Как изменить направление вращения 3х фазного двигателя

Для электродвигателя режим работы с периодическим изменением направления вращения (реверсирование) является наиболее благоприятным. По той причине, что

Для электродвигателя режим работы с периодическим изменением направления вращения (реверсирование) является наиболее благоприятным. По той причине, что ликвидируется паразитное намагничивание, вызывающее перегрев и потерю мощности электрической машиной. Кроме того, схемы реверсивного пуска намного проще, чем механические трансмиссии, состоящие из системы зубчатых шестерней. Наибольшее число вопросов вызывает способ изменения направления вращения двигателей переменного тока, ведь изменить полярность питающего напряжения невозможно. В этой статье мы представим вам основные схемные решения для запуска асинхронных и коллекторных электродвигателей, в которых предусмотрена возможность их реверсирования.

Реверс трехфазных асинхронных машин

Направление движения вращающегося магнитного поля асинхронных электродвигателей зависит от порядка подачи фаз, независимо от того как соединены его статорные обмотки – звездой или треугольником. Например, если фазы A, B, C подать на входные клеммы 1, 2 и 3 соответственно, то вращение пойдет (предположим) по часовой стрелке, а если на клеммы 2, 1, и 3, то против нее. Схема подключения через магнитный пускатель избавит вас от необходимости откручивать гайки в клеммной коробке и производить физическую перестановку проводов.

Трехфазные асинхронные машины на 380 вольт принято подключать магнитным пускателем, в котором три контакта находятся на одной раме и замыкаются одновременно, подчиняясь действию так называемой втягивающей катушки – магнитного соленоида, работающего как от 380, так и от 220 вольт. Это избавляет оператора от близкого контакта с токоведущими частями, что при токах свыше 20 ампер может быть небезопасно.

Для реверсивного пуска используется пара пускателей. Клеммы питающего напряжения на входе соединяются по прямой схеме: 1–1, 2–2, 3–3. А на выходе встречно: 4–5, 5–4, 6–6. Чтобы избежать короткого замыкания при случайном одновременном нажатии двух кнопок «Пуск» на пульте управления, напряжение на втягивающие катушки подается через дополнительные контакты противоположных пускателей. Так, чтобы при замкнутой основной группе контактов линия, которая идет на соленоид соседнего прибора, была разомкнута.

На пульте управления устанавливается трехкнопочный пост с однопозиционными – одно действие за одно нажатие – кнопками: одна «Стоп» и две «Пуск». Разводка проводов в нем следующая:

  • один фазный провод подается на кнопку «Стоп» (она всегда нормально замкнута) и перемычками с нее на кнопки «Пуск», которые всегда нормально разомкнуты.
  • С кнопки «Стоп» два провода на дополнительные контакты пускателей, которые при их срабатывании замыкаются. Так обеспечивается блокировка.
  • С кнопок «Пуск» перекрестно по одному проводу на дополнительные контакты пускателей, которые при их срабатывании размыкаются.

Подробнее о схемах подключения магнитных пускателей для трехфазных электродвигателей читайте здесь.

Использование схемы «звезда-треугольник»

Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей, устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

Реверс однофазных синхронных машин

Для запуска этим моторам необходима вторая обмотка на статоре, в цепь которой включен фазосдвигающий элемент, обычно бумажный конденсатор. Реверсировать можно только те, у которых обе статорных обмотки равнозначны – по диаметру провода, числу витков, а также при условии, что одна из них не отключается после набора оборотов.

Суть схемы реверсирования в том, что фазосдвигающий конденсатор будет подключаться то к одной из обмоток, то к другой. Для примера рассмотрим асинхронный однофазный двигатель АИРЕ 80С2 мощностью 2,2 кВт.

В его клеммной коробке шесть резьбовых выводов, обозначенных литерами с цифрами W2 и W1, U1 и U2, V1 и V2. Чтобы двигатель вращался по часовой стрелке, коммутация производится следующим образом:

  • Сетевое напряжение подается на клеммы W2 и V1.
  • Концы одной обмотки соединяются с клеммами U1 и U2. Чтобы ее запитать, они соединяются перемычками по схеме U1–W2 и U2–V1.
  • Концы второй обмотки подключают к клеммам W2 и V2.
  • Фазосдвигающий конденсатор подключают к клеммам V1 и V2.
  • Клемма W1 остается свободной.

