Период родительских графиков синуса и косинуса умножается на 2, умноженное на пи, которое когда-то находится вокруг единичного круга. Иногда в тригонометрии переменная x , а не функция, умножается на константу. Это действие влияет на период графика функции триггера.
Например, f ( x ) = sin 2 x заставляет график повторяться дважды за одно и то же время; другими словами, график движется в два раза быстрее. Думайте об этом как о быстрой перемотке DVD. На этом рисунке показаны функциональные графики с различными изменениями периода.
Создание изменений периода на функциональных графиках.
Чтобы найти период f ( x ) = sin 2 x,
и решить за период. В таком случае,
Каждый период графика заканчивается с удвоенной скоростью.
Вы можете заставить график функции триггера двигаться быстрее или медленнее с различными константами:
Положительные значения периода больше 1 заставляют график повторяться все чаще и чаще.
Вы видите это правило в примере f ( x ).
Значения дроби от 0 до 1 заставляют график повторяться реже.
Например, если
Вы можете найти его период, установив
Решая за период, вы получаете
Раньше график заканчивался на
теперь он ждет, чтобы закончить в
что замедляет его на 1/4.
Вы можете иметь отрицательную константу, умножающую период. Отрицательная постоянная влияет на скорость движения графика, но в направлении, противоположном положительной постоянной. Например, скажите p ( x ) = sin (3 x ) и q ( x ) = sin (–3 x ). Период р ( х )
тогда как период q ( x ) равен
График p ( x ) перемещается вправо от оси y , а график q ( x ) перемещается влево. На рисунке это ясно видно. Имейте в виду, что эти графики представляют только один период функции. График фактически повторяется в обоих направлениях бесконечно много раз.
Y-ось «. />
Графики с отрицательными периодами перемещаются в противоположную сторону от оси y .
Не путайте амплитуду и период при отображении функций триггера. Например, f ( x ) = 2 sin x и g ( x ) = sin 2 x по-разному влияют на график: f ( x ) = 2 sin x делает его выше, а g ( x ) = sin 2 x делает его быстрее,
- Растяжение и сжатие графиков тригонометрических функций по оси OX
- Растяжение и сжатие графиков тригонометрических функций по оси OY
- Параллельный перенос графиков тригонометрических функций по оси OX
- Параллельный перенос графиков тригонометрических функций по оси OY
- Общее уравнение синусоиды
- Общее уравнение тангенцоиды
- Примеры
Общие принципы преобразования графиков функций изучались нами в главе 8, (см. §47, §48, §50 справочника для 8 класса). В этом параграфе мы рассмотрим особенности тригонометрических функций при использовании этих преобразований.
п.1. Растяжение и сжатие графиков тригонометрических функций по оси OX
Общие принципы растяжения и сжатия графиков по оси OX:
При сравнении графиков двух функций $$ y_1=f(x), y_2=f(px), pgt 1 $$ график второй функции сжимается в p раз по оси OX по сравнению с графиком первой функции.
При сравнении графиков двух функций $$ y_1=f(x), y_2=f(frac{x}{p}), pgt 1 $$ график второй функции растягивается в p раз по оси OX по сравнению с графиком первой функции.
Эти принципы справедливы и для тригонометрических функций.
Тригонометрические функции являются периодическими: синус и косинус с периодом 2π, тангенс и котангенс – с периодом π. Получаем следствие общих принципов:
При сравнении двух тригонометрических функций $$ y_1=f(x), y_2=f(px), pgt 1 $$ период второй функции уменьшается в p раз: $$ T_2=frac{T_1}{p} $$
При сравнении двух тригонометрических функций $$ y_1=f(x), y_2=f(frac{x}{p}), pgt 1 $$ период второй функции увеличивается в p раз: $$ T_2=pT_1 $$
Например:
Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sin2x, h(x)=sinfrac{x}{2} $$
Период колебаний функции (g(x)=sin2x) в 2 раза меньше: (T_g=frac{2pi}{2}=pi).
Период колебаний функции (h(x)=sinfrac{x}{2}) в 2 раза больше: (T_h=2cdot 2pi=4pi).
п.2. Растяжение и сжатие графиков тригонометрических функций по оси OY
Общие принципы растяжения и сжатия графиков по оси OY:
При сравнении графиков двух функций $$ y_1=f(x), y_2=Af(x), Agt 1 $$ график второй функции растягивается в A раз по оси OY по сравнению с графиком первой функции.
Общий принцип сжатия графиков:
При сравнении графиков двух функций $$ y_1=f(x), y_2=frac{1}{A}f(x), Agt 1 $$ график второй функции сжимается в A раз по оси OY по сравнению с графиком первой функции.
Эти принципы справедливы и для тригонометрических функций.
Т.к. для графиков синуса и косинуса (синусоиды) характерна амплитуда колебаний, то также говорят, что:
- умножение на параметр (Agt 1) увеличивает амплитуду колебаний в (A) раз;
- деление на параметр (Agt 1) уменьшает амплитуду колебаний в (A) раз.
Например:
1) Построим в одной системе координат три графика: $$ f(x)=cosx, g(x)=2cosx, h(x)=frac{1}{2}cosx $$
Умножение на (A=2) увеличивает амплитуду колебаний в 2 раза.
Область значений функции (g(x)=2cosx: yin[-2;2]). График растягивается по оси OY.
Деление на (A=2) уменьшает амплитуду колебаний в 2 раза. Область значений функции (h(x)=frac12 cosx: yinleft[-frac12; frac12right]). График сжимается по оси OY.
2) Теперь построим $$ f(x)=tgx, g(x)=2tgx, h(x)=frac{1}{2}tgx $$
В этом случае хорошей иллюстрацией растяжения по оси OY при умножении и сжатия по оси OY при делении на (A=2) служит поведение функции при (x=fracpi4). $$ fleft(fracpi4right)=tgleft(fracpi4right)=1, gleft(fracpi4right)=2tgleft(fracpi4right)=2, hleft(fracpi4right)=frac12 tgleft(fracpi4right)=frac12 $$ Аналогично – для любого другого значения аргумента x.
п.3. Параллельный перенос графиков тригонометрических функций по оси OX
Общие принципы переноса по оси OX:
При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x+a), agt 0 $$ график второй функции смещается влево на a по оси OX по сравнению с графиком первой функции.
При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x-a), agt 0 $$ график второй функции смещается вправо на a по оси OX по сравнению с графиком первой функции.
Эти принципы справедливы и для тригонометрических функций.
При этом параметр x называют начальной фазой колебаний.
При сравнении двух тригонометрических функций (y_1=f(x)) и (y_2=f(xpm a)) говорят, что у второй функции сдвиг по фазе равен (pm a).
Например:
1) Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sinleft(x+fracpi4right), h(x)=sinleft(x-fracpi4right) $$
Функция (g(x)=sinleft(x+fracpi4right)) сдвинута на (fracpi4) влево по сравнению с (f(x))
Функция (h(x)=sinleft(x-fracpi4right)) сдвинута на (fracpi4) вправо по сравнению с (f(x))
п.4. Параллельный перенос графиков тригонометрических функций по оси OY
Общие принципы переноса по оси OY:
При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x)+a, agt 0 $$ график второй функции смещается вверх на a по оси OY по сравнению с графиком первой функции.
При сравнении графиков двух функций $$ y_1=f(x), y_2=f(x)-a, agt 0 $$ график второй функции смещается вниз на a по оси OY по сравнению с графиком первой функции.
Эти принципы справедливы и для тригонометрических функций.
Например:
1) Построим в одной системе координат три графика: $$ f(x)=sinx, g(x)=sinx+1, h(x)=sinx-1 $$
Функция (g(x)=sinx+1) сдвинута на 1 вверх по сравнению c (f(x))
Функция (h(x)=sinx-1) сдвинута на 1 вниз по сравнению с (f(x))
п.5. Общее уравнение синусоиды
Синусоида – плоская кривая, которая задается в прямоугольной системе координат уравнением: $$ y(x)=Asin(cx+d)+B $$ где
A — амплитуда, характеризует растяжение графика по оси OY
B – вертикальный сдвиг, характеризует сдвиг графика по оси OY (вверх/вниз)
c — циклическая частота, характеризует период колебаний и растяжение графика по оси OX
d— начальная фаза, характеризует сдвиг графика по оси OX(влево/вправо)
График (y(x)=Acos(cx+d)+B) также называют синусоидой. Термин «косинусоида» употребляется относительно редко.
