Загрузить PDF
Загрузить PDF
Переменный ток (AC) является наиболее эффективным способом передачи электроэнергии на большие расстояния. Тем не менее многим бытовым и электронным устройствам для работы необходим постоянный ток (DC). Для бытовых нужд обычно используется переменный ток, поскольку он эффективнее и не приводит к падению напряжения на больших расстояниях. Однако во многих бытовых приборах и электронике используется постоянный ток, который обеспечивает непрерывное питание устройства. Если вам необходимо определить напряжение постоянного тока, которое даст источник питания переменного тока, используйте формулу VAC/√(2), где VAC — переменное напряжение. Можно также самостоятельно собрать цепь, которая будет преобразовывать переменный ток в постоянный!
-
1
Определите переменное напряжение источника питания с помощью мультиметра. Вставьте провода мультиметра в разъемы на нижней или боковой панели прибора. Установите мультиметр так, чтобы стрелка указывала на функцию измерения напряжения переменного тока «ACV» или «V ~». Прижмите щупы к положительным и отрицательным клеммам источника питания, на котором вы хотите измерить напряжение, и проверьте показания на дисплее мультиметра. Запишите измеренную величину напряжения.[1]
- Не имеет значения, какой контакт прижать к какой клемме.
- Никогда не пользуйтесь мультиметром, если резиновая изоляция вокруг его щупов повреждена и разорвана, так как в этом случае можно получить удар током.
-
2
Поделите переменное напряжение на квадратный корень из 2, чтобы найти постоянное напряжение. Так как источник переменного тока создает напряжение в виде переменных волн, после его преобразования напряжение постоянного тока будет ниже. Запишите формулу VAC/√(2) и подставьте вместо VAC значение переменного напряжения, которое вы измерили с помощью мультиметра. Если вы хотите получить более точный ответ, выполните расчеты на калькуляторе.[2]
- Например, если источник переменного тока создает напряжение 120 В, после подстановки числовых значений в формулу получится следующее постоянное напряжение: 120/√(2) = 84,85 В.
Совет: если у вас нет калькулятора, можно округлить √(2) до 1,4, чтобы облегчить вычисления.
-
3
Учтите, что в действительности постоянное напряжение будет ниже вычисленной величины. Найденное значение постоянного напряжения называется теоретическим напряжением и показывает, каким был бы ток в идеальном случае. Однако преобразование или подключение к устройству сопровождаются падением напряжения, поэтому оно будет несколько ниже вычисленной величины. Если вы хотите найти фактическое напряжение, его следует измерить мультиметром: для этого прижмите его щупы к положительному и отрицательному выходу устройства.[3]
- Падение напряжения может привести к тому, что устройство не будет работать, если на него будет подаваться недостаточное напряжение.
Реклама
-
1
Подсоедините к левой стороне макетной платы понижающий трансформатор. Понижающий трансформатор представляет собой небольшое электрическое устройство с двумя катушками разной индуктивности, которое создает на выходе меньшее напряжение, чем подается на его вход. Для простой схемы преобразователя найдите трансформатор, который рассчитан минимум на 13 В, чтобы можно было сильнее понизить входное напряжение. Поместите трансформатор на макетную плату с отверстиями (такие платы используют для сборки прототипов электрических цепей). Подсоедините трансформатор к плате с помощью гаек и болтов и закрепите его на месте.[4]
- Трансформатор и макетную плату можно приобрести в магазине электроники или заказать через интернет.
- Чтобы увеличить напряжение, можно использовать повышающий трансформатор.
-
2
Расположите справа от трансформатора 4 диода в форме ромба. Диоды пропускают электрический ток в одном направлении и блокируют ток, идущий в противоположную сторону. Поместите первый диод под углом 45 градусов так, чтобы положительный выход был направлен вверх и влево. Второй диод расположите рядом с первым так, чтобы они образовали угол, а отрицательный выход был направлен под углом 45 градусов вправо. Замкните ромб сверху так, чтобы в верхней точке соединялись отрицательный выход левого диода и положительный выход правого диода.[5]
- Такое соединение диодов называют мостовым выпрямителем, оно позволяет цепи передавать положительную и отрицательную составляющие переменного сигнала.
- Диоды можно приобрести в магазине электроники или заказать через интернет.
- Проследите, чтобы диоды были соединены в правильном направлении, иначе они не пропустят ток.
- При желании можно прикрепить диоды к плате горячим клеем, хотя в этом нет необходимости.
-
3
Подсоедините контакты трансформатора к верхнему и нижнему углам ромба. У трансформатора есть красный и черный провода, которые соединяются с источником питания, а также два других провода внизу, которые следует подключить к выпрямителю. Обмотайте оголенный конец одного из этих проводов вокруг соединения диодов в верхнем углу ромба. Второй провод пустите вниз и обмотайте его вокруг контактов диодов в нижнем углу ромба.[6]
- Провода от трансформатора будут питать цепь.
- Убедитесь, что провода надежно соединены с диодами, иначе ток будет слабее.
- Не имеет значения, какой провод подсоединить к какому углу ромба.
-
4
Обмотайте провода вокруг левого и правого углов ромба. Возьмите медные провода с изоляцией разного цвета — через них будет проходить сигнал постоянного тока. Обмотайте конец одного провода вокруг левого угла ромба так, чтобы он контактировал с выходами обоих диодов. Затем возьмите второй провод и надежно прикрепите его конец к контактам диодов в правом углу ромба. Протяните оба провода к правому краю платы, в сторону от трансформатора.[7]
- Подсоединенные к левому и правому углам ромба провода будут снимать с выпрямителя сигнал постоянного тока.
-
5
Припаяйте провода в местах соединения, чтобы надежно закрепить их. Разогрейте паяльник и поднесите его к одному из углов ромба (выпрямителя). Поместите над соединением проводов припой и расплавьте его. Нанесите на соединение достаточно жидкого припоя, чтобы он полностью прикрыл находящиеся под ним провода. Проделайте то же самое с другими углами ромба.[8]
- Припой и паяльник можно приобрести в магазине хозяйственных товаров.
Предупреждение: будьте осторожны при работе с паяльником, так как его наконечник (жало) может быть очень горячим, и вы можете получить сильный ожог.
-
6
Подсоедините к отходящим от диодов проводам фильтрующий конденсатор. После прохождения переменного тока через выпрямитель сигнал постоянного тока будет иметь форму импульсов без постоянного напряжения. Фильтрующий конденсатор будет накапливать энергию и сглаживать ток, чтобы он был более постоянным. Подсоедините положительный конец конденсатора к тому проводу, который отходит от левого угла ромба, а отрицательный конец — к проводу, отходящему от правого угла.[9]
- Фильтрующий конденсатор можно приобрести в магазине электроники или заказать через интернет.
- Можно припаять к выходам фильтрующего конденсатора дополнительные провода, если вы хотите подать постоянное напряжение на какое-либо устройство.
- Можно обойтись и без фильтрующего конденсатора, но в этом случае ток в цепи не будет постоянным.
-
7
Подключите красный и черный провода трансформатора к источнику переменного тока. Трансформатор имеет красный и черный провода, которые следует подсоединить к источнику питания, чтобы подать в цепь ток. Подключите красный и черный провода соответственно к положительному и отрицательному выходам источника питания (розетки, батарейки или генератора), чтобы подать на цепь переменное напряжение и преобразовать его в постоянный сигнал.[10]
- Будьте очень осторожны при подсоединении проводов к источнику питания, чтобы вас не ударило током.
-
8
Измерьте постоянное напряжение на проводах с помощью мультиметра. Выставьте стрелку мультиметра на «DCV» или «V–». Вставьте провода мультиметра в его разъемы и прижмите щупы к положительному и отрицательному выходам фильтрующего конденсатора. На дисплее высветится значение постоянного напряжения, в которое был преобразован исходный переменный сигнал источника тока.[11]
- Можно также подсоединить к проводам фильтрующего конденсатора лампочку постоянного тока и проверить, загорится ли она. Если лампочка горит постоянно и не мигает, преобразователь работает.
Реклама
Советы
- В работающих на постоянном токе устройствах уже есть встроенный преобразователь переменного тока в постоянный.[12]
Реклама
Предупреждения
- Будьте осторожны при работе с электрическими компонентами, чтобы вас не ударило током.
- Паяльник может быть очень горячим. Будьте осторожны и не прикасайтесь к его жалу, чтобы не получить ожог.
Реклама
Что вам понадобится
- Мультиметр
- Макетная плата
- Понижающий трансформатор
- Болты и гайки
- Диоды 1N4007
- Медные провода с изоляцией
- Конденсатор 1000 мкФ
- Паяльник
- Припой
- Мультиметр
Об этой статье
Эту страницу просматривали 83 357 раз.