Обзор конструкции

Три основные составляющие двигателя – ротор, статор и корпус. Кожух обеспечивает защитные функции, предупреждает повреждения на статоре и роторе. Также позволяет закрепить подвижную, стационарную часть асинхронной машины.

Статор размещен неподвижно в двигателе, содержит станину и магнитопровод. Под воздействием пресса магнитный проводник фиксируется к станине и формирует электромагнитное ядро. Магнитное поле, создаваемое в ядре, беспрерывно вращается. Тонкие листы магнитопровода выполнены из электротехнической листовой стали, крепление пластин способствует образованию пазов и зубцов статора. Шихтованный сердечник, выступающий дополнительным элементом статора, также создан из статорных пластин. Листы сердечника соединяются сваркой, прессом и кольцевыми шпонками – аналогично образован магнитопровод.

Обмотка ротора представлена короткозамкнутыми кольцами, внешне напоминающими колеса беличьих клеток. Включает латунные или медные стержни, приваренные к короткозамкнутым кольцам на торцах. Кольца вбиты в пазы. Статор и ротор разделен воздушной прослойкой.

Обмотка двигателей с фазным ротором в начале изолирована, концы припаяны к контактным кольцам, позволяющим подключить пуско-регулирующий реостат. Цепь ротора получает дополнительное сопротивление, дает возможность регулировать частоту вращения и уменьшения пусковых токов.

Строение асинхронного двигателя

Реверс коллекторных двигателей

Схема включения его обмоток аналогична той, что используется в двигателях постоянного тока с последовательным возбуждением. Одна токоснимающая щетка коллектора подключается к обмотке статора, а питающее напряжение подается на другую щетку и второй вывод статорной обмотки.

При изменении положения штепсельной вилки в розетке происходит одновременная переполюсовка магнитов ротора и статора. Поэтому направление вращения не изменяется. Так же, как это происходит в двигателе постоянного тока при одновременном изменении полярности питающего напряжения на обмотке возбуждения и якоря. Изменить порядок следования фаза – ноль надо только в одном элементе электрической машины – коллекторе, который обеспечивает не только пространственное, но электрическое разделение проводников – обмотки якоря изолированы друг от друга. На практике это выполняется двумя способами:

  1. Физической переменой места установки щеток. Это нерационально, поскольку связано с необходимостью внесения изменений в конструкцию устройства. Кроме того, приводит к преждевременному выходу щеток из строя, поскольку форма выработки на их рабочем конце не совпадает с формой поверхности коллектора.
  2. Изменением положения перемычки между щеточным узлом и обмоткой возбуждения в клеммной коробке, а также точки подключения сетевого провода. Можно реализовать с помощью одного многопозиционного выключателя или двух магнитных пускателей.

Не забудьте, что все работы по перестановке перемычек в клеммной коробке или подключению схемы реверсирования должны проводиться при полностью снятом напряжении.

Почему не изменяется вращение электродвигателя при замене двух фаз?

Потому что пусковой момент асинхронного двухфазного двигателя с симметричной обмоткой равен нулю.

Обмотка двухфазного асинхронника состоит из двух — пусковой и рабочей, и они создают два магнитных момента, конструктивно смещенных один относительно другого. В пусковой обмотке может стоять конденсатор, он же и обеспечивает сдвиг фазы. Если его переставить в рабочую обмотку, то направление вращения изменится. Только вот рабочая обмотка рассчитана на больший ток. Ведь в цепи пусковой обмотке стоит сопротивление, которое, опять же обеспечивает сдвиг фаз тока нужный для пускового момента. Направление вращения вы таким образом измените, но долго он так не проработает.

Бывалые электрики расскажут вам, что трехфазник (он симметричен) можно запустить «шворкой» намотав шнур на вал и резко дернув за него. То есть создав пусковой внешний момент .

