Интенсивность битовых ошибок

Работа по теме: Моделирование канала (рабочий вариант). Глава: Интенсивность битовых ошибок. ВУЗ: СибГУТИ.
      1. Интенсивность битовых ошибок

Достоверность передачи данных
характеризует вероятность искажения
каждого передаваемого бита данных
(вероятность ошибки на бит). Эту величину
называют также интенсивностью битовых
ошибок
(BER
Bit
Error
Rate).
Величина BER
для линий связи без дополнительных
средств защиты от ошибок составляет,
как правило, 10-4-10-6,
в оптоволоконных линиях связи – 10-9.
Величина 10-4
означает, что в среднем один из 10000 бит
будет передан с искажением.

Статистическое значение вероятности
ошибки на бит (BER)
определяется как отношение количества
искаженных при передаче бит к общему
числу переданных бит.

      1. Скорость передачи сигнала

Бод (baud) – единица
измерения символьной скорости,
количество изменений информационного
параметра несущего периодического
сигнала (число дискретных переходов
или событий) в секунду. Один бод равен
одному передаваемому элементарному
импульсу в секунду. Элементарные импульсы
(символы) и их характер в современной
сети передачи данных связаны с изменением
состояния сигнала (временным интервалом
его модуляции), способом кодирования
данных (5-, 6-,…16- битные коды), объектом
кодирования (буквенно-цифровой символ,
пиксель, слово и т. д.) и другими условиями,
не поддающимися однозначной численной
оценке.

Если каждое событие представляет собой
один бит, то бод эквивалентен бит/с. В
реальных системах один символ может
содержать до 16 бит информации. Например,
при символьной скорости 2400 бод скорость
передачи может составлять 9600 бит/c
благодаря тому, что в каждом временном
интервале передаётся 4 бита.

    1. Модель канала

Математическая модель цифрового канала
передачи данных описывается формулой
1.4:


(t), (1.4)

где ReceivedSignal(t)
– сигнал на приемной стороне,
TransmitedSignal(t)
передаваемый сигнал, A
– затухание, N(t)
– величина помехи в каждый момент
времени t.

Под помехой понимается любое случайное
воздействие на сигнал, которое ухудшает
вероятность воспроизведения передаваемых
сообщений. В зависимости от характера
воздействия на сигнал различают
аддитивные и мультипликативные помехи.
Аддитивная помеха проявляет себя
независимо от сигнала. Действия сигнала
и аддитивной помехи складываются.
Мультипликативная помеха возникает
только при наличии сигнала. Её действие
проявляется в нерегулярном изменении
уровня сигнала.

Среди аддитивных помех различного
происхождения выделяют сосредоточенные
по спектру (узкополосные) помехи,
сосредоточенные во времени (импульсные)
помехи и флуктуационную помеху, не
ограниченную во времени и спектру.
Флуктуационная помеха представляет
собой случайный процесс с нормальным
распределением (гауссовский процесс).
Мультипликативные помехи обусловлены
случайными изменениями параметров
канала связи. В частности, эти помехи
проявляются в изменении уровня сигнала.

      1. Белый гауссовский шум

Помеха в канале передачи данных хорошо
описывается математической моделью,
называемой белый гауссовский шум.
Предполагаем, что шум складывается из
двух составляющих: шум сигнала и шум
фона (формула 1.5). Шум сигнала возникает
при прохождении сигнала в канале, а
фоновый шум присутствует всегда.


, (1.5)

Гауссовский шум в каждый момент времени,
представляет собой случайную величину,
которая описывается нормальным законом
распределения с нулевым математическим
ожиданием и дисперсией, зависящей от
амплитуды сигнала:


, (1.6)

где

среднее квадратическое отклонение
нормального распределения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

В цифровой передаче, количество битовых ошибок является количеством принятых бит одного потока данных над каналом связи, которые были изменены из — за шум, помехи, искажений или битой синхронизацию ошибок.

Коэффициент битовых ошибок ( BER ) — это количество битовых ошибок в единицу времени. Коэффициент битовых ошибок (также BER ) — это количество битовых ошибок, деленное на общее количество переданных битов за исследуемый интервал времени. Коэффициент битовых ошибок — это безразмерная мера производительности, часто выражаемая в процентах .

Бита вероятность ошибка р е является ожидаемым значением коэффициента ошибок по битам. Коэффициент битовых ошибок можно рассматривать как приблизительную оценку вероятности битовых ошибок. Эта оценка точна для длительного интервала времени и большого количества битовых ошибок.

Пример

В качестве примера предположим, что эта переданная битовая последовательность:

0 1 1 0 0 0 1 0 1 1

и следующая полученная битовая последовательность:

0 0 1 0 1 0 1 0 0 1,

Количество битовых ошибок (подчеркнутые биты) в этом случае равно 3. BER — это 3 неверных бита, разделенных на 10 переданных битов, в результате чего BER составляет 0,3 или 30%.

Коэффициент ошибок пакета

Коэффициент ошибок пакетов (PER) — это количество неправильно принятых пакетов данных, деленное на общее количество принятых пакетов. Пакет объявляется некорректным, если хотя бы один бит ошибочен. Ожидаемое значение PER обозначается вероятностью ошибки пакета p p, которая для длины пакета данных N бит может быть выражена как

{ displaystyle p_ {p} = 1- (1-p_ {e}) ^ {N} = 1-e ^ {N  ln (1-p_ {e})}},

предполагая, что битовые ошибки не зависят друг от друга. Для малых вероятностей битовых ошибок и больших пакетов данных это примерно

p_ {p}  приблизительно p_ {e} N.

Подобные измерения могут быть выполнены для передачи кадров, блоков или символов .

Факторы, влияющие на BER

В системе связи на BER на стороне приемника могут влиять шум канала передачи, помехи, искажения, проблемы битовой синхронизации, затухание, замирания из-за многолучевого распространения беспроводной связи и т. Д.

BER может быть улучшен путем выбора сильного уровня сигнала (если это не вызывает перекрестных помех и большего количества битовых ошибок), путем выбора медленной и надежной схемы модуляции или схемы линейного кодирования, а также путем применения схем канального кодирования, таких как избыточные коды прямого исправления ошибок. .

