$begingroup$
I know that magnetic fields can be redirected, but… given a situation where you have static magnetic field over a large area, and you want to quickly change the magnetic field strength. Is it feasible to redirect nearby fields and curve the field towards a single point, thus increasing flux density and strength?
the answer with the cone is great and all but are there any alternatives?
asked Nov 18, 2011 at 21:22
$endgroup$
0
$begingroup$
Yes, it is possible to guide magnetic field lines using a shaped magnetic material. Just as field lines concentrate when entering the south pole of a magnet from a large area, an external magnetic field can be «gathered» using, for example, a cone-shaped piece of iron. The cone can be positioned such that the static field spread over a large area enters the wide end of the cone. The iron confines the field and will guide it to the tip of the cone, where it will emerge with a much higher density and, therefore, a much higher magnetic field strength.
This will, of course, reduce the field to the sides of the cone, since this method won’t increase the total magnetic field present in the region. The field lines that used to occupy that space are now simply confined inside the cone.
answered Nov 18, 2011 at 21:41
MitchellMitchell
2,06815 silver badges13 bronze badges
$endgroup$
6
$begingroup$
This is basically what a solenoid does. You have multiple current rings, and «within» the solenoid the magnetic field loops are concentrated whereas outside they are very weak and actually divergent in the limiting case. A much more interesting questions is if one could design a solenoid or solenoid like structure which «minimizes» the magnetic fields and currents «within» the sources (wire loops) while maximizing it in the region «outside» of the «sources» (interior of the solenoid without any currents or sources). This would have practical implications, since there are limits to how much current and magnetic fields materials which hold the currents can tolerate before they breakdown. It would be great if one could generate very large fields outside of the sources to say confine a magnetic fusion plasma, without breaking down structure containing the generating currents. It is a much more difficult problem because you have to treat the field within the conductors themselves. I have thought about it fruitlessly for a while and would love to find someone who might have worked on this more. Perhaps it could not easily be solved analytically, but just like they are doing with antennas these says, perhaps, since the equations are already there, the deux ex machina of genetic algorithms might be useful if one could define all the parameters.
Also, there is perhaps a completely different approach than the solenoid one, that is a dynamical electromagnetic field. Since these can be self-propagating in the vaccuum, and one could theoretically focus a magnetic field outside of a source. Technically, there would be far-field (radiation) in such cases, but not all cases. For example, Schott in 1933 discovered non-radiating solutions for spherically charged objects rotating at relativistic velocities. To my knowledge, no one has designed an object which could do this without such high velocities, but these kinds of problems have been solved before by a more clever design.
answered Dec 16, 2011 at 3:03
$endgroup$
1
$begingroup$
Explosively pumped flux compression generator is close to what you describe (http://en.wikipedia.org/wiki/Explosively_pumped_flux_compression_generator ): «the magnetic flux produced by a wound conductor is confined to the interior of a hollow metallic tube surrounded by explosives, and submitted to a violent compression when the explosives are fired» (a description of one of the implementations) — the magnetic flux through the tube remains largely unchanged, but the tube radius decreases due to the explosion, so the magnetic field increases dramatically. This is a one-time-only device.
answered Oct 5, 2013 at 3:12
akhmeteliakhmeteli
25.8k2 gold badges26 silver badges65 bronze badges
$endgroup$
2
$begingroup$
Using a 4″ square piece of steel we had the machinist turn a flat cone 4″ at the base and 1″ at the top. When attached to the end of a salvaged electromagnet previously used for separating junk scrap iron, we were able to attain (IIRC- this was thirty years ago) a four-fold increase in density to about 80 kG/in².
And yes, a good time was had by all.
answered Oct 27, 2014 at 20:50
drrbcdrrbc
211 bronze badge
$endgroup$
1
$begingroup$
This may be what you’re looking for – an array of magnets (permanent or electromagnetic) can be oriented in opposition and at 90-degree angle to a magnetic pole, concentrating the field into a beam-like region of high intensity:
“Apparatus and method for amplifying a magnetic beam,” patented by Boyd Bushman for Lockheed in 1997:
http://www.google.com/patents/US5929732
answered Dec 6, 2014 at 12:37
Thomas MThomas M
3401 silver badge8 bronze badges
$endgroup$
2
$begingroup$
Yes ..I think it is possible to bent magnetic force of line. If the solenoid is straight the magnetic force line emits both of the two sides. but if the solenoid is U shaped the force line then will emit only one side and that is north to south. But we need to focus magnetic force line at a point. thats why we can make the solenoid with a angle (it can be 30-60) then all the magnetic force of line will emit only one side and it will be focused at a point or area. again if we make the solenoid one side thikness and other side thikless then magnetic force line will emit only two side strongly and then we can bent the solenoid to bent the magnetic force of line.
answered Oct 5, 2013 at 2:43
$endgroup$
$begingroup$
I know that magnetic fields can be redirected, but… given a situation where you have static magnetic field over a large area, and you want to quickly change the magnetic field strength. Is it feasible to redirect nearby fields and curve the field towards a single point, thus increasing flux density and strength?
the answer with the cone is great and all but are there any alternatives?
asked Nov 18, 2011 at 21:22
$endgroup$
0
$begingroup$
Yes, it is possible to guide magnetic field lines using a shaped magnetic material. Just as field lines concentrate when entering the south pole of a magnet from a large area, an external magnetic field can be «gathered» using, for example, a cone-shaped piece of iron. The cone can be positioned such that the static field spread over a large area enters the wide end of the cone. The iron confines the field and will guide it to the tip of the cone, where it will emerge with a much higher density and, therefore, a much higher magnetic field strength.