Асинхронный электродвигатель может быть подключен к сети несколькими способами:

  • непосредственно от трехфазной сети (в этом случае нужно поменять местами любые два из трех фазных проводов местами);
  • электродвигатель питается при помощи конденсатора от однофазной сети (здесь нам нужно отключить вывод конденсатора, который соединяется с одним из проводов, который питает его, а затем переключить на другой);
  • электродвигатель питается при помощи трехфазного инвертора (тут лучше довериться инструкции по применению).

Все манипуляции нужно проводить, конечно, когда электродвигатель отключен от сети.

Изменение направления вращения в асинхронном двигателе переменой двух фаз в обмотках возможно только для ТРЁХФАЗНЫХ двигателей (предназначенных для включения в трёхфазную сеть)!

Главный принцип изменения направления асинхронного двигателя-это изменение направления вращения

Однофазные асинхронные двигатели имеют несколько принципов создания вращающегося магнитного поля.

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.

Подписка на рассылку

Чтобы механизмы на производстве или в быту, будь-то дерево или металлообрабатывающие станки, консольный насос, конвейерная лента, кран-балка, заточной станок, электрическая газонокосилка, кормоизмельчитель или другое устройство работали без поломок, необходимо, в первую очередь, чтобы вал электродвигателя вращался в правильную сторону.

Во избежание ошибок и не допуска вращения вала механизма в противоположную сторону согласно пункту 2.5.3 «Правил технической эксплуатации электроустановок потребителей» на корпусе самого механизма и приводном двигателе должны быть нанесены стрелки направления вращения электродвигателя.

Направление вращения вала электродвигателя

Правостороннее вращение

Для однофазных двигателей с короткозамкнутым ротором вращение вала по часовой стрелке будет выполняться при условии, когда фаза будет подаваться на конец рабочей обмотки.

Изменение направления вращения вала в трехфазных электродвигателях

Эксплуатация некоторых механизмов требует левостороннего вращения вала. Зная, как изменить направление вращения электродвигателя, это можно сделать без какой-либо доработки или переделки самого приводного двигателя. Для смены направления движения нужно:

  • обесточить электродвигатель;
  • снять крышку клеммной коробки;
  • переставить жилы силового кабеля в соответствие со схемой изображенной на рис. 3: жилу с изоляцией черного цвета (L3) переподключить на контакт V1 в клеммной коробке, а жилу коричневого цвета (L2) на контакт W1.

Если эксплуатация двигателя требует постоянного переключения двигателя с правостороннего вращения на левостороннее, его подключение осуществляют по специальной схеме,

Защита электродвигателей

Автоматы защиты электродвигателя трёхфазного предохраняют от тока короткого замыкания, от длительных перегрузок, от дисбаланса фаз в электропитании или внутри электродвигателя. Это приводит к перегреву двигателя и к отказам в работе. Защитное устройство автоматически отключит двигатель при появлении нештатной ситуации.

Часто применяется защита электродвигателя при помощи универсальных мотор-автоматов. Эти устройства имеют модульную конструкцию и управляют работой силовых контакторов, а некоторые мотор-автоматы разрешают точно регулировать параметры защитного отключения.

При выборе асинхронных машин и в процессе их эксплуатации следует учитывать характеристики асинхронного электродвигателя. Только при этом условии можно добиться наиболее эффективного использования установки.

Содержание:

  1. Условные обозначения на схемах
  2. Схема прямого включения электродвигателя
  3. Схема подключения электродвигателя через магнитный пускатель
  4. Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)

О том как подключить трехфазный электродвигатель в однофазную сеть вы можете посмотреть здесь.

ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными.

  1. Условные обозначения на схемах

условные обозначения на принципиальной электрической схеме подключения электродвигателя

Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.

магнитный пускатель на принципиальной электрической схеме

У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.

Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.

В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).

приставка с блок-контактами для контактора

Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.

двухкнопочный и трехкнопочный пост

Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».

кнопки на принципиальной электрической схеме

  1. Схема прямого включения электродвигателя

схема прямого включения электродвигателя

Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.

Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.

  1. Схема подключения электродвигателя через магнитный пускатель

схема подключения электродвигателя через пускатель

Эту схему так же часто называют схемой простого пуска электродвигателя, в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.

При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2  ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.

  1. Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)

Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:

как изменить направление вращения трехфазного электродвигателя

При необходимости  частой смены направления вращения электродвигателя применяется реверсивная схема подключения электродвигателя:

реверсивная схема подключения электродвигателя

В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.

При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку  «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.

Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели.


Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

↑ Наверх

Для изменения направления электронного мотора понадобится две схемы и возможность это сделать несколькими способами, такая процедура не сложная по применению и займет немного времени. Замена направления вращений в трехфазном движке в применении очень просто.

Изменение направления вращающегося двигателя с тремя фазами просто и быстро, способы применения

Состав статьи:

  •         Принцип работы трехфазного асинхронного мотора
  •         Определение вращения
  •         Переменная сеть 380 к 220 вольт
  •         Реверсирование трехфазных инструментов
  •         Реверсирование однофазных синхронных инструментов
  •         Реверс коллекторных моторов
  •         По какой причине измена вращения электродвигателя не произошло?
  •         Изменение направления вала в трехфазных инструментах
  •         Переподключение рабочей намотки
  •         Переподключение пусковой намотки

Трехфазный мотор

Наиболее часто используемый электродвигатель с короткозамкнутой обвивке ротора, или иными словами беличье колесо. Представляет собой прибор измененного потока, который состоит из статора и тремя витками, в котором магнитные поля сдвинуты на 120 градусов и при подаче 3х фазного напряжения образуется циркуляция магнитного поля в магнитной цепи машины мотора, а ротор – вращается только с такой же скоростью что и статор. Определяют синхронный или асинхронный с помощью разворотов, если ротор двигается так как и статор то это синхронный мотор, но если ротор медленнее статора то уже асинхронный. Асинхронный более используемый.

Наиболее благоприятным периодом работы двигателя трех фаз является изменение круговорота. Другими словами реверсирование. Из-за того, что ликвидируется намагничивание электрических полей и аппарат перегревается и идет утечка мощности машины. Более, схемы реверсирования запуска в применении легче чем трансмиссии на механике (которые состоят из зубчатых шестерней). Но очень много нюансов происходит при изменение направления тока, ведь самую полярность вращений питания невозможно.

Принцип работы трехфазного асинхронного мотора

Для включения асинхронного мотора в сеть нужно соединить клетень звездой или треугольником. На выводе может быть не написано маркировка прибора, что очень важно, то нужно самому определить начало и конец витков.

При запуске обмоток статора в асинхронном аппарате трех фаз изменчивого тока образовывается магнитное поле, с регулированием частоты цикла n1.

Движущееся магнитное поле задевает так как и клетень статора и ротора, и индуцирует на них ЭДС. В обмотке наводится ЭДС самоиндукции, которая идет навстречу напряжению сети и ограничивает количество тока в коробке.

Обвивка ротора должна быть замкнута коротко у двигателей с короткозамкнутым ротором, или из-за сопротивления у электрических моторах с фазным ротором. Это значит, что с действием ЭДС (Е2) появляется ток. Взаимодействие индуцируемого потока в роторе, с движущемся магнитным полем, создает электромагнитную силу Фэм.

Направление фэм силы можно находить по правилу левой руки.  К примеру:

Полюса магнитного поля асинхронного мотора вращаются против часовой стрелки. В другом моменте они также будут в другом положении. (рис 1)

Токи на рисунке в виде крестиков и точек. Крестик это когда ток от вас направлен. И если точка, то в вашу сторону. Пунктиром нарисованы силовые линии магнита поворотов в поле статора. Ладонь нужно так положить, чтобы эти силовые магниты входили в ладонь. Четыре пальца должны быть направлены в сторону потока в обвивке. А большой палец поднятый вверх (как обычно) покажет направление фэм потока для конкретного проводника.

Определение вращения

Для идентификации циркуляции мотора важно со стороны одного конца вала. Если же в нем есть две стороны, то берется вал с диаметром больше чем первый. Согласно техническим правилам, правое направление в сторону часовой стрелки. У наиболее используемых трехфазных моторчиках с короткозамкнутым ротором обороты в правую сторону будут создаваться, если последовательность подачи напряжения на концах стартовой виток будет в соответствии их маркировке.

Изменная сеть 380 к 220 вт

Чтобы подсоединить трехфазный асинхронного аппарата к 220 нужно задействовать такой же или несколько триммеров для компенсирования пустой фазы. Ориентирование будет зависит от соединения третьей клетени, каким способом она сделается.

Чтобы задействовать циркуляция в противоположную сторону желательно третью проводку вмонтировать к тумблеру конденсатора на двух позициях. В нем будет два коммуникации, составлены между собой первой и второй намоткой.

При таком подходе три фазы будут в роли однофазного моторчика, поелику подключились с одинакового шнура. Для запуска данного агрегата надобно перевести тумблер оборотов в необходимое направление вперед или назад. Далее его запуск положить в позицию «включен». Мгновение пуска за необходимости ткнуть пальцем кнопку. Держать не более три секунды, этого достаточно.

Реверсирование трехфазных инструментов

Курс ритма вращающегося поля магнитов асинхронных двигателей прямо пропорционально от последовательности подачи сизигии, в независимости от тактики соединения статорных обмоток. Тем, кто уже сталкивался с такой темой, уже известно, что имеется две манипуляции совмещения обмоток – звезда и треугольник.

К примеру, фазы А, Б, В подаются на входные клеммы 1, 2, 3 один к одному, в итоге циркуляция пусть будет в сторону часовой стрелки, а если соответственно на клеммы 2,1,3 то будет против стрелки идти. Такой способ с пускателем не нуждается в дополнительных действий, как это откручивание гаек в коробке и вручную переставлять провода клемм.

Трехфазные асинхронные двигатели на 380 Вт собственно соединять магнитным пускателем,  в нем три допустимых контакта расположены на одной раме и замыкаются вместе. Они как бы выполняют действия которые задает им катушка – соленоида, также магнитная. Работает она как и на 380 и на 220 вольт. Это избавит человека от коммуникацией с напряжением, так как оно опасно.

Для пуска реверса тока используют несколько переходников. Клеммы давления питания соединены по порядочной системе сначала: один к одному, два к двум и далее. А на выходе встречным путем: четыре – пять, пять-четыре. Для обхода пробоя изоляции, если при нажатии на две кнопки одновременно, сила на втягивающей катушке подсоединяется с помощью дополнительных контактов противоположных пускателей. Требовательно при замкнутых контактах основной группы, линия идущая на соленоид дополнительного аппарата была разомкнута.

На пульте устанавливается пост на три потока с одной позицией – одно нажатие с одним действием кнопками. Первая кнопка «остановка» и две «запуск». Разъем шнура такой:

  •         Кабель на кнопке стоп (нормально замкнутая должна быть все время) а ее перемычки на пуск (нормально разомкнута все время).
  •         Со «стопа» два кабеля переводится на дополнительные контакты пускателей, которые замыкаются на старте: так они блокируют мотор.
  •         Кнопкой пуск по одному проводу на крест проводится дополнительные контакты, которые при старте размыкаются.

Реверсирование однофазных синхронных инструментов

Для пуска такого мотора нужно иметь вторую обвивку на статоре, далее важно подключить в цепь фазосдвигающий фрагмент как бумажный конденсатор. Реверсирование происходит только там, где обе клетени однозначные – диаметр проводов, количество витков, и они не должны отключатся после пуска оборотов.

Схема реверсирования такова: фазовый конденсатор будет переподключаться к каждой из витков по очереди. Пример двигателя силой в 2,2 кВт. (рис 2)

В клеммной коробке есть шесть выводов. Чтобы задать мотору обращения, нужно:

  •         На клеммы W2 и V1 направить сетевое напряжение
  •         Конец одной из обмоток крепится к клеммам U1 и U2, и чтобы они подпитывались их соединяют перемычками.
  •         Концы второй обмотки соединяют с клеммами W2 и V2.
  •         Движущий конденсатор подключают к клеммам V1 и V2. W1 остается сама.

Чтобы мотор вращался в обратную сторону, надо изменить положение перемычек. Схема автоматического реверсирования также осуществляется на двух магнитных пусках и трех кнопках. Две из них должны быть нормально разомкнуты для запуска, а одна нормально замкнута для остановки.

Реверс коллекторных моторов

Аналогична схема как и в постоянном токе с последовательным пробуждением. Одна щетка для снятия тока коллектора соединяется к клетени ротора, а напряжение исходит на другую щетку и вывод статорной обвивке.

Переполюсовка ротора и статора будет одновременной если изменить положение штепсельной вилки розетки. Направление не меняется из-за того. Тоже и происходит в двигателе непрерывного тока при одновременном перемене полярности питания на клетени напряжения и якоря. Изменение порядка (фаза – ноль) желательно только в случае электронного оборудования когда коллектор обеспечивает и пространственное и электрическое разделение проводников. Якорные витки изолированы. Есть два типа применения:

  •         Изменение местоположения щеток физическим способом. Нерационально, так как изменения вносятся в конструкцию принудительно. Может вывести из строя щетки прибора, так как рабочая форма не будет совпадать с поверхностной нормой.
  •         Измена положения перемычки с узлом между щеткой и витках в клеммной коробке возбуждения. Также и точки сетевого кабеля. Можно сделать с многопозиционного выключателя или двух пускателей с магнитом

Нельзя забывать, что работоспособность из-за перекомпоновке в коробке клемм, или соединение по схемам реверса должны выполняться без напряжения, аппарат должен быть строго выключен.

По какой причине измена вращения электродвигателя не произошло?

Через то, что момент запуска асинхронного мотора с симметричной обвивке равносильно нулю. Асинхронный моторчик важно подсоединить в такой соответственности:

  •         От трехфазной сети ( меняется местами любые из трех проводов между собой)
  •         Мотор берет силу из триммера 1 фазной сети ( вывод конденсатора отключается, он соединяется с любым проводом и питает его, затем переключается на следующий)
  •         Электромотор питается от инвертора 3х фаз ( тут желательно работать с инструкцией, довольно сложный механизм).
  •         Работу по перемене циркуляции можно делать только когда агрегат не подключен ни к чему.

Поэтому, замена направления оборотов делается только для трехфазных двигателей предназначенных для трехфазной сети. Принципом смены вращения в асинхронном двигателе это смена его направления.

Перемена положения вала в трехфазных инструментах

Для некоторых аппаратов эксплуатация возможна с помощью левостороннего круговорота. Для замены нужно:

  •         Выключить двигатель, должен быть без какого либо питания
  •         Забрать крышку с клеммной коробки
  •         На силовом кабеле переставить местами жилы. Изоляционную черного цвета (3) переставить на контакт V1 в клеммах, а коричневый провод на (2) на контакт W1.

Но если двигатель хочет постоянно переключаться с права налево оборотов, то нужно это сделать по схеме.

Перемена циркуляции с короткозамкнутым ротором

Асинхронные двигатели с короткозамкнутым статором включать в постоянный ток не требуется, потому что для роторного оборотов нужно магнитное поле в движении которое создает неизменный поток. Неизменный же ток не может задать вращения магнитам. Из этого исходит что лучше включить в сеть простой коллекторный двигатель ( такой как ручной электроинструмент).

Для этого надо только поменять обмоточные данные (перемотку) полюсов в якоре так как при работе намотки на переменчивом токе, кроме сопротивления) есть индуктивное сопротивление также. На постоянном потоке индуктивный отпор не присутствует и вообще он в витках будет равен активному противодействию.

А вот движок с неизменным током и предварительно измененными данными намотки не будет работоспособным на переменном потоке. Его полюса сделаны из изолированных листов металлической электрической стали. При потоке меняющегося тока обмотки в массивном полюсе, будет создаваться вихор, он в свою очередь заставляет прибор нагревается, его клетени и полюса.

Переподключение рабочей намотки

Для изменения направления смены маршрута можно только поменять местами конец и начало рабочей ветки. МОжно сообразить что для этого нужно открывать корпус и раскручивать намотку. Но это не обязательно, можно все сделать снаружи

  •         Четыре провода исходящие их корпуса это начала рабочей и пусковой намотки. Два из них начало, а два конці. Желательно обозначить какие будут для рабочих проводов.
  •         К этой паре будут присоединены два полюса, фаза и ноль. При выключенном моторе реверсирование нужно сделать методом постановления фазы с одного контакта намотки на конечный, а ноль – с конечного на первую или тот, что напротив.
  •         По итогу выходит система, где точки меняются между собой местами. В такой способ ротор будет двигаться в обратном положении.

Переподключение пусковой намотки

При подключении пусковой намотки асинхронный двигатель будет вращаться в противоположную сторону. Он возможен если в движке присутствуют отдельные отводы работающей и пусковой намотки, тогда и будет реально сделать замену движения.

В двигателе есть концы обмоток, к примеру А и Б, два провода соединены между собой внутри механизма. Тогда в нем есть три вывода вместо четырех. Для такого прибора можно поменять оборотов поменяв местами рабочую и пусковые обвивки.

Заключение:

  •         Изменение направления кружений двигателей постоянного тока исходит путем замены направления токов в обмотке якоря или путем изменения в витке возбуждения.
  •         Одновременно в обоих приборах измена не совершится, нужно выбрать один из вариантов.
  •         Для двигателей с большой мощностью изменение возможно с дополнительным аппаратом контроллер.
  •         При дистанционном управлении для перемены поворотов, двигатель оснащают реверсивным магнитным пускателем.
  •         Направление в роторе зависит от направления полей в статоре. Чтобы изменить их в статоре, меняют местами два провода, которые подойдут к статорной намотке.
  •         Реверсирование с параллельным или смешанным возбуждением делается с помощью перемены стороны тока в обвивке якоря. С последовательным возбуждением либо в обмотке якоря либо в возбуждения.

Как изменить направление вращения асинхронного двигателя

Асинхронный электродвигатель может вращаться как по часовой стрелке, так и против нее. Все зависит направления вращения магнитного поля вокруг статора. Существуют различные способы его изменения.

Как изменить направление вращения асинхронного двигателя

Инструкция

Независимо от того, каким образом асинхронный электродвигатель подключен к сети, отключите питание устройства, в котором он установлен. При наличии высоковольтных конденсаторов разрядите их перед прикосновения к любым деталям устройства.

Обязательно убедитесь в том, что изменение направления вращения не повлечет за собой выход из строя или ускоренный износ устройства, в состав которого входит электродвигатель.

Ни в коем случае не меняйте способ подключения двигателя (треугольник на звезду или наоборот), поскольку напряжение его питания не изменится, тем более, что направление его вращения зависит вовсе не от них.

Если двигатель питается непосредственно от трехфазной сети, поменяйте местами любые два из трех идущих к нему фазных проводов.

Если трехфазный двигатель питается от однофазной сети через конденсатор, вначале обязательно убедитесь в том, что нагрузка на его валу мала, и что при изменении направления вращения она не возрастет. Помните, что возрастание нагрузки при таком способе питания может привести к остановке двигателя с последующим его возгоранием. Затем тот вывод конденсатора, который соединен не с двигателем, а с одним из питающих проводов, отключите от него и переключите на другой питающий провод. Если имеется второй, пусковой конденсатор, с ним проделайте то же самое (сохранив включенную последовательно с ним пусковую кнопку).

В случае, если двигатель питается через трехфазный инвертор, никаких переключений не производите. Узнайте из инструкции к прибору, как осуществить реверс (перестановкой джампера, нажатием кнопки, изменением настроек через меню или особой комбинацией клавиш, и т.п.), после чего осуществите описанные там действия.

Включите двигатель и убедитесь, что направление его вращения действительно изменилось, а устройство, в состав которого он входит, работает нормально.

Источники:

  • как поменять вращение двигателя

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Понравилась статья? Поделить с друзьями:
  • Как изменить направление волосков бровей
  • Как изменить направление ветра raft
  • Как изменить направление вентилятора на вытяжку
  • Как изменить направление вектора на противоположное
  • Как изменить направление flex