КОБ передачи является количество обнаруженных битов, которые являются неправильными до коррекции ошибок, разделенных на общее количество переданных битов ( в том числе избыточных кодов ошибок). Информация КОБ, примерно равна вероятности ошибки декодирования, это число декодированных битов, которые остаются неправильно после коррекции ошибок, деленное на общее число декодированных битов (полезная информация). Обычно BER передачи больше, чем BER информации. На информационный BER влияет сила кода прямого исправления ошибок.

Анализ BER

BER можно оценить с помощью стохастического ( Монте-Карло ) компьютерного моделирования. Если предполагается простая модель канала передачи и модель источника данных, BER также может быть вычислен аналитически. Примером такой модели источника данных является источник Бернулли .

Примеры простых моделей каналов, используемых в теории информации :

  • Двоичный симметричный канал (используется при анализе вероятности ошибки декодирования в случае непакетных битовых ошибок в канале передачи)
  • Канал аддитивного белого гауссова шума (AWGN) без замирания.

Наихудший сценарий — это полностью случайный канал, в котором шум полностью преобладает над полезным сигналом. Это приводит к BER передачи 50% (при условии, что предполагается источник двоичных данных Бернулли и двоичный симметричный канал, см. Ниже).

В канале с шумом BER часто выражается как функция нормированного показателя отношения несущей к шуму, обозначаемого Eb / N0 (отношение энергии на бит к спектральной плотности мощности шума) или Es / N0 (энергия на символ модуляции для спектральная плотность шума).

Например, в случае QPSK модуляции и канал АБГШ, КОБ в зависимости от Eb / N0 определяется по формуле:
.
 operatorname {BER} = { frac {1} {2}}  operatorname {erfc} ({ sqrt {E_ {b} / N_ {0}}})

Люди обычно строят кривые BER для описания производительности цифровой системы связи. В оптической связи обычно используется зависимость BER (дБ) от принимаемой мощности (дБм); в то время как в беспроводной связи используется BER (дБ) по сравнению с SNR (дБ).

Измерение коэффициента ошибок по битам помогает людям выбрать подходящие коды прямого исправления ошибок. Поскольку большинство таких кодов исправляют только перевороты битов, но не вставки или удаления битов, метрика расстояния Хэмминга является подходящим способом измерения количества битовых ошибок. Многие кодеры FEC также непрерывно измеряют текущий BER.

Более общий способ измерения количества битовых ошибок — это расстояние Левенштейна . Измерение расстояния Левенштейна больше подходит для измерения характеристик сырого канала перед кадровой синхронизацией, а также при использовании кодов коррекции ошибок, предназначенных для исправления вставки и удаления битов, таких как коды маркеров и коды водяных знаков.

Математический проект

BER — это вероятность неправильной интерпретации из-за электрического шума . Рассматривая биполярную передачу NRZ, мы имеем
ш (т)

х_ {1} (t) = A + w (t)для «1» и для «0». Каждый из и имеет период .
х_ {0} (t) = - A + w (t)x_ {1} (т)x_0 (т)Т

Зная, что шум имеет двустороннюю спектральную плотность ,
{ frac {N_ {0}} {2}}

x_ {1} (т) является { mathcal {N}}  left (A, { frac {N_ {0}} {2T}}  right)

и есть .
x_0 (т){ mathcal {N}}  left (-A, { frac {N_ {0}} {2T}}  right)

Возвращаясь к BER, у нас есть вероятность неправильного толкования .
p_ {e} = p (0 | 1) p_ {1} + p (1 | 0) p_ {0}

p (1 | 0) = 0,5 ,  operatorname {erfc}  left ({ frac {A +  lambda} {{ sqrt {N_ {o} / T}}}}  right) и p (0 | 1) = 0,5 ,  operatorname {erfc}  left ({ frac {A-  lambda} {{ sqrt {N_ {o} / T}}}}  right)

где — порог принятия решения, установленный в 0, когда .
 lambda p_ {1} = p_ {0} = 0,5

Мы можем использовать среднюю энергию сигнала, чтобы найти окончательное выражение:
E = A ^ {2} T

p_ {e} = 0,5 ,  operatorname {erfc}  left ({ sqrt {{ frac {E} {N_ {o}}}}}  right).
± §

Проверка коэффициента битовых ошибок

BERT или тест на частоту ошибок по битам — это метод тестирования схем цифровой связи, в котором используются заранее определенные шаблоны нагрузки, состоящие из последовательности логических единиц и нулей, сгенерированных генератором тестовых шаблонов.

BERT обычно состоит из генератора тестовых шаблонов и приемника, который может быть настроен на один и тот же шаблон. Их можно использовать парами, по одному на любом конце линии передачи, или по отдельности на одном конце с кольцевой проверкой на удаленном конце. BERT обычно представляют собой автономные специализированные инструменты, но могут быть основаны на персональном компьютере . При использовании количество ошибок, если таковые имеются, подсчитывается и представляется в виде отношения, например 1 на 1 000 000 или 1 на 1e06.