Поскольку график косинуса получается из графика синуса сдвигом по фазе на π/2 влево, вводить термин «косинусоида» излишне.
Например:
Построим график (g(x)=3sinleft(2x+fracpi2right)-1)
По сравнению с (f(x)=sinx):
- (A=3) — график растянут по оси OY в 3 раза
- (c=2) — период меньше в 2 раза T=π, график сжат в 2 раза по оси OX
- (d=fracpi2) – начальная фаза положительная, график сдвинут на (frac{pi}{2cdot 2}=fracpi4) влево
- (B=-1) — график сдвинут по оси OY на 1 вниз
п.6. Общее уравнение тангенцоиды
Tангенцоидa – плоская кривая, которая задается в прямоугольной системе координат уравнением: $$ y(x)=Atg(cx+d)+B $$ где
A — амплитуда, характеризует растяжение графика по оси OY
B – вертикальный сдвиг, характеризует сдвиг графика по оси OY (вверх/вниз)
c — циклическая частота, характеризует период колебаний и растяжение графика по оси OX
d— начальная фаза, характеризует сдвиг графика по оси OX(влево/вправо)
График (y(x)=Actg(cx+d)+B) также называют тангенцоидой.
Например:
Построим график (g(x)=frac12 tgleft(frac{x}{2}-fracpi3right)+1)
По сравнению с (f(x)=tgx):
- (A=frac12) — график сжат по оси OY в 2 раза
- (c=frac12) — период больше в 2 раза T=2π, расстояние между асимптотами 2π, график растянут в 2 раза по оси OX
- (d=-fracpi3) – начальная фаза отрицательная, график сдвинут на (frac{pi}{3cdot 1/2}=frac{2pi}{4}) вправо
- (B=1) — график сдвинут по оси OY на 1 вверх
п.7. Примеры
Пример 1.Постройте в одной системе координат графики: $$ f(x)=sinx, g(x)=-sinx, h(x)=cosx $$ Найдите сдвиг по фазе для (g(x)) и (h(x)) в сравнении с (f(x)).
Сдвиг по фазе удобно определять по главной арке синусоиды.
Для (f(x)=sinx) главная арка определена на отрезке (0leq xleq pi)
Для (g(x)=-sinx) главная арка определена на отрезке (-pileq xleq 0), т.е. сдвинута на π влево от (f(x)). Это означает, что: $$ f(x)=g(x+pi), sinx=-sin(x+pi) $$ Для (h(x)=cosx) главная арка определена на отрезке (-fracpi2leq xleq fracpi2), т.е. сдвинута на (fracpi2) влево от (f(x)). Это означает, что: $$ f(x)=hleft(x+fracpi2right), sinx=cosleft(x+fracpi2right) $$
Пример 2. Найдите наименьшие положительные периоды функций:
a) (y=sin5x)
Период синуса (2pi) уменьшается в 5 раз. Получаем: (T=frac{2pi}{5})
б) (y=cospi x)
Период косинуса (2pi) уменьшается в (pi) раз. Получаем: (T=frac{2pi}{pi}=2)
в) (y=tgfrac{x}{4})
Период тангенса (pi) увеличивается в 4 раза. Получаем: (T=4pi)
г) (y=tgleft(2x+frac{pi}{3}right))
Период тангенса (pi) уменьшается в 2 раза. Получаем: (T=fracpi2)
Пример 3. Используя правила преобразования графиков функций, постройте график $$ f(x)=2ctgleft(3x+fracpi6right) $$ По сравнению с (g(x)=tgx):
- (A=2) — график растянут по оси OY в 2 раза
- (c=3) — период меньше в 3 раза (T=fracpi3), расстояние между асимптотами (fracpi3), график сжат в 3 раза по оси OX
- (d=-fracpi6) – начальная фаза положительная, график сдвинут на (frac{pi}{6cdot 3}=frac{pi}{18}) влево
Расположение нулей: $$ tgleft(3x+fracpi6right)=0Rightarrow 3x+fracpi6=pi kRightarrow 3x=-fracpi6+pi kRightarrow x =-frac{pi}{18}+frac{pi k}{3} $$ Вертикального сдвига нет, нули расположены на оси OX.
Расположение асимптот: $$ 3x+fracpi6nefracpi2+pi kRightarrow 3xnefracpi3+pi kRightarrow xnefracpi9+frac{pi k}{3} $$ Пересечение главной ветви с осью OY: (x=0, y=2tgfracpi6=frac{2}{sqrt{3}})
С учетом периода (fracpi3) получаем семейство дополнительных точек для построения графика (left(frac{pi k}{3}; frac{2}{sqrt{3}}right)).
Пример 4. Определите графически, сколько корней имеет уравнение на отрезке: a) (sinx=sin2x) при (0leq xleq 3pi)
Ответ: 7 корней
б) (cosfrac{x}{2}=cos2x) при (-2pileq xleq 2pi)
Ответ: 7 корней
TL;DR: What you are asking to do simply does not work. There is no such amplitude.
Literally, what you are asking to do is to find an amplitude $k$ such that the arc length of $y = k sinleft(frac32 xright)$ from $0$ to $2pi s$ is always the same as the arc length of $y = sin(x)$ from $0$ to $2pi s$
for rational $s > 1,$ that is,
$$
int_0^{2pi s} sqrt{1 + cos^2(x)}d x
stackrel?=
int_0^{2pi s} sqrt{1 + tfrac94 k^2cos^2left(tfrac32 xright)} d x.
$$
Let’s try this first for the particular value $s = 2.newcommand{d}{,mathrm d}$
Let $f(x) = sin(x)$ and $g(x) = k sinleft(frac32 xright),$
so that $g$ has period $frac43pi.$
We have $f'(x) = cos(x),$ so the arc length of $f$ is
begin{align}
L_{f,2} &= int_0^{4pi} sqrt{1 + (f'(x))^2}d x \
&= int_0^{4pi} sqrt{1 + cos^2(x)}d x \
&= 2 int_0^{2pi} sqrt{1 + cos^2(x)}d x \
&approx 15.2808,
end{align}
since the interval $[0,4pi]$ contains two copies of the curve over the interval $[0,2pi]$, identical except for translation.
(The integral is an elliptic integral; see
What is the length of a sine wave from $0$ to $2pi$?.)
Since $g'(x) = frac32kcosleft(frac32 xright),$ the arc length of $g$ is
begin{align}
L_{g,2} &= int_0^{4pi} sqrt{1 + (g'(x))^2}d x \
&= int_0^{4pi} sqrt{1 + tfrac94 k^2cos^2left(tfrac32 xright)}d x \
&= 3 int_0^{4pi/3} sqrt{1 + tfrac94 k^2cos^2left(tfrac32 xright)}d x
end{align}
since the interval $[0,4pi]$ contains three copies of the curve over the interval $left[0,frac43piright]$.
Now do a substitution $u = frac32 x.$ Then
begin{align}
int_0^{4pi/3} sqrt{1 + tfrac94 k^2cos^2left(tfrac32 xright)}d x
&= int_0^{2pi} sqrt{1 + tfrac94 k^2cos^2(u)} cdot tfrac23 d u \
&= frac23 int_0^{2pi} sqrt{1 + tfrac94 k^2cos^2(u)} d u
end{align}
and therefore the arc length of $g$ is
$$
L_{g,2} = 2 int_0^{2pi} sqrt{1 + tfrac94 k^2cos^2(u)} d u.
$$
Now to make the arc lengths equal we need to make the integrals
$int_0^{2pi} sqrt{1 + cos^2(x)}d x$
and $int_0^{2pi} sqrt{1 + tfrac94 k^2cos^2(u)} d u$ equal,
and the obvious way to do that is to set $tfrac94 k^2 = 1,$ that is,
$ k = tfrac23.$
So we set
$$ g(x) = tfrac23 cosleft(tfrac32 xright). $$
And indeed then the arc length of $g$ is
$$
L_{g,2} = 3 int_0^{4pi/3} sqrt{1 + cos^2left(tfrac32 xright)}d x
approx 15.2808.
$$
Now let’s try $s = frac94.$ Then the arc length of $f$ is
$$
L_{f,9/4} = int_0^{9pi/2} sqrt{1 + cos^2(x)}d x approx 17.1909
$$
while the arc length of $g$ is
$$
L_{g,9/4} = int_0^{9pi/2} sqrt{1 + cos^2left(tfrac32 xright)} d x
approx 17.1222.
$$
Oops!
So, why did the function $g$ that worked for $s = 2$ not work for $s = frac94$?