This will, of course, reduce the field to the sides of the cone, since this method won’t increase the total magnetic field present in the region. The field lines that used to occupy that space are now simply confined inside the cone.
answered Nov 18, 2011 at 21:41
MitchellMitchell
2,06815 silver badges13 bronze badges
$endgroup$
6
$begingroup$
This is basically what a solenoid does. You have multiple current rings, and «within» the solenoid the magnetic field loops are concentrated whereas outside they are very weak and actually divergent in the limiting case. A much more interesting questions is if one could design a solenoid or solenoid like structure which «minimizes» the magnetic fields and currents «within» the sources (wire loops) while maximizing it in the region «outside» of the «sources» (interior of the solenoid without any currents or sources). This would have practical implications, since there are limits to how much current and magnetic fields materials which hold the currents can tolerate before they breakdown. It would be great if one could generate very large fields outside of the sources to say confine a magnetic fusion plasma, without breaking down structure containing the generating currents. It is a much more difficult problem because you have to treat the field within the conductors themselves. I have thought about it fruitlessly for a while and would love to find someone who might have worked on this more. Perhaps it could not easily be solved analytically, but just like they are doing with antennas these says, perhaps, since the equations are already there, the deux ex machina of genetic algorithms might be useful if one could define all the parameters.
Also, there is perhaps a completely different approach than the solenoid one, that is a dynamical electromagnetic field. Since these can be self-propagating in the vaccuum, and one could theoretically focus a magnetic field outside of a source. Technically, there would be far-field (radiation) in such cases, but not all cases. For example, Schott in 1933 discovered non-radiating solutions for spherically charged objects rotating at relativistic velocities. To my knowledge, no one has designed an object which could do this without such high velocities, but these kinds of problems have been solved before by a more clever design.
answered Dec 16, 2011 at 3:03
$endgroup$
1
$begingroup$
Explosively pumped flux compression generator is close to what you describe (http://en.wikipedia.org/wiki/Explosively_pumped_flux_compression_generator ): «the magnetic flux produced by a wound conductor is confined to the interior of a hollow metallic tube surrounded by explosives, and submitted to a violent compression when the explosives are fired» (a description of one of the implementations) — the magnetic flux through the tube remains largely unchanged, but the tube radius decreases due to the explosion, so the magnetic field increases dramatically. This is a one-time-only device.
answered Oct 5, 2013 at 3:12
akhmeteliakhmeteli
25.8k2 gold badges26 silver badges65 bronze badges
$endgroup$
2
$begingroup$
Using a 4″ square piece of steel we had the machinist turn a flat cone 4″ at the base and 1″ at the top. When attached to the end of a salvaged electromagnet previously used for separating junk scrap iron, we were able to attain (IIRC- this was thirty years ago) a four-fold increase in density to about 80 kG/in².
And yes, a good time was had by all.
answered Oct 27, 2014 at 20:50
drrbcdrrbc
211 bronze badge
$endgroup$
1
$begingroup$
This may be what you’re looking for – an array of magnets (permanent or electromagnetic) can be oriented in opposition and at 90-degree angle to a magnetic pole, concentrating the field into a beam-like region of high intensity:
“Apparatus and method for amplifying a magnetic beam,” patented by Boyd Bushman for Lockheed in 1997:
http://www.google.com/patents/US5929732
answered Dec 6, 2014 at 12:37
Thomas MThomas M
3401 silver badge8 bronze badges
$endgroup$
2
$begingroup$
Yes ..I think it is possible to bent magnetic force of line. If the solenoid is straight the magnetic force line emits both of the two sides. but if the solenoid is U shaped the force line then will emit only one side and that is north to south. But we need to focus magnetic force line at a point. thats why we can make the solenoid with a angle (it can be 30-60) then all the magnetic force of line will emit only one side and it will be focused at a point or area. again if we make the solenoid one side thikness and other side thikless then magnetic force line will emit only two side strongly and then we can bent the solenoid to bent the magnetic force of line.
answered Oct 5, 2013 at 2:43
$endgroup$
Мы все знаем, что такое постоянные магниты. Магниты – это металлические тела, притягивающиеся к другим магнитам и к некоторым металлам. То, что располагается вокруг магнита и взаимодействует с окружающими предметами (притягивает или отталкивает некоторые из них), называется магнитным полем.
Источником любого магнитного поля являются движущиеся заряженные частицы. А направленное движение заряженных частиц называется электрическим током. То есть, любое магнитное поле вызывается исключительно электрическим током.
За направление электрического тока принимают направление движения положительно заряженных частиц. Если же движутся отрицательные заряды, то направление тока считается обратным движению таких зарядов. Представьте себе, что по кольцевой трубе течет вода. Но мы будем считать, что некий «ток» при этом движется в противоположном направлении. Электрический ток обозначается буквой I.
В металлах ток образуется движением электронов – отрицательно заряженных частиц. На рисунке ниже, электроны движутся по проводнику справа налево. Но считается, что электрический ток направлен слева направо.
Это произошло потому, что когда начали изучение электрические явления, не было известно, какими именно носителями чаще всего переносится ток.
Если мы посмотрим на этот проводник с левой стороны, так, чтобы ток шел «от нас», то магнитное поле этого тока будет направлено вокруг него по часовой стрелке.
Если рядом с этим проводником расположить компас, то его стрелка развернется перпендикулярно проводнику, параллельно «силовым линиям магнитного поля» — параллельно черной кольцевой стрелке на рисунке.
Если мы возьмем шарик, имеющий положительный заряд (имеющий дефицит электронов) и бросим его вперед, то вокруг этого шарика появится точно такое же кольцевое магнитное поле, закручивающееся вокруг него по часовой стрелке.
Ведь здесь тоже имеет место направленное движение заряда. А направленное движение зарядов есть электрический ток. Если есть ток, вокруг него должно быть магнитное поле.
Движущийся заряд (или множество зарядов – в случае электрического тока в проводнике) создает вокруг себя «тоннель» из магнитного поля. Стенки этого «тоннеля» «плотнее» вблизи движущего заряда. Чем дальше от движущегося заряда, тем слабее напряженность («сила») создаваемого им магнитного поля. Тем слабее реагирует на это поле стрелка компаса.