Распространенные типы стресс-паттернов BERT

  • PRBS ( псевдослучайная двоичная последовательность ) — псевдослучайный двоичный секвенсор из N бит. Эти последовательности шаблонов используются для измерения джиттера и глаз-маски TX-данных в электрических и оптических каналах передачи данных.
  • QRSS (квазислучайный источник сигнала) — псевдослучайный двоичный секвенсор, который генерирует каждую комбинацию 20-битного слова, повторяет каждые 1048 575 слов и подавляет последовательные нули не более чем до 14. Он содержит последовательности с высокой плотностью, последовательности с низкой плотностью, и последовательности, которые меняются от низкого к высокому и наоборот. Этот шаблон также является стандартным шаблоном, используемым для измерения джиттера.
  • 3 из 24 — шаблон содержит самую длинную строку последовательных нулей (15) с самой низкой плотностью (12,5%). Этот шаблон одновременно подчеркивает минимальную плотность единиц и максимальное количество последовательных нулей. Формат кадра D4 3 из 24 может вызвать желтый аварийный сигнал D4 для цепей кадра в зависимости от выравнивания одного бита с кадром.
  • 1: 7 — Также упоминается как 1 из 8 . Он имеет только один в восьмибитной повторяющейся последовательности. Этот шаблон подчеркивает минимальную плотность 12,5% и должен использоваться при тестировании средств, установленных для кодирования B8ZS, поскольку шаблон 3 из 24 увеличивается до 29,5% при преобразовании в B8ZS.
  • Мин. / Макс. — последовательность быстрого перехода узора с низкой плотности на высокую. Наиболее полезно при усилении функции ALBO ретранслятора .
  • Все единицы (или отметка) — шаблон, состоящий только из единиц. Этот шаблон заставляет повторитель потреблять максимальное количество энергии. Если постоянный ток к ретранслятору отрегулирован должным образом, ретранслятор не будет иметь проблем с передачей длинной последовательности. Этот образец следует использовать при измерении регулирования мощности диапазона. Шаблон «все единицы без рамки» используется для обозначения AIS (также известного как синий сигнал тревоги ).
  • Все нули — шаблон, состоящий только из нулей. Это эффективно при поиске оборудования, неправильно настроенного для AMI, такого как низкоскоростные входы мультиплексного волокна / радио.
  • Чередование нулей и единиц — шаблон, состоящий из чередующихся единиц и нулей.
  • 2 из 8 — шаблон содержит не более четырех последовательных нулей. Он не вызовет последовательность B8ZS, потому что для подстановки B8ZS требуется восемь последовательных нулей. Схема эффективна при поиске оборудования, не использованного для B8ZS.
  • Bridgetapразветвления моста в пределах пролета можно обнаружить с помощью ряда тестовых шаблонов с различной плотностью единиц и нулей. Этот тест генерирует 21 тестовую таблицу и длится 15 минут. Если возникает ошибка сигнала, на участке может быть один или несколько ответвлений моста. Этот шаблон эффективен только для участков T1, которые передают необработанный сигнал. Модуляция, используемая в пролетах HDSL, сводит на нет способность шаблонов моста обнаруживать ответвления моста.
  • Multipat — этот тест генерирует пять часто используемых тестовых шаблонов, позволяющих проводить тестирование диапазона DS1 без необходимости выбирать каждый тестовый шаблон отдельно. Шаблоны: все единицы, 1: 7, 2 из 8, 3 из 24 и QRSS.
  • T1-DALY и 55 OCTET — Каждый из этих шаблонов содержит пятьдесят пять (55) восьмибитовых октетов данных в последовательности, которая быстро изменяется между низкой и высокой плотностью. Эти паттерны используются в основном для нагрузки на схему ALBO и эквалайзера, но они также усиливают восстановление синхронизации. 55 OCTET имеет пятнадцать (15) последовательных нулей и может использоваться только без рамки без нарушения требований к плотности. Для сигналов с фреймами следует использовать шаблон T1-DALY. Оба шаблона вызовут код B8ZS в схемах с опцией для B8ZS.

Тестер коэффициента битовых ошибок

Тестер коэффициента ошибок по битам (BERT), также известный как «тестер коэффициента ошибок по битам» или решение для тестирования коэффициента ошибок по битам (BERT), представляет собой электронное испытательное оборудование, используемое для проверки качества передачи сигнала отдельных компонентов или целых систем.

Основные строительные блоки BERT:

  • Генератор шаблонов, который передает определенный тестовый шаблон в ИУ или тестовую систему.
  • Детектор ошибок, подключенный к DUT или тестовой системе, для подсчета ошибок, генерируемых DUT или тестовой системой.
  • Генератор тактовых сигналов для синхронизации генератора шаблонов и детектора ошибок
  • Анализатор цифровой связи не является обязательным для отображения переданного или принятого сигнала.
  • Электрооптический преобразователь и оптико-электрический преобразователь для проверки сигналов оптической связи.

Смотрите также

  • Пакетная ошибка
  • Код исправления ошибок
  • Секунда с ошибкой
  • Частота ошибок Витерби

использованная литература

Всеобщее достояние Эта статья включает  материалы, являющиеся общественным достоянием, из документа Управления общих служб : «Федеральный стандарт 1037C» .(в поддержку MIL-STD-188 )

внешние ссылки

  • QPSK BER для канала AWGN — онлайн-эксперимент
Производительность и надежность сети напрямую зависит от характеристик линий связи.

Характеристики линий связи можно разделить на две группы:

  • параметры распространения характеризуют процесс распространения полезного сигнала в зависимости от собственных параметров линии, например погонной индуктивности медного кабеля;
  • параметры влияния описывают степень влияния на полезный сигнал других сигналов — внешних помех, наводок от других пар проводников в медном кабеле.

В свою очередь, в каждой из этих групп можно выделить первичные и вторичные параметры. Первичные — характеризуют физическую природу линии связи: например, погонное активное сопротивление, погонную индуктивность, погонную емкость и погонную проводимость изоляции медного кабеля или зависимость коэффициента преломления оптического волокна от расстояния от оптической оси. Вторичные параметры выражают некоторый обобщенный результат процесса распространения сигнала по линии связи и не зависят от ее природы — например, степень ослабления мощности сигнала при прохождении им определенного расстояния вдоль линии связи, так называемое затухание сигнала. Для медных кабелей не менее важен и такой вторичный параметр влияния, как степень ослабления помехи от соседней витой пары.

Вторичные параметры определяются по отклику линии передачи на некоторые эталонные воздействия. Подобный подход позволяет достаточно просто и однотипно определять характеристики линий связи любой природы, не прибегая к сложным теоретическим исследованиям и построению аналитических моделей. Для исследования реакции линий связи чаще всего в качестве эталонных используются синусоидальные сигналы различных частот.

СПЕКТРАЛЬНЫЙ АНАЛИЗ СИГНАЛОВ НА ЛИНИЯХ СВЯЗИ

Любой периодический процесс можно представить в виде суммы синусоидальных колебаний различных частот и различных амплитуд (см. Рисунок 1). Каждую составляющую синусоиду называют также гармоникой, а набор всех гармоник — спектральным разложением исходного сигнала. Непериодические сигналы можно представить в виде интеграла синусоидальных сигналов с непрерывным спектром частот.


Рисунок 1. Представление периодического сигнала в виде суммы синусоид.

При передаче по линии связи форма сигнала искажается вследствие неодинаковой деформации синусоид различных частот. Если это аналоговый сигнал, передающий речь, то изменяется тембр голоса вследствие неточного воспроизведения обертонов — боковых частот. При передаче импульсных сигналов, характерных для компьютерных сетей, искажаются низкочастотные и высокочастотные гармоники, в результате фронты импульсов теряют свою прямоугольную форму (см. Рисунок 2). Поэтому на приемном конце линии сигналы могут плохо распознаваться.