Была ли эта статья полезной?
Осциллограмма постоянного напряжения
Давайте для начала уточним, что мы подразумеваем под «постоянным напряжением». Как гласит нам Википедия, постоянное напряжение (он же и постоянный ток) — это такой ток, параметры, свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю.
Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации:
Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).
Для того, чтобы преобразовать переменное однофазное напряжение одного значения в однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный трансформатор. А для того, чтобы преобразовать в постоянное пульсирующее напряжение, мы с вами после трансформатора подключали Диодный мост. На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.
Но как же нам из пульсирующего постоянного напряжения
получить самое что ни на есть настоящее постоянное напряжение?
Для этого нам нужен всего один радиокомпонент: конденсатор. А вот так он должен подключаться к диодному мосту:
В этой схеме используется важное свойство конденсатора: заряжаться и разряжаться. Конденсатор с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осциллограмме, мы должны вставить конденсатор приличной емкости.
Зависимость пульсаций напряжения от емкости конденсатора
Давайте же рассмотрим на практике, зачем нам надо ставить конденсатор большой емкости. На фото ниже у нас три конденсатора различной емкости:
Рассмотрим первый. Замеряем его номинал с помощью нашего LC — метр. Его емкость 25,5 наноФарад или 0,025микроФарад.
Цепляем его к диодному мосту по схеме выше
И цепляемся осциллографом:
Смотрим осциллограмму:
Как вы видите, пульсации все равно остались.
Ну что же, возьмем конденсатор емкостью побольше.
Получаем 0,226 микрофарад.
Цепляем к диодному мосту также, как и первый конденсатор снимаем показания с него.
А вот собственно и осциллограмма
Не… почти, но все равно не то. Пульсации все равно видны.
Берем наш третий конденсатор. Его емкость 330 микрофарад. У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.
Цепляем его к диодному мосту снимаем с него осциллограмму.
А вот собственно и она
Ну вот. Совсем ведь другое дело!
Итак, сделаем небольшие выводы:
— чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие. Да и начальный ток заряда будет огромным, что может привести к перегрузке питающей цепи.
— чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. С этим борются с помощью пассивных фильтров, а также используют интегральные стабилизаторы напряжения, которые выдают чистейшее постоянное напряжение.
Как подобрать радиоэлементы для выпрямителя
Давайте вернемся к нашему вопросу в начале статьи. Как все-таки получить на выходе постоянный ток 12 Вольт для своих нужд? Сначала нужно подобрать трансформатор, чтобы на выходе он выдавал … 12 Вольт? А вот и не угадали! Со вторичной обмотки трансформатора мы будем получать действующее напряжение.
где
UД — действующее напряжение, В
Umax — максимальное напряжение, В
Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе трансформатора должно быть 12/1,41=8,5 Вольт переменного напряжения. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансформаторе, мы должны убавлять или добавлять обмотки трансформатора. Формула здесь. Потом подбираем диоды. Диоды подбираем исходя из максимальной силы тока в цепи. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем конденсатор с приличной емкостью. Его подбираем исходя из того, чтобы постоянное напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!
Кстати, у меня получился 17 Вольтовый источник постоянного напряжения, так как у трансформатора на выходе 12 Вольт (умножьте 12 на 1,41).
Ну и напоследок, чтобы лучше запомнилось:
Показываем на примере в видео:
Как из переменного тока сделать постоянный
Содержание
- 1 Что такое выпрямление тока
- 2 Для чего необходимо постоянное напряжение в быту
- 3 Как сделать выпрямитель самостоятельно
- 4 Видео по теме
Для питания некоторых видов оборудования необходим постоянный ток. Если воспользоваться обычной розеткой на 220 В, то можно сжечь прибор. Выходом в такой ситуации является использование специального устройства, которое производит нужное преобразование.
Что такое выпрямление тока
Когда на вход любого устройства поступает переменное напряжение, его график имеет синусоидальную форму. При этом оно будет периодически изменяться от отрицательного значения к положительному и обратно.
Когда говорят о выпрямлении, подразумевается, что в результате ток или напряжение будут иметь постоянное значение. Существуют разные способы как из переменного тока в сети сделать постоянный. Например, если применить диод, то на выходе сохраняются только положительные полупериоды, а отрицательные превращаются в ноль. Выпрямитель с одним диодом называется однополупериодным.
График напряжения при использовании диода не будет прямой линией, но может рассматриваться как результат выпрямления переменного тока. Если используется диодный мост, то преобразование переменного тока в постоянный происходит более качественно.
График напряжения после выпрямления с помощью диодного моста будет представлять собой только положительные полупериоды. Такое напряжение называют пульсирующим. Применение диодного моста для преобразования переменного тока позволяет избежать потери части сигнала.
Но как видно из графика, хотя выпрямление и произошло, форма выходного сигнала всё ещё далека от прямой линии. Чтобы это исправить, на выходе из диодного моста устанавливают конденсатор.
Он действует следующим образом. Когда напряжение растёт, его обкладки заряжаются. Далее, как видно на графике, оно начинает вновь уменьшаться до нуля. В это время конденсатор разряжается. В следующем полупериоде ситуация повторяется.
Применение конденсатора приводит к тому, что амплитуда напряжения уменьшается, и такой сигнал уже можно считать выпрямленным. Он уже подходит для питания оборудования, работающего на постоянном токе.
На графике результат выпрямления показан синей линией. Видно, что он значительно более близок к прямой линии по сравнению с предыдущими вариантами.
Схема выпрямителя включает в себя еще и трансформатор. Его необходимость связана с тем, что требуется получить не просто постоянное напряжение, а только то, которое имеет строго определённые характеристики. Чаще всего оно должно иметь 12 В или 24 В.
Действие трансформатора основано на принципе электромагнитной индукции. В трансформаторе используются две обмотки и сердечник. Переменное напряжение подаётся на первичную обмотку. При этом оно формирует быстро изменяющееся магнитное поле, которое через сердечник передаётся на вторичную обмотку. Благодаря действию электромагнитной индукции на ней создаётся напряжение, величина которого определяется количеством витков в обмотке. Таким образом получают переменное напряжение нужной величины, которое затем проходит через диод и конденсатор и поступает на выходные клеммы.
Для чего необходимо постоянное напряжение в быту
В квартирах и частных домах обычно пользуются переменным напряжением 220 В частотой 50 Гц. Несмотря на это, в быту часто применяют оборудование, для работы которого требуется постоянный ток. Поэтому для получения напряжения 12 Вольт или 24 понадобится купить преобразователь переменного сетевого напряжения в постоянное. Необходимость в таком устройстве может возникнуть:
- При использовании электрической дрели, шуруповерта, электропилы и прочих электроинструментов.
- Выпрямитель понадобится в тех случаях, когда необходимо подзарядить смартфоны, ноутбуки, планшеты или другое электронное оборудование.
- Некоторые электроприборы, например, принтеры подключаются к розетке через адаптер, который преобразует сетевое переменное напряжение в постоянное.
- Постоянное напряжение может использоваться в стационарных насосах для полива огорода, используемых в частных хозяйствах.
- Для работы разной аудио и видео техники обычно требуется конвертировать переменное напряжение в постоянное.
- Если в квартире или в частном доме устанавливается система наблюдения, то следует купить и выпрямитель, который преобразует переменный ток в постоянный.
- От источников постоянного напряжения работают некоторые виды медицинского оборудования.
- В местах, где имеется повышенная влажность, выгодно применять слаботочные сети, предоставляющие для питания постоянное напряжение.
- Постоянное напряжение требуется также для работы светодиодного освещения или галогеновых ламп.
Следует также сказать, что зачастую постоянное напряжение обеспечивается не за счёт преобразования переменного сетевого напряжения, а при помощи аккумуляторов и батарей. При этом нужно учитывать, что покупку аккумуляторов приходится совершать регулярно, поскольку они постепенно изнашиваются и рано или поздно приходят в негодность. Если же использовать розетки, подключая к ним электроприборы через выпрямитель, то будет обеспечено надёжное и долговечное питание везде, где есть доступ к электросети.
Купить преобразователи переменного тока в постоянный можно на сайте АлиЭкспресс по ссылке: https://aliclick.shop/r/c/1r43k0wp1qmyep52?sub=2.
Как сделать выпрямитель самостоятельно
Если самостоятельно создать устройство, которое преобразовывает переменное напряжение, можно не только выйти из положения в сложной ситуации, но и лучше понять принцип его действия. Для работы необходимо приготовить следующее:
- Прибор, с помощью которого можно измерять напряжение. Для этого, например, можно использовать вольтметр или мультиметр.
