package main
import (
"errors"
"fmt"
"log"
)
type MyError struct {
Code int
Msg string
}
func (m *MyError) Error() string {
return fmt.Sprintf("%s: %d", m.Msg, m.Code)
}
func main() {
e1 := &MyError{Code: 501, Msg: "new error"}
e2 := fmt.Errorf("E2: %w", e1)
// errors.As function tests whether an error is a specific type.
var e *MyError
if errors.As(e2, &e) {
log.SetFlags(0)
log.Fatal(e2)
}
}
Enter fullscreen mode
Exit fullscreen mode
We’ll see the following output:
E2: new error: 501
exit status 1
Enter fullscreen mode
Exit fullscreen mode
Reference
- Standard library error package https://golang.org/pkg/errors/
- The Go Blog — Working with Errors in Go 1.13
- Error handling in Golang
Conclusion
I hope this article will help you to understand the basics of error handling in Go.
If you have found this useful, please consider recommending and sharing it with other fellow developers and if you have any questions or suggestions, feel free to add a comment or contact me on twitter.
Error handling in Go is a little different than other mainstream programming languages like Java, JavaScript, or Python. Go’s built-in errors don’t contain stack traces, nor do they support conventional try
/catch
methods to handle them. Instead, errors in Go are just values returned by functions, and they can be treated in much the same way as any other datatype — leading to a surprisingly lightweight and simple design.
In this article, I’ll demonstrate the basics of handling errors in Go, as well as some simple strategies you can follow in your code to ensure your program is robust and easy to debug.
The Error Type
The error type in Go is implemented as the following interface:
type error interface {
Error() string
}
So basically, an error is anything that implements the Error()
method, which returns an error message as a string. It’s that simple!
Constructing Errors
Errors can be constructed on the fly using Go’s built-in errors
or fmt
packages. For example, the following function uses the errors
package to return a new error with a static error message:
package main
import "errors"
func DoSomething() error {
return errors.New("something didn't work")
}
Similarly, the fmt
package can be used to add dynamic data to the error, such as an int
, string
, or another error
. For example:
package main
import "fmt"
func Divide(a, b int) (int, error) {
if b == 0 {
return 0, fmt.Errorf("can't divide '%d' by zero", a)
}
return a / b, nil
}
Note that fmt.Errorf
will prove extremely useful when used to wrap another error with the %w
format verb — but I’ll get into more detail on that further down in the article.
There are a few other important things to note in the example above.
-
Errors can be returned as
nil
, and in fact, it’s the default, or “zero”, value of on error in Go. This is important since checkingif err != nil
is the idiomatic way to determine if an error was encountered (replacing thetry
/catch
statements you may be familiar with in other programming languages). -
Errors are typically returned as the last argument in a function. Hence in our example above, we return an
int
and anerror
, in that order. -
When we do return an error, the other arguments returned by the function are typically returned as their default “zero” value. A user of a function may expect that if a non-nil error is returned, then the other arguments returned are not relevant.
-
Lastly, error messages are usually written in lower-case and don’t end in punctuation. Exceptions can be made though, for example when including a proper noun, a function name that begins with a capital letter, etc.
Defining Expected Errors
Another important technique in Go is defining expected Errors so they can be checked for explicitly in other parts of the code. This becomes useful when you need to execute a different branch of code if a certain kind of error is encountered.
Defining Sentinel Errors
Building on the Divide
function from earlier, we can improve the error signaling by pre-defining a “Sentinel” error. Calling functions can explicitly check for this error using errors.Is
:
package main
import (
"errors"
"fmt"
)
var ErrDivideByZero = errors.New("divide by zero")
func Divide(a, b int) (int, error) {
if b == 0 {
return 0, ErrDivideByZero
}
return a / b, nil
}
func main() {
a, b := 10, 0
result, err := Divide(a, b)
if err != nil {
switch {
case errors.Is(err, ErrDivideByZero):
fmt.Println("divide by zero error")
default:
fmt.Printf("unexpected division error: %sn", err)
}
return
}
fmt.Printf("%d / %d = %dn", a, b, result)
}
Defining Custom Error Types
Many error-handling use cases can be covered using the strategy above, however, there can be times when you might want a little more functionality. Perhaps you want an error to carry additional data fields, or maybe the error’s message should populate itself with dynamic values when it’s printed.
You can do that in Go by implementing custom errors type.
Below is a slight rework of the previous example. Notice the new type DivisionError
, which implements the Error
interface
. We can make use of errors.As
to check and convert from a standard error to our more specific DivisionError
.
package main
import (
"errors"
"fmt"
)
type DivisionError struct {
IntA int
IntB int
Msg string
}
func (e *DivisionError) Error() string {
return e.Msg
}
func Divide(a, b int) (int, error) {
if b == 0 {
return 0, &DivisionError{
Msg: fmt.Sprintf("cannot divide '%d' by zero", a),
IntA: a, IntB: b,
}
}
return a / b, nil
}
func main() {
a, b := 10, 0
result, err := Divide(a, b)
if err != nil {
var divErr *DivisionError
switch {
case errors.As(err, &divErr):
fmt.Printf("%d / %d is not mathematically valid: %sn",
divErr.IntA, divErr.IntB, divErr.Error())
default:
fmt.Printf("unexpected division error: %sn", err)
}
return
}
fmt.Printf("%d / %d = %dn", a, b, result)
}
Note: when necessary, you can also customize the behavior of the errors.Is
and errors.As
. See this Go.dev blog for an example.
Another note: errors.Is
was added in Go 1.13 and is preferable over checking err == ...
. More on that below.
Wrapping Errors
In these examples so far, the errors have been created, returned, and handled with a single function call. In other words, the stack of functions involved in “bubbling” up the error is only a single level deep.
Often in real-world programs, there can be many more functions involved — from the function where the error is produced, to where it is eventually handled, and any number of additional functions in-between.
In Go 1.13, several new error APIs were introduced, including errors.Wrap
and errors.Unwrap
, which are useful in applying additional context to an error as it “bubbles up”, as well as checking for particular error types, regardless of how many times the error has been wrapped.
A bit of history: Before Go 1.13 was released in 2019, the standard library didn’t contain many APIs for working with errors — it was basically just
errors.New
andfmt.Errorf
. As such, you may encounter legacy Go programs in the wild that do not implement some of the newer error APIs. Many legacy programs also used 3rd-party error libraries such aspkg/errors
. Eventually, a formal proposal was documented in 2018, which suggested many of the features we see today in Go 1.13+.
The Old Way (Before Go 1.13)
It’s easy to see just how useful the new error APIs are in Go 1.13+ by looking at some examples where the old API was limiting.
Let’s consider a simple program that manages a database of users. In this program, we’ll have a few functions involved in the lifecycle of a database error.
For simplicity’s sake, let’s replace what would be a real database with an entirely “fake” database that we import from "example.com/fake/users/db"
.
Let’s also assume that this fake database already contains some functions for finding and updating user records. And that the user records are defined to be a struct that looks something like:
package db
type User struct {
ID string
Username string
Age int
}
func FindUser(username string) (*User, error) { /* ... */ }
func SetUserAge(user *User, age int) error { /* ... */ }
Here’s our example program:
package main
import (
"errors"
"fmt"
"example.com/fake/users/db"
)
func FindUser(username string) (*db.User, error) {
return db.Find(username)
}
func SetUserAge(u *db.User, age int) error {
return db.SetAge(u, age)
}
func FindAndSetUserAge(username string, age int) error {
var user *User
var err error
user, err = FindUser(username)
if err != nil {
return err
}
if err = SetUserAge(user, age); err != nil {
return err
}
return nil
}
func main() {
if err := FindAndSetUserAge("bob@example.com", 21); err != nil {
fmt.Println("failed finding or updating user: %s", err)
return
}
fmt.Println("successfully updated user's age")
}
Now, what happens if one of our database operations fails with some malformed request
error?
The error check in the main
function should catch that and print something like this:
failed finding or updating user: malformed request
But which of the two database operations produced the error? Unfortunately, we don’t have enough information in our error log to know if it came from FindUser
or SetUserAge
.
Go 1.13 adds a simple way to add that information.
Errors Are Better Wrapped
The snippet below is refactored so that is uses fmt.Errorf
with a %w
verb to “wrap” errors as they “bubble up” through the other function calls. This adds the context needed so that it’s possible to deduce which of those database operations failed in the previous example.
package main
import (
"errors"
"fmt"
"example.com/fake/users/db"
)
func FindUser(username string) (*db.User, error) {
u, err := db.Find(username)
if err != nil {
return nil, fmt.Errorf("FindUser: failed executing db query: %w", err)
}
return u, nil
}
func SetUserAge(u *db.User, age int) error {
if err := db.SetAge(u, age); err != nil {
return fmt.Errorf("SetUserAge: failed executing db update: %w", err)
}
}
func FindAndSetUserAge(username string, age int) error {
var user *User
var err error
user, err = FindUser(username)
if err != nil {
return fmt.Errorf("FindAndSetUserAge: %w", err)
}
if err = SetUserAge(user, age); err != nil {
return fmt.Errorf("FindAndSetUserAge: %w", err)
}
return nil
}
func main() {
if err := FindAndSetUserAge("bob@example.com", 21); err != nil {
fmt.Println("failed finding or updating user: %s", err)
return
}
fmt.Println("successfully updated user's age")
}
If we re-run the program and encounter the same error, the log should print the following:
failed finding or updating user: FindAndSetUserAge: SetUserAge: failed executing db update: malformed request
Now our message contains enough information that we can see the problem originated in the db.SetUserAge
function. Phew! That definitely saved us some time debugging!
If used correctly, error wrapping can provide additional context about the lineage of an error, in ways similar to a traditional stack-trace.
Wrapping also preserves the original error, which means errors.Is
and errors.As
continue to work, regardless of how many times an error has been wrapped. We can also call errors.Unwrap
to return the previous error in the chain.
When To Wrap
Generally, it’s a good idea to wrap an error with at least the function’s name, every time you “bubble it up” — i.e. every time you receive the error from a function and want to continue returning it back up the function chain.
There are some exceptions to the rule, however, where wrapping an error may not be appropriate.
Since wrapping the error always preserves the original error messages, sometimes exposing those underlying issues might be a security, privacy, or even UX concern. In such situations, it could be worth handling the error and returning a new one, rather than wrapping it. This could be the case if you’re writing an open-source library or a REST API where you don’t want the underlying error message to be returned to the 3rd-party user.
While you’re here:
Earthly is the effortless CI/CD framework.
Develop CI/CD pipelines locally and run them anywhere!
Conclusion
That’s a wrap! In summary, here’s the gist of what was covered here:
- Errors in Go are just lightweight pieces of data that implement the
Error
interface
- Predefined errors will improve signaling, allowing us to check which error occurred
- Wrap errors to add enough context to trace through function calls (similar to a stack trace)
I hope you found this guide to effective error handling useful. If you’d like to learn more, I’ve attached some related articles I found interesting during my own journey to robust error handling in Go.
References
- Error handling and Go
- Go 1.13 Errors
- Go Error Doc
- Go By Example: Errors
- Go By Example: Panic
Get notified about new articles!
We won’t send you spam. Unsubscribe at any time.
Errors are a language-agnostic part that helps to write code in such a way that no unexpected thing happens. When something occurs which is not supported by any means then an error occurs. Errors help to write clean code that increases the maintainability of the program.
What is an error?
An error is a well developed abstract concept which occurs when an exception happens. That is whenever something unexpected happens an error is thrown. Errors are common in every language which basically means it is a concept in the realm of programming.
Why do we need Error?
Errors are a part of any program. An error tells if something unexpected happens. Errors also help maintain code stability and maintainability. Without errors, the programs we use today will be extremely buggy due to a lack of testing.
Golang has support for errors in a really simple way. Go functions returns errors as a second return value. That is the standard way of implementing and using errors in Go. That means the error can be checked immediately before proceeding to the next steps.
Simple Error Methods
There are multiple methods for creating errors. Here we will discuss the simple ones that can be created without much effort.
1. Using the New function
Golang errors package has a function called New() which can be used to create errors easily. Below it is in action.
package main import ( "fmt" "errors" ) func e(v int) (int, error) { if v == 0 { return 0, errors.New("Zero cannot be used") } else { return 2*v, nil } } func main() { v, err := e(0) if err != nil { fmt.Println(err, v) // Zero cannot be used 0 } }
2. Using the Errorf function
The fmt package has an Errorf() method that allows formatted errors as shown below.
fmt.Errorf("Error: Zero not allowed! %v", v) // Error: Zero not allowed! 0
Checking for an Error
To check for an error we simply get the second value of the function and then check the value with the nil. Since the zero value of an error is nil. So, we check if an error is a nil. If it is then no error has occurred and all other cases the error has occurred.
package main import ( "fmt" "errors" ) func e(v int) (int, error) { return 42, errors.New("42 is unexpected!") } func main() { _, err := e(0) if err != nil { // check error here fmt.Println(err) // 42 is unexpected! } }
Panic and recover
Panic occurs when an unexpected wrong thing happens. It stops the function execution. Recover is the opposite of it. It allows us to recover the execution from stopping. Below shown code illustrates the concept.
package main import ( "fmt" ) func f(s string) { panic(s) // throws panic } func main() { // defer makes the function run at the end defer func() { // recovers panic if e := recover(); e != nil { fmt.Println("Recovered from panic") } }() f("Panic occurs!!!") // throws panic // output: // Recovered from panic }
Creating custom errors
As we have seen earlier the function errors.New() and fmt.Errorf() both can be used to create new errors. But there is another way we can do that. And that is implementing the error interface.
type CustomError struct { data string } func (e *CustomError) Error() string { return fmt.Sprintf("Error occured due to... %s", e.data) }
Returning error alongside values
Returning errors are pretty easy in Go. Go supports multiple return values. So we can return any value and error both at the same time and then check the error. Here is a way to do that.
import ( "fmt" "errors" ) func returnError() (int, error) { // declare return type here return 42, errors.New("Error occured!") // return it here } func main() { v, e := returnError() if e != nil { fmt.Println(e, v) // Error occured! 42 } }
Ignoring errors in Golang
Go has the skip (-) operator which allows skipping returned errors at all. Simply using the skip operator helps here.
package main import ( "fmt" "errors" ) func returnError() (int, error) { // declare return type here return 42, errors.New("Error occured!") // return it here } func main() { v, _ := returnError() // skip error with skip operator fmt.Println(v) // 42 }