Рисунок 2. Искажение импульсов в линии связи.

При передаче по линии связи сигналы искажаются из-за того, что ее физические параметры отличаются от идеальных. Так, например, медные провода всегда представляют собой некоторую распределенную по длине комбинацию активного сопротивления, емкостной и индуктивной нагрузки. В результате для синусоид различных частот линия будет обладать различным полным сопротивлением, а значит, и передаваться они будут по-разному. Волоконно-оптический кабель также имеет отклонения от идеальной среды для передачи света — вакуума. Если линия связи включает промежуточную аппаратуру, то и она может вносить дополнительные искажения.

Не только неоднородность внутренних физических параметров линии связи становится причиной неточных сигналов, свой вклад в искажение формы сигналов на выходе линии вносят и внешние помехи. Их создают различные электрические двигатели, электронные устройства, атмосферные явления и т. д. Несмотря на защитные меры, предпринимаемые разработчиками кабелей и усилительно-коммутирующей аппаратуры, полностью компенсировать влияние внешних помех не удается. Кроме того, в кабеле существуют и внутренние помехи — так называемые наводки одной пары проводников на другую. В результате сигналы на выходе линии связи обычно имеют сложную форму (как это и показано на Рисунке 2), по которой иногда трудно понять, какая дискретная информация была подана на вход линии.

Качество исходных сигналов (крутизна фронтов, общая форма импульсов) зависит от качества передатчика, генерирующего сигналы в линию связи. Одна из самых важных характеристик передатчика — спектральная, т.е. спектральное разложение генерируемых им сигналов. Для генерации качественных прямоугольных импульсов необходимо, чтобы спектральная характеристика передатчика представляла собой как можно более узкую полосу. Например, лазерные диоды имеют значительно меньшую ширину спектра излучения (1-2 нм) по сравнению со светодиодами (30—50 нм) при генерации импульсов, поэтому частота модуляции лазерных диодов может быть намного выше, чем светодиодов.

ЗАТУХАНИЕ И ВОЛНОВОЕ СОПРОТИВЛЕНИЕ

Степень искажения синусоидальных сигналов линиями связи оценивается с помощью таких характеристик, как затухание и полоса пропускания.

Затухание показывает, насколько уменьшается мощность эталонного синусоидального сигнала на выходе линии связи по отношению к мощности сигнала на входе этой линии. Затухание А обычно измеряется в децибелах (дБ) и вычисляется по следующей формуле:

А = 10 lg Рвыхвх,

где Pвых — мощность сигнала на выходе линии, а Рвх — мощность сигнала на ее входе.

При отсутствии промежуточных усилителей мощность выходного сигнала кабеля всегда меньше мощности входного, поэтому затухание кабеля, как правило, имеет отрицательную величину.

Степень затухания мощности синусоидального сигнала при прохождении им по линии связи обычно зависит от частоты синусоиды, поэтому полную характеристику дает лишь зависимость затухания от частоты во всем диапазоне, используемом на практике (Рисунок 3).


Рисунок 3. Зависимость затухания от частоты.

Затухание представляет собой обобщенную характеристику линии связи, так как позволяет судить не о точной форме сигнала, а о его мощности (интегральной результирующей от формы сигнала). На практике затухание является важным атрибутом описания линий связи: в частности, в стандартах на кабель этот параметр считается одним из основных.

Чаще всего при описании параметров линии связи приводятся значения затухания всего в нескольких точках общей зависимости, при этом каждая из них соответствует определенной частоте, на которой измеряется затухание. Отдельное значение затухания называют коэффициентом затухания. Применение всего нескольких значений вместо полной характеристики связано, с одной стороны, со стремлением упростить измерения при проверке качества линии, а с другой, основная частота передаваемого сигнала часто заранее известна — это та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать уровень затухания на данной частоте, чтобы приблизительно оценить искажения передаваемых по линии сигналов. Более точные оценки возможны при знании затухания на различных частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Чем меньше затухание, тем выше качество линии связи или кабеля, по которому она проложена. Обычно затухание определяют для пассивных участков линии связи, состоящих из кабелей и кроссовых секций, без усилителей и регенераторов. Например, кабель с витыми парами Категории 5 для внутренней проводки в зданиях, применяемой практически для всех технологий локальных сетей, характеризуется затуханием не ниже -23,6 дБ для частоты 100 МГц при длине кабеля 100 м.

Частота 100 МГц выбрана потому, что кабель этой категории предназначен для высокоскоростной передачи данных, чьи сигналы имеют значимые гармоники с частотой примерно 100 МГц. Более качественный кабель Категории 6 уже имеет на частоте 100 МГц затухание не ниже -20,6 дБ, т. е. мощность сигнала снижается в меньшей степени. Часто в документации приводятся абсолютные значения затухания, т. е. его знак опускается, так как затухание всегда отрицательно для пассивного, не содержащего усилители и регенераторы, участка линии, например непрерывного кабеля.


Рисунок 4. Окна прозрачности оптического волокна.

Оптический кабель отличается существенно более низкими (по абсолютной величине) размерами затухания, обычно в диапазоне от 0,2 до 3 дБ при длине кабеля в 1000 м. Практически всем оптическим волокнам свойственна сложная зависимость затухания от длины волны, с тремя так называемыми «окнами прозрачности». Характерный пример показан на Рисунке 4. Как можно видеть, область эффективного использования современных волокон ограничена волнами длин 850, 1300 и 1550 нм, при этом окно в 1550 нм обеспечивает наименьшие потери, а значит, максимальную дальность при фиксированной мощности передатчика и фиксированной чувствительности приемника. Выпускаемый многомодовый кабель обладает двумя первыми окнами прозрачности, т. е. 850 и 1300 нм, а одномодовый кабель — двумя окнами прозрачности в диапазонах 1310 и 1550 нм.

Мощность передатчика часто характеризуется абсолютным уровнем мощности сигнала. Уровень мощности, как и затухание, измеряется в децибелах. При этом в качестве базового принимается значение в 1 мВт. Таким образом, уровень мощности p вычисляется по следующей формуле:

p = 10 lg P/1 мВт [дБм],

где P — мощность сигнала в милливаттах, а дБм — единица измерения уровня мощности (дБ на 1 мВт).