- Изолирующую ленту, киперную ленту.
- Медную проволоку.
- Паяльник.
- Трансформатор. Покупайте тот, первичная обмотка которого рассчитана на 220 В.
Подготовив всё необходимое, можно приступать к работе:
- Сначала нужно подключить трансформатор к сети и измерить напряжение на вторичной обмотке. Если, например, требуется после выпрямления получить 12 Вольт, то придётся убрать часть витков.
- Затем следует припаять диодный мост и конденсатор в соответствии с принципиальной схемой выпрямителя.
Нужно учитывать, что по сравнению с переменным напряжением на вторичной обмотке результат на выходных клеммах увеличится в 1.41 раз. То есть, для получения 12 В необходимо, чтобы переменное было равно 8.51 В (12/1.41 = 8.51).
Здесь рассказано, как сделать простейший выпрямитель, но на практике также применяются и другие варианты. Например, выпрямитель с удвоением напряжения. Принцип его работы основывается на поочередной зарядке-разрядке конденсаторов входным напряжением с полуволнами разной полярности. В результате получают напряжение вдвое выше входного.
Удвоитель используется, когда возникает необходимость увеличить в 2 раза напряжение, снимаемое со вторичной обмотки трансформатора. Этот вариант является более выгодным по сравнению с перематыванием обмотки.
Видео по теме
Электрический ток протекает в различных средах: металлах, полупроводниках, жидкостях и газах. При этом он может быть постоянным или переменным. В статье рассмотрим отдельно постоянный и переменный ток, а также преобразование переменного тока в постоянный.
Содержание
- Постоянный ток и его источники
- Переменный ток и его параметры
- Достоинства и недостатки переменного напряжения
- Преобразование переменного тока в постоянный и наоборот
Постоянный ток и его источники
У постоянного тока величина и направление не изменяются с течением времени. На современных приборах он обозначается буквами DC — сокращением от английского Direct Current (в дословном переводе – прямой ток). Его графическое обозначение:
Источниками постоянного тока являются батарейки и аккумуляторы. На нем работают все полупроводниковые электронные устройства: мобильные телефоны, компьютеры, телевизоры, спутниковые системы. Для питания этих устройств от сети переменного тока в их входят блоки питания. Они понижают напряжение сети до нужной величины и преобразуют переменный ток в постоянный. Зарядные устройства для аккумуляторов тоже питаются от сети переменного тока и выполняют те же функции, что и блоки питания.
Переменный ток и его параметры
У переменного тока направление и величина циклически изменяются во времени. Цикл одного полного изменения (колебания) называется периодом (T), а обратная ему величина – частотой (f). Буквенное обозначение переменного тока – АС, сокращение от Alternating Current (знакопеременный ток), а графически он обозначается отрезком синусоиды:
̴
После этого знака указывается напряжение, иногда – частота и количество фаз.
Переменный ток характеризуется параметрами:
Характеристика | Обозначение | Единица измерения | Описание |
Число фаз | Однофазный | ||
Трехфазный | |||
Напряжение | U | вольт | Мгновенное значение |
Амплитудное значение | |||
Действующее значение | |||
Фазное | |||
Линейное | |||
Период | Т | секунда | Время одного полного колебания |
Частота | f | герц | Число колебаний за 1 секунду |
Однофазный ток в чистом виде получается при помощи бензиновых и дизельных генераторов. В остальных случаях он – часть трехфазного, представляющего собой три изменяющихся по синусоидальному закону напряжения, равномерно сдвинутых друг относительно друга. Этот сдвиг по времени называется углом сдвига фаз и составляет 1/3Т.
Для передачи трехфазных напряжений используют четыре провода. Один является их общей точкой и называется нулевым (N), а три остальные называются фазами (L1, L2, L3).
Напряжение между фазами называется линейным, а между фазой и нулем – фазным, оно меньше линейного в √3 раз. В нашей сети фазное напряжение равно 220 В, а линейное – 380 В.
Под мгновенным значением напряжения переменного тока понимают его величину в определенный момент времени t. Она изменяется с частотой f. Мгновенное значение напряжения в точке максимума называется амплитудным значением. Но не его измеряют вольтметры и мультиметры. Они показывают величину, в √2 раз меньшую, называемую действующим или эффективным значением напряжения. Физически это означает, что напряжение постоянного тока этой величины совершит такую же работу, как и измеряемое переменное напряжение.
Достоинства и недостатки переменного напряжения
Так почему же для энергоснабжения выбрали переменный ток, а не постоянный?
При передаче электроэнергии ток проходит по проводам, длиной сотни километров, нагревая их и рассеивая в воздухе энергию. Это неизбежно как для постоянного, так и для переменного токов. Но мощность потерь зависит только от сопротивления проводов и тока в них:
Мощность, которую передается по линии, равна:
Отсюда следует, что при увеличении напряжения для передачи той же мощности нужен меньший ток, и мощность потерь при этом уменьшается. Вот поэтому протяженных ЛЭП напряжение повышают. Есть линии на 6кВ, 10кВ, 35кВ, 110кВ, 220кВ, 330кВ, 500кВ, 750кВ и даже 1150кВ.
Но в процессе передачи электроэнергии от источника к потребителю напряжение нужно неоднократно изменять. Проще это сделать на переменном токе, используя трансформаторы.
Недостатки переменного тока проявляются при передаче энергии по кабельным линиям. Кабели имеют емкостное сопротивление между фазами и относительно земли, а емкость проводит переменный ток. Появляется утечка, нагревающая изоляцию и выводящая со временем ее из строя.
Преобразование переменного тока в постоянный и наоборот
Процесс получения из переменного тока постоянного называется выпрямлением, а устройства – выпрямителями. Основная деталь выпрямителя – полупроводниковый диод, проводящий ток только в одном направлении. В результате выпрямления получается пульсирующий ток, меняющий со временем свою величину, но не изменяющий знак.
Затем пульсации устраняют при помощи фильтров, простейшим из них является конденсатор. Полностью пульсации устранить невозможно, а их конечный уровень зависит от схемы выпрямителя и качества фильтра. Сложность и стоимость выпрямителей зависит от величины пульсаций на выходе и от максимальной мощности на выходе.
Для преобразования в переменный ток используются инверторы. Принцип их работы состоит в генерации переменного напряжения с формой, максимально приближенной к синусоидальной. Пример такого устройства – автомобильный инвертор для подключения к бортовой сети бытовых приборов или инструмента.
Чем качественнее и дороже инвертор, тем больше его мощность или точнее выдаваемое им напряжение приближается к синусоиде.
Преобразование переменного тока в постоянный ток (схема)
Потребители работающие на постоянном токе не могут быть подключены из розетки без выпрямляющего устройства , без него вы просто спалите электрический аппарат постоянного тока , в лучше случаи предохранитель в нём при наличии.
Выпрямить переменный ток можно с помощью одного диода, но это не желательно. Давайте посмотрим на график где будет видно какой ток получится после прохождение тока через диод.
прохождение тока через диод
напряжение прохождения тока через диод
После выпрямления если так можно сказать видя на графике что на выходе не совсем переменный ток , на графике видно что диод просто срезал отрицательную половину. По этому лучше всего выпрямлять переменный ток с помощью диодного моста.
Схема соединения диодного моста
При соединении диодов смотрите на схему , да бы не попутать выводы ниже на картинке фотография диода и его обозначения.
обозначение диодного моста
Как видно из картинки производители помечают на корпусе диода вывод который называется «Катод» метки бывают в виде полоски либо точки.
График на выходе после диодного моста
График на выходе после диодного моста
После диодного моста на выходе получилось постоянное пульсирующее напряжение с частотой 100 Гц , что превышает частоту нашей сети в два раза.
Что бы сгладить постоянное пульсирующее напряжение на выходе с диодного моста добавляют конденсатор либо сглаживающий фильтр , подключается он параллельно нагрузке.
Схема подключения и график с подключение конденсатора
Схема подключения и график с подключение конденсатора
На графике синем цветом показан как изменяется пульсация (изменение напряжения) после того когда мы подключили фильтр в виде конденсатора.
Источник
Как получить постоянное напряжение из переменного
Осциллограмма постоянного напряжения
Давайте для начала уточним, что мы подразумеваем под «постоянным напряжением». Как гласит нам Википедия, постоянное напряжение (он же и постоянный ток) — это такой ток, параметры, свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю.
Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации:
Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).
Для того, чтобы преобразовать переменное однофазное напряжение одного значения в однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный трансформатор. А для того, чтобы преобразовать в постоянное пульсирующее напряжение, мы с вами после трансформатора подключали Диодный мост. На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.
Но как же нам из пульсирующего постоянного напряжения
получить самое что ни на есть настоящее постоянное напряжение?
Для этого нам нужен всего один радиокомпонент: конденсатор. А вот так он должен подключаться к диодному мосту:
В этой схеме используется важное свойство конденсатора: заряжаться и разряжаться. Конденсатор с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осциллограмме, мы должны вставить конденсатор приличной емкости.
Зависимость пульсаций напряжения от емкости конденсатора
Давайте же рассмотрим на практике, зачем нам надо ставить конденсатор большой емкости. На фото ниже у нас три конденсатора различной емкости:
Рассмотрим первый. Замеряем его номинал с помощью нашего LC — метр. Его емкость 25,5 наноФарад или 0,025микроФарад.
Цепляем его к диодному мосту по схеме выше
И цепляемся осциллографом:
Как вы видите, пульсации все равно остались.
Ну что же, возьмем конденсатор емкостью побольше.
Цепляем к диодному мосту также, как и первый конденсатор снимаем показания с него.
А вот собственно и осциллограмма
Не… почти, но все равно не то. Пульсации все равно видны.
Берем наш третий конденсатор. Его емкость 330 микрофарад. У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.
Цепляем его к диодному мосту снимаем с него осциллограмму.
Ну вот. Совсем ведь другое дело!
Итак, сделаем небольшие выводы:
— чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие. Да и начальный ток заряда будет огромным, что может привести к перегрузке питающей цепи.
— чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. С этим борются с помощью пассивных фильтров, а также используют интегральные стабилизаторы напряжения, которые выдают чистейшее постоянное напряжение.
Как подобрать радиоэлементы для выпрямителя
Давайте вернемся к нашему вопросу в начале статьи. Как все-таки получить на выходе постоянный ток 12 Вольт для своих нужд? Сначала нужно подобрать трансформатор, чтобы на выходе он выдавал … 12 Вольт? А вот и не угадали! Со вторичной обмотки трансформатора мы будем получать действующее напряжение.
Umax — максимальное напряжение, В
Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе трансформатора должно быть 12/1,41=8,5 Вольт переменного напряжения. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансформаторе, мы должны убавлять или добавлять обмотки трансформатора. Формула здесь. Потом подбираем диоды. Диоды подбираем исходя из максимальной силы тока в цепи. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем конденсатор с приличной емкостью. Его подбираем исходя из того, чтобы постоянное напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!
Кстати, у меня получился 17 Вольтовый источник постоянного напряжения, так как у трансформатора на выходе 12 Вольт (умножьте 12 на 1,41).
Источник
Устройство и принцип работы трансформаторов
Как работает трансформатор
Трансформатор работает за счет взаимоиндукции. Для начала разберем, что такое индукция.
Что такое индукция
Если по проводу пустить электрический ток, то возникнет магнитное поле.
Магнитное поле — неотъемлемая часть электрического. И в магнитном поле сохраняется энергия электрического.
У постоянных магнитов наличие магнитного поля объясняется направлением «доменов в одну сторону». Т.е. у каждого отдельно взятого атома есть свое маленькое магнитное поле. У постоянных магнитов эти маленькие магнитные поля направлены в одну сторону. Поэтому у постоянного магнита такое сильное магнитное поле.
И другие материалы можно намагнитить, т.е. сделать так, чтобы магнитные поля были направлены в одну сторону. Так получится «искусственно созданный» магнит.
Кстати, среди ремонтников очень популярен магнит, который намагничивает и размагничивает отвертки. Таким отвертками удобно пользоваться, поскольку маленькие болтики и винтики останутся на отвертке и не упадут в случае неосторожного движения.
А индуктивность — это способность материала накапливать магнитное поле, когда по этому материалу течет электрический ток.
Чем больше материал может создать магнитное поле, тем выше его индуктивность.
Магнитное поле можно увеличить, если сделать катушку.
Достаточно взять проволоку, намотать ее на каркас. И магнитные поля витков будут складываться.
Это и есть катушка индуктивности.
Провод в катушке индуктивности должен быть изолирован. Потому, что если хотя бы один виток будет в коротком замыкании с другим, то магнитное поле будет неравномерным. Будет межвитковое замыкание, из-за которого магнитное поле потеряет свою равномерность.
Если мы подаем на катушку постоянный ток, то и магнитное поле будет постоянным. Оно не будет меняться. А что если отключить катушку от источника? Тогда наступит явление самоиндукции. Так как ток уменьшается, то магнитное поле больше нечем поддерживать. И вся так энергия, которая была в магнитном поле, переходит в электрическую.
Изменение магнитного поля создает электрическое поле.
Увеличение индуктивности сердечником
А как увеличить индуктивность? Только с помощью количества витков и диаметром провода? На индуктивность еще влияет окружающая среда. Воздух — не самый лучший материал для накопления или передачи магнитного поля. У него низкая магнитная проницаемость. Тем более, при изменении плотности и температуры воздуха, это значение меняется. Поэтому, для увеличения индуктивности используют ферромагнетики. К ним относят железо, никель, кобальт и др.
Если сделать сердечник в центре катушки из таких материалов, то можно многократно повысить индуктивность катушки.
Из ферромагнетиков делают сердечники (магнитопроводы). В основном используют электротехническую сталь, которую специально делают для этих целей.
Кстати, теперь намного проще регулировать индуктивность с сердечником. Достаточно плавно передвигать сердечник внутри катушки, и индуктивность будет плавно меняться. Это удобнее, чем двигать витки друг от друга.
Взаимоиндукция и принцип передачи тока
Раз можно накопить энергию в катушке за счет магнитного поля, то можно передать эту энергию в другую катушку.
Допустим, есть две одинаковые катушки индуктивности. Одна подключена к питанию, другая нет.
При подключении питания, у первой катушки возникнет магнитное поле. И если приблизить вторую катушку к первой, у второй катушки индуцируется ЭДС за счет магнитного поля первой.
Но ЭДС второй катушки будет не долгим явлением. Если на первую катушку подается постоянное напряжение, то и магнитное поле будет постоянным.
А электрический ток возникает только при переменном магнитное поле. Поэтому, ток во второй катушке сразу исчезнет, как только стабилизируется магнитное поле.
Если поменяем полярность на первой катушке, то и изменится ее магнитное поле. А это значит, что оно будет изменяться и во второй катушке. Это снова индуцирует ток во второй катушке, но не надолго.
Чтобы непрерывно можно было передать ток от первой катушки ко второй, нужен переменный источник тока. Переменный ток создает переменное магнитное поле. А переменное магнитное поле проницая проводник создает в нем переменный наведенный ток.
И поэтому, если на первую катушку будет подано переменное напряжение, то возникнет и переменное магнитное поле. Это магнитное поле индуцирует во второй катушке электромагнитное поле, и ток будет во второй катушке.
Такое явление называют взаимоиндукцией. Когда за счет индуктивности ток из одной части цепи можно передать в другую используя электромагнитное поле.
Многие путают электромагнитную индукцию и взаимоиндукцию. Но это разные явления, хоть и принцип действия во многом схож.
Кроме переменного тока можно использовать и импульсный ток, в котором плюс и минус не меняются местами. Главное выполнять правило — ток должен менять свое значение. И тогда будет переменное магнитное поле.
Кстати, когда работают блоки питания и светильники, издаваемый гул от них — это звук от катушек или их сердечников. Это из-за индукции. Магнитное поле из-за разного направления в катушках частично сдвигает витки и сердечники, отсюда и появляется тот самый звон. Это касается и электродвигателей. Поэтому такие детали заливают смолой или компаундом, чтобы уменьшить издаваемый звук.
Устройство трансформатора
А если катушки будут разными? Тогда можно преобразовать напряжение из одной величины в другую. Так и работает трансформатор. Трансформатор преобразует напряжение с первичной обмотки в напряжение другой величины на вторичной обмотке.
Трансформатор работает только с переменным, импульсным или любым другим током, у которого изменяется значение со временем.
Трансформатор преобразует ток и напряжение, но он не позволяет увеличить мощность. Даже наоборот, из-за нагрева он немного забирает мощность. И не смотря на это, его КПД может доходить вплоть до 99%.
Классический трансформатор
Разберем устройство классического трансформатора.
Основная его функция — это снижение или повышение напряжения для блока питания. Работает за счет сетевого напряжения и низкой частоты (от 50 Гц). Частота переменного тока важна для расчетов.
Классический трансформатор состоит из первичной и вторичной обмотки, а также сердечника (магнитопровода).