What’s happening is that you’re trying to set $k$ so that for all rational $s > 1$
you have the equation
$$
int_0^{2pi s} sqrt{1 + cos^2(x)}d x
stackrel?=
int_0^{2pi s} sqrt{1 + tfrac94 k^2cos^2left(tfrac32 xright)} d x.
$$
But an antiderivative of a continuous function is continuous,
so if you can do this for rational $s > 1$ you can do it for all $s > 1,$ and if you can make the two sides equal then their derivatives also are equal,
which can only occur if
$$
sqrt{1 + cos^2(2pi s)}
stackrel?=
sqrt{1 + tfrac94 k^2cos^2left(3pi sright)}
$$
for all $s > 1,$ which in turn requires that
$$
cos(2pi s) stackrel?= tfrac32 kcosleft(3pi sright),
$$
that is, it requires us to find an amplitude $k$ on the right that makes two sinusoids of unequal period equal. And that simply does not happen in general.
The arc lengths of the two curves cannot always accumulate at the same rate: if the are equal at one value of $s,$ then one will be ahead or behind the other at some other value of $s.$
TL;DR: What you are asking to do simply does not work. There is no such amplitude.
Literally, what you are asking to do is to find an amplitude $k$ such that the arc length of $y = k sinleft(frac32 xright)$ from $0$ to $2pi s$ is always the same as the arc length of $y = sin(x)$ from $0$ to $2pi s$
for rational $s > 1,$ that is,
$$
int_0^{2pi s} sqrt{1 + cos^2(x)}d x
stackrel?=
int_0^{2pi s} sqrt{1 + tfrac94 k^2cos^2left(tfrac32 xright)} d x.
$$
Let’s try this first for the particular value $s = 2.newcommand{d}{,mathrm d}$
Let $f(x) = sin(x)$ and $g(x) = k sinleft(frac32 xright),$
so that $g$ has period $frac43pi.$
We have $f'(x) = cos(x),$ so the arc length of $f$ is
begin{align}
L_{f,2} &= int_0^{4pi} sqrt{1 + (f'(x))^2}d x \
&= int_0^{4pi} sqrt{1 + cos^2(x)}d x \
&= 2 int_0^{2pi} sqrt{1 + cos^2(x)}d x \
&approx 15.2808,
end{align}
since the interval $[0,4pi]$ contains two copies of the curve over the interval $[0,2pi]$, identical except for translation.
(The integral is an elliptic integral; see
What is the length of a sine wave from $0$ to $2pi$?.)
Since $g'(x) = frac32kcosleft(frac32 xright),$ the arc length of $g$ is
begin{align}
L_{g,2} &= int_0^{4pi} sqrt{1 + (g'(x))^2}d x \
&= int_0^{4pi} sqrt{1 + tfrac94 k^2cos^2left(tfrac32 xright)}d x \
&= 3 int_0^{4pi/3} sqrt{1 + tfrac94 k^2cos^2left(tfrac32 xright)}d x
end{align}
since the interval $[0,4pi]$ contains three copies of the curve over the interval $left[0,frac43piright]$.
Now do a substitution $u = frac32 x.$ Then
begin{align}
int_0^{4pi/3} sqrt{1 + tfrac94 k^2cos^2left(tfrac32 xright)}d x
&= int_0^{2pi} sqrt{1 + tfrac94 k^2cos^2(u)} cdot tfrac23 d u \
&= frac23 int_0^{2pi} sqrt{1 + tfrac94 k^2cos^2(u)} d u
end{align}
and therefore the arc length of $g$ is
$$
L_{g,2} = 2 int_0^{2pi} sqrt{1 + tfrac94 k^2cos^2(u)} d u.
$$
Now to make the arc lengths equal we need to make the integrals
$int_0^{2pi} sqrt{1 + cos^2(x)}d x$
and $int_0^{2pi} sqrt{1 + tfrac94 k^2cos^2(u)} d u$ equal,
and the obvious way to do that is to set $tfrac94 k^2 = 1,$ that is,
$ k = tfrac23.$
So we set
$$ g(x) = tfrac23 cosleft(tfrac32 xright). $$
And indeed then the arc length of $g$ is
$$
L_{g,2} = 3 int_0^{4pi/3} sqrt{1 + cos^2left(tfrac32 xright)}d x
approx 15.2808.
$$
Now let’s try $s = frac94.$ Then the arc length of $f$ is
$$
L_{f,9/4} = int_0^{9pi/2} sqrt{1 + cos^2(x)}d x approx 17.1909
$$
while the arc length of $g$ is
$$
L_{g,9/4} = int_0^{9pi/2} sqrt{1 + cos^2left(tfrac32 xright)} d x
approx 17.1222.
$$
Oops!
So, why did the function $g$ that worked for $s = 2$ not work for $s = frac94$?
What’s happening is that you’re trying to set $k$ so that for all rational $s > 1$
you have the equation
$$
int_0^{2pi s} sqrt{1 + cos^2(x)}d x
stackrel?=
int_0^{2pi s} sqrt{1 + tfrac94 k^2cos^2left(tfrac32 xright)} d x.
$$
But an antiderivative of a continuous function is continuous,
so if you can do this for rational $s > 1$ you can do it for all $s > 1,$ and if you can make the two sides equal then their derivatives also are equal,
which can only occur if
$$
sqrt{1 + cos^2(2pi s)}
stackrel?=
sqrt{1 + tfrac94 k^2cos^2left(3pi sright)}
$$
for all $s > 1,$ which in turn requires that
$$
cos(2pi s) stackrel?= tfrac32 kcosleft(3pi sright),
$$
that is, it requires us to find an amplitude $k$ on the right that makes two sinusoids of unequal period equal. And that simply does not happen in general.
The arc lengths of the two curves cannot always accumulate at the same rate: if the are equal at one value of $s,$ then one will be ahead or behind the other at some other value of $s.$
Основные понятия
Кривая получается из синусоидальной дуги путём смещения к пи/2 в сторону со знаком минус. Кривая представляет график функции у=sin x. В формуле синусоиды y=a+b cos (cx+d) присутствуют следующие аргументы:
- a: показывает сдвиг графика синусоиды по оси Oy (чем больше значение, тем выше прямая);
- b: описывает растяжения функции по оси Oy (чем выше постоянная, тем сильнее колебания);
- c: определяет растяжение по оси Ох (если постоянная увеличивается, наступает период колебаний);
- d: описывает сдвиг по оси Ох (если d увеличивается, тогда при построении синусоиды учитывается сдвиг в область со знаком минус по оси абсцисс).
Сжатие, растяжение либо сдвиг кривой приводит к изменению величины. Явления называются гармоническими колебаниями. Примеры синусоиды: экспонент или показательная функция в виде винтовой линии, проведённой на плоскости, скрученный провод, развёрнутый рулон бумаги.
Особенности построения
Чтобы выявить свойства синусоиды, необходимо построить её график, провести исследование синуса. В алгебре под функцией представлена плоская кривая, которая выражает закон колебания sin с учётом изменения центрального угла. Сама синусоида строится в схематической последовательности:
- проводится горизонтальная ось, на которой откладывается заданная длина волны;
- отрезок делится на равные части;
- слева чертится окружность с радиусом, равным величине амплитуды;
- окружность делится на 12 одинаковых частей;
- через полученные точки проводятся прямые;
- из точек проводятся перпендикуляры к оси.
График можно построить на онлайн ресурсе либо с помощью специальных программ (Excel). Для расчёта используется калькулятор, основная формула y=sin х. При решении задач учитывается длина волны, которая равна 2 пи. Такое преобразование объясняется тем, что значение функции при любом икс совпадает с её периодичностью x+2π.
Пересечение оси Ох происходит в точках перегиба πK. Максимум достигается при положительном π/2+2πK, а обратное — -π/2+2πK. Свойства кривой проявляются в частном либо комплексном виде:
- размах;
- растяжение/сжатие;
- фазовые колебания;
- круговая частота.
При сдвиге графика влево к значению пи/2 образуется косинусоида. Любое изменение величины характерно для квадрата с гармоническими колебаниями. Примеры подобных явлений: движение маятника, сбои с напряжением в электросети. Другой случай с синусоидальными колебаниями — звук. Он редко бывает чистым, соответствуя y=A sin wt, где:
- А (а) — модуль неизвестной (расстояние от начала координат до точки А);
- w — угловая частота;
- t — время.
Чаще издаются обертоны, для которых характерны низкие амплитуды. Подобные явления изучаются в школе на уроках физики в старших классах.