Важным вторичным параметром распространения медной линии связи является ее волновое сопротивление. Этот параметр представляет собой полное (комплексное) сопротивление, которое электромагнитная волна определенной частоты встречает при распространении вдоль однородной цепи. Волновое сопротивление измеряется в Омах и зависит от таких первичных параметров линии связи, как активное сопротивление, погонная индуктивность и погонная емкость, а также от частоты самого сигнала. Выходное сопротивление передатчика должно быть согласовано с волновым сопротивлением линии, иначе затухание сигнала будет чрезмерно большим.

ПОМЕХОУСТОЙЧИВОСТЬ

Помехоустойчивость линии определяет ее способность уменьшать уровень помех со стороны внешней среды или проводников самого кабеля. Она зависит от типа используемой физической среды, от экранирующих и подавляющих помехи средств самой линии. Наименее помехоустойчивыми являются радиолинии, хорошей устойчивостью обладают кабельные линии и отличной — волоконно-оптические, малочувствительные к внешнему электромагнитному излучению. Обычно уменьшения помех от внешних электромагнитных полей добиваются экранированием и/или скручиванием проводников. Величины, характеризующие помехоустойчивость, относятся к параметрам влияния линии связи.

Первичные параметры влияния медного кабеля — электрическая и магнитная связи. Электрическая связь определяется отношением наведенного тока в цепи, подверженной влиянию, к напряжению, действующему во влияющей цепи. Магнитная связь — это отношение электродвижущей силы, наведенной в цепи, подверженной влиянию, к току во влияющей цепи. Результатом электрической и магнитной связи будут наведенные сигналы (наводки) в цепи, подверженной влиянию. Устойчивость кабеля к наводкам характеризуется несколькими различными параметрами.

Переходное затухание на ближнем конце (Near End Cross Talk, NEXT) определяет устойчивость кабеля в том случае, когда наводка образуется в результате действия сигнала, генерируемого передатчиком, подключенным к одной из соседних пар на том же конце кабеля, на котором работает подключенный к подверженной влиянию паре приемник. Показатель NEXT, выраженный в децибелах, равен 10 lg Pвых/Pнав, где Pвых — мощность выходного сигнала, Pнав — мощность наведенного сигнала. Чем меньше значение NEXT, тем лучше кабель. Так, для витой пары Категории 5 показатель NEXT должен быть лучше -27 дБ на частоте 100 МГц.

Переходное затухание на дальнем конце (Far End Cross Talk, FEXT) описывает устойчивость кабеля к наводкам для случая, когда передатчик и приемник подключены к разным концам кабеля. Очевидно, что этот показатель должен быть лучше, чем NEXT, так как до дальнего конца кабеля сигнал приходит ослабленный вследствие затухания в каждой паре.

Показатели NEXT и FEXT обычно используются применительно к кабелю, состоящему из нескольких витых пар, когда взаимные наводки одной пары на другую могут достигать значительных величин. Для одинарного коаксиального кабеля (т. е. состоящего из одной экранированной жилы) подобный показатель не имеет смысла, не применяется он и для двойного коаксиального кабеля вследствие высокой степени защищенности каждой жилы. Оптические волокна также не создают сколько-нибудь заметных помех друг для друга.

В связи с тем, что в некоторых новых технологиях передача данных осуществляется одновременно по нескольким витым парам, в последнее время стали применяться суммарные показатели (PowerSUM, PS) — PS NEXT и PS FEXT. Они отражают устойчивость кабеля к суммарной мощности перекрестных наводок на одну из пар кабеля от всех остальных передающих пар.

Весьма важной характеристикой передающей среды является показатель защищенности кабеля (ACR), представляющий собой разность между уровнями полезного сигнала и помех. Чем больше это значение, тем с потенциально более высокой скоростью можно передавать данные по указанному кабелю.

ДОСТОВЕРНОСТЬ

Достоверность передачи данных характеризует вероятность искажения для каждого передаваемого бита данных. Иногда этот же показатель называют интенсивностью битовых ошибок (Bit Error Rate, BER). Величина BER для каналов связи без дополнительных средств защиты от ошибок (например, самокорректирующихся кодов или протоколов с повторной передачей искаженных кадров) составляет, как правило, 10-4—10-6, а в волоконно-оптических линиях связи — 10-9. Значение достоверности передачи данных, например в 10-4, говорит о том, что в среднем из 10000 бит неправильно интерпретируется значение одного бита.

Битовые ошибки происходят как из-за наличия помех на линии, так и по причине искажений формы сигнала вследствие ограниченной полосы пропускания линии. Поэтому для повышения достоверности передаваемых данных нужно повышать степень помехозащищенности линии, снижать уровень перекрестных наводок в кабеле, а также использовать линии связи с более широкой полосой рабочих частот.

ПОЛОСА ПРОПУСКАНИЯ

Полоса пропускания — еще одна вторичная характеристика. С одной стороны, она непосредственно зависит от затухания, а с другой — прямо влияет на такой важнейший показатель линии связи, как максимально возможная скорость передачи информации.

Полоса пропускания (bandwidth) — это непрерывный диапазон частот, для которого затухание не превышает заранее заданный определенный предел. Иными словами, полоса пропускания определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений (часто за граничные принимаются частоты, где мощность выходного сигнала уменьшается в два раза по отношению к входному, что соответствует затуханию в -3 дБ). Как мы увидим ниже, ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по линии связи.

Таким образом, амплитудно-частотная характеристика, полоса пропускания и затухание являются универсальными характеристиками, и их знание позволяет сделать вывод о том, как через линию связи будут передаваться сигналы любой формы.

ПРОПУСКНАЯ СПОСОБНОСТЬ

Пропускная способность (количество бит информации, передаваемых в единицу времени) и достоверность передачи данных (вероятность доставки неискаженного бита или же вероятность его искажения) интересуют разработчиков компьютерной сети в первую очередь, поскольку эти характеристики прямо влияют на производительность и надежность создаваемой сети.

Пропускная способность и достоверность передачи данных зависят как от характеристик физической среды, так и от способа передачи данных. Следовательно, нельзя говорить о пропускной способности линии связи до определения протокола физического уровня. Пропускная способность (throughput) линии характеризует максимально возможную скорость передачи данных по линии связи. Она измеряется в битах в секунду (бит/c), а также в производных единицах — килобит в секунду (Кбит/c), мегабит в секунду (Мбит/с), гигабит в секунду (Гбит/с) и т. д.