На первичную обмотку подается то напряжение, которое нужно преобразовать. А со вторичной обмотки снимают то напряжение, которое получилось за счет взаимоиндукции. Сердечник увеличивает магнитный поток.
Как же происходит преобразование? Все просто. Можно рассчитать индуктивность первичной и вторичной обмотки. Если нужно низкое напряжение, то вторичная обмотка имеет меньше витков, чем первичная. Раз первичная работает за счет сетевого напряжения, то и рассчитывается на 220 В с небольшим запасом из-за колебаний сети.
Напряжение на вторичной обмотке сдвинуто по фазе относительно первичной. Это связано с явлением взаимоиндукции. На графике показана примерная разница по синусоиде.
Трансформаторы могут быть источниками фазовых искажений. Они изменяют сигналы по фазе из-за индуктивности, как показано на графике выше.
На принципиальных схемах классический трансформатор обозначается двумя катушками с сердечником.
Соответственно, если у трансформатора несколько вторичных обмоток, то и количество катушек на схеме будет другим.
Количество обмоток на трансформаторе может быть любым. Могут быть и несколько первичных и вторичных обмоток. А еще есть трансформаторы с общей точкой для двуполярного питания.
Кстати, если вы думаете, что у трансформатора нет сторон, как у диодов или транзисторов, то вы ошибаетесь. У трансформатора тоже есть начало обмотки и конец обмотки. На принципиальных схемах обозначение начала обмотки обозначается точкой и цифрами.
Зачем это надо? Дело в том, что магнитная индукция имеет свое направление, и на этом заложен весь принцип работы схемы. Если подключить обмотку не так, как показано на схеме, то вся схема перестанет работать как изначально задумывалось. Еще как пример можно привести трёхфазные электродвигатели. У них и вовсе для правильной работы важно знать начало и конец обмотки.
Коэффициент трансформации
У трансформаторов есть такое понятие, как коэффициент трансформации. Это отношение его входных и выходных характеристик (отношение количества витков первичной обмотки к вторичной).
Например, если трансформатор понижающий, с 220 В до 12 В, то его коэффициент больше единицы, то есть К 1. У разделительного коэффициент равен 1.
От чего зависит мощность трансформатора
При расчете учитываются следующие параметры:
- Размеры магнитопровода (сердечника);
- Количество витков;
- Сечение провода;
- Количество обмоток;
- Частота работы.
И все эти значения меняются в зависимости от расчетной мощности и требуемых параметров.
Типы классических трансформаторов
Классические трансформаторы по типу магнитопровода и расположению катушек разделяются на три основных вида:
Броневые чаще всего состоят из Е-пластин (или Ш, как многие называют), которые изолируются друг от друга лаком. В этом типе катушки заключены внутри сердечника как под броней. Поэтому они так и называются.
А еще сердечник может быть ленточным, но расположение катушек от этого не меняется.
Однако в плане эффективности преобразования мощности — это не самый лучший вариант. Магнитный поток получается неравномерным. Да и броневой трансформатор более уязвим к наводкам и помехам извне. Но зато у такого типа есть неоспоримое преимущество. Катушка наматывается достаточно просто, а сборка магнитопровода не составляет особого труда.
Такие трансформаторы чаще всего применяются в мелкогабаритной бытовой технике. Например, их можно часто встретить в мощных звуковых колонках от компьютеров.
Стержневые отличаются особенностями расположения катушек и конструкцией магнитопровода. Такой тип трансформаторов еще называют П-образным. Это связано с тем, что конструктивно сердечник такого трансформатора ленточный, и он собирается из узкой ленты электротехнической стали. И чтобы установить катушки в сердечник, его делают из двух форм в виде буквы П.
После установки двух катушек на первую часть сердечника, вторая часть замыкает ее при окончательной сборке.
Этот тип противоположность броневому. У такого трансформатора обмотки находятся снаружи, а у броневого наоборот, внутри.
Тороидальные трансформаторы являются самыми эффективными, и в тоже время самыми сложными в изготовлении. Сложности изготовления заключаются в том, что сердечник имеет форму тора. Он замкнут, и поместить катушки в сердечник так просто как в стержневых и броневых не получится.
Можно и разъединить трансформаторное железо на две полукруглые части (как П-образный трансформатор), но обмотку не получится намотать. Она будет не такая плотная и ровная.
Поэтому наматывают витки сразу на сердечник. А это намного дольше, да и автоматизировать такой процесс сложнее. Соответственно, и цена на такой трансформатор будет выше.
Режимы работы трансформаторов
Есть три основных режима:
1. Режим холостого хода. Первичная обмотка подключена к сети, но вторичная обмотка не подключена к нагрузке.
2. Режим нагрузки. Это рабочий режим. Первичная обмотка преобразует сетевое напряжение, а вторичная принимает его и подает в нагрузку.
3. Режим короткого замыкания. Вторичная обмотка находится в коротком замыкании. Это аварийный режим для большинства трансформаторов. В этой ситуации он может быстро нагреться и выйти из строя.
Все режимы и их критические параметры также зависят и от типа трансформатора. Например, для трансформатора тока, холостой режим является аварийным.
Импульсные трансформаторы
У импульсных трансформаторов другой тип действия. Они преобразуют напряжение до высоких частот с помощью схемы управления. Конечно из-за этого усложняется схема работы, но это позволяет накапливать большое количество энергии в катушках. Большое преимущество перед классическим трансформаторов — это компактность. Если классический трансформатор на 100 Вт будет большим, то импульсный в десятки раз меньше.
Из недостатков импульсных блоков питания — это наличие импульсных помех. Но и эти помехи удается сглаживать. Поэтому, все блоки питания в компьютерах, ноутбуках и зарядных устройствах чаще всего сделаны на импульсных трансформаторах.
Еще импульсные трансформаторы питают лампы подсветки в мониторах, которые подсвечивают матрицу. Это касается TFT мониторов.
Отличия импульсных трансформаторов от классических
Тезисно можно выделить несколько различий:
- Частота работы;
- Состав сердечника;
- Размеры;
- Схема работы;
- Стоимость.
А еще, как правило, у импульсных трансформаторов больше обмоток, чем у классических.
Почему сердечник не делают сплошным
Сердечники (магнитопроводы) делают из железных пластин потому, что во время работы появляются токи Фуко. Их называют еще вихревыми токами. Эти токи появляются от наводок обмоток в сердечнике. В итоге сердечник может перегреться, и даже расплавить катушки.
Поэтому, для трансформаторов низкой частоты делают сердечники из изолированных друг от друга пластин.
Пластины могут быть покрыты лаком, или изолированы бумагой между собой. Это уменьшает короткие замыкания в пластинах.
А можно ли сделать сердечник сплошным? Да, так можно сделать. И у импульсных трансформаторов сердечники сделаны из ферромагнитного порошка, у которого частицы друг от друга изолированы. Он называется ферродиэлектрическим сердечником. Но это возможно только на высоких частотах, на которых работает импульсный трансформатор.
Что делает трансформатор
У трансформатора много полезных и важных функций:
- Передает электричество на расстояние. Он способен повышать переменное напряжение. Это помогает передавать переменный ток на большие расстояния. Так как у проводов тоже есть сопротивление, от источника тока требуется высокое напряжение, чтобы преодолеть сопротивление проводов. Поэтому, трансформаторы незаменимы в электросетях, где они повышают напряжение до десятки тысяч вольт. Еще возле электростанций, которые вырабатывают электрический ток, стоят распределительные трансформаторы. Они повышают напряжение для передачи их потребителям. А возле потребителей стоит понижающий трансформатор, который уменьшает напряжение до 220 В 50 Гц.
- Питает электронику. Трансформатор — это часть блока питания. Он понижает входное сетевое напряжение, которое затем выпрямляется диодным мостом, фильтруется и подается на плату. По сути, он используется практически в любом блоке питания и преобразователе.
- Питает радиолампы и электронно-лучевые трубки. Для радиоламп нужен большой спектр напряжений. Это и 12 В и 300 В и др.
- Для этих целей и делают трансформаторы, которые понижают и повышают сетевое напряжение. Это делается за счет разных обмоток на одном сердечнике. Разновидностью ламп являются электронно-лучевые трубки (ЭЛТ). Они используются в электронных микроскопах, где с помощью пучка электронов можно получить детальные изображения микроскопических поверхностей. Для них нужны высокие напряжения, порядка нескольких десятков тысяч киловольт. Это нужно для того, чтобы в вакуумной трубке можно было разогнать пучок электронов до больших скоростей. Электрон в вакууме может повышать скорость своего передвижения за счет повышения напряжения. И здесь, кстати, используется импульсный трансформатор. Он повышает напряжение за счет работы ШИМ (широтно-импульсной модуляции). Такие трансформаторы называются строчными (или развертки).
Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.
- Согласует сопротивления. В усилителях звука согласование источника и потребителя играет важную роль. Поэтому, есть согласующие трансформаторы, которые позволяют передать максимум мощности в нагрузку. Если бы не было такого трансформатора, то лаповые усилители, которые были рассчитаны на 100 Вт, выдавали бы менее 50 Вт в нагрузку.
Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.
- Для безопасности. Трансформатор создает гальваническую развязку между сетью и блоком питания. Это последний рубеж безопасности в блоке питания, если что-то пойдет не так. Будет время для срабатывания предохранителя. Или же катушки и магнитопровод расплавятся, но потребителю не дадут сетевую нагрузку. Он физически не связан с сетью 220 В. Связь есть только с помощью магнитного поля (взаимоиндукции). И если трансформатор рассчитан на 100 Вт, то он сможет выдать только 100 Вт.
Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.
- Деталь оружия. В электрошокерах используются высокие напряжения. И их помогает форматировать высоковольтный трансформатор. А еще он используется в некоторых схемах Гаусс пушки.
Вопросы об устройстве трансформатора
-Почему зазор между катушками делается минимальным?
Это делается для лучшего контакта магнитных полей. Если зазор будет большим — то и эффективность трансформатора будет низкая.
-А можно ли сделать трансформатор без сердечника аналогичный мощности с сердечником?
Да, но тогда придется увеличивать количество витков, чтобы увеличить магнитный поток. Например, с сердечником у обмоток витки могут быть по несколько тысяч. А без сердечника придется увеличивать магнитный поток за счет витков. И количество витков будет по несколько десяток тысяч. Это не только увеличивает размеры катушек, но и снижает их эффективность и увеличивает шансы перегрева.
-Можно ли подключить понижающий трансформатор как повышающий?
Если у вас есть трансформатор, который понижает сетевое напряжение с 220 В в 12 В, то его можно подключить как повышающий. То есть, вы можете подать на него переменное напряжение 12 В на вторичную обмотку и получить повышенное на первичной 220 В.
-А что будет, если на вторичную обмотку понижающего трансфоратора подать сетевое напряжение?
Тогда обмотка сгорит. Её сопротивление, количество витков и сечение провода не рассчитаны на такие напряжения.
-Можно ли сделать трансформатор самостоятельно своими руками в домашних условия?
Да, это вполне реально. И многие радиолюбители и электронщики этим занимаются. А некоторые еще и зарабатывают. продавая готовую продукцию. Но стоит помнить о том, что это долгий, сложный и не простой труд. Нужны качественные материалы. Это трансформаторное железо, эмалированные медные провода различного сечения, изоляционные материалы.
Все материалы должны быть высокого качества. Если медный провод будет с плохой изоляцией, то возможно межвитковое замыкание, которое неминуемо приведет к перегреву. А для начала нужно рассчитать все параметры будущего трансформатора. Это можно сделать с помощью различных программ, которые доступны в сети.
Далее, это долгие часы сборки. Особенно если вы решили намотать тороидальные трансформатор.
Нужно плотно и равномерно наматывать витки, записывать каждый десяток, чтобы не запутаться и не изменить характеристики будущего преобразователя или блока питания.
-Что будет, если включить трансформатор без сердечника?
Так как трансформатор рассчитывался изначально с сердечником, то и преобразовать полностью напряжение он не сможет. То есть, на вторичке что-то будет, но явно не те параметры. Да и если подключите нагрузку к обмоткам без сердечника, они быстро нагреются и сгорят.
Неисправности трансформаторов
К основным неисправностям трансформаторов можно отнести:
- Коррозия и наличие ржавчины на сердечнике;
- Перегрев и нарушение изоляции;
- Межвитковое короткое замыкание;
- Деформация корпуса, обмоток и сердечника
- Попадание воды в обмотку.
Как проверить на целостность
Трансформатор можно проверить обычным мультиметром. Установите прибор в режим измерения сопротивления и проверьте обмотки.
Они не должны быть в обрыве, никогда. Если нигде обрывов нет, то можно найти первичную и вторичную обмотки при помощи измерения сопротивления. У первичной обмотки понижающего трансформатора сопротивление будет выше, чем у вторичной. Это все из-за количества витков. Чем больше витков и чем меньше диаметр провода — тем больше сопротивление обмотки.
Так же вы можете найти паспорт на свой трансформатор. В нем указываются сопротивления обмоток, и их параметры, которые нужно будет проверить мультиметром.
Безопасная проверка работы трансформатора
Если вы решили намотать свой трансформатор или проверить старый, то обязательно подключайте лампочку в разрыв цепи (последовательно!). Если что-то не так произойдет то, лампочка загорится и заберет ток на себя и сможет спасти неисправный трансформатор.
Трансформаторы много где используются. Их конструкция разная и для каждой задачи она по-своему уникальна.
Интересные факты про трансформаторы
Трансформатор — это самый эффективный преобразователь. Его КПД (коэффициент полезного действия) может доходить до 99% (силовые трансформаторы). А вот у ДВС (двигатель внутреннего сгорания), КПД обычно не выше 30%.
Самый эффективный, но в тоже время и самый сложный в изготовлении — это тороидальный трансформатор. Он эффективен благодаря расположению катушек и магнитопроводу. Это усложняет процесс изготовления, особенно в промышленных масштабах.
Источник
Как сделать постоянный ток из переменного, диодный выпрямительный мост своими руками.
Видео по этой теме:
Вы наверняка слышали, что бывает постоянный и переменный ток. Причём разница между ними существенная. На вход одних устройств подают именно постоянный, на вход других именно переменный, в противном случае техника работать не будет (а то и вовсе сгорит). В сети 220 вольт используется переменное напряжение (величина тока зависит от подключаемой нагрузки). Сама же электроника различных электротехнических устройств питается от пониженного постоянного напряжения, которое получают путем преобразования и выпрямления.
Как же можно получить постоянный ток своими руками? Просто, используя так называемый диодный мост выпрямитель. Для тех кто не знает, чем отличается постоянный ток от переменного поясню. У переменного тока периодически меняются полюса со временем. Известно, что в сети 220 вольт частота равна 50 герцам. То есть, плюс и минус в сети за одну секунду успевают измениться 50 раз. Такой вид тока имеет одно большое преимущество — его легко можно преобразовывать (увеличивать и уменьшать величину тока и напряжения) используя всего одно устройство (трансформатор). Но оно не подходит для питания электронных схем. А вот постоянный ток, наоборот, его сложней преобразовывать, но зато оно хорошо подходит для питания электроники.
Получить постоянный ток из переменного можно так. Нам нужно чтобы полюса не менялись, а были постоянно одними и те же. Это легко реализовать с помощью диодного моста. Выпрямительный диодный мост состоит из четырех диодов. Они спаяны в виде квадрата и имеют четыре вывода. На два из них подается переменное напряжение, а на двух других мы уже имеет постоянное (хотя оно не ровное, а скачкообразное). Для полного получения нормального постоянного тока еще нужен и фильтрующий конденсатор, задача которого сгладить скачки напряжения.
По какому принципу происходит выпрямление переменного тока? Как известно диоды хорошо пропускают электрический ток в одном направлении и не пропускают в другом. Так вот выпрямительный диодный мост спаян так, что когда на него подаётся одна полярность электрического напряжения одна пара диодов пропускают ток в нужном направлении, а другая пара диодов, наоборот, в это время не пропускают его. Когда полюса переменного напряжения меняются, и у диодов все происходит наоборот. Пары диодов начинают работать в противоположном режиме. В итоге получается, что проходя через диодный мост оба противоположных полюса на выходе имеют только лишь одни полюс.
Что касается вопроса, какие диоды нужны для диодного моста? Различные электронные устройства потребляют различную силу тока. В зависимости от того, на какой именно максимальный ток рассчитан ваш блок питания (что будет питать устройства) и будет зависеть тип диодов в выпрямительном мосте. Выпрямительные диоды различаются по обратному напряжению и току пропускания. Так вот, к примеру ваш блок питания рассчитан на максимальный выходной ток в 3 ампера. Значит внутри него должны стоять выпрямительные диоды примерно на 6 ампер (желательно чтобы был определенный запас на случай перегрузки). Ну и напряжение должно быть не меньшие того, что выдает источник постоянного питания.
P.S. Стоит учитывать, что диодные мосты, которые рассчитаны пропускать через себя токи более 3 ампер необходимо ставить на охлаждающие радиаторы. Кристаллы, что через себя проводят электрический ток, стоящие внутри диодов, разрушаются под воздействием высокой температуры. Большие токи нагревают проводник, диоды. Следовательно, чтобы избежать выхода из строя диода, выпрямительного моста, нужно радиаторное охлаждение.
Для преобразования переменного тока в постоянный применяют полупроводниковые выпрямители.
В местах контакта между двумя полупроводниками с разным механизмом проводимости — дырочным и электронным — наблюдается ряд замечательных явлений. Оказывается, что место контакта таких полупроводников обладает весьма различной проводимостью в зависимости от того, будет ли электрическое поле направлено от p-полупроводника к n-полупроводнику или наоборот. Если, например, привести в соприкосновение закись меди (Cu2О), имеющую дырочную проводимость, и двуокись титана (TiO2), имеющую электронную проводимость, то при одном и том же напряжении ток в направлении от закиси меди к двуокиси титана будет в 10 000 раз сильнее, чем в обратном направлении. Чтобы понять причину этих явлений, нужно разобраться в процессах, происходящих на так называемых p — n-переходах, т. е. на границе соприкосновения дырочных и электронных полупроводников. В электронном проводнике основными носителями тока являются свободные электроны, число которых гораздо больше, чем число дырок. В дырочном проводнике, наоборот, число дырок гораздо больше, чем число свободных электронов. Когда мы приводим эти два вещества в соприкосновение, то электроны начинают диффундировать из n-полупроводника, где их концентрация выше, в p-полупроводник, где их имеется меньше, подобно тому как атомы растворенного вещества диффундируют из крепкого раствора в слабый, если привести растворы в соприкосновение. Точно так же и по тем же причинам дырки будут диффундировать из дырочного полупроводника в электронный. В результате этого пограничный слой обоих полупроводников обедняется основными носителями, т. е. на границе создается так называемый запирающий слой, сопротивление которого значительно больше, чем сопротивление всей толщи обоих полупроводников. Фактически именно сопротивлением этого запирающего слоя и определяется сопротивление всего тела.
Естественно возникает вопрос: до каких пор будет происходить уход дырок из p-полупроводника в n-полупроводник и уход электронов в обратном направлении? Ответить на этот вопрос нетрудно. Так как из дырочного полупроводника уходят положительные заряды, а притекают в него электроны, то вблизи границы этот полупроводник заряжается отрицательно. Точно так же пограничный слой электронного полупроводника заряжается положительно, так как сюда притекают дырки, а отсюда уходят электроны. Таким образом, вблизи границы возникает двойной электрический слой, в котором поле направлено от электронного полупроводника к дырочному, т. е. противодействует диффузии электронов и дырок (поле Е на Рис. 186. Возникновение запирающего слоя на границе n-полупроводника и p-полупроводника: Е — поле, препятствующее диффузии электронов и дырокрис. 186). Когда это поле достигнет такой напряженности, что его действие уравновесит стремление свободных электронов и дырок диффундировать в «чужие» области, будет достигнуто равновесие, и дальнейшая диффузия прекратится.
Представим себе теперь, что мы присоединили пластинку к батарее так, что электронный проводник соединен с минусом батареи, а дырочный — с плюсом (рис. 187, а) Внешнее поле, которое сосредоточено преимущественно в запирающем слое, имеющем наибольшее сопротивление, будет направлено от дырочного полупроводника к электронному. Дырки и электроны будут двигаться к границе, навстречу друг другу, встречаясь, они могут рекомбинировать, а на то место будут приходить из электродов новые свободные электроны и дырки и т. д. Сопротивление слоя будет сравнительно невелико и ток в этом пропускном направлении будет большим. Если же мы присоединим плюс батареи к электронному проводнику, а минус к дырочному, то внешнее поле будет двигать электроны и дырки от границы в противоположные стороны (рис. 187, б), запирающий слой будет расширяться, и сопротивление тела резко возрастет. Рис. 187. Движение свободных электронов (кружки со знаком «—») и дырок (кружки со знаком «+») при прохождении тока через p — n-переход: а) пропускное включение; б) запирающее включениеВ настоящее время выяснилось, что именно этим механизмом обусловлено сильное выпрямляющее действие так называемых медно-закисных (купроксных) и селеновых выпрямителей, разработанных чисто эмпирическим путем, без ясного понимания происходящих в них физических процессов. Медно-закисный выпрямитель представляет собой медную пластинку, на которой при температуре свыше 1000 °С наращивается слой закиси меди (Cu2О); затем при температуре около 600 °С этот слой насыщается кислородом и быстро охлаждается. После этого растворяют кислотой образовавшийся на поверхности закиси слой окиси меди (CuO) и наносят на закись слой металлической меди.
Если приготовленную таким образом пластинку включить в цепь батареи (рис. 188), то оказывается, что при таком направлении тока, когда он идет от закиси меди к медной пластинке, ток очень большой, т. е. сопротивление пластинки очень мало. Если же поменять местами полюсы батареи, т. е. заставить ток идти от медной пластинки к закиси меди, то сила тока станет в тысячи раз меньше, в этом направлении пластинка имеет сопротивление в тысячи раз большее. Таким образом, пластинка представляет собой электрический вентиль, подобный двухэлектродной лампе (§ 106): она пропускает ток в одном направлении и почти не пропускает его в обратном направлении. Причина явления заключается в том, что на основном медном электроде имеется слой закиси меди, содержащий примеси меди и других металлов; этот слой является электронным полупроводником. Но внешний слой закиси, обогащенный кислородом, является дырочным полупроводником. Таким образом, в толще закиси меди имеется p — n-переход, т. е. существует граница между полупроводниками p- и n-типа. Здесь и возникает запирающий слой, обусловливающий одностороннюю проводимость.
Такими же свойствами обладает селеновый выпрямитель. Он представляет собой нанесенный на никелированную железную пластинку слой селена, поверх которого наносится второй электрод из сплава кадмия, олова и Рис. 188. Через медно-закисный выпрямитель проходит сильный ток при включении по схеме а) и очень слабый при включении по схеме б): 1 — закись меди, обогащенная кислородом, 2 — напыленная медь, 3 — закись меди, 4 — медьвисмута. После длительного прогрева и пропускания тока такая система тоже приобретает свойство односторонней проводимости. В селеновых выпрямителях запирающий слой образуется также на границе между селеном (дырочным полупроводником) и селенистым кадмием, который возникает в процессе обработки пластин и имеет электронный механизм проводимости.
В настоящее время широкое распространение в технике, особенно в радиотехнике, получили полупроводниковые выпрямители из германия, кремния и других полупроводников. Мы видели в предыдущем параграфе, что характер проводимости германия можно изменять, вводя в него небольшое число примесных атомов того или другого рода. Если, например, на одной из поверхностей германия с электронной проводимостью расплавить небольшой кусок индия, то тонкий поверхностный слой, в который проникнут на некоторую глубину атомы индия, станет дырочным полупроводником и в толще германия создастся p — n-переход, который будет иметь выпрямляющее свойство (одностороннюю проводимость). На рис. 189 показано устройство одного из типов таких германиевых выпрямителей, а на рис. 190 — его вольтамперная характеристика, т. е. кривая, изображающая зависимость силы тока через выпрямитель от приложенного к нему напряжения. Мы видим из этой Рис. 189. Германиевый выпрямитель: а) общий вид; б) сечение, 1— германиевая пластинка, 2—вольфрамовая пружинка с острием, 3 — керамический цилиндр, 4 — латунные держатели; в) условное изображение Рис. 190. Вольтамперная характеристика германиевого выпрямителя кривой, что в пропускном направлении ток равен 1 А уже при напряжении 0,75 В, т. е. сопротивление германия очень мало. В запирающем же направлении ток очень мал (около 0,05 мА) и практически не зависит от напряжения вплоть до напряжения около 400 В, когда наступает пробой.
Из германия, кремния и других полупроводников с p—n-переходами в настоящее время изготовляют также и полупроводниковые усилители (транзисторы), которые заменяют трехэлектродную усилительную электронную лампу. Такие приборы во многих случаях имеют большие преимущества по сравнению с вакуумными электронными лампами, так как они обладают гораздо меньшими размерами, имеют значительно больший срок службы и требуют меньшей мощности питания, чем электронные лампы.
53 усилители на полупроводниковых триодах. Классификация, основные элементы схем.
( 2 оценки, среднее 4.5 из 5 )
Переменный ток и его параметры
У переменного тока направление и величина циклически изменяются во времени. Цикл одного полного изменения (колебания) называется периодом (T), а обратная ему величина – частотой (f). Буквенное обозначение переменного тока – АС, сокращение от Alternating Current (знакопеременный ток), а графически он обозначается отрезком синусоиды:
̴
После этого знака указывается напряжение, иногда – частота и количество фаз.
Переменный ток характеризуется параметрами:
Характеристика | Обозначение | Единица измерения | Описание |
Число фаз | Однофазный | ||
Трехфазный | |||
Напряжение | U | вольт | Мгновенное значение |
Амплитудное значение | |||
Действующее значение | |||
Фазное | |||
Линейное | |||
Период | Т | секунда | Время одного полного колебания |
Частота | f | герц | Число колебаний за 1 секунду |
Однофазный ток в чистом виде получается при помощи бензиновых и дизельных генераторов. В остальных случаях он – часть трехфазного, представляющего собой три изменяющихся по синусоидальному закону напряжения, равномерно сдвинутых друг относительно друга. Этот сдвиг по времени называется углом сдвига фаз и составляет 1/3Т.
Для передачи трехфазных напряжений используют четыре провода. Один является их общей точкой и называется нулевым (N), а три остальные называются фазами (L1, L2, L3).
Графики напряжений трехфазного переменного тока
Напряжение между фазами называется линейным, а между фазой и нулем – фазным, оно меньше линейного в √3 раз. В нашей сети фазное напряжение равно 220 В, а линейное – 380 В.
Под мгновенным значением напряжения переменного тока понимают его величину в определенный момент времени t. Она изменяется с частотой f. Мгновенное значение напряжения в точке максимума называется амплитудным значением. Но не его измеряют вольтметры и мультиметры. Они показывают величину, в √2 раз меньшую, называемую действующим или эффективным значением напряжения. Физически это означает, что напряжение постоянного тока этой величины совершит такую же работу, как и измеряемое переменное напряжение.
Характеристики трехфазного тока
Достоинства и недостатки переменного напряжения
Так почему же для энергоснабжения выбрали переменный ток, а не постоянный?
При передаче электроэнергии ток проходит по проводам, длиной сотни километров, нагревая их и рассеивая в воздухе энергию. Это неизбежно как для постоянного, так и для переменного токов. Но мощность потерь зависит только от сопротивления проводов и тока в них:
Мощность, которую передается по линии, равна:
Отсюда следует, что при увеличении напряжения для передачи той же мощности нужен меньший ток, и мощность потерь при этом уменьшается. Вот поэтому протяженных ЛЭП напряжение повышают. Есть линии на 6кВ, 10кВ, 35кВ, 110кВ, 220кВ, 330кВ, 500кВ, 750кВ и даже 1150кВ.
Но в процессе передачи электроэнергии от источника к потребителю напряжение нужно неоднократно изменять. Проще это сделать на переменном токе, используя трансформаторы.
Недостатки переменного тока проявляются при передаче энергии по кабельным линиям. Кабели имеют емкостное сопротивление между фазами и относительно земли, а емкость проводит переменный ток. Появляется утечка, нагревающая изоляцию и выводящая со временем ее из строя.
Способы получения электричества
Электроток производят с помощью таких устройств:
-
. Состоят из двух частей: неподвижного статора и вращающегося внутри него ротора. Статор — постоянный или электрический магнит, ротор содержит обмотку из провода. При вращении ротора пересекающий его обмотку магнитный поток все время меняется, что приводит, согласно закону электромагнитной индукции, к возникновению ЭДС. Ротор приводится во вращение внешней силой: двигателем (автомобиль), потоком воды (гидроэлектростанция), давлением пара (атомные и тепловые электростанции), ветром и т.д. Ток на выходе генератора будет переменным. Для получения постоянного требуется дополнительное механическое устройство — коллектор; - гальванические элементы (ГЭ) и аккумуляторы. Превращают в электричество химическую энергию за счет окислительно-восстановительной реакции. Простейший ГЭ: медная и цинковая пластины, погруженные, соответственно, в растворы сернокислой меди и сульфата цинка, изолированные друг от друга пористой перегородкой (элемент Якоби-Даниэля). В результате окисления каждый атом цинка на цинковой пластине (анод) отдает 2 электрона, переходящие по электрической цепи на медную пластину (катод) и восстанавливающие на нем положительно заряженные ионы меди. ГЭ называют первичными химическими источниками тока (ХИТ). Аккумуляторы — вторичные ХИТ. Принцип работы схож, но химическую энергию им сначала нужно сообщить, подключив систему к источнику тока. Заряжать и разряжать аккумулятор можно многократно, тогда как ГЭ используется только один раз;
- фотоэлементы. Действие основано на способности полупроводников генерировать ток при облучении светом. В этом можно убедиться, срезав верхнюю часть корпуса транзистора и поместив его под солнечные лучи: на выводах прибора мультиметр покажет напряжение;
- термоэлементы. Действие основано на эффекте Зеебека: в замкнутой цепи из двух проводов, выполненных из разных металлов, при нагревании одной из двух зон контакта между ними возникает ЭДС. Такие цепи называют термопарами и в основном применяют в качестве термодатчиков. К примеру, для измерения температур от +00С до +1000С применяют пару медь – константан, в диапазоне +1000С — +6000С — серебро и константан.
Из всех перечисленных источников только механический генератор дает переменный ток. Если же ток поступает от аккумулятора, например, установленного в источнике бесперебойного питания (ИБП), его из постоянного превращают в переменный.
Схемы преобразователей
Инверторы классифицируются по принципу работы, форме и схеме.
Принцип действия
По данному признаку устройства делятся на два типа: автономные и инверторы, ведомые сетью.
- напряжения (ИН): устанавливаются в большинстве ИБП;
- тока;
- резонансные.
Инверторы, ведомые сетью иначе называются зависимыми. Применяются, к примеру, в качестве силовых преобразователей на электровозах.
Схемы
Существует несколько основных схем инверторов:
- мостовой ИН без трансформатора. Применяется в ИБП мощностью свыше 500 ВА и в различных устройствах, рассчитанных на 220 или 380 В;
- ИН с нулевым выводом трансформатора. Применяется в ИБП мощностью 250-500 ВА, в установках напряжением 12 или 24 В и мобильных радиопередатчиках;
- мостовой ИН с трансформатором. Используется в ИБП ответственных объектов с потребляемой мощностью от нескольких кВА до десятков.
Принципиальная схема преобразователя
Форма
По форме выходного напряжения инверторы делятся на:
- ИН с прямоугольным выходным сигналом. С целью обеспечить требуемую пропорциональность Uвых. управляющая схема варьирует относительную длительность импульсов ключами либо сдвигает по фазе сигналы управления противофазных групп ключей (зависит от конструктивных особенностей переключающего модуля);
- ИН со ступенчатым выходным напряжением. Обрабатывают входной сигнал в два этапа: путем высокочастотного преобразования формируется однополярный ступенчатый сигнал, близкий к синусоиде с уменьшенным вдвое периодом, а при помощи мостового преобразователя он превращается в разнополярный с требуемым периодом;
- ИН с синусоидальным выходным напряжением. Входной постоянный ток также обрабатывается в 2 этапа: путем высокочастотного преобразования формируется постоянное напряжение, почти равное амплитуде требуемого переменного напряжения, а затем мостовым инвертором, действующим по принципу многократной широтно-импульсной модуляции.
Полученное постоянное напряжение преобразуется в близкое к синусоидальному переменное.
Зависимость пульсаций напряжения от емкости конденсатора
Давайте же рассмотрим на практике, зачем нам надо ставить конденсатор большой емкости. На фото ниже у нас три конденсатора различной емкости:
Рассмотрим первый. Замеряем его номинал с помощью нашего LC — метр. Его емкость 25,5 наноФарад или 0,025микроФарад.
Цепляем его к диодному мосту по схеме выше
И цепляемся осциллографом:
Смотрим осциллограмму:
Как вы видите, пульсации все равно остались.
Ну что же, возьмем конденсатор емкостью побольше.
Получаем 0,226 микрофарад.
Цепляем к диодному мосту также, как и первый конденсатор снимаем показания с него.
А вот собственно и осциллограмма
Не… почти, но все равно не то. Пульсации все равно видны.
Берем наш третий конденсатор. Его емкость 330 микрофарад. У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.
Цепляем его к диодному мосту снимаем с него осциллограмму.
А вот собственно и она
Ну вот. Совсем ведь другое дело!
Итак, сделаем небольшие выводы:
— чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие. Да и начальный ток заряда будет огромным, что может привести к перегрузке питающей цепи.
— чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. С этим борются с помощью пассивных фильтров, а также используют интегральные стабилизаторы напряжения, которые выдают чистейшее постоянное напряжение.
( 1 оценка, среднее 4 из 5 )