Закономерность распределение напряженности магнитного поля вокруг его источника такая же, как закономерность распределения электрического поля вокруг заряженного тела – она обратно пропорциональна квадрату расстояния до источника поля.
Если положительно заряженный шарик перемещается по кругу, то кольца магнитных полей, образующихся вокруг него по мере его движения, суммируются, и мы получим магнитное поле, направленное перпендикулярно плоскости, в которой перемещается заряд:
Магнитный «тоннель» вокруг заряда оказывается свернутым в кольцо и напоминает по форме тор (бублик).
Такой же эффект получается, если свернуть в кольцо проводник с током. Проводник с током, свернутый в многовитковую катушку называется электромагнитом. Вокруг катушки складываются магнитные поля движущихся в ней заряженных частиц — электронов.
А если заряженный шарик вращать вокруг его оси, то у него появится магнитное поле, как у Земли, направленное вдоль оси вращения. В данном случае током, вызывающим появление магнитного поля, является круговое движение заряда вокруг оси шарика – круговой электрический ток.
Здесь, по сути, происходит то же самое, что и при движении шарика по кольцевой орбите. Только радиус этой орбиты уменьшен до радиуса самого шарика.
Все сказанное выше справедливо и для шарика заряженного отрицательно, но его магнитное поле будет направлено в противоположную сторону.
Данный эффект был обнаружен в опытах Роуланда и Эйхенвальда. Эти господа регистрировали магнитные поля вблизи вращающихся заряженных дисков: рядом с этими дисками начинала отклоняться стрелка компаса. Направления магнитных полей в зависимости от знака заряда дисков и направления их вращения, показаны на рисунке:
При вращении незаряженного диска, магнитные поля не обнаруживались. Не было магнитных полей и вблизи неподвижных заряженных дисков.
Модель магнитного поля движущегося заряда
Чтобы запомнить направление магнитного поля движущегося положительного заряда, мы представим себя на его месте. Поднимем правую руку вверх, затем укажем ею направо, затем опустим ее вниз, затем укажем влево и вернем руку в исходное положение – вверх. Затем повторим это движение. Наша рука описывает круги по часовой стрелке. Теперь начнем движение вперед, продолжая вращать рукой. Движение нашего тела – аналог движения положительного заряда, а вращение руки по часовой стрелке – аналог магнитного поля заряда.
Теперь представьте себе, что вокруг нас находится тонкая и прочная эластичная паутина, похожая на струны пространства, которые мы рисовали, создавая модель электрического поля.
Когда мы движемся сквозь эту трехмерную «паутину», из-за вращения руки, она, деформируясь, смещается по часовой стрелке, образуя подобие спирали, словно бы наматываясь в катушку вокруг заряда.
Сзади, за нами, «паутина» восстанавливает свою правильную структуру. Примерно так можно представлять себе магнитное поле положительного заряда, движущегося прямо.
А теперь попробуйте двигаться не прямо вперед, а по кругу, например, поворачивая при ходьбе налево, при этом вращая рукой по часовой стрелке. Представьте себе, что вы движетесь через нечто, напоминающее желе. Из-за вращения вашей руки, внутри круга, по которому вы движетесь, «желе» будет смещаться вверх, образуя горб над центром круга. А под центром круга, образуется впадина из-за того, что часть желе сместилось вверх. Так можно представлять себе формирование северного (горб сверху) и южного (впадина снизу) полюсов при движении заряда по кольцу или его вращения.
Если при ходьбе вы будете поворачивать направо, то «горб» (северный полюс) сформируется снизу.
Аналогично можно сформировать представление о магнитном поле движущегося отрицательного заряда. Только вращать рукой нужно в противоположную сторону – против часовой стрелки. Соответственно, магнитное поле будет направлено в противоположную сторону. Просто каждый раз следите за тем, в какой сторону ваша рука выталкивает «желе».
Такая модель наглядно демонстрирует то, почему северный полюс одного магнита притягивается к южному полюсу другого магнита: «горб» одного из магнитов втягивается во «впадину» второго магнита.
И еще эта модель показывает, почему не существуют отдельных северных и южных полюсов магнитов, как бы мы их не разрезали – магнитное поле представляет собой вихревую (замкнутую) «деформацию пространства» вокруг траектории движущегося заряда.
Спин
У электрона было обнаружено магнитное поле, такое, какое у него должно быть в том случае, если бы он был шариком, вращающимся вокруг своей оси. Это магнитное поле назвали спином (от английского to spin — вращаться).
Кроме того, у электрона существует еще и орбитальный магнитный момент. Ведь электрон не только «вращается», но движется по орбите вокруг ядра атома. А движение заряженного тела порождает магнитное поле. Так как электрон заряжен отрицательно, магнитное поле, вызванное его движением по орбите, будет выглядеть так:
Если направление магнитного поля, вызванного движением электрона по орбите, совпадает с направлением магнитного поля самого электрона (его спином), эти поля складываются и усиливаются. Если же эти магнитные поля направлены в разные стороны, они вычитаются и ослабляют друг друга.
Кроме того, могут суммироваться или вычитаться друг из друга магнитные поля других электронов атома. Этим объясняется наличие или отсутствие магнетизма (реакции на внешнее магнитное поле или наличие собственного магнитного поля) некоторых веществ.
Эта статья — отрывок из книги об азах химии. Сама книга здесь:
sites.google.com/site/kontrudar13/himia
UPD: Материал предназначен, в первую очередь, для школьников средних классов. Возможно, Хабр не место для подобных вещей, Но где место? Нет его.
Магнитное поле
Магнитное поле – особая форма материи, существующая вокруг движущихся электрических зарядов – токов.
Источниками магнитного поля являются постоянные магниты, проводники с током. Обнаружить магнитное поле можно по действию на магнитную стрелку, проводник с током и движущиеся заряженные частицы.
Для исследования магнитного поля используют замкнутый плоский контур с током (рамку с током).