Пропускная способность линий связи и коммуникационного сетевого оборудования традиционно измеряется в битах в секунду, а не в байтах в секунду. Это связано с тем, что данные в сетях передаются последовательно, т. е. побитно, а не параллельно, байтами, как это происходит между устройствами внутри компьютера. Такие единицы измерения, как килобит, мегабит или гигабит, в сетевых технологиях строго соответствуют степеням 10 (т. е. килобит — это 1000 бит, а мегабит — это 1000000 бит), как это принято во всех отраслях науки и техники, а не близким к этим числам степеням 2, как это принято в программировании, где приставка «кило» равна 210 = 1024, а «мега» — 220 = 1 048 576.

Пропускная способность линии связи зависит не только от ее характеристик, например от затухания и полосы пропускания, но и от спектра передаваемых сигналов. Если значимые гармоники сигнала (т. е. те гармоники, амплитуды которых вносят основной вклад в результирующий сигнал) не выходят за полосу пропускания линии, такой сигнал будет хорошо передаваться, и приемник сможет правильно распознать информацию, отправленную по линии передатчиком. Если же значимые гармоники выходят за границы полосы пропускания линии связи, то сигнал станет значительно искажаться, приемник — ошибаться при распознавании информации, а сама информация в конечном итоге не сможет передаваться с заданной пропускной способностью.

СПОСОБ КОДИРОВАНИЯ ИНФОРМАЦИИ

Выбор способа представления дискретной информации в виде подаваемых на линию связи сигналов называется физическим, или линейным, кодированием.

От выбранного способа кодирования зависят спектр сигналов и пропускная способность линии. Итак, разным способам кодирования может соответствовать разная пропускная способность. Например, витая пара Категории 3 способна передавать данные с пропускной способностью 10 Мбит/c при способе кодирования стандарта физического уровня 10BaseT и 33 Мбит/с при способе кодирования стандарта 100BaseT4.

Согласно теории информации, информацию несет лишь различимое и непредсказуемое изменение принимаемого сигнала. Таким образом, прием синусоиды, у которой амплитуда, фаза и частота остаются неизменными, информации не несет, так как изменение сигнала хотя и происходит, но легко предсказуемо. Аналогично, импульсы на тактовой шине компьютера не несут в себе информации, так как их изменения постоянны во времени. А вот импульсы на шине данных предсказать заранее нельзя, поэтому они переносят информацию между отдельными блоками или устройствами компьютера.

Большинство способов кодирования использует изменение какого-либо параметра периодического сигнала — частоты, амплитуды и фазы синусоиды или же знак потенциала последовательности импульсов. Периодический сигнал, параметры которого изменяются, называют несущим сигналом или несущей частотой, если в качестве такого сигнала применяется синусоида.

Если сигнал изменяется так, что различаются только два его состояния, то любое его изменение будет соответствовать наименьшей единице информации — биту. Если же сигнал может иметь более двух различимых состояний, то любое его изменение содержит несколько бит информации.

Количество изменений информационного параметра несущего периодического сигнала в секунду измеряется в бодах (baud). Период времени между соседними изменениями информационного сигнала называется тактом работы передатчика.

Пропускная способность линии в битах в секунду в общем случае не совпадает с числом бод. Она может быть как выше, так и ниже числа бод, и это соотношение зависит от способа кодирования.

Когда у сигнала более двух различимых состояний, пропускная способность в битах в секунду окажется выше, чем число бод. Например, если информационными параметрами являются фаза и амплитуда синусоиды (причем различаются четыре состояния фазы — в 00, 900, 1800 и 2700 и два значения амплитуды сигнала), то информационный сигнал может иметь восемь различимых состояний. В этом случае модем, работающий со скоростью 2400 бод (с тактовой частотой 2400 Гц), передает информацию со скоростью 7200 бит/с, так как при одном изменении сигнала передается три бита информации.

При использовании сигналов с двумя различимыми состояниями возможна обратная картина. Это часто происходит потому, что для надежного распознавания приемником пользовательской информации каждый бит в последовательности кодируется с помощью нескольких изменений информационного параметра несущего сигнала. Например, при кодировании единичного значения бит импульсом положительной полярности, а нулевого значения бит — импульсом отрицательной полярности физический сигнал дважды изменяет свое состояние при передаче каждого бит. При таком кодировании пропускная способность линии в два раза ниже, чем число бод, передаваемое по линии.

На пропускную способность линии оказывает влияние не только физическое, но и логическое кодирование. Выполняемое до физического кодирования, оно подразумевает замену бит исходной информации новой последовательностью бит, несущей ту же информацию, но обладающей, кроме этого, дополнительными свойствами, в частности возможностью для приемной стороны обнаруживать ошибки в принятых данных. Сопровождение каждого байта исходной информации одним битом четности — очень часто применяемый способ логического кодирования при передаче данных с помощью модемов. Другим примером логического кодирования может служить шифрация данных, обеспечивающая их конфиденциальность при передаче через общедоступные каналы связи. При логическом кодировании чаще всего исходная последовательность бит заменяется более длинной последовательностью, поэтому пропускная способность канала по отношению к полезной информации при этом уменьшается.

Наталья Олифер — обозреватель «Журнала сетевых решений/LAN». С ней можно связаться по адресу: olifer@hotbox.ru. Виктор Олифер — главный специалист «Корпорации Юни». С ним можно связаться по адресу: Volifer@uniinc.ru.

В цифровая передача, количество битовые ошибки это количество полученных биты из поток данных через канал связи которые были изменены из-за шум, вмешательство, искажение или же битовая синхронизация ошибки.

В частота ошибок по битам (BER) — количество битовых ошибок в единицу времени. В коэффициент битовых ошибок (также BER) — количество битовых ошибок, деленное на общее количество переданных битов за исследуемый интервал времени. Коэффициент битовых ошибок — это безразмерная мера производительности, часто выражаемая как процент.[1]

В вероятность битовой ошибки пе это ожидаемое значение коэффициента ошибок по битам. Коэффициент битовых ошибок можно рассматривать как приблизительную оценку вероятности битовых ошибок. Эта оценка верна для длительного интервала времени и большого количества битовых ошибок.

Пример

В качестве примера предположим, что эта переданная битовая последовательность:

0 1 1 0 0 0 1 0 1 1

и следующая полученная битовая последовательность:

0 0 1 0 1 0 1 0 0 1,

Количество битовых ошибок (подчеркнутые биты) в данном случае равно 3. BER — это 3 неверных бита, разделенных на 10 переданных битов, в результате чего BER составляет 0,3 или 30%.