Свойства и доказательства
К главным свойствам синусоиды относятся область значений (включая нуль) и определений, чётность/нечётность, периодичность, точки пересечения с осью координат, промежуточности постоянства, убывания и возрастания, минимум и максимум. При пересечении графика функции (ГФ) с осью Ох результат равняется нулю. Под значением синуса подразумевается ордината соответствующей точки единичной окружности.
Так как через круг в одной области можно провести только одну прямую, перпендикулярную оси, поэтому для области определения функции подходят все числа. Такое свойство записывается следующим образом: D (sin x) = R.
Значения ординаты единичной окружности (ЕД) расположены на отрезке [—1; 1]. Они принимают значения от -1 до 1. Через любую точку указанного промежутка оси ординат, равного диаметром ЕД, проводится прямая, перпендикулярная оси ординат. Таким способом получается точка с рассматриваемой ординатой.
Из свойства вытекает следующее: функция y= sin x имеет область значений (-1; 1). Утверждение записывается так: E (sin x)=(-1; 1). Максимальное значение функции равняется единице. Подобное возможно, если соответствующей точкой ЕД является точка А. Минимальное число y равно -1 в случае, когда точкой ЕД является В (х=пи/2 +2пиk, где k принадлежит области Z.
Нечётность и постоянство
Функция считается нечётной, если sin (-x)=- sin x. Её график симметричен по отношению к началу координат. Сам синус является периодической величиной, у которой наименьший положительный период. Через отрезок 2пи вид кривой повторяется. Это свойство учитывается при построении графика.
Предварительно чертится кривая на любом отрезке соответствующей длины. При переносе линии влево и вправо соблюдается шаг в kT=2 πk, где k — любая натуральная цифра. Для вычисления точек пересечения линии с осями координат используется равенство х=0. Если значение подставить в функцию, получится следующее: y=sin 0=0. В таком случае график проходит через начало координат.
Так как y равен нулю, поэтому можно рассчитать х, воспользовавшись формулой y= sin x. Координата подходящей точки ЕД равняется нулю. Такое явление будет наблюдаться только в случае, если на ЕД будут выбраны точки D либо C, при x=πk, k принадлежит Z.
Функция имеет положительное значение в первой и во второй четвертях. На этих промежутках sin x больше нуля, а любое значение х находится в пределах 0-π. При решении задач учитывается период при всех x, принадлежащих отрезку (2πk; π+2πk), где k принадлежит Z. Функция считается отрицательной в третьем и четвёртом квадрате. При этом sin меньше нуля, а иск находится в пределах (пи+2пиk; 2пи+2пиk), k принадлежит области Z.
Больше и меньше
С учётом периодичности y с периодом T=2π исследуется функция на возрастание и убывание на любом отрезке длиной в 2пи. Если T= (-π/2;3π/2), а х принадлежит данному промежутку, тогда при увеличении аргумента изменится в большую сторону и ордината. Следовательно, на указанном отрезке синусоида возрастает.
Если учитывать её периодичность, можно прийти к выводу, что она возрастает на каждом интервале (-π/2+2πk; π/2+2πk), k принадлежит Z. Если х находится на отрезке (-π/2;3π/2), тогда при увеличении аргумента ордината ЕД уменьшается, а функция убывает. С учётом периодичности синусоиды можно сделать вывод, что она бывает на каждом отрезке (π/2+2πk;3π/2+2πk), k находится в области Z.
Основываясь на проведённом исследовании, строится график y=sin x. С учётом периодичности 2π предварительно строится график на любом отрезке соответствующей длины. Чтобы точно построить точки, рекомендуется придерживаться значения синуса (ордината ЕД). На основе нечётности проводится кривая, симметричная началу координат. При этом необходимо придерживаться интервала (-π;0). Так как линия строится на отрезке длиной 2π, поэтому учитывается периодичность величины.
Вид графика повторяется на каждом отрезке с аналогичной длиной. Таким способом получается синусоида. Рассматриваемая тригонометрическая функция получила широкое применение в технике, физике и математике. Большинство процессов, включая колебания струн, напряжения в цепи, описываются с помощью функции, задаваемой формулой y= A sin (wx + f). Подобные явления считаются гармоническими колебаниями.
Кривая получается из синусоиды за счёт разных колебаний и путём параллельного переноса вдоль оси Ох. Чаще изменения результата связаны с функцией времени t. В таком случае используется формула y= A sin (wx + f), где через А обозначается амплитуда колебания, через w — частота, f — начальная фаза, 2пи/f — период колебания.
ВИДЕО УРОК
Периодические функции.
Функцию у = f(х), х ∈ Х, называют периодической,
если существует такое отличное от нуля число
Т, что для любого х из области определения функции справедливо
равенство:
f(х + Т) = f(х) = f(х – Т).
Число Т называют периодом функции у = f(х).
Из этого
определения сразу следует, что если Т –
период функции
у = f(х), то
2Т, 3Т, 4Т, –Т, –2Т, –3Т,
–4Т
– также периоды
функций. Значит у периодической функции бесконечно много периодов.
Если Т – период функции, то число вида kТ,
где k – любое целое
число, также является периодом функции.
Чаще всего (но не
всегда) среди множества положительных периодов функции можно найти наименьший.
Его называют основным периодом.
График периодической
функции состоит из неограниченно повторяющихся одинаковых фрагментов.
График каждой
периодической функции состоит из одинаковых линий повторяющихся и изолированных
друг от друга, как в рассматриваемом случае, или соединенных в одну общую линию
(синусоида и другие.)
Графики
периодических функций обладают следующей особенностью. Если Т – основной период функции у = f(х), то для построения её графика достаточно построить ветвь
графика на одном из промежутков оси х длиной
Т, а затем осуществить параллельный перенос этой ветви по
оси х на
± Т, ±
2Т, ± 3Т, …
Чаще всего в
качестве такого промежутка длиной Т выбирают промежуток с концами в точках
(–Т/2; 0) и (Т/2; 0) или
(0; 0) и (Т; 0).
ПРИМЕР:
Рассмотрим функцию
у = х – [х], где [х] – целая часть числа. Если к
произвольному значение аргумента этой функции добавить 1, то значение функции от этого не изменится:
f(x + 1) = (x
+1) – [x + 1] = x + 1 – [x] – 1
= x – [x] = f (x).
Следовательно, при любом
значении х
f(x + 1) = f(x).
А это значит, что рассматриваемая функция
периодическая, период которой равен 1. Любое целое число
также является периодом данной функции, но обычно рассматривают только
маленький положительный период функции.
График этой функции
приведен на рисунке. Он состоит из бесконечного множества равных отрезков, которые
повторяются.
Периодичность тригонометрических функций.
Возьмём произвольный угол α и построим
подвижной радиус ОМ единичной окружности такой, что угол,
составленный с осью Ох этим радиусом, равен α.
Если мы к углу прибавим
2π или 360° (то есть полный
оборот), то углу α + 2π или α + 360° будет соответствовать то же положение
подвижного радиуса ОМ, что для угла α.
Так как синус и косинус угла,
составленного с осью Ох подвижным радиусом ОМ единичной
окружности, по сути соответственно ордината
у и
абсцисса х точки М, то
sin (α + 2π) = sin α или
sin (α + 360°) = sin α
и
cos (α + 2π)
= cos α или
cos (α + 360°) = cos α.
Таким образом, функции sin α и cos α от
прибавления к аргументу α одного
полного оборота (2π или 360°) не меняют своих значений.
Точно так же, прибавляя к
углу α любое целое
число полных оборотов, мы не изменим положения подвижного радиуса ОМ, а потому:
sin (α + 2kπ) = sin α или
sin (α + 360°k) = sin α
и
cos (α + 2kπ) = cos α или
cos (α + 360°k) = cos α,
где k – любое целое
число.
Функции, обладающие таким
свойством, что их значения не изменяются от прибавления к любому допустимому
значению аргумента определённого постоянного числа, называются периодическими.
Следовательно, функции sin α и cos α – периодические.
Наименьшее положительное число,
от прибавления которого к любому допустимому значению аргумента не изменяется
значение функции, называется периодом функции.
Периодом функции sin α и cos α
является 2π или 360°.
Функции tg α и сtg α также
периодические и их периодом является число
π или 180°.
В самом деле, пусть α – произвольный угол, составленный с осью Ох подвижным
радиусом ОМ единичной окружности.
Построим точку М‘,
симметричную точке М относительно
начала координат. Один из углов, образованных с осью Ох подвижным
радиусом ОМ‘, будет равен α + π.
Если х и у – координаты точки
М, то точки М‘ будут –х и –у. Поэтому
sin α = у, cos α = х,
sin (α + π) = –у,
cos (α + π) = –х.
Отсюда
и, следовательно,
tg (α + π) = tg α,
сtg (α + π)
= сtg α.
отсюда следует, что значения tg α и сtg α не
изменяются, если к углу α прибавить любое число полуоборотов:
tg (α + kπ) = tg α,
сtg (α + kπ) = сtg α.
где k – любое целое
число.
Периоды функций
y = A sin (ωx + φ) и
y = A cos (ωx + φ)
вычисляются по формуле
T = 2π/ω,
а период функции
y = A tg (ωx + φ)
по формуле
T = π/ω.
Если период функции y = f(x) равен T1, а период функции y = g(x) равен T2, то период функций
y = f(x) + g(x) и
y = f(x) – g(x)
равен наименьшему числу, при делении которого
на T1 и T2 получаются целые числа.
ПРИМЕР:
Найти
период функции
y = 3 sin (x – 2) + 7 соs πx.
РЕШЕНИЕ:
Период
функции
y = 3 sin (x – 2)
равен
T1 = 2π/1 = 2π.
Период
функции
y = 7 соs πx
равен
T2 = 2π/π = 2.
Периода
у функции
y = 3 sin (x – 2) + 7 соs πx
не
существует, так как такого числа, при делении которого на 2π и
на 2 получались бы целые числа, нет.
ОТВЕТ:
Периода
не существует.
ПРИМЕР:
Доказать
следующее утверждение:
tg
3850° = tg 250°.
РЕШЕНИЕ:
Так как тангенс – периодическая функция с минимальным
периодом 20 ∙ 180°, то получим:
tg
3850° = tg (20 ∙ 180° + 250°) = tg 250°.
ПРИМЕР:
Доказать
следующее утверждение:
сos (–13π) = –1.
РЕШЕНИЕ:
Так как косинус – чётная и периодическая функция с
минимальным периодом 2π, то получим:
сos (–13π) = сos 13π = сos (π + 6 ∙ 2π) = сos π = –1.
ПРИМЕР:
Доказать
следующее утверждение:
sin (–7210°) = – sin 10°.
РЕШЕНИЕ:
Так как синус – нечётная и периодическая функция с
минимальным периодом 20 ∙ 360°, то получим:
sin (–7210°) = –sin 7210° = –sin (20 ∙ 360° + 10°) – sin 10°.
ПРИМЕР:
Найти основной период функции
sin 7х.
РЕШЕНИЕ:
Пусть Т основной период функции, тогда:
sin 7х = sin 7(х + t) = sin (7х + 7t)
так как 2πk период синуса, то получим:
sin (7х + 7t) = sin (7х + 2πk),
ОТВЕТ:
ПРИМЕР:
Найти основной период функции
соs 0,3х.
РЕШЕНИЕ:
Пусть Т основной период функции, тогда:
соs 0,3х = соs 0,3(х + t)
= соs (0,3х + 0,3t)
так как 2πk период косинуса, то получим:
соs (0,3х + 0,3t) = соs (0,3х + 2πk),
ОТВЕТ:
ПРИМЕР:
Найти период функции:
y = 5sin 2x + 2ctg 3х.
РЕШЕНИЕ:
Период функции
y = 5sin 2x
равен Т1 = 2𝜋/2 = π,
а период функции
y = 2ctg 3х
равен Т2 = 𝜋/3.
Наименьшее число, при делении которого на
Т1 = π и Т2 = 𝜋/3
– получаются целые числа будет число π.
Следовательно, период заданной функции равен Т = π.
ПРИМЕР:
Найти период функции:
y = 9sin (5x + π/3) – 4cоs (7х + 2).
РЕШЕНИЕ:
Находим периоды слагаемых. Период функции
y = 9sin (5x + π/3)
равен Т1 = 2𝜋/5,
а период функции
y = 4cоs (7х + 2)
равен Т2 = 2𝜋/7.
Очевидно, что период заданной функции равен
Т = 2π.
ПРИМЕР:
Найти период функции:
y = 3sin πx + 8tg (х + 5).
РЕШЕНИЕ:
Период функции
y = 3sin πx
равен Т1 = 2π/π = 2,
а период функции
y = 8tg (х + 5)
равен Т2 = 𝜋/1 = π.
Периода у заданной функции не существует, так как нет
такого числа, при делении которого на 2 и на π одновременно получались бы целые числа.
ПРИМЕР:
Найти период функции:
y = sin 3x + соs 5х.
РЕШЕНИЕ:
Период функции
y = sin 3x
равен Т1 = 2π/3,
а период функции
y = соs 5х
равен Т2 = 2π/5.
Приведём к общему знаменателю периоды:
Т1 = 10π/15, Т2 = 6π/15.
Тогда наименьшее общее кратное (НОК) будет:
НОК (10π; 6π)
= 30π.
Теперь найдём период заданной функции:
Т = 30π/15 = 2π.
Задания к уроку 5
- Задание 1
- Задание 2
- Задание 3
ДРУГИЕ УРОКИ
- Урок 1. Градусное измерение угловых величин
- Урок 2. Радианное измерение угловых величин
- Урок 3. Основные тригонометрические функции
- Урок 4. Натуральные тригонометрические таблицы
- Урок 6. Область определения и область значения тригонометрических функций
- Урок 7. Знаки тригонометрических функций
- Урок 8. Чётность и нечётность тригонометрических функций
- Урок 9. Тригонометрические функции некоторых углов
- Урок 10. Построение угла по данному значению его тригонометрической функции
- Урок 11. Основные тригонометрические тождества
- Урок 12. Выражение всех тригонометрических функций через одну из них
- Урок 13. Решение прямоугольных и равнобедренных треугольников с помощью тригонометрических функций
- Урок 14. Теорема синусов
- Урок 15. Теорема косинусов
- Урок 16. Решение косоугольных треугольников
- Урок 17. Примеры решения задач по планиметрии с применением тригонометрии
- Урок 18. Решение практических задач с помощью тригонометрии
- Урок 19. Формулы приведения (1)
- Урок 20. Формулы приведения (2)
- Урок 21. Формулы сложения и вычитания аргументов тригонометрических функций
- Урок 22. Формулы двойных и тройных углов (аргументов)
- Урок 23. Формулы половинного аргумента
- Урок 24. Формулы преобразования суммы тригонометрических функций в произведение
- Урок 25. Графики функций y = sin x и y = cos x
- Урок 26. Графики функций y = tg x и y = ctg x
- Урок 27. Обратные тригонометрические функции
- Урок 28. Основные тождества обратных тригонометрических функций
- Урок 29. Выражение одной из аркфункций через другие
- Урок 30. Графики обратных тригонометрических функций
- Урок 31. Построение графиков тригонометрических функций методом геометрических преобразований
Содержание:
Рассматривая произвольное действительное число
Таким образом, мы установим соответствие между множеством действительных чисел и множеством значений синусов углов. Каждому действительному числу соответствует единственное значение синуса. Такое соответствие определяет тригонометрическую функцию
Определение функция y=sin x
Определение:
Зависимость, при которой каждому действительному числу соответствует значение
называется функцией
Рассмотрим свойства функции и построим ее график:
Область определения функции y=sin x
Областью определения функции является множество всех действительных чисел, так как для любого
существует
Графически это означает, что для любой абсциссы найдется точка графика функции
Множеством значений функции y=sin x
Множеством значений функции является промежуток
так как ординаты точек единичной окружности (значения синусов чисел) изменяются от -1 до 1.
Графически это означает, что график функции расположен в полосе между прямыми
(рис. 74).
Периодичность функции y=sin x
Периодичность функции Точки единичной окружности
совпадают для любого
(рис. 75), значит, значения синусов этих углов также совпадают, т. е.
Говорят, что число является периодом функции
Определение:
Функция называется периодической функцией с периодом
если для любого значения
из области определения функции числа
также принадлежат области определения и при этом верно равенство
Чтобы определить, является ли функция периодической с периодом необходимо проверить:
- принадлежат ли области определения функции числа
если
принадлежит области определения функции;
- выполняется ли равенство
Определим, верно ли, что число является периодом функции
- Числа
принадлежат области определения функции, так как
- Проверим, выполняется ли равенство
для всех
Пусть
Значит, число не является периодом функции
Периодом функции являются числа вида
Число
является наименьшим положительным периодом функции
Функция является периодической с наименьшим положительным периодом
(рис. 76). Это означает, что ее график состоит из повторяющихся частей, поэтому достаточно его построить на отрезке длиной
(например,
а затем повторить построение на каждом следующем отрезке длиной
Четность (нечетность) функции y=sin x
Четность (нечетность) функции y=sin x — симметрична относительно нуля. Так как точки
единичной окружности симметричны относительно оси абсцисс для любого
то ординаты этих точек противоположны, т. е.
(рис. 77). Значит, функция
нечетная.
Для построения ее графика достаточно построить его часть для неотрицательных значений аргумента и отобразить эту часть симметрично относительно начала координат.
Нули функции y=sin x
Нули функции. Ординаты точек и
равны нулю. Значит,
в точка
(рис. 78), т. е. график функции пересекает ось абсцисс в точках с абсциссами
Промежутки знакопостоянства функции y=sin x
На промежутках функция
принимает положительные значения, так как ординаты точек единичной окружности положительны в первой и во второй четвертях (рис. 79, а).
На промежутках функция
принимает отрицательные значения, так как ординаты точек единичной окружности отрицательны в третьей и четвертой четвертях (рис. 79, б).
Монотонность функции y=sin x
Монотонность функции. Так как ординаты точек единичной окружности увеличиваются от -1 до 1 при изменении угла от (рис. 80, а) и уменьшаются от 1 до -1 при изменении угла от
(рис. 80, б), то с учетом периодичности определим промежутки возрастания функции
и промежутки убывания функции
Функции возрастает на промежутках
и убывает на промежутках
Наибольшее значение функции равно 1 и достигается в точках
Наименьшее значение функции равно
и достигается в точках
На основании проведенного исследования построим график функции на отрезке от
длина которого равна
т. е. длине периода функции
На этом периоде функция
На рисунке 81 изображена часть графика функции на промежутке от
Перенесем эту часть на другие периоды и получим график функции (рис. 82). График функции
называется синусоидой.
Примеры заданий и их решения
Пример №1
Определите, принадлежит ли графику функции точка:
Решение:
а) Подставим в формулу значение аргумента
найдем соответствующее значение функции
Полученное значение функции равно ординате точки значит, точка
принадлежит графику функции
б) При получим
Точка
не принадлежит графику функции
в) При получим
Точка
принадлежит графику функции
г) При получим
Точка
не принадлежит графику функции
Пример №2
Найдите область определения и множество значений функции:
Решение:
а) Так как область определения функции все действительные числа, т.е
значит,
Таким образом,
Множеством значений функции является отрезок
значит,
Тогда по свойству неравенств
Таким образом,
б) Поскольку
то по свойству неравенств
т.е.
Пример №3
Найдите наибольшее значение функции
Решение:
Так как значит,
тогда
Таким образом, имеем:
Наибольшее значение функции
равно 7.
- Заказать решение задач по высшей математике
Пример №4
Найдите значение выражения, используя свойство периодичности функции
Решение:
Так как число является наименьшим положительным периодом функции
Тогда:
Пример №5
Найдите значение выражения, используя свойство нечетности функции
Решение:
Так как функция нечетная, то
Тогда:
Пример №6
Исследуйте функцию на четность (нечетность):
Решение:
a) — область определения симметрична относительно нуля;
значит, функция является нечетной.
область определения симметрична относительно нуля;
значит, функция является четной.
Пример №7
Найдите нули функции:
Решение:
а) Пусть Нулями функции
являются числа
Тогда
значит,
Таким тобразом, числа
являются нулями функции
б) Пусть Нулями функции
являются числа
Тогда
значит,
Таким образом, числа являются нулями функции
Пример №8
Определите знак произведения
Решение:
Так как то
т. е. угол 4 радиана принадлежит промежутку
на котором функция
принимает отрицательные значения, значит,
Углы 2 радиана и 1 радиан принадлежат промежутку на котором функция
принимает положительные значения, т. е.
Значит,
Пример №9
Что больше: или
Решение. Так как функция возрастает на промежутке
то из того, что
следует, что
Пример №10
Постройте график функции:
Решение:
а) График функции получаем из графика функции
сдвигом его вдоль оси абсцисс на
влево (рис. 84).
б) График функции получаем из графика функции
сдвигом его вдоль оси ординат на 2 единицы вверх (рис. 85).
- Функция y=cos x и её свойства и график
- Функции y=tg x и y=ctg x — их свойства, графики
- Арксинус, арккосинус, арктангенс и арккотангенс числа
- Тригонометрические уравнения
- Единичная окружность — в тригонометрии
- Определение синуса и косинуса произвольного угла
- Определение тангенса и котангенса произвольного угла
- Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)
Функция y = sin x, её свойства и график
п.1. Развертка ординаты движения точки по числовой окружности в функцию от угла
При движении точки по числовой окружности её ордината является синусом соответствующего угла (см. §2 данного справочника).
Рассмотрим, как изменяется синус, если точка описывает полный круг, и угол x изменяется в пределах: 0≤x≤2π и построим график y=sinx на этом отрезке.
Если мы продолжим движение по окружности для углов x > 2π, кривая продолжится вправо; если будем обходить числовую окружность в отрицательном направлении (по часовой стрелке) для углов x синусоидой .
Часть синусоиды для 0≤x≤2π называют волной синусоиды .
Часть синусоиды для 0≤x≤π называют полуволной или аркой синусоиды .
п.2. Свойства функции y=sinx
1. Область определения (xinmathbb) — множество действительных чисел.
2. Функция ограничена сверху и снизу
Область значений (yin[-1;1])
3. Функция нечётная
4. Функция периодическая с периодом 2π
5. Максимальные значения (y_=1) достигаются в точках
Минимальные значения (y_=-1) достигаются в точках
Нули функции (y_<0>=sinx_0=0) достигаются в точках (x_0=pi k)
6. Функция возрастает на отрезках
$$ -fracpi2+2pi kleq xleqfracpi2+2pi k $$
Функция убывает на отрезках
$$ fracpi2+2pi kleq xleqfrac<3pi><2>+2pi k $$
7. Функция непрерывна.
п.3. Примеры
Пример 1. Найдите наименьшее и наибольшее значение функции y=sinx на отрезке:
a) (left[fracpi6; frac<3pi><4>right]) $$ y_=sinleft(fracpi6right)=frac12, y_=sinleft(fracpi2right)=1 $$ б) (left[frac<5pi><6>; frac<5pi><3>right]) $$ y_=sinleft(frac<3pi><2>right)=-1, y_=sinleft(frac<5pi><6>right)=frac12 $$
Пример 2. Решите уравнение графически:
a) (sinx=3x)
Один корень: x = 0
б) (sinx=2x-2pi)
Один корень: x = π
в) (sinx-sqrt=0)
(sinx=sqrt)
Один корень: x = π
г*) (sinx=left(x-fracpi2right)^2-frac<pi^2><4>)
(y=left(x-fracpi2right)^2-frac<pi^2><4>) – парабола ветками вверх, с осью симметрии (x_0=fracpi2) и вершиной (left(fracpi2; -frac<pi^2><4>right)) (см. §29 справочника для 8 класса)
Два корня: (x_1=0, x_2=pi)
Пример 3. Постройте в одной системе координат графики функций $$ y=sinx, y=-sinx, y=2sinx, y=sinx+2 $$
(y=-sinx) – отражение исходной функции (y=sinx) относительно оси OX. Область значений (yin[-1;1]).
(y=2sinx) – исходная функция растягивается в 2 раза по оси OY. Область значений (yin[-2;2]).
(y=sinx+2) — исходная функция поднимается вверх на 2. Область значений (yin[1;3]).
Пример 4. Постройте в одной системе координат графики функций $$ y=sinx, y=sin2x, y=sinfrac <2>$$
Амплитуда колебаний у всех трёх функций одинакова, область значений (yin[-1;1]).
Множитель под синусом изменяет период колебаний.
(y=sin2x) — период уменьшается в 2 раза, полная волна укладывается в отрезок (0leq xleq pi).
(y=sinfrac<2>) — период увеличивается в 2 раза, полная волна укладывается в отрезок (0leq xleq 4pi).
Как построить синусоиду по уравнению
Все углы А по умолчанию приведены в градусах. Все таблицы значений и формулы синусов, косинусов, тангенсов, котангенсов (здесь). Во всех формулах пределов и разложений в ряд — углы в радианах.
Графики функций y=sinA, y=cosA, y=tgA,построенные для диапазона от 0 o до 360 o , показаны на рисунках ниже.
Из графиков видно что:
- Графики синуса и косинуса колеблются в пределах между -1 и 1
- Кривая косинуса имеет ту же форму, что и кривая синуса, но сдвинута относительно нее на 90 o
- Кривые синуса и косинуса непрерывны и повторяются с периодом 360 o , кривая тангенса имеет разрывы и повторяется с периодом 180 o .
Углы произвольной величины
На рис. слева показаны перпендикулярные оси ХХ’ и YY’; пересекающиеся в начале координат О. При работе с графиками измерения вправо и вверх от О считаются положительными, влево и вниз от О — отрицательными. Пусть ОА свободно вращается относительно О. При повороте ОА против часовой стрелки измеряемый угол считается положительным, а при повороте по часовой стрелке — отрицательным.
График. Положительное или отрицательное направление при движении по окружности.
Пусть ОА вращается против часовой стрелки таким образом, что Θ1 — любой угол в первом квадранте, и построим перпендикуляр АВ для получения прямоугольного треугольника ОАВ на рис. слева. Поскольку все три стороны треугольника положительны, тригонометрические функции синус, косинус и тангенс в первом квадранте будут положительны. (Отметим, что длина ОА всегда положительна, поскольку является радиусом круга.)
Пусть ОА вращается дальше таким образом, что Θ2 — любой угол во втором квадранте, и построим АС так, чтобы образовался прямоугольный треугольник ОАС. Тогда sin Θ2=+/+ = +; cos Θ2=+/- = -; tg Θ2=+/- = -. Пусть ОА вращается дальше таким образом, что Θ3 — любой угол в третьем квадранте, и построим АD так, чтобы образовался прямоугольный треугольник ОАD. Тогда sin Θ3= -/+ = -; cos Θ3= -/+ = -; tg Θ3 = -/- =+ .
График. Поcтроение углов в различных квадрантах.
Пусть ОА вращается дальше таким образом, что Θ4— любой угол в четвертом квадранте, и построим АЕ так, чтобы образовался прямоугольный треугольник ОАЕ. Тогда sin Θ4= -/+= -; cos Θ4=+/+=+; tg Θ4= -/+= -.
В первом квадранте все тригонометрические функции имеют положительные значения, во втором положителен только синус, в третьем — только тангенс, в четвертом только косинус, что и показано на рис. слева.
Знание углов произвольной величины необходимо при нахождении, например, всех углов между 0 o и 360 o , синус которых равен, скажем, 0,3261. Если ввести в калькулятор 0,3261 и нажать кнопку sin -1 , получим ответ 19,03 o . Однако существует второй угол между 0 o и 360 o , который калькулятор не покажет. Синус также положителен во втором квадранте. Другой угол показан на рис. ниже как угол Θ, где Θ=180 o — 19,03 o = 160,97 o . Таким образом, 19,03 o и 160,97 o — это углы в диапазоне от 0 o до 360 o , синус которых равен 0,3261.
Будьте внимательны! Калькулятор дает только одно из этих значений. Второе значение следует определить согласно теории углов произвольной величины.
График. Нахождение всех углов по заданному значению синуса (пример)
Пример 1
Найти все углы в диапазоне от 0 o до 360 o , синус которых равен -0,7071
Решение:
Углы, синус которых равен -0,7071 o находятся в третьем и четвертом квадранте, поскольку синус отрицателен в этих квадрантах (смотри рис. слева).
График. Нахождение всех углов по заданному значению синуса (пример)
Из следующего рисунка Θ = arcsin 0,7071 = 45 o . Два угла в диапазоне от 0 o до 360 o , синус которых равен -0,7071, это 180 o +45 o =225 o и 360 o — 45 o = 315 o .
Примечание. Калькулятор дает только один ответ.
График. Нахождение всех углов по заданному значению синуса (пример)
Пример 2
Найти все углы между 0 o и 360 o , тангенс которых равен 1, 327.
Решение:
Тангенс положителен в первом и третьем квадрантах — рис. слева.
График. Нахождение всех углов по заданному значению тангенса (пример)
Из рис ниже Θ = arctg1,327= 53 o .
Два угла в диапазоне от 0 o до 360 o , тангенс которых равен 1,327, это 53 o и 180 o + 53 o , т.е. 233 o .
График. Нахождение всех углов по заданному значению тангенса (пример)
Построение синусоиды и косинусоиды
Пусть ОR на рис. слева- это вектор единичной длины, свободно вращающийся против часовой стрелки вокруг О. За один оборот получается круг, показанный на рис. и разделенный секторами по 15 o . Каждый радиус имеет горизонтальную и вертикальную составляющую. Например, для 30 o вертикальная составляющая — это ТS, а горизонтальная — ОS.
График. Построение синусоиды.
Из определения тригонометрических функций
sin30 o =TS/TO=TS/1, т.е. TS= sin30 o и cos30 o =OS/TO=OS/1, т.e. OS=cos30 o
Вертикальную составляющую TS можно перенести на график в виде T’S’, что равно значению, соответствующему углу 30 o на графике зависимости y от угла х. Если все вертикальные составляющие, подобно TS, перенести на график, то получится синусоида, показанная на рис. выше.
Если все горизонтальные составляющие, подобные OS, спроецировать на график зависимости у от угла х, получится косинусоида. Эти проекции легко визуализировать, перерисовывая круг с радиусом OR и началом отсчета углов от вертикали, как показано на рисунке слева.
Из рис. слева видно, что синусоида имеет ту же форму, что и косинусоида, но смещенная на 90 o .
График. Построение косинусоиды.
Синусоидальные и косинусоидальные графики
Периодические функции и период
Каждый из графиков функций, показанных на четырех рис. выше, повторяется при увеличении угла А, поэтому их называют периодическими функциями.
Функции y=sinA и y=cosA повторяются через каждые 360 o (или 2π радиан), поэтому 360 o называется периодом этих функций. Функции y=sin2A и y=cos2A повторяются через каждые 180 o (или π радиан),поэтому 180 o — это период для данных функций.
В общем случае если y=sinpA и y=cospA (где р — константа), то период функции равен 360 o /p (или 2π/p радиан ). Следовательно, если y=sin3A, то период этой функции равен 360 o /3= 120 o , если y=cos4A, то период этой функции равен 360 o /4= 90 o .
Амплитуда
Амплитудой называется максимальное значение синусоиды. Каждый из графиков 1-4 имеет амплитуду +1 (т.е. они колеблются между +1 и -1). Однако, если y=4sinA, каждая из величин sinA умножается на 4, таким образом, максимальная величина амплитуды — 4. Аналогично для y=5cos2A амплитуда равна 5, а период — 360 o /2= 180 o .
Пример 3.
Построить y=3sin2A в диапазоне от А= 0 o до А=360 o .
Решение:
Амплитуда =3, период = 360 o /2 =180 o .
График. Построение y=3sin2A (синусоида).
Пример 4.
Построить график y=4cos2x в диапазоне от х=0 o до х=360 o
Решение:
Амплитуда = 4. период = 360 o /2 =180 o .
График. Построение y=4cos2x (косинусоида).
Углы запаздывания и опережения
Кривые синуса и косинуса не всегда начинаются в 0 o . Чтобы учесть это обстоятельство, периодическая функция представляется в виде y=sin(A± α), где α — сдвиг фазы относительно y=sinA и y=cosA.
o ) (синусоида).» name=»sin(A-60)» src=»https://www.dpva.ru/netcat_files/Image/GuideMathematics/TrigonometricCurves/sin(A-60).gif» style=»float: left; width: 311px; height: 168px;» title=»График. y=sin(A-60o) (синусоида).» />Составив таблицу значений, можно построить график функции y=sin(A-60 o ), показанный на рис. слева. Если кривая y=sinA начинается в 0 o , то кривая y=sin(A-60 o ) начинается в 60 o (т.е. ее нулевое значение на 60 o правее ). Таким образом, говорят, что y=sin(A-60 o ) запаздывает относительно y=sinA на 60 o .
График. y=sin(A-60 o ) (синусоида).
o ) (косинусоида).» name=»cos(A+45)» src=»https://www.dpva.ru/netcat_files/Image/GuideMathematics/TrigonometricCurves/cos(A+45).gif» style=»float: left; width: 311px; height: 168px;» title=»График. y=cos(A+45o) (косинусоида).» /> Составив таблицу значений, можно построить график функции y=cos(A+45 o ), показанный на рис. ниже.
Если кривая y=cosA начинается в 0 o , то кривая y=cos(A+45 o ) начинается на 45 o левее (т.е. ее нулевая величина находится на 45 o раньше ).
Таким образом, говорят, что график y=cos(A+45 o ) опережает график y=cosA на 45 o .
График. y=cos(A+45 o ) (косинусоида).
В общем виде, график y=sin(A-α) запаздывает относительно y=sinAна угол α.
Косинусоида имеет ту же форму, что и синусоида, но начинается на 90 o левее, т.е. опережает ее на 90 o . Следовательно, cosA=sin(A+90 o ).
Пример 5.
Построить график y=5sin(A+30 o ) в диапазоне от А=0 o до А=360 o
o ) (синусоида).» name=»5sin(A+30)» src=»https://www.dpva.ru/netcat_files/Image/GuideMathematics/TrigonometricCurves/5sin(A+30).gif» style=»float: left; width: 311px; height: 168px;» title=»График. y=cos(A+45o) (косинусоида).» />
Решение:
Амплитуда = 5, период = 360 o /1 = 360 o .
5sin(A+30 o ) опережает 5sinA на 30 o т.е. начинается на 30 o раньше.
График y=5sin(A+30 o ) (синусоида).
Пример 6.
Построить график y=7sin(2A-π/3) в диапазоне от А=0 o до А=360 o .
Решение:
Амплитуда = 7, период =2π/2= π радиан
В общем случае y=sin(pt-α) запаздывает относительно y=sinpt на α/p, следовательно 7sin(2A-π/3) запаздывает относительно 7sin2A на ( π/3)/2, т.е. на π/6 радиан или на 30 o
График. y=7sin2A и y=7sin(2A-п/3) (синусоиды).
Синусоида вида Asin(ωt±α). Фазовый угол. Сдвиг по фазе.
Пусть OR на рис. слева представляет собой вектор, свободно вращающийся против часовой стрелки вокруг О со скоростью ω радиан/с. Вращающийся вектор называется фазовым вектором. Через время t секунд OR повернется на угол ωt радиан (на рис. слева это угол TOR). Если перпендикулярно к OR построить ST, то sinωt=ST/OT, т.e. ST=OTsinωt.
Если все подобные вертикальные составляющие спроецировать на график зависимости у от ωt, получится синусоида с амплитудой OR.
График. Фазовый угол. Сдвиг по фазе.
Если фазовый вектор OR делает один оборот (т.е. 2π радиан) за Т секунд, то угловая скорость ω=2π/Т рад/с, откуда
Т=2π/ ω (с), где
Т — это период
Число полных периодов, проходящих за 1 секунду, называется частотой f.
Частота = (количество периодов)/(секунда) = 1/ T = ω/2π Гц, т.е. f= ω/2π Гц
Следовательно, угловая скорость
ω=2πf рад/с.
Если в общем виде синусоидальная функция выглядит, как y=sin(ωt± α), то
А — амплитуда
ω — угловая скорость
2π/ ω — период Т, с
ω/2π — частота f, Гц
α — угол опережения или запаздывания (относительно y=Аsinωt ) в радианах, он называется также фазовым углом.
Пример 7.
Переменный ток задается как i=20sin(90πt+0,26) ампер. Определить амплитуду, период, частоту и фазовый угол (в градусах)
Решение:
i=20sin(90πt+0,26)А, следовательно,
амплитуда равна 20 А
угловая скорость ω=90π, следовательно,
период Т = 2π/ ω = 2π/ 90π = 0,022 с = 22мс
частота f = 1/Т = 1/0,022 = 45,46 Гц
фазовый угол α = 0,26 рад. = (0,26*180/π) o = 14,9 o .
Пример 8.
Колебательный механизм имеет максимальное смещение 3 м и частоту 55 Гц. Во время t=0 смещение составляет 100см. Выразить смещение в общем виде Аsin(ωt± α).
Решение
Амплитуда = максимальное смещение = 3м
Угловая скорость ω=2πf = 2π(55) = 110 πрад./с
Следовательно, смещение 3sin(110πt + α) м.
При t=0 смещение = 100см=1м.
Следовательно, 1= 3sin(0 + α), т.е. sinα=1/3=0,33
Следовательно α=arcsin0,33=19 o
Итак, смещение равно 3sin(110 πt + 0,33).
Пример 9.
Значение мгновенного напржения в схеме переменного тока в любые t секунд задается в виде v=350sin(40πt-0,542)В. Найти:
а) Амплитуду, период, частоту и фазовый угол (в градусах)
б) значение напряжения при t =0
в) значение напряжения при t =10 мс
г) время, за которое напряжение впервые достигнет значения 200 В.
Решение:
а) Амплитуда равна 350 В, угловая скорость равна ω=40π
Следовательно,
период Т=2π/ ω=2π/40π=0,05 с =50мс
частота f=1/Т=1/0,05=20 Гц
фазовый угол = 0,542 рад (0,542*180/π) = 31 o с запаздыванием относительно v=350sin(40πt)
б) Если t =0, то v=350sin(0-0,542)=350sin(-31 o )=-180,25 В
в) Если t =10 мс, то v=350sin(40π10/10 3 -0,542)=350sin(0,714)=350sin41 o =229,6 В
г) Если v=200 И, то 200=350sin(40πt-0,542) 200/350=sin(40πt-0,542)
График. Колебательный механизм (пример, синусоида).
v=350sin(40πt-0,542) Следовательно, (40πt-0,542)=arcsin200/350=35 o или 0,611 рад.
40πt= 0,611+0,542=1,153.
Следовательно, если v=200В, то время t=1,153/40π=9,179 мс
Алгебра
План урока:
Синус и косинус угла на единичной окружности
Впервые мы познакомились с синусом, косинусом и другими тригонометрическими функциями ещё в 8 класс на уроках геометрии, при изучении прямоугольного треугольника. Пусть есть некоторый треуг-ник АВС, у которого∠ С – прямой, а ∠ВАС принимается за α. Тогда sinα – это отношение ВС к АВ, а cosα– это отношение АС к АВ. В свою очередь tgα– это отношение ВС к АС:
С помощью тригонометрических функций удобно было находить стороны прямоугольного треугол-ка. Например, пусть известно, что гипотенуза АВ равна 5, а sinα = 0,8. Тогда из формулы sinα = ВС/АВ легко получить, что
ВС = АВ•sinα = 5•0,8 = 4
Если известно, что cosα = 0,6, то мы сможем найти и второй катет:
АС = АВ•cosα = 5•0,6 = 3
Отдельно заметим, что тангенс угла может быть рассчитан не как отношение двух катетов, а как отношение синуса к косинусу:
tgα = ВС/ АС = (АВ•sinα)/(АВ•cosα) = (sinα)/(cosα)
Отметим на единичной окружности произвольную точку А, которой соответствует некоторый угол α. У этой точки есть свои координаты хА и уА:
Попытаемся определить, чему равны координаты точки А. Для этого обозначим буквой B точку, в которой перпендикуляр, опущенный из А, пересекает горизонтальную ось Ох, и рассмотрим треугольник ОАВ:
Ясно, что ОАВ – это прямоугольный треугольник, ведь∠ АОВ = 90°. Значит, отрезок АВ можно рассчитать по формуле
Но ОА – это радиус единичной окружности. Это значит, что ОА = 1. Тогда
АВ = sinα•ОА = sinα•1 = sinα
С другой стороны, видно, что величина отрезка АВ равна координате уА. Получается, что уА = АВ = sinα, или
Отрезок ОВ также можно найти из прямоугольного треугольника АОВ, используя косинус:
Учитывая, что ОА = 1, а длина ОВ равна координате хА, мы получим следующее:
хА = ОВ = cosα•ОА = cosα•1 = cosα
то есть координата хА равна cos α:
Итак, мы выяснили, что координаты точки, лежащей на единичной окружности, равны синусу и косинусу угла, соответствующего этой точке.
Таким образом, нам удалось дать новое определение синусу и косинусу угла:
Заметим, что в прямоугольном треугольнике углы, помимо самого прямого угла, могут быть только острыми. Поэтому предыдущее определение синуса и косинуса, данное в 8 классе в курсе геометрии, было пригодно лишь для углов из диапазона 0 1 I и II четверть
источники:
http://dpva.ru/Guide/GuideMathematics/DiagramsConstruction/TrigonometricCurves/TrigonometricCurvesPrint/
http://100urokov.ru/predmety/urok-2-funkcii-trigonometricheskie