Впервые поворот магнитной стрелки около проводника, по которому протекает ток, обнаружил в 1820 году Эрстед. Ампер наблюдал взаимодействие проводников, по которым протекал ток: если токи в проводниках текут в одном направлении, то проводники притягиваются, если токи в проводниках текут в противоположных направлениях, то они отталкиваются.
Свойства магнитного поля:
- магнитное поле материально;
- источник и индикатор поля – электрический ток;
- магнитное поле является вихревым – его силовые линии (линии магнитной индукции) замкнутые;
- величина поля убывает с расстоянием от источника поля.
Важно!
Магнитное поле не является потенциальным. Его работа на замкнутой траектории может быть не равна нулю.
Магнитным взаимодействием называют притяжение или отталкивание электрически нейтральных проводников при пропускании через них электрического тока.
Магнитное взаимодействие движущихся электрических зарядов объясняется так: всякий движущийся электрический заряд создает в пространстве магнитное поле, которое действует на движущиеся заряженные частицы.
Силовая характеристика магнитного поля – вектор магнитной индукции ( vec{B} ). Модуль вектора магнитной индукции равен отношению максимального значения силы, действующей со стороны магнитного поля на проводник с током, к силе тока в проводнике ( I ) и его длине ( l ):
Обозначение – ( vec{B} ), единица измерения в СИ – тесла (Тл).
1 Тл – это индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила 1 Н.
Направление вектора магнитной индукции совпадает с направлением от южного полюса к северному полюсу магнитной стрелки (направление, которое указывает северный полюс магнитной стрелки), свободно установившейся в магнитном поле.
Направление вектора магнитной индукции можно определить по правилу буравчика:
если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.
Для определения магнитной индукции нескольких полей используется принцип суперпозиции:
магнитная индукция результирующего поля, созданного несколькими источниками, равна векторной сумме магнитных индукций полей, создаваемых каждым источником в отдельности:
Поле, в каждой точке которого вектор магнитной индукции одинаков по величине и направлению, называется однородным.
Наглядно магнитное поле изображают в виде магнитных линий или линий магнитной индукции. Линия магнитной индукции – это воображаемая линия, в любой точке которой вектор магнитной индукции направлен по касательной к ней.
Свойства магнитных линий:
- магнитные линии непрерывны;
- магнитные линии замкнуты (т.е. в природе не существует магнитных зарядов, аналогичных электрическим зарядам);
- магнитные линии имеют направление, связанное с направлением тока.
Густота расположения позволяет судить о величине поля: чем гуще расположены линии, тем сильнее поле.
На плоский замкнутый контур с током, помещенный в однородное магнитное поле, действует момент сил ( M ):
где ( I ) – сила тока в проводнике, ( S ) – площадь поверхности, охватываемая контуром, ( B ) – модуль вектора магнитной индукции, ( alpha ) – угол между перпендикуляром к плоскости контура и вектором магнитной индукции.
Тогда для модуля вектора магнитной индукции можно записать формулу:
где максимальный момент сил соответствует углу ( alpha ) = 90°.
В этом случае линии магнитной индукции лежат в плоскости рамки, и ее положение равновесия является неустойчивым. Устойчивым будет положение рамки с током в случае, когда плоскость рамки перпендикулярна линиям магнитной индукции.
Содержание
- Взаимодействие магнитов
- Магнитное поле проводника с током
- Сила Ампера
- Сила Лоренца
- Основные формулы раздела «Магнитное поле»
Взаимодействие магнитов
Постоянные магниты – это тела, длительное время сохраняющие намагниченность, то есть создающие магнитное поле.
Основное свойство магнитов: притягивать тела из железа или его сплавов (например стали). Магниты бывают естественные (из магнитного железняка) и искусственные, представляющие собой намагниченные железные полосы. Области магнита, где его магнитные свойства выражены наиболее сильно, называют полюсами. У магнита два полюса: северный ( N ) и южный ( S ).
Важно!
Вне магнита магнитные линии выходят из северного полюса и входят в южный полюс.
Разделить полюса магнита нельзя.
Объяснил существование магнитного поля у постоянных магнитов Ампер. Согласно его гипотезе внутри молекул, из которых состоит магнит, циркулируют элементарные электрические токи. Если эти токи ориентированы определенным образом, то их действия складываются и тело проявляет магнитные свойства. Если эти токи расположены беспорядочно, то их действие взаимно компенсируется и тело не проявляет магнитных свойств.
Магниты взаимодействуют: одноименные магнитные полюса отталкиваются, разноименные – притягиваются.
Магнитное поле проводника с током
Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.
Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.
Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.
Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.
При изменении направления тока линии магнитного поля также изменяют свое направление.
По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.
Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.
Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.
В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.
Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.
Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.
Направление линий магнитной индукции катушки с током находят по правилу правой руки:
если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.
Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:
если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.
Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.
Сила Ампера
Сила Ампера – сила, которая действует на проводник с током, находящийся в магнитном поле.
Закон Ампера: на проводник c током силой ( I ) длиной ( l ), помещенный в магнитное поле с индукцией ( vec{B} ), действует сила, модуль которой равен:
где ( alpha ) – угол между проводником с током и вектором магнитной индукции ( vec{B} ).
Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ( B_perp ) входила в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец покажет направление силы Ампера.
Сила Ампера не является центральной. Она направлена перпендикулярно линиям магнитной индукции.
Сила Ампера широко используется. В технических устройствах создают магнитное поле с помощью проводников, по которым течет электрический ток. Электромагниты используют в электромеханическом реле для дистанционного выключения электрических цепей, магнитном подъемном кране, жестком диске компьютера, записывающей головке видеомагнитофона, в кинескопе телевизора, мониторе компьютера. В быту, на транспорте и в промышленности широко применяют электрические двигатели. Взаимодействие электромагнита с полем постоянного магнита позволило создать электроизмерительные приборы (амперметр, вольтметр).
Простейшей моделью электродвигателя служит рамка с током, помещенная в магнитное поле постоянного магнита. В реальных электродвигателях вместо постоянных магнитов используют электромагниты, вместо рамки – обмотки с большим числом витков провода.
Коэффициент полезного действия электродвигателя:
где ( N ) – механическая мощность, развиваемая двигателем.
Коэффициент полезного действия электродвигателя очень высок.
Алгоритм решения задач о действии магнитного поля на проводники с током:
- сделать схематический чертеж, на котором указать проводник или контур с током и направление силовых линий поля;
- отметить углы между направлением поля и отдельными элементами контура;
- используя правило левой руки, определить направление силы Ампера, действующей на проводник с током или на каждый элемент контура, и показать эти силы на чертеже;
- указать все остальные силы, действующие на проводник или контур;
- записать формулы для остальных сил, упоминаемых в задаче. Выразить силы через величины, от которых они зависят. Если проводник находится в равновесии, то необходимо записать условие его равновесия (равенство нулю суммы сил и моментов сил);
- записать второй закон Ньютона в векторном виде и в проекциях;
- решить полученную систему уравнений относительно неизвестной величины;
- решение проверить.
Сила Лоренца
Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.
Формула для нахождения силы Лоренца:
где ( q ) – заряд частицы, ( v ) – скорость частицы, ( B ) – модуль вектора магнитной индукции, ( alpha ) – угол между вектором скорости частицы и вектором магнитной индукции.
Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ( B_perp ) входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.
Если заряд частицы отрицательный, то направление силы изменяется на противоположное.
Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно.
В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.
Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:
где ( m ) – масса частицы, ( v ) – скорость частицы, ( B ) – модуль вектора магнитной индукции, ( q ) – заряд частицы.
В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:
Угловая скорость движения заряженной частицы:
Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы.
Если вектор скорости направлен под углом ( alpha ) (0° < ( alpha ) < 90°) к вектору магнитной индукции, то частица движется по винтовой линии.
В этом случае вектор скорости частицы можно представить как сумму двух векторов скорости, один из которых, ( vec{v}_2 ), параллелен вектору ( vec{B} ), а другой, ( vec{v}_1 ), – перпендикулярен ему. Вектор ( vec{v}_1 ) не меняется ни по модулю, ни по направлению. Вектор ( vec{v}_2 ) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости ( vec{v}_1 ). Частица будет двигаться по окружности. Период обращения частицы по окружности – ( T ).
Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору ( vec{B} ). Частица движется по винтовой линии с шагом ( h=v_2T ).
Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:
Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».
Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:
- сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
- изобразить силы, действующие на заряженную частицу;
- определить вид траектории частицы;
- разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
- составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
- выразить силы через величины, от которых они зависят;
- решить полученную систему уравнений относительно неизвестной величины;
- решение проверить.
Основные формулы раздела «Магнитное поле»
Магнитное поле
3.2 (64%) 120 votes
Магнитное поле — это поле, которое можно определить как пространство вокруг магнита, в котором действуют магнитные силы.
Как известно, электрический ток может оказывать различные действия, например, тепловые, химические и магнитные. Магнитное действие проявляется, например, в том, что между проводниками с электрическим током возникают силы взаимодействия, которые называются магнитными силами.
Магнитное взаимодействие
Еще в древности было замечено, что одни тела притягивают другие тела. Янтарь следует натирать, чтобы он притягивал к себе волосы или обрывки ткани, но магниты всегда притягивают, но только железные предметы. Древние люди также обнаружили, что магнит может заставить другое тело, сделанное из железа, приобрести магнитные свойства, если держать его достаточно близко к магниту. Они также заметили, что две стороны магнита имеют разные свойства — обращенные друг к другу магниты могут притягивать или отталкивать друг друга.
Уже в настоящее время мы знаем, что магнитное поле возникает между полюсами магнитного материала. Полюса бывают северными и южными. Вы, наверное, сами сталкивались с тем, что когда вы сводите два магнита вместе, они либо притягиваются, либо отталкиваются друг от друга. Это происходит потому, что магнитные полюса с разными названиями (север-юг) притягиваются, а полюса с одинаковыми названиями (север-север, юг-юг) отталкиваются.
Магнитное поле тела часто представляют в виде диаграммы линий поля. Если внести ферромагнитное тело в магнитное поле, оно выровняется вдоль линий поля. Ферромагниты — самые известные магниты, создающие постоянное магнитное поле.
Если мы поднесем некоторое количество железных скрепок к магниту, то заметим, что большинство скрепок скопятся на концах магнита (называемых полюсами), потому что магнитная сила там наибольшая. Однако в середине магнита она имеет наименьшее значение. Магнитные силы действуют в пространстве вокруг магнита и создают то самое магнитное поле.
Магнитное поле невидимо, но, используя железные опилки, вы можете наблюдать его эффекты (см. рисунок 1).
Эти линии показывают форму магнитного поля, которое возникло вокруг стержневого магнита.
Большая часть железных опилок скапливается возле полюсов, а остальные располагаются вдоль линий поля. Они представляют собой линии магнитного поля, которые окружают магнит. Железные опилки намагничиваются, т.е. приобретают магнитные свойства и становятся маленькими магнитами, которые притягивают друг друга.
Изображение линий магнитного поля для некоторых видов магнитов
Начнем с изображения силовых линий магнитного поля. Они используются для визуализации магнитного поля. Вне магнита линии поля всегда идут от северного полюса к южному. Поскольку магнитное поле является замкнутым полем, они должны двигаться с юга на север внутри магнита. Плотность линий поля дает информацию о силе магнитного поля; чем плотнее линии поля, тем больше напряженность магнитного поля.
Магнитное поле стержневого магнита
На рисунке 2 ниже показано магнитное поле стержневого магнита. Стержневой магнит является постоянным, и имеет северный и южный полюсы.
Если сравнить магнитное поле с электрическим, то вместо плюсового и минусового полюса есть северный и южный. На этом рисунке показан ход линий поля от северного до южного полюса. Здесь также видно, что плотность линий поля не является постоянной для стержневого магнита. На полюсах она выше, чем между полюсами. Это говорит о том, что магнитное поле сильнее непосредственно у полюсов, чем между полюсами.
Магнитное поле подковообразного магнита
Кроме стержневого магнита, существуют и другие формы постоянных магнитов. Одной из важных форм является подковообразный магнит, который может быть круглым или квадратным.
Как видите, магнитное поле внутри подковы однородно (см. рисунок 3). Однородность означает, что магнитное поле постоянно и не зависит от местоположения. Однородное магнитное поле на диаграмме линий поля можно распознать по параллельным линиям поля, расположенным на одинаковом расстоянии. Поэтому напряженность магнитного поля в однородном магнитном поле одинакова в каждой точке.
Магнитное поле двух стержневых магнитов
Давайте посмотрим на другой пример магнитного поля (см. рисунок 4 ниже):
Эти линии поля показывают, что два магнита с одинаковой полярностью отталкиваются друг от друга. Из этого можно сделать вывод, что одинаковые полюса отталкиваются, а разные полюса притягиваются.
Магнитное поле планеты Земля
Но какое отношение имеют полюса магнита к северу и югу Земли? Вы можете приблизиться к ответу, если спросите себя, как работает компас.
Земля также имеет магнитное поле (см. рисунок 5), начало которого лежит на полюсах, т.е. на северном и южном полюсах. Стрелка компаса представляет собой постоянный стержневой магнит и выравнивается по этому полю. При этом северная часть стрелки компаса притягивается к южному полюсу магнитного поля Земли. Поэтому географический юг лежит на магнитном севере.
Магнитное поле проводника с электрическим током
Когда вы рассыпаете мелкие металлические опилки вокруг магнита и проводника, по которому течет электрический ток, они образуют определенные геометрические фигуры. Вы уже знаете, что это явление вызвано магнитным полем, создаваемым магнитом. Будет ли то же самое с проводником?
Наличие магнитного поля можно проверить с помощью магнитной стрелки, которая, как известно, является частью компаса. Как мы знаем, магнитная стрелка имеет два полюса: северный и южный. Линию, которая соединяет полюсы магнитной стрелки называют осью. я осью. Кроме того, мы знаем, что северный полюс магнитной стрелки указывает на южный магнитный полюс, а южный полюс стрелки указывает на северный магнитный полюс.
Рядом с магнитом он выравнивается по силовым линиям магнитного поля и указывает на южный полюс. С помощью магнитной стрелки определяются положения магнитных полюсов Земли и географические направления. Возникает ли магнитное поле только вокруг магнитов и Земли? Чтобы выяснить это, нужно провести эксперимент, которые отражает взаимодействие проводника с электрическим током и магнитной стрелки.
Опыт Эрстеда.
Для того, чтобы провести опыт, расположим проводник, который включён в электрическую цепь источника тока, над магнитной стрелкой параллельно её оси (см. рисунок 6).
Отклонение магнитной стрелки возле проводника, по которому протекает электрический ток, указывает на наличие магнитного поля. Направление отклонения магнитной стрелки зависит от того, в каком направлении течет электрический ток. Эта связь была открыта Хансом Кристианом Эрстедом в 1820 году. Его опыт имел большое значение для развития учения об электромагнитных явлениях.
Таким образом можно вывести 3 следующих вывода:
- Магнитное поле существует вокруг любого проводника с электрическим током, т. е. вокруг движущихся электрических зарядов. Электрический ток и магнитное поле неразрывно связаны между собой.
- Направление силовых линий магнитного поля можно найти с помощью магнитной стрелки. Направление силовых линий магнитного поля зависит от того, в каком направлении течет электрический ток.
- Расположение силовых линий магнитного поля вокруг проводника с током зависит от формы проводника.
Поэтому вокруг неподвижных электрических зарядов существует только электрическое поле, а вокруг движущихся зарядов, т.е. электрического тока, существуют и электрическое, и магнитное поля. Магнитное поле возникает вокруг проводника, когда в нем возникает электрический ток, поэтому электрический ток следует рассматривать как источник магнитного поля. Выражения «магнитное поле электрического тока» или «магнитное поле, создаваемое электрическим током» следует понимать в этом смысле.
Перышкин А.В. Физика 8. – М.: Дрофа, 2010. [2]
Изменит ли изменение формы проводника форму магнитного поля?
Силовые линии магнитного поля вокруг проводника, скрученного в петлю, уплотняются внутри него. Если проволоку намотать много раз, мы получим катушку, и железные опилки будут располагаться так же, как и вокруг магнита (см. рисунок 7).
Электромагниты и их применение
Существование магнитного поля вокруг проводника с электрическим током широко используется в технике и промышленности. Часто используются устройства, называемые электромагнитами. Электромагнит состоит из катушки, сердечника и источника напряжения (см. рисунок 8).
Ферромагнитный сердечник электромагнита играет важную роль. Внутри него создаются магнитные поля, которые усиливают магнитное поле катушки.
Мелкие изделия из ферромагнитных материалов сильнее всего притягиваются полюсами электромагнита. Таким образом, можно сделать вывод, что магнитное поле вокруг электромагнита похоже на магнитное поле стержневого магнита.
Применение электромагнитов.
Электромагниты имеют различные применения. Например, на складах металлолома электромагнитные краны перемещают разбитые автомобили.
Также электромагниты используются в электрических замках. Когда электрический ток проходит через электромагнит, создается магнитное поле, которое сильно воздействует на металлическую (стальную) часть замка (ригеля). Это приводит к перемещению заслонки и открыванию двери. Когда дверь закрыта, соответствующим образом расположенная пружина перемещает ригель и блокирует замок. Замок можно открыть после повторного подключения электропитания.
Самые сильные электромагниты используются, в том числе, в ускорителях для управления движением частиц с высокой энергией. До недавнего времени магнитное поле, создаваемое токоведущими проводниками, управляло движением электронов в телевизионных кинескопах и компьютерных мониторах.
Список использованной литературы
- Сивухин Д. В. Общий курс физики. — Изд. 4-е, стереотипное. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — 656 с.
- Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.
Природа магнетизма
Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.
Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой — на ЮГ.
Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.
Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.
Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец — южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм «Южный парк», он же Сауз (South) парк).
Магнитные линии и магнитный поток
Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.
Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.
Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии — они замкнуты и непрерывны. В магните это будет выглядеть примерно так.
Если приблизить два разноименных полюса, то произойдет притягивание магнитов
Если же приблизить одноименными полюсами, то произойдет их отталкивание
Итак, ниже важные свойства магнитных силовых линий.
- Магнитные линии не поддаются гравитации.
- Никогда не пересекаются между собой.
- Всегда образуют замкнутые петли.
- Имеют определенное направление с севера на юг.
- Чем больше концентрация силовых линий, тем сильнее магнитное поле.
- Слабая концентрация силовых линий указывает на слабое магнитное поле.
Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.
Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке «а» или на рисунке «б»?
Видим, что на рисунке «а» мало силовых магнитных линий, а на рисунке «б» их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке «б» больше, чем на рисунке «а».
В физике формула магнитного потока записывается как
где
Ф — магнитный поток, Вебер
В — плотность магнитного потока, Тесла
а — угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах
S — площадь, через которую проходит магнитный поток, м2
Что же такое 1 Вебер? Один вебер — это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м2 расположенной перпендикулярно направлению магнитного поля.
Напряженность магнитного поля
Формула напряженности
Слышали ли вы когда-нибудь такое выражение: «напряженность между ними все росла и росла». То есть по сути напряженность — это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой
где
H — напряженность магнитного поля, Ампер/метр
B — плотность магнитного потока, Тесла
μ0 — магнитная постоянная = 4π × 10-7 Генри/метр или если написать по человечески 1,2566 × 10-6 Генри/метр.
PS.
Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.
где
μ — это относительная магнитная проницаемость.
У разных веществ она разная
Напряженность магнитного поля проводника с током
Итак, имеем какой-либо проводник, по которому течет электрический ток.
Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой
где
H — напряженность магнитного поля, Ампер/метр
I — сила тока, текущая через проводник, Ампер
r — расстояние до точки, в которой измеряется напряженность, метр
Магнитное поле проводника с током
Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.
Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.
Ввинчиваем по часовой стрелке — саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.
Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам — кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.
Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?
Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.
Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.
Соленоид
А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.
Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.
Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.
Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.
Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала — феррита.
Если в электрических цепях есть такое понятие, как ЭДС — электродвижущая сила, то и в магнитных цепях есть свой аналог — МДС — магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.
где
I — это сила тока в катушке, Амперы
N — количество витков катушки, штуки)
Также советую посмотреть очень простое и интересное видео про магнитное поле.
Похожие статьи по теме «магнитное поле»
Катушка индуктивности
Трансформатор
Электромагнитное реле
В этой статье тема «меняет ли магнитное поле на противоположное» с 9 интересными фактами будет кратко обсуждаться и пытаться прояснить тему.
Магнитное поле может меняться. С помощью изучения геологической летописи мы можем легко понять, что полярность магнитного поля может быть обратной. Полюса земли отодвигаются за последние годы 83 миллиона около 183 раз.
За последние 160 миллионов лет земные полюса Земли отодвигаются минимум 100 раз.
Когда отложения или лава затвердевают, они снова и снова сохраняют характер окружающего магнитного поля в определенный период отложения. Если стержень магнита состоит из двух частей, то полярность магнита с каждой стороны полностью изменится.
При малых размерах частицы магнита содержат собственные полюса на внутренней части магнита.
Что означает обращение магнитного поля?
Земля имеет два полюса на своем. Один из них — северное полушарие, а другой — южное полушарие. Если в методе Север превращается в Южный полюс, а Южный полюс переключается в Северный полюс, этот конкретный метод называется реверсированием магнитного поля.
Термин переполюсовки магнитного поля означает, что магнитное поле Земли меняется на перевернутую полярность. Инцидент инверсии магнитного поля возникает по причине нерегулярных интервалов во временном периоде геологического времени.
При инверсии магнитного поля магнитное поле стало слабее, но магнитное поле никогда не может исчезнуть с поверхности земли. Атмосфера и магнитосфера защищают поверхность Земли от заряженных частиц Солнца, а также от космических лучей.
Хотя небольшой спектр излучения от частиц может опускаться на поверхность земли.
Почему магнитное поле меняет направление?
Обратное магнитное поле может быть причиной более слабой силы.
Инверсия магнитного поля происходит, когда частицы железа при вращении Земли вокруг внешнего ядра начинают двигаться в направлении, противоположном направлению движения других частиц железа вокруг них.
Последнее земное поле магнитного реверса имело место около 780,000 10,000 раз назад. Период времени для поля магнитного реверса не столь специфичен. Возникновение поля обратного магнитного поля может происходить каждые 50 XNUMX лет или более, чем этот период времени, и время от времени каждые XNUMX миллионов раз или более.
Веским доказательством в случае инверсии магнитного поля является распространение морского дна. Мы можем наблюдать полярность магнитного поля Земли именно в горных породах. Распространение морского дна является подходящим свидетельством, по которому мы можем сказать, что юг земли стал полюсом севера, а Северный полюс стал Южным полюсом.
Как меняется магнитное поле?
Полярность земли может быть как нормальной, так и обратной. Значение нормальной полярности означает, что поле магнитного юга сообщается со стороны географического Южного полюса.
Термин перевернутое или перевернутое магнитное поле означает метод, который отвечает за превращение Южного полюса в Северный полюс, а Северный полюс стал Южным полюсом. Интересно, что магнитное поле иногда может поддерживать только странствие, а не обращение.
Это сила, которая двигает стрелку компаса. Во время странствий магнитное поле не переворачивается, но позже Земля снова может сама генерировать ту же полярность. Значит, Северный полюс остается Северным полюсом, а Южный полюс остается Южным полюсом.
Когда магнитное поле меняет направление?
Если изучить геологические записи, то они показывают, что последнее магнитное поле Земли перевернулось около 15 миллионов лет назад.
Магнитное поле земной разметки в космос наиболее напряженно к обоим полюсам северному и южному. Магнитное поле Земли переворачивается за такой короткий период времени, как 10000 лет, а иногда для переворота может потребоваться период времени до 25 миллионов лет.
Переворот магнитного поля Земли не считается опасным. Но обратно падающее магнитное поле слабее как магнитосферы, так и атмосферы. По этой причине солнечные частицы и космические лучи могут напрямую проникать как через магнитосферу, так и через атмосферу, что может вызвать проблемы в жизни Земли, если солнечные частицы и космические лучи слишком сильно достигают поверхности земли.
Меняет ли магнитное поле свое направление?
Земля никогда не может быть потеряна своим магнитным полем.
Да, в случае обращения магнитного поля Земли направление будет обратным. Термин «обратное магнитное поле» объясняет, что его направление означает, что северный полюс земли превращается в южный полюс, а южный полюс превращается в северный полюс.
Вращение Земли является причиной того, что плавучая жидкость поднимается по искривленным траекториям, что может создать новое магнитное поле путем сдвига и скручивания существующего магнитного поля. Когда в это время магнитное поле меняется на противоположное, магнитное поле Земли становится очень слабым, но величина магнитного поля никогда не может исчезнуть.
Магнитное поле:-
Магнитное поле может быть получено как; ситуация, которую можно наблюдать в области вокруг электрического тока или магнита по состоянию кабеля передачи данных о емкости магнита в каждой точке этой области и по состоянию магнитных полюсов.
Единицей СИ для магнитного поля является Ньютон на метр на ампер или Тесла. Размерная формула для магнитного поля: M1T2I-1
Кредит изображения — Википедия
Формула магнитного поля:-
Формула магнитного поля переносится постоянной,
постоянная,
определяют как проницаемость свободной области. Постоянная
значение,
Тесла-метр на ампер.
Итак, величина магнитного поля может быть выражена как
Величина поля магнитного =
Вывод формулы магнитного поля:
B обозначается как величина магнитного поля, а единицей измерения является Тесла.
обозначается как проницаемость свободной площади, а единицей измерения является Тесла-метр на ампер.
I обозначается как величина электрического тока, а единицей измерения является Ампер.
r обозначается как Расстояние, а единицей измерения является метр.
Разница между нормальным и обратным магнитным полем:
Основное различие между обычным магнитное поле а обратное магнитное поле — это значение средств нормальной полярности, когда поле магнитного юга сообщается со стороны географического Южного полюса, а поле магнитного севера сообщается со стороны географического Северного полюса.
С другой стороны, значение обратного магнитного поля означает, что Северный полюс превращается в Южный полюс, а Южный полюс превращается в Северный полюс.
Сколько времени требуется, чтобы магнитное поле Земли изменило свое направление?
Инцидент магнитного реверса не происходит за одну ночь. Земле требуется время, чтобы обратить магнитное поле вспять от сотен до тысяч лет.
Точный период времени неизвестен. Никто не может сказать подходящее время для изменения магнитного поля Земли. Минимальное время, необходимое Земле для изменения магнитного поля, составляет около 10 сотен лет, а максимальное время, необходимое Земле для изменения магнитного поля, составляет около 25 миллионов лет.
За ушедшие 200 лет магнитное поле Земли на девять процентов слабее в среднем по миру.
Характеристики силовых линий магнитного поля:
Некоторые основные характеристики силовых линий магнитного поля перечислены ниже.
- Силовые линии магнитного поля никогда не пересекаются друг с другом.
- Касательные, протянутые к силовым линиям магнитного поля, образуют точку компаса магнитного поля.
- Линии магнитного поля образуют замкнутую петлю.
- Плотность магнитных силовых линий прямо пропорциональна силе магнитного поля.
- Любые магниты внутри силовых линий магнитного поля идут от направления Южного полюса к направлению Северного полюса.
- Линии магнитного поля имеют как величину, так и направление в любой части магнитного поля, именно по этой причине линии магнитного поля являются векторными.
- Силовые линии магнитного поля указывают направление магнитного поля.
- Как на северном, так и на южном полюсах магнитное поле стало более сильным, причина этого в том, что силовые линии магнитного поля более плотны, когда они расположены на этих полюсах.
Когда в последний раз магнитное поле менялось?
В последний раз магнитное поле перевернулось около 780,000 15 лет назад. В этот конкретный период времени Земля перевернула свое магнитное поле примерно XNUMX раз.
Согласно текущему докладу Модель WMM (Мировая магнитная модель), в 2020 году положение северного магнитного полюса будет 86.50 градуса северной широты и 164.04 градуса восточной долготы, а южного полюса — 64.07 градуса южной широты и 135.88 градуса восточной долготы.
Кредит изображения — Википедия
Что произойдет, если северный и южный полюсы поменяются местами?
Если Северный полюс и Южный полюс поменять местами, то несколько магнитных полей будут бороться друг с другом. Инцидент с магнитным переворотом может ослабить защитное магнитное поле до 90 процентов. Основная цель магнитного поля Земли — защитить всю жизнь от солнечных частиц и космических лучей.
Но в случае ослабления магнитного поля частицы солнечных и космических лучей напрямую попадают на поверхность земли, что может привести к повреждению клеток, раку электронных схем, а также к износу электрических сетей.
Вывод:
Магнитное поле Земли является обратным именно потому, что взбалтывание совершает подобное конвекции, которая производит электрический ток, и по этой причине в результате генерируется магнитное поле. Это магнитное поле защищает большую часть обитаемых частей Земли от заряженных частиц, исходящих из космоса, в основном от Солнца. Поле обменивает ускоряющиеся частицы в направлении полюсов земли.