Коэффициент ошибок пакета

В коэффициент ошибок пакета (PER) — это количество неправильно полученных пакеты данных деленное на общее количество полученных пакетов. Пакет объявляется некорректным, если хотя бы один бит ошибочен. Ожидаемое значение PER обозначается вероятность ошибки пакета пп, что для длины пакета данных N биты могут быть выражены как

{ displaystyle p_ {p} = 1- (1-p_ {e}) ^ {N} = 1-e ^ {N  log (1-p_ {e})}},

предполагая, что битовые ошибки не зависят друг от друга. Для небольших вероятностей битовых ошибок и больших пакетов данных это примерно

p_ {p}  приблизительно p_ {e} N.

Аналогичные измерения могут быть выполнены для передачи кадры, блоки, или же символы.

Факторы, влияющие на BER

В системе связи на BER на стороне приемника может влиять канал передачи. шум, вмешательство, искажение, битовая синхронизация проблемы, затухание, беспроводной многолучевость угасание, так далее.

BER может быть улучшен путем выбора сильного сигнала (если это не вызывает перекрестных помех и большего количества битовых ошибок), путем выбора медленного и надежного модуляция схема или линейное кодирование схему, и применяя кодирование каналов такие схемы как избыточные упреждающее исправление ошибок коды.

В передача BER — число обнаруженных неверных битов до исправления ошибок, деленное на общее количество переданных битов (включая избыточные коды ошибок). В информация BER, примерно равное вероятность ошибки декодирования, — количество декодированных битов, которые остаются некорректными после исправления ошибок, деленное на общее количество декодированных битов (полезная информация). Обычно BER передачи больше, чем BER информации. На информационный BER влияет сила кода прямого исправления ошибок.

Анализ BER

BER можно оценить с помощью стохастического (Монте-Карло ) компьютерное моделирование. Если простая передача модель канала и источник данных Предполагается, что BER можно рассчитать аналитически. Примером такой модели источника данных является Бернулли источник.

Примеры простых моделей каналов, используемых в теория информации находятся:

  • Бинарный симметричный канал (используется при анализе вероятности ошибки декодирования в случае непиковые битовые ошибки на канале передачи)
  • Аддитивный белый гауссовский шум (AWGN) канал без замирания.

Наихудший сценарий — это полностью случайный канал, в котором шум полностью преобладает над полезным сигналом. В результате BER передачи составляет 50% (при условии, что Бернулли предполагается источник двоичных данных и двоичный симметричный канал, см. ниже).

Кривые частоты ошибок по битам для БПСК, QPSK, 8-ПСК и 16-ПСК, AWGN канал.

В шумном канале BER часто выражается как функция нормализованного отношение несущая / шум мера обозначена Eb / N0, (отношение энергии на бит к спектральной плотности мощности шума), или Es / N0 (энергия на символ модуляции к спектральной плотности шума).

Например, в случае QPSK модуляции и канала AWGN, BER как функция Eb / N0 определяется как: operatorname {BER} = { frac {1} {2}}  operatorname {erfc} ({ sqrt {E_ {b} / N_ {0}}}).[2]

Люди обычно строят кривые BER для описания производительности цифровой системы связи. В оптической связи обычно используется зависимость BER (дБ) от принимаемой мощности (дБм); в то время как в беспроводной связи используется BER (дБ) по сравнению с SNR (дБ).

Измерение коэффициента битовых ошибок помогает людям выбрать подходящий упреждающее исправление ошибок коды. Поскольку большинство таких кодов исправляют только перевороты битов, но не вставки или удаления битов, Расстояние Хэмминга метрика — это подходящий способ измерения количества битовых ошибок. Многие кодеры FEC также непрерывно измеряют текущий BER.

Более общий способ измерения количества битовых ошибок — это Расстояние Левенштейна.Измерение расстояния Левенштейна больше подходит для измерения характеристик сырого канала перед кадровая синхронизация, а также при использовании кодов исправления ошибок, предназначенных для исправления вставки и удаления битов, таких как коды маркеров и коды водяных знаков.[3]

Математический проект

BER — это вероятность неправильной интерпретации из-за электрического шума. ш (т). Рассматривая биполярную передачу NRZ, мы имеем

х_ {1} (t) = A + w (t) для «1» и х_ {0} (t) = - A + w (t) за «0». Каждый из x_ {1} (т) и x_0 (т) имеет период Т.

Зная, что шум имеет двустороннюю спектральную плотность { frac {N_ {0}} {2}},

x_ {1} (т) является { mathcal {N}}  left (A, { frac {N_ {0}} {2T}}  right)

и x_0 (т) является { mathcal {N}}  left (-A, { frac {N_ {0}} {2T}}  right).

Возвращаясь к BER, у нас есть вероятность некоторой неверной интерпретации p_ {e} = p (0 | 1) p_ {1} + p (1 | 0) p_ {0}.

p (1 | 0) = 0,5 ,  operatorname {erfc}  left ({ frac {A +  lambda} {{ sqrt {N_ {o} / T}}}}  right) и p (0 | 1) = 0,5 ,  operatorname {erfc}  left ({ frac {A-  lambda} {{ sqrt {N_ {o} / T}}}}  right)

куда  lambda это порог принятия решения, установленный в 0, когда p_ {1} = p_ {0} = 0,5.

Мы можем использовать среднюю энергию сигнала E = A ^ {2} T чтобы найти окончательное выражение:

p_ {e} = 0,5 ,  operatorname {erfc}  left ({ sqrt {{ frac {E} {N_ {o}}}}}  right).±§

Проверка коэффициента битовых ошибок

БЕРТ или же проверка коэффициента битовых ошибок это метод тестирования для схемы цифровой связи который использует заранее определенные шаблоны напряжения, состоящие из последовательности логических единиц и нулей, сгенерированные генератором тестовых шаблонов.

BERT обычно состоит из генератора тестовых шаблонов и приемника, который может быть настроен на один и тот же шаблон. Их можно использовать парами, по одному на любом конце линии передачи, или по отдельности на одном конце с петля на удаленном конце. BERT обычно представляют собой отдельные специализированные инструменты, но могут быть персональный компьютер -основан. При использовании количество ошибок, если таковые имеются, подсчитывается и представляется в виде отношения, например 1 на 1 000 000 или 1 на 1e06.

