Как изменить направление вращения однофазного асинхронного двигателя

Однофазный двигатель 220В - как поменять вращение. Смена направления вращения асинхронного двигателя 220В путем смены начала и конца пусковой или рабочей обмоток. Нетрадиционный метод реверсирования.

Содержание

  1. Однофазный двигатель 220В — постановка задачи
  2. Вариант 1: переподключение рабочей намотки (однофазный двигатель 220В)
  3. Вариант 2: переподключение пусковой намотки (однофазный двигатель 220В)
  4. Вариант 3: смена пусковой обмотки на рабочую, и наоборот
  5. Важно понимать

Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста. Если одностороннего вращения вам будет достаточно, то подойдет самая простая схема без возможности переключения. Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять? Однофазный двигатель 220В — как поменять направление вращения?

Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже (однофазный двигатель 220В)

Схема подключения однофазного двигателя. Однофазный двигатель 220в
Схема подключения однофазного двигателя

Уточним важные моменты:

  • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
  • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
  • Направление вращения ротора обозначено с помощью стрелок.

Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

Вариант 1: переподключение рабочей намотки (однофазный двигатель 220В)

Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

  1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
  2. Вы увидите, что к этой паре подсоединяются две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

Переподключение рабочей намотки (однофазный двигатель 220в)

Схема подключения однофазного двигателя

В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

Вариант 2: переподключение пусковой намотки (однофазный двигатель 220В)

Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

  1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
  2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.
Переподключение пусковой намотки
Переподключение пусковой намотки

После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

Вариант 3: смена пусковой обмотки на рабочую, и наоборот

Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

Смена пусковой обмотки на рабочую, и наоборот
Смена пусковой обмотки на рабочую, и наоборот

На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечаются коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

В этом случае поступают так:

  1. Снимают конденсатор с начального вывода А;
  2. Подсоединяют его к конечному выводу D;
  3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).
Схема подключения однофазного двигателя. Однофазный двигатель 220в
Схема подключения однофазного двигателя

Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

Важно понимать

Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

  • Длина пусковой и рабочей намоток одинакова;
  • Площадь их поперечного сечения соответствует друг другу;
  • Эти провода изготавливаются из одного и того же материала.

Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.

Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.

Ещё по теме:

— Схемы подключения асинхронного и синхронного однофазных двигателей

— Схемы подключения электродвигателя через конденсаторы

— Реверсивная схема подключения электродвигателя

— Плавный пуск электродвигателя своими руками

—В чем разница асинхронного и синхронного двигателей

— Переделка электрического двигателя с 380 на 220 Вольт

— Как проверить электродвигатель

— Ремонт электродвигателей

Содержание

  • 1 Принцип работы
  • 2 Реверс двигателя при помощи кнопки ПНВ
  • 3 В чём состоит принцип реверсивного движения
  • 4 Схема реверса — реализация на практике
  • 5 Коллекторные однофазные двигатели и их особенности
  • 6 Реверс конденсаторного двигателя
  • 7 Схемы реверса однофазного асинхронного двигателя без вскрытия корпуса
    • 7.1 Переподключение рабочей намотки
    • 7.2 Переподключение пусковой обмотки
    • 7.3 Полная замена обмотки
  • 8 Выводы

Реверс однофазного двигателя — важная часть его работы, которая широко используется в самых разных системах с электродвижками. Мы рассмотрим ,Каким образом происходит запуск ротора в обратную сторону ,что такое противовключение и как его осуществляют в домашних условиях.

Асинхронные двигатели переменного тока широко используются во многих отраслях, где используются электрические машины. Благодаря высокому КПД, простоте конструкции и в обслуживании, такие моторы заняли прочную энергетическую нишу. При этом они различаются по количеству фаз, на которые влияет число обмоток и многие другие факторы. Наиболее широко распространены трёх- и однофазные двигатели, причём последние не только имеют упрощённый принцип работы, но и способны подключаться к сети 220 Вольт без каких-либо преобразователей. В этой статье мы рассмотрим принцип работу однофазного двигателя и каким образом можно заставить его вращаться в принципиально обратную сторону

Принцип работы

Однофазным асинхронным двигателем называют машину, имеющую лишь одну обмотку на статоре, которая питается всего лишь от одной фазы. На самом деле обмоток даже в самой простой конструкции две, однако вторая выступает в качестве вспомогательной и работает исключительно при запуске двигателя, отключаясь в процессе. Таким образом пусковая обмотка придаёт ротору необходимый импульс, выводя систему из равновесия — это наиболее простой и распространённый способ столкнуть его.

Пусковая обмотка также отличается от рабочей размерами — обычно в ней вдвое меньше пазов. Как и в двухфазных системах, обе обмотки расположены друг относительно друга под прямым углом. Это позволяет генерировать необходимое усилие при старте работы, затем пусковая фаза отключается, и дальше двигатель поддерживает работу исключительно как однофазный.

Конструкция машины имеет ротор и статор причём первый должен постоянно вращаться, а второй — оставаться неподвижным. Это нужно для генерации магнитного поля, которое будет изменяться со временем. Именно на статоре располагаются обмотки, в то время как ротор своим вращением обеспечивает работу всего механизма. В однофазном двигателе устанавливается один из двух типов роторов:

  • короткозамкнутый — также известный как “беличье колесо”. Он состоит из ряда алюминиевых стержней, замкнутых при помощи колец на торцах;
  • цилиндрический — полый внутри, он представляет собой пустой цилиндр.

Отметим, что при вращении ротора без использования пусковой обмотки он попадает в пронизывающий магнитный поток, который генерируется пульсирующим полем. Если же система находится в состоянии покоя, то ротор не запустится в принципе, поскольку суммарный вращательный момент равен нулю, а обе силы Ампера, действующие на ротор, полностью друг друга компенсируют.

Ситуация меняется, если ротор толкают — она начинает двигаться в направлении стартового толчка. Начинает работать закон электромагнитной индукции, вследствие чего система генерирует соответствующие токи в направлении толчка. Однако возникает вопрос — от чего зависит его направление?

Для этого нужно учитывать два фактора:

  • размещение пусковой обмотки относительно ротора;
  • сдвиг тока по фазе относительно рабочей обмотки.

Если оба фактора удовлетворяют показателям системы, то их совместного действия будет достаточно для генерации пульсирующего и вращающегося магнитного поля. Это и приводит двигатель в движение, после чего пусковая фаза отключается, и дальше он работает лишь на одной — её достаточно для поддержания заданной скорости вращения.

Смещение в большинстве случаев производится при помощи специального конденсатора, встроенного в систему. Подключённый с пусковой обмоткой в последовательной цепи, он создаёт сдвиг фаз, равный 90 градусам. С технической точки зрения оператор машины должен нажать на кнопку выключателя, подающего питание к цепи, и отпустить её только в тот момент, когда обороты станут равно соответствующему номиналу, указанному в данной частоте цепи.

Таким образом для конденсаторного пуска реверс осуществляется при создании условия, при которых толчок, запускающий ротор, производится в обратном направлении, нежели в обычных условиях. Добиться этого можно, если правильно чередовать фазы в обеих обмотках, что требует тонкой настройки. Для этого требуется переключить между собой пусковую и рабочую обмотки, чтобы изменить общую полярность подключения. Выполнить подобную процедуру можно и вручную, просто сменив выведенные наружу клеммы. Чтобы понять, какая из них к какой обмотке относится, используйте мультиметр — меньшее активное сопротивление, по которому и получится найти рабочую.

Реверс двигателя при помощи кнопки ПНВ

В широком смысле реверс означает изменение движения ротора в обратную сторону относительного его обычного старта. Отметим, что это довольно важная функция, которая является необходимой в подавляющем большинстве систем. Осуществить реверс можно в электродвигателе любого типа, как асинхронного, работающего от переменного тока, так и для мотора на постоянном токе. 

Поскольку асинхронные двигатели, в том числе и однофазные, применяются в большинстве сфер деятельности и даже в бытовых приборах, реверс является необходимой функцией для выполнения базовых механических действий. Ярким примером могут служить грузоподъёмные механизмы, которым нужно двигаться во всех направлениях, разнообразные запорные устройства формата “открыть-закрыть” и подобные исполнительные конструкции. Для них необходимость в реверсе ротора является постоянной, поскольку его движение в обоих направлениях является базовой функцией, без которой они не смогут выполнять свои обязанности.

Временный реверс применяется не так часто, и обычно нужен в аварийных ситуациях. Например, асинхронные двигатели, установленные в конвейерах, на эскалаторах и в насосах работают строго в одну сторону. Однако если механизм сломался или заедает, включается реверс, позволяющий остановить или обратить работу системы.

Также реверс используется для резкого и быстрого торможения электродвигателя. В обычных случаях ротор продолжает вращаться даже после отключения механизма от сети, поскольку набранная за время работы инерция тратится очень неохотно. Таким образом мотор работает и после отключения сети, что в ряде случаев крайне нежелательно. Кратковременный запуск реверса создаёт противонаправленную силу, поглощающую инерцию, в результате чего ротор удаётся остановить гораздо быстрее, чем он прекратил вращаться естественным способом. В профессиональной среде такой тормоз называется противовключением.

В чём состоит принцип реверсивного движения

Поскольку принцип работы электродвигателя переменного тока построен на вращении магнитных полей в определённом направлении, то и для его изменения придётся менять магнитные поля. Сам принцип работы реверса невероятно прост — необходимо поменять местами провода, отвечающие за основное вращение и запуск. Поскольку каждый из них подключён как к плюсу, так и к минусу, смена проводом полностью инвертирует полярность магнитного поля. В свою очередь это значит, что двигаться оно начнёт в обратном направлении, увлекая за собой ротор, а вместе с этим и всю систему в принципе.

Схема реверса — реализация на практике

Чтобы ротор начал вращаться в противоположную сторону, необходимо поменять вторую и третью фазу местами. Отметим, что сначала он будет продолжать двигаться в первоначальном направлении по инерции, и лишь спустя некоторое время перейдёт в состояние равновесия, из которого сменит направленность.

Полярность пусковой обмотки, необходимой для задания направления, можно выполнить по схеме с использованием специального управляющего тумблера. Прежде всего его необходимо подобрать, исходя из разрешённого напряжения мотора и токовой нагрузке, а также необходимых зафиксированных положений — 2 или 3. Ток на тумблер стоит выводить от стартовой обмотки, поскольку она работает не так долго и в целом экономит ресурс. Таким образом можно сократить расходы на обслуживание всей системы и контактной группы в частности.

Специалисты советуют выполнять реверс асинхронного двигателя следующим образом:

  • если пуск предполагается тяжёлый, то его можно упростить при помощи добавочного конденсатора. Это актуально только для схем, которые используют подключение с самовозвратом ПНВ. Тогда тумблер реверса будет осуществлять включение только если ротор заторможен, но не во время работы, повышая эффективность и стабильность системы;
  • посадочное место тумблера для реверса должно быть защищено от случайного срабатывания. Поскольку это сопровождается огромными скачками тока, подобное позволит сэкономить энергию и моторесурс двигателя;
  • если механизм не выполняет реверс нужным образом, то после подключения нужно проверить правильность подключения проводов — нередко клеммы путают и вся схема сбивается. Также работоспособность зависит от целостности проводки.

С учётом того факта, что даже мельчайшие проблемы могут привести к сбою работы реверса, важно хорошо проверить весь механизм перед запуском. Это позволить избежать поломок и аварийных ситуаций.

Коллекторные однофазные двигатели и их особенности

Однофазный двигатель является наиболее распространённым в бытовых условиях двигателем, который часто воспроизводят своими руками. Причина этого кроется в однофазной сети на 220В, подведённой к большинству мастерских, домов и частных участков. Однако перед началом работы важно определить, какого типа перед вами мотор — коллекторный или асинхронный. В большинстве ситуацию на механизме присутствует маркировка, но если в вашу руки он попал после ремонта или перестройки, то надёжнее будет обратить внимание на наличие щёток в механизме, расположенных возле коллектора, а также медного барабана, который разделён на равные секции. 

Коллекторные двигатели исключительно однофазные и весьма распространены в бытовой технике. Из их преимуществ стоит выделить:

  • быстрый старт — сразу после подачи электричества мотор начинает разгоняться с большим числом оборотов;
  • удобство реверса — благодаря системе, обратить движение ротора в обратную сторону не составляет труда. Для этого нужно поменять полярность магнитного поля;
  • регулировка скорости вращения — меняя амплитуду напряжения и угла отсечки, можно контролировать интенсивность работы ротора.

По этим причинам коллекторные двигатели находят своё применение в бытовой и строительной технике. Однако они имеют и ряд недостатков:

  • высокая шумность — при выходе на большие обороты движок начинает очень сильно шуметь. Это сглаживается на малых вращениях, но не так часто;
  • сложность техобслуживания — коллекторный двигатель нужно регулярно проверять и чистить. Графит от стирающихся щёток загрязняет токоприёмник и выводит всю систему из строя.

Строение и принцип работы асинхронных двигателей мы уже рассматривали выше. В отличие от коллекторных, такие движки работают практически незаметно даже при большом числе оборотов. Поэтому их используют в технике, которой критично иметь низкие шумовые пределы при продолжительной работе — например, холодильники, кондиционеры и климатические системы. 

Реверс конденсаторного двигателя

Из-за особенностей механизма, конденсаторный движок подключает реверс только при наличии конденсаторов. Если исключить их из системы, мотор будет включаться, но запуска не произойдёт, так как не генерируется достаточная для старта сила.

Первая схема включает конденсатор, установленный в цепи питания пусковой обмотки. Имея отличный старт, такой механизм сильно проседает в мощности, которая оказывается ниже номинальной. Вторая схема подключения действует обратным образом — подключая конденсатор в цепь рабочей обмотки, вы получаете сравнительно тяжёлый старт, но рабочие характеристики остаются на высоком уровне. Таким образом обе схемы находят своё применение в разных условиях — первая нужна для устройств с тяжёлым пуском, а вторая в устройствах, которым жизненно необходимо рабочие характеристики.

Третий вариант предусматривает установку сразу двух конденсаторов. Чаще всего выбирают именно этот вариант, поскольку он берёт лучшее от обеих схем — отличный старт и приличные рабочие характеристик, но взамен требует более тщательной настройки, регулярного техобслуживания и специальной кнопки ПНВС. При работе активными остаются обе обмотки, и пусковая, и рабочая, причём первая даже при отключении продолжает работать через конденсатор.

Ключевым моментом в реализации реверса при помощи конденсаторов — их правильный выбор. Чтобы правильно рассчитать их характеристики, специалисты используют сложную формулу с несколькими переменными. Однако на практике всё оказывается проще, если соблюдать пару рекомендаций:

  • для рабочего конденсатора следует выбирать характеристики в районе 70-80 мкФ на 1 кВт полной мощности двигателя;
  • для пускового конденсатора такие показатели должны быть в 2, а то и 3 раза выше;
  • напряжение конденсатора должно превосходить напряжение сети минимум в полтора раза. Например, для стандартной однофазной сети в 220 В следует подобрать ёмкость в 330, 380 В или больше.

Отметим, что на рынке электроники присутствуют специализированные конденсаторы, изначально рассчитанные под старт. Они имеют соответствующую маркировку и обеспечивают плавный пуск.

Схемы реверса однофазного асинхронного двигателя без вскрытия корпуса

Если вмешиваться в систему автоматического асинхронного двигателя не хочется, по той или иной причине доступ под корпус отсутствует, можно воспользоваться одним из трёх достаточно простых способов реверса.

Переподключение рабочей намотки

Подобную схему подключения мы уже рассматривали выше — он используется чаще всего ввиду простоты. Для него не требуется вскрывать корпус или переворачивать намотку — достаточно просто переподключить клеммы рабочих проводов так, чтобы фаза перешла с начального на конечный контакт, а нуль — наоборот.

Переподключение пусковой обмотки

Система такая же, как и в предыдущем варианте, но с той разницей, что поменять провода придётся уже у пусковой обмотки. После переподключения крутящий момент ротора также должен смениться.

Полная замена обмотки

Если вы хотите создать надёжное подключение, или модель мотора нетипичная (например, с тремя проводами вместо четырёх), стоит полностью заменить обмотку. Для этого используется конденсатор, который присоединяется к конечному выводу, а от проводов пускают реверс-отводки. Плюсом данной схемы является тот факт, что реверс можно контролировать, если соединять провода вручную.

Выводы

Как можно заметить, реверс однофазного двигателя не является чем-то сложным — наоборот, он широко используется во многих системах и механизмах как часть работы движка. Однако в тех случаях, когда обратное вращение не предусмотрено, приходится искать альтернативный способ реверсировать вращение. В зависимости от конструкции мотора, сделать это можно без разбора всего механизма. Важно только проводить работу с большим вниманием к деталям и со знанием дела, начертить схему, чтобы не возникало проблем и аварийных ситуаций в будущем.

Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

Устройство асинхронного двигателя
Устройство однофазного электродвигателя

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

Съемник подшипников электродвигателя

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Обращайте особое внимание на состояние подшипников, выполнение нормативов по допускам и посадкам, качество смазки. Сухую и старую смазку обязательно необходимо заменять свежей.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться:
    • три жилы при внутренней сборке схемы треугольника;
    • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
    • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

Как видите, судить о конструкции асинхронного двигателя по количеству выведенных проводов на клеммнике от обмоток статора можно, но вероятность ошибки довольно высока. Нужен более тщательный анализ его устройства.

Техническое состояние изоляции обмоток

Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

Сушка электродвигателя

Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

Таблица однофазных асинхронных двигателей

Как видите, промышленностью массово выпущены модели с:

  • повышенным сопротивлением пусковой обмотки;
  • пусковым конденсатором;
  • рабочим конденсатором;
  • пусковым и рабочим конденсатором;
  • экранированными полюсами.

А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

  • значительное снижение реактивной мощности;
  • повышение КПД;
  • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

Сопротивление обмоток двигателя

Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

Помечаем эти 3 конца уже понятной нам маркировкой:

  • О — общий;
  • П — пусковой;
  • Р — рабочий.

Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

Схема кнопки ПНВС

Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

Кнопка ПНВС

Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

Схема подключения асинхронного двигателя с пусковым конденсатором

При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

Тогда кнопку запуска отпускают:

  • пусковая обмотка отключается самовозвратом среднего контакта, но остается работать от рабочего и величина тока снижается.;
  • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

Все запуски электродвигателей и любого электрического оборудования всегда выполняйте с защитой этих цепей автоматическими выключателями. Они предотвратят развитие аварийных ситуаций при возникновении любых случайных ошибок.

С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

Конденсатор подключают к выводам пусковой и рабочей обмоток.

В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

Схема подключения асинхронного двигателя с конденсаторным запуском

Здесь получается, что:

  • главная обмотка работает напрямую от 220 В;
  • вспомогательная — только через емкость конденсатора.

Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

Схема подключения асинхронного двигателя с пусковым конденсатором ПНВС

Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

Схема подключения асинхронного двигателя через конденсаторы

Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

Добавление резисторов в схему пуска электродвигателя повышает безопасность его эксплуатации, автоматически ограничивает протекание емкостного тока разряда заряженного конденсатора через тело человека.

Где взять номиналы главного и вспомогательного конденсаторов?

Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

Владелец
видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

Как поменять направление вращения двигателя

В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

Схема реверса двигателя

Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

Реверс асинхронного двигателя

Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

Поэтому место расположения тумблера реверса на станке необходимо выбирать так, чтобы исключить случайное оперирование им во время работы. Устанавливайте его в углублениях конструкции.

Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

Понравилась статья? Поделить с друзьями:
  • Как изменить направление движения колесика мыши
  • Как изменить направление вращения насоса отопления
  • Как изменить направление движения двигателя постоянного тока
  • Как изменить направление вращения наждака
  • Как изменить направление движения асинхронного двигателя