Распространенные типы моделей стресса BERT

  • PRBS (псевдослучайная двоичная последовательность ) — псевдослучайный двоичный секвенсор из N бит. Эти последовательности шаблонов используются для измерения дрожь и глаз-маска TX-данных в электрических и оптических каналах передачи данных.
  • QRSS (источник квазислучайного сигнала) — псевдослучайный двоичный секвенсор, который генерирует каждую комбинацию 20-битного слова, повторяет каждые 1048 575 слов и подавляет последовательные нули до не более 14. Он содержит последовательности с высокой плотностью, последовательности с низкой плотностью и последовательности, которые меняются от низкого к высокому и наоборот. Этот шаблон также является стандартным шаблоном, используемым для измерения джиттера.
  • 3 в 24 — Шаблон содержит самую длинную строку последовательных нулей (15) с самой низкой плотностью (12,5%). Этот образец одновременно подчеркивает минимальную плотность единиц и максимальное количество последовательных нулей. В D4 формат кадра 3 из 24 может вызвать D4 желтый сигнал тревоги для схем кадра в зависимости от выравнивания одного бит кадра.
  • 1:7 — Также упоминается как 1 из 8. Он имеет только один в восьмибитовой повторяющейся последовательности. Этот образец подчеркивает минимальную плотность 12,5% и должен использоваться при испытании оборудования для B8ZS кодирование в виде шаблона 3 из 24 увеличивается до 29,5% при преобразовании в B8ZS.
  • Мин Макс — Последовательность рисунка быстро меняется с низкой плотности на высокую. Наиболее полезно при нагрузке ретранслятора ALBO особенность.
  • Все (или отметки) — Выкройка, состоящая только из единиц. Этот шаблон заставляет повторитель потреблять максимальное количество энергии. Если постоянный ток к ретранслятору отрегулирован должным образом, ретранслятор не будет иметь проблем с передачей длинной последовательности. Этот образец следует использовать при измерении регулирования мощности диапазона. Шаблон без рамки используется для обозначения АИС (также известный как синяя сигнализация).
  • Все нули — Шаблон, состоящий только из нулей. Это эффективно при поиске оборудования, не подходящего для AMI, например, низкоскоростные входы мультиплексного волокна / радио.
  • Чередование нулей и единиц — Шаблон, состоящий из чередующихся единиц и нулей.
  • 2 в 8 — Шаблон содержит максимум четыре последовательных нуля. Он не вызовет последовательность B8ZS, потому что для подстановки B8ZS требуется восемь последовательных нулей. Эта схема эффективна при поиске оборудования, не использованного для B8ZS.
  • Bridgetap — Мостовые краны в пределах диапазона могут быть обнаружены с помощью ряда тестовых шаблонов с различными плотностями единиц и нулей. Этот тест генерирует 21 тестовую таблицу и длится 15 минут. Если возникает ошибка сигнала, на участке может быть один или несколько ответвлений моста. Этот шаблон эффективен только для участков T1, которые передают необработанный сигнал. Модуляция, используемая в HDSL пролетов сводит на нет способность образцов мостов выявлять мостовые переходы.
  • Мультипат — Этот тест генерирует пять часто используемых тестовых шаблонов, позволяющих DS1 тестирование диапазона без необходимости выбирать каждый тестовый образец индивидуально. Шаблоны: все единицы, 1: 7, 2 из 8, 3 из 24 и QRSS.
  • T1-DALY и 55 октетов — Каждый из этих шаблонов содержит пятьдесят пять (55) восьмибитовых октетов данных в последовательности, которая быстро изменяется между низкой и высокой плотностью. Эти паттерны используются в основном для нагрузки на схему ALBO и эквалайзера, но они также усиливают восстановление синхронизации. 55 OCTET имеет пятнадцать (15) последовательных нулей и может использоваться только без рамки без нарушения требований к плотности. Для сигналов с фреймами следует использовать шаблон T1-DALY. Оба шаблона вызовут код B8ZS в схемах с опцией для B8ZS.

Тестер коэффициента битовых ошибок

Тестер коэффициента ошибок по битам (BERT), также известный как «тестер коэффициента ошибок по битам»[4] или же решение для проверки коэффициента битовых ошибок (BERT) — это электронное испытательное оборудование, используемое для проверки качества передачи сигнала отдельных компонентов или целых систем.

Основные строительные блоки BERT:

  • Генератор паттернов, который передает заданный тестовый шаблон на DUT или тестовая система
  • Детектор ошибок, подключенный к DUT или тестовой системе, для подсчета ошибок, генерируемых DUT или тестовой системой
  • Генератор тактовых сигналов для синхронизации генератора шаблонов и детектора ошибок
  • Анализатор цифровой связи не является обязательным для отображения переданного или принятого сигнала.
  • Электрооптический преобразователь и оптико-электрический преобразователь для проверки сигналов оптической связи.

Смотрите также

  • Ошибка пакета
  • Код исправления ошибок
  • Секунда с ошибками
  • Частота ошибок Витерби

Рекомендации

  1. ^ Джит Лим (14 декабря 2010 г.). «Является ли BER коэффициентом ошибок по битам или коэффициентом ошибок по битам?». EDN. Получено 2015-02-16.
  2. ^ Цифровые коммуникации, Джон Проакис, Масуд Салехи, McGraw-Hill Education, 6 ноября 2007 г.
  3. ^ «Клавиатуры и скрытые каналы» Гаурав Шах, Андрес Молина и Мэтт Блейз (2006?)
  4. ^ «Тестирование коэффициента битовых ошибок: тест BER BERT» Электроника ». www.electronics-notes.com. Получено 2020-04-11.

Эта статья включаетматериалы общественного достояния от Администрация общих служб документ: «Федеральный стандарт 1037С». (в поддержку MIL-STD-188 )

внешняя ссылка

  • QPSK BER для канала AWGN — онлайн-эксперимент

Понравилась статья? Поделить с друзьями:

Читайте также:

  • Интерсвязь ошибка 500
  • Интеллектуальные персеверации стереотипы неучет собственных ошибок
  • Интернет эксплорер пишет ошибка сертификата как исправить
  • Интеллектуальные ошибки это ошибки
  • Интернет эксплорер ошибка сертификата переходы блокированы что делать

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии