Как изменить реактивное сопротивление

Блог пользователя Box77 на DRIVE2. Всем привет! Ранее был рассмотрен материал: Основы автоэлектрики. Часть1. Основные законы Основы автоэлектрики. Часть2. Резисторы. Провода. Подробнее о сопротивлении Основы автоэлектрики. Часть3. Энергетические законы. Мощность. Делитель напряжения. Делитель тока. Тепловая энергия Мы уже охватили…

Всем привет!

Ранее был рассмотрен материал:
Основы автоэлектрики. Часть1. Основные законы
Основы автоэлектрики. Часть2. Резисторы. Провода. Подробнее о сопротивлении
Основы автоэлектрики. Часть3. Энергетические законы. Мощность. Делитель напряжения. Делитель тока. Тепловая энергия

Мы уже охватили достаточно глубоко базу понятий электротехнических законов, но она будет недостаточно полной для линейных (пассивных) элементов (электронных компонентов, радиодеталей) без изучения реактивных сопротивлений, которые возникают в индуктивных и емкостных компонентах.

Но для начала, дабы у нас не возникало сомнений далее по тексту, дам некоторые определения:

Электронный компонент — минимальный компонент электрической схемы. Сюда мы относим резисторы, конденсаторы, диоды, проводники, тумблеры, лампы, транзисторы и так далее. Многие их называют радиодеталями, что на мой взгляд сегодня менее актуально, нежели тридцать лет назад до возникновения цифровой электроники.

Пассивные электронные компоненты (они же — линейные) — это электронные компоненты, вольтамперные характеристики которых линейны. Как это понять? Да просто: подали какой-то ток, получили какое-то напряжение. Подали в энное количество раз больший или меньший ток, получили во столько же раз большее или меньшее напряжение. Сюда относятся резисторы, конденсаторы, катушки индуктивности, трансформаторы проводники, предохранители, переключатели, кварцевые резонаторы и тому подобные.

Активные электронные компоненты (они же — нелинейные) — это те компоненты, вольтамперные характеристики которых нелинейны. Это сегодня в большей мере полупроводниковые элементы (диоды, стабилитроны, светодиоды, транзисторы, микроконтроллеры и т.д.) и менее востребованные сегодня электровакуумные компоненты (к примеру, знакомые тем, кому за тридцать, радиолампы). Тут при изменении тока напряжение будет изменяться нелинейно. К примеру, стабилитрон до какого-то значения напряжения будет пропускать минимальный ток, а при преодолении порога ток резко увеличится.

Фактически вольтамперная характеристика — это ничто иное как сопротивление. И если у пассивных оно не зависит от подаваемового тока или прикладываемого напряжения, то у активных сопротивление зависит от этих параметров.

Теперь подробнее о видах сопротивления:

Активное сопротивление — это то сопротивление, которое не зависит от изменения тока или напряжения.
Реактивное сопротивление — это то сопротивление, которое зависит от изменения тока или напряжения.

Тут следует обратить внимание, что реактивное сопротивление зависит не от величины тока или напряжения (как, к примеру, активное сопротивление активных электронных компонентов), а зависит именно от изменения и собственных характеристик компонента. От слова «реакция». Если элемент обладает только активным сопротивлением, то реакция падения напряжения на изменение тока будет практически мгновенной и будет оставаться таковым до тех пор, пока значение тока сохраняется. Если элемент обладает реактивным сопротивлением, то происходит некий эффект запаздывания, инерции на изменение тока или напряжения.

Реактивным сопротивлением обладают емкостные и индуктивные пассивные электронные компоненты.
Сегодня мы не будем рассматривать конструкции, разновидности и прочие тонкости конденсаторов и катушек индуктивностей, а взглянем на них лишь с точки зрения реактивного сопротивления.

1. Катушка индуктивности как элемент реактивного сопротивления.

Рассмотрим известную нам уже схему с делителем:

Мы уже смотрели, как зависит падение напряжения на каждом из резисторов, которые обладают (говорим уже сегодняшним языком) активным сопротивлением. Если картинка не знакома, советую ещё раз прочитать предыдущую часть цикла статей.

Т.е. как работает активное сопротивление нам уже понятно. Что же будет, если, к примеру, вместо резистора R2 мы установим катушку индуктивности (дроссель)?

Для начала условно-графическое обозначение катушки индуктивности:

Представим, что дроссель обладает нулевым внутренним активным сопротивлением (на деле, конечно же, оно немного больше нуля, так как это провод). При включении тумблера S1 будет происходить следующее:
— Всё напряжение упадёт на дросселе, при этом на резисторе будет нулевое напряжение. Ток через дроссель, а значит через всю цепь идти не будет. Катушка индуктивности по сути будет имитировать обрыв в цепи.
— Далее сопротивление катушки начинает снижаться, тем самым пропуская через себя ток. Напряжение на дросселе начнёт снижаться, а на резисторе расти.
— В конечном счёте значение тока цепи достигнет своего пика, всё напряжение упадёт на резисторе R1, а на дросселе напряжение будет равно нулю, т.е. дроссель превратится в провод.

Какое максимальное значение тока, при котором система придёт в состояние покоя? Очевидно, что если дроссель превратится в провод с нулевым активным сопротивлением, то ток будет равен:

I = U / R1.

В реальности, конечно же, некоторое активное сопротивление дросселя имеется, считается аналогично как для провода, из которого намотан дроссель, но оно, как правило, ничтожно мало по сравнению со всей цепью.

R2 в нашем примере — реактивное сопротивление и проявляет себя лишь в момент изменения напряжения данной цепи. В нашем рассмотренном случае — при включении тумблера. Если же мы приложим вместо постоянного переменное напряжение, то будет происходить некоторое раскачивание цепи по тому же принципу, что и при включении/выключении тумблера, только с периодичностью переменного тока.

Думаю, как работает активное сопротивление в цепи с индуктивным элементом понятно. Не понятно пока лишь то, как долго происходит реакция цепи на изменение. Но об этом позже.

2. Конденсатор как элемент реактивного сопротивления.

А пока рассмотрим ту же цепь, но теперь вместо R2 расположим конденсатор.

Конденсатор обозначается так:

Как поведёт себя цепь в данном случае?
— Сначала всё напряжение достанется резистору. Реакция цепи будет аналогичной той, когда конденсатора нет вообще, а вместо него провод.
— Далее начнёт происходить заряд пластин конденсатора, ток цепи будет снижаться, напряжение на резисторе начнёт снижаться, а на конденсаторе расти.
— В конечном счёте, когда конденсатор зарядится, на резисторе напряжение будет равно нулю, ток в цепи перестанет протекать, а всё напряжение упадёт на конденсаторе. Конечная схема будет эквивалента той, если бы вместо R2 был бы обрыв цепи.

Таким образом ведёт себя емкостное реактивное сопротивление. Конечно же, в реальности у конденсаторов имеется некоторое небольшое активное сопротивление, которое можно изобразить, как последовательно включенный резистор ёмкости, и некоторое достаточно большое (несколько мегаом), которое можно изобразить как параллельно включенный ёмкости резистор. Но в большинстве задач ими можно пренебречь, хотя бывают цепи, где этим сопротивлениям требуется уделить отдельное внимание. Но на данном этапе это лишнее.

3. Заключение.

Сегодня мы коснулись понятия реактивного сопротивления и посмотрели, как и на каких электронных компонентах оно проявляется.

Что можно сказать о двух рассмотренных видах реактивного сопротивления? Они проявляются абсолютно противоположным образом: в момент включения конденсатор — провод, а дроссель — обрыв, в момент окончания реакции конденсатор — обрыв, а дроссель — провод.

Имеется определённое время реакций цепей с реактивными сопротивлениями, которые мы рассмотрим в следующих статьях на примерах фильтров частот, как самых простых цепях. Кроме того, немного постараемся вникнуть в суть цепей, в которых есть оба вида реактивных сопротивлений, самый популярный из которых носит название колебательного контура. Ну, и конечно же, постараемся немного посчитать.

Конечно, пока малопонятно многим, какую эти знания приносят пользу в автоэлектрике, но советую посмотреть по капот, на приборку или блок управления ДВС и задуматься, что же определяет временные характеристики всего этого добра, почему некоторые проблемы возникают «время от времени» или «при определённых условиях» и что скрывается за понятиями «цепи защиты»? Без элементарного понимания, как же себя проявляют пассивные компоненты, дальнейшее развитие в автоэлектрике невозможно. Конечно, в большинстве случаев на правильность подключения магнитолы, установку сигнализации или замену умершего датчика это особо не влияет, хотя и тут как знать… как знать…

А сегодня на сим всё!
Продолжение следует;)

___________________________________________________________________________

Бокс «Две семёрки» ВКонтакте
___________________________________________________________________________

Напряжение у
потребителей зависит от величины потери
напряжения в сети, которое в свою очередь
зависит от параметров сети. В питающих
сетях, где х>r,
потеря напряжения в значительной степени
определяется реактивным сопротивлением
линии, которое мало зависит от сечения.
Изменение реактивного сопротивления
применяют для регулирования напряжения.
Потеря напряжения в сети определяется
выражением


.

Чтобы
изменить реактивное сопротивление
необходимо включить в линию конденсаторы.
При этом потеря напряжения в линии


.

Последовательное
включение конденсаторов в линию называют
продольной компенсацией. Установка
продольной компенсации (УПК) дает
возможность компенсировать индуктивное
сопротивление и уменьшить потерю
напряжения в линии (рисунок 1).

Рисунок 1

На рисунке 1
б векторная диаграмма токов и напряжений
линии с УПК. Вектор падения напряжения
на конденсаторе U=jIX(отрезок
сс)
сдвинут по фазе на 180относительно
вектора падения напряжения на индуктивном
сопротивлении линииU=jIX(отрезок вс). Соответственно
этому потеря напряжения в линии
определяется отрезком аd(вместо
аdв линии без конденсаторов).

Таким образом,
последовательно включенные в линию
конденсаторы компенсируют часть ее
индуктивного сопротивления и тем самым
уменьшают реактивную составляющую
потери напряжения в линии.

Для УПК отношение
емкостного сопротивления конденсаторов
к индуктивному сопротивлению линии,
выраженное в процентах, называется
степенью компенсаци


.

На практике
применяют частичную компенсацию (С<100%)
реактивного сопротивления линии. Полная
или избыточная компенсация (С>100%) в
распределительных сетях обычно не
применяется, так как это связано с
возможностью появления в сети
перенапряжений.

Применение УПК
позволяет улучшить режимы напряжений
в сетях. Наиболее эффективно применение
УПК для снижения отклонений напряжения
на перегруженных радиальных линиях.

26 Регулирование напряжения изменением реактивной мощности в сети.

Реактивная
мощность может вырабатываться не только
генераторами станций, но и другими
источниками реактивной мощности,
компенсирующими устройствами КУ, в
качестве которых могут использоваться
батареи конденсаторов, синхронные
компенсаторы (двигатели).

Мощность КУ для
установки в сети определяется специальными
технико-экономическими расчетами с
учетом баланса реактивной мощности в
соответствующем узле электрической
системы. Установка КУ позволяет улучшить
режим напряжения в сети и у потребителей
электроэнергии.

На рисунке 1а
представлена упрощенная схема
электрической сети, состоящей из линии
с сопротивлениями RиX.
В конце линии параллельно нагрузке
включена неуправляемая батарея
конденсаторов БК, генерирующая реактивную
мощностьjQ.
При включении БК по линии передается
меньшая реактивная мощность, равнаяQ-Q,
что приводит к снижению потери напряжения
и изменению режима напряжений в данной
сети.

Потеря напряжения
в линии при установке БК определяется


.

Рисунок 1

На рисунках
1б,в приведены векторные диаграммы
напряжений и мощностей соответственно
для режимов максимальных и минимальных
нагрузок.

Из диаграммы
видно, что в режимах максимальных
нагрузок при наличии БК уменьшается
величина падения напряжения в сети
(равная геометрической разности отрезков
ос и оа при отсутствии БК и отрезков ос
и оа при наличии БК). Таким образом, при
некотором заданном напряжении Uв
начале линии при наличии БК улучшается
режим напряжений в конце линии.

В режимах малых
нагрузок резко уменьшаются размеры
треугольника падений напряжения аbс,
соответствующего мощности нагрузки. В
то же время размеры треугольника падения
напряженияcde, соответствующего
мощности БК, остаются практически
неизменными. В этих режимах напряжение
в конце линии может превышать напряжениеU,
что иногда может оказаться нежелательным
или недопустимым.

Отсюда следует,
что возможно и целесообразно автоматически
изменять мощность БК в целях регулирования
напряжения в сети.

Аналогичное
изменение режима напряжений в сети
имеет место в случае использования в
качестве компенсирующего устройства
синхронных компенсаторов (двигателей).
В режиме перевозбуждения СК генерирует
реактивную мощность jQ,
а в режиме перевозбуждения потребляетjQ.
Это свойство синхронных компенсаторов
может быть использовано как для повышения,
так и для снижения напряжения на шинах
нагрузки при неизменной величине
напряжения в начале линии.

Влияние СК на
режим напряжений в сети показано на
рисунке 1в,г. При этом условно принято,
что мощность КУ в режиме максимальных
нагрузок равна мощности БК, т.е. jQ=jQ.
В режиме малых нагрузок СК потребляет
реактивную мощностьjQ(рисунок
1г).

Соседние файлы в папке Шпоры

  • #
  • #
  • #
  • #
  • #

В этой статье мы поведем речь о таких параметрах, как активное и реактивное сопротивление.

Активное сопротивление

И начнем мы статью не с реактивного сопротивления, как ни странно, а с простого и всеми нами любимого радиоэлемента  — резистора, который, как говорят, обладает активным сопротивлением. Еще иногда его называют омическим.  Как нам говорит вики-словарь, «активный  — это деятельный, энергичный, проявляющий инициативу». Активист готов всегда рвать и метать даже ночью. Он готов ПОЛНОСТЬЮ выложиться и потратить всю энергию во благо общества.

Активное и реактивное сопротивление

То же самое можно сказать и про другие нагрузки, обладающие активным сопротивлением. Это могут быть различные нагревательные элементы, типа тэнов, а также лампы накаливания.

Как смотреть силу тока в цепи через осциллограф

Чем же резистор отличается от катушки индуктивности и конденсатора? Понятное дело, что выполняемыми функциями, но этим все не ограничивается. Итак, давайте рассмотрим самую простую схемку во всей электронике:

Активное и реактивное сопротивление

На схеме мы видим генератор частоты и резистор.

Давайте визуально посмотрим, что у нас творится в этой схеме. Для этого, как я уже сказал, нам понадобится генератор частоты

генератор частоты

А также цифровой осциллограф:

цифровой осциллограф

С помощью него мы будем смотреть напряжение и силу тока. 

Что?

Силу тока?

Но ведь осциллограф предназначен для того, чтобы рассматривать форму сигнала напряжения? Как же мы будем рассматривать форму сигнала силы тока? А все оказывается просто). Для этого достаточно вспомнить правило шунта.

Кто не помнит —  напомню. Имеем обыкновенный резистор:

Активное и реактивное сопротивление

Что будет, если через него прогнать электрический ток?

Активное и реактивное сопротивление

На концах резистора у нас будет падение напряжения. То есть, если замерить с помощью мультиметра напряжение на его концах, мультиметр покажет какое-то значение в Вольтах

принцип работы шунта

И теперь главный вопрос: от чего зависит падение напряжения на резисторе? В дело опять же вступает закон Ома для участка цепи: I=U/R. Отсюда U=IR. Мы видим зависимость от номинала самого резистора и от силы тока, текущей в данный момент в цепи. Слышите? От СИЛЫ ТОКА! Так почему бы нам не воспользоваться таким замечательным свойством и не глянуть силу тока через падение напряжения на  самом резисторе? Ведь номинал резистора у нас постоянный и почти не изменяется с изменением силы тока ;-)

Осциллограмма силы тока на активном сопротивлении

В данном опыте нам не обязательно знать номинал силы тока в цепи. Мы будем просто смотреть, от чего зависит сила тока и изменяется ли вообще?

Поэтому,  наша схема примет вот такой вид:

как измерить форму силы тока в цепи

В этом случае шунтом будет являться резистор сопротивлением в 0,5 Ом. Почему именно 0,5 Ом? Да потому что он не будет сильно греться, так как обладает маленьким сопротивлением, а также  его номинал вполне достаточен, чтобы снять с него напряжение.

Осталось снять напряжение с генератора, а также со шунта с помощью осциллографа. Если вы не забыли, со шунта мы снимаем осциллограмму силы тока в цепи. Красная осциллограмма — это напряжение с генератора Uген , а желтая осциллограмма  — это напряжение с шунта Uш , в нашем случае  — сила тока.  Смотрим, что у нас получилось:

Частота 28 Герц:

осциллограмма активного сопротивления

Частота 285 Герц:

Активное и реактивное сопротивление

Частота 30 Килогерц:

Активное и реактивное сопротивление

Как вы видите, с ростом частоты сила тока у нас осталась такой же.

Давайте побалуемся формой сигнала:

Активное и реактивное сопротивление

Активное и реактивное сопротивление

Как мы видим, сила тока  полностью повторяет форму сигнала напряжения.

Итак, какие можно сделать выводы?

1) Сила тока через активное (омическое) сопротивление имеет такую же форму, как и форма напряжения.

2) Сила тока и напряжение на активном сопротивлении совпадают по фазе, то есть куда напряжение, туда и ток. Они двигаются синфазно, то есть одновременно.

3) С ростом частоты ничего не меняется (если только на очень высоких частотах).

Конденсатор в цепи переменного тока

Ну а теперь давайте вместо резистора поставим конденсатор.

Активное и реактивное сопротивление

Смотрим осциллограммы:

конденсатор в цепи переменного тока

Как вы видите, конденсатор обладает сопротивлением, так  как сила тока в цепи значительно уменьшилась. Но обратите внимание, что произошел сдвиг желтой осциллограммы, то бишь осциллограммы силы тока.

Вспоминаем алгебру старшие классы. Итак, полный период T — это

Активное и реактивное сопротивление

Теперь давайте прикинем, какой сдвиг фаз у нас получился на графике:

Активное и реактивное сопротивление

Где-то примерно П/2 или 90 градусов.

Почему так произошло? Во всем виновато физическое свойство конденсатора. В самые первые доли секунд, конденсатор ведет себя как проводник с очень малым сопротивлением, поэтому сила тока в этот момент будет максимальна. В этом можно легко убедиться, если резко подать на конденсатор напряжение и в начальный момент времени посмотреть, что происходит с силой тока

заряд конденсатора

Красная осциллограмма — это напряжение, которое мы подаем на конденсатор, а желтая — это сила тока в цепи конденсатора. По мере заряда конденсатора сила тока падает и достигает нуля при полном заряде конденсатора.

К чему приведет дальнейшее увеличение частоты? Давайте посмотрим:

50 Герц.

Активное и реактивное сопротивление

100 Герц

Активное и реактивное сопротивление

200 Герц

Активное и реактивное сопротивление

Как вы видите, с увеличением частоты, у нас сила тока в цепи с конденсатором возрастает.

Реактивное сопротивление конденсатора

Как мы увидели с прошлого опыта, с увеличением частоты растет сила тока! Кстати, у резистора не росла. То есть получается в данном случае из закона Ома, что сопротивление конденсатора зависит от частоты! Да, все так оно и есть. Но называется оно не просто сопротивлением, а реактивным сопротивлением и вычисляется по формуле:

формула реактивного сопротивления

где

Хс — реактивное сопротивление конденсатора, Ом

П — постоянная и приблизительно равна 3,14

F — частота, Гц

С — емкость конденсатора, Фарад

Катушка индуктивности в цепи переменного тока

Ну а теперь давайте возьмем катушку индуктивности вместо конденсатора:

Активное и реактивное сопротивление

Проводим все аналогичные операции, как и с конденсатором. Смотрим на осциллограммы в цепи с катушкой индуктивности:

Активное и реактивное сопротивление

Если помните, вот такую осциллограмму мы получили в схеме с конденсатором:

Активное и реактивное сопротивление

Видите разницу? На катушке индуктивности ток отстает от напряжения на  90 градусов, на П/2, или, как еще говорят, на четверть периода (весь период у нас или 360 градусов).

Так-так-так…. Давайте соберемся с мыслями. То есть в цепи с переменным синусоидальным током,  ток на конденсаторе опережает напряжение на 90 градусов, а на катушке индуктивности ток отстает от напряжения тоже на 90 градусов? Да, все верно.

Почему на катушке ток отстает от напряжения?

Не будем углубляться в различные физические процессы и формулы, просто сочтем за данность, что сила тока не может резко возрастать на катушке индуктивности. Для этого проведем простой опыт. Так же как и на конденсатор, мы резко подадим напряжение на катушку индуктивности, и посмотрим, что случилось с силой тока.

напряжение и ток на катушке индуктивности

Как вы видите, при резкой подаче напряжения на катушку, сила тока не стремится также резко возрастать, а возрастает постепенно, если быть точнее, по экспоненте.

Давайте вспомним, как это было у конденсатора:

Активное и реактивное сопротивление

Все с точностью наоборот! Можно даже сказать, что катушка — это полная противоположность конденсатору ;-)

Ну и напоследок давайте еще побалуемся частотой:

240 Килогерц

Активное и реактивное сопротивление

34 Килогерца

катушка в цепи переменного тока

17 Килогерц

Активное и реактивное сопротивление

10 Килогерц

Активное и реактивное сопротивление

Вывод?

С уменьшением частоты сила тока через катушку увеличивается.

Реактивное сопротивление катушки индуктивности

Из опыта выше мы можем сделать вывод, что сопротивление катушки зависит от частоты и вычисляется по формуле

реактивное сопротивление катушки

где

ХL —  реактивное сопротивление катушки, Ом

П — постоянная и приблизительно равна 3,14

F — частота, Гц

L — индуктивность, Генри

Мощность в цепи с реактивными радиоэлементами

Для дальнейшего объяснения этого явления нам потребуется наша осциллограмма с катушки индуктивности:

Активное и реактивное сопротивление

Итак, давайте выделим на ней один период и разделим его на 4 части, то есть по 90 градусов каждая или π/2.

Активное и реактивное сопротивление

Давайте начнем с такого понятия, как мощность. Если не забыли, мощность — это сила тока помноженное на напряжение, то есть P=IU. Итак, в первую четвертинку периода t1 у нас напряжение принимает положительные значения и сила тока тоже положительное. Плюс на плюс дает плюс. В эту четверть периода энергия поступает из источника в реактивное сопротивление.

Теперь давайте рассмотрим отрезок времени t2. Здесь ток со знаком «плюс», а напряжение со знаком «минус». В итоге плюс на минус дает минус. Получается мощность со знаком «минус». А разве так бывает? Еще как бывает! В этот промежуток времени реактивный радиоэлемент отдает запасенную энергию обратно в источник напряжения. Для лучшего понимания давайте рассмотрим простой житейский пример.

Представим себе кузнеца за работой:

Активное и реактивное сопротивление

Не знаю, какое было у вас детство, но я когда был пацаном, брал свинец с аккумуляторов и плющил его в металлические пластинки. И что думаете? Свинец нагревался. Не так, чтобы прям обжигал, а был тепленький на ощупь. То есть моя энергия удара превращалась в тепло, можно даже сказать, в полезную энергию.

А что если взять пружину от стоек ВАЗа и ударять по ней?

Активное и реактивное сопротивление

С пружиной не станет НИ-ЧЕ-ГО! Она ведь не свинец. Но… заметьте вот такую вещь: как только мы начинаем «плющить» пружину кувалдой, у нас она начинает сжиматься. И вот она сжалась до упора и… выстрелила вверх, подхватив с собой тяжелую кувалду, которая только что пыталась ее расплющить. То есть в данном случае энергия вернулась обратно в источник энергии, то есть обратно  к кузнецу. Он вроде как и пытался расплющить пружину, но пружина вернула энергию обратно своим разжатием. То есть кузнецу не надо уже было подымать тяжелый молот, так как за него это уже сделала пружина.

Разжатие пружины и возврат ею энергии обратно — это и есть отрицательная мощность. В этом случае энергия возвращается обратно в источник. Хорошо ли это или плохо — это уже другая история.

В третий промежуток времени  t3 и ток и напряжение у нас со знаком «минус». Минус на минус — это плюс. То есть реактивный элемент снова поглощает энергию, ну а на t4, снова ее отдает, так как плюс на минус дает минус.

Активное и реактивное сопротивление

В результате за весь период у нас суммарное потребление энергии равно чему?

Активное и реактивное сопротивление

Правильно, нулю!

Так что же это получается тогда? На катушке и конденсаторе не будет выделяться никакой энергии? Получается так. Поэтому в схемах они чаще всего холодные, хотя могут быть и слегка теплыми, так как реальные параметры катушки и конденсатора выглядят совсем по другому.

Эквивалентная схема реальной катушки индуктивности выглядит вот так:

Активное и реактивное сопротивление

где

R— это сопротивление потерь. Это могут быть потери в проводах, так как любой провод обладает сопротивлением. Это могут быть потери в диэлектрике, потери в сердечнике и потери на вихревые токи.  Как видите, раз есть сопротивление, значит на нем может выделяться мощность, то есть тепло.

L — собственно сама индуктивность катушки

С — межвитковая емкость.

А вот и эквивалентная схема реального конденсатора:

Активное и реактивное сопротивление

где

r — сопротивление диэлектрика и корпуса между обкладками

С — собственно сама емкость конденсатора

ESR — эквивалентное последовательное сопротивление

ESI (ESL) — эквивалентная последовательная индуктивность

Здесь мы тоже видим такие параметры, как r  и ESR, которые на высоких частотах будут еще лучше себя проявлять, благодаря скин-эффекту. Ну и, соответственно, на них будет выделяться мощность, что приведет к небольшому малозаметному нагреву.

Резюме

Резистор обладает активным (омическим) сопротивлением. Катушка индуктивности и конденсатор обладают реактивным сопротивлением.

В цепи переменного тока на конденсаторе ток опережает напряжение на 90 градусов, а на катушке ток отстает от напряжения на 90 градусов.

Сопротивление катушки вычисляется по формуле

Активное и реактивное сопротивление

Сопротивление конденсатора вычисляется по формуле:

Активное и реактивное сопротивление

В цепи переменного тока на идеальном реактивном сопротивлении не выделяется мощность.

Реальные катушка и конденсатор имеют в своем составе паразитные параметры, которые имеют некоторое сопротивление. Поэтому реальные катушка и конденсатор не обладают чисто реактивным сопротивлением.

Take a couple of steps back to energy, this will allow you to clear your head of the details of turns, volts, inductance etc.

When the magnet is on, and operating at its design flux, there will be a certain amount of energy stored in the magnetic field.

If you are happy to change the field slowly, so change the amount of stored energy slowly, then you only need a small amount of power. To change it quickly, you need a large amount of power. Power is rate of change of energy.

Power is volts times current. Now unfortunately, the copper wire has resistance, and this confuses the situation a bit, because we also need power to push the current through the resistance of the copper wire. However, let’s simplify for a moment and imagine that we have a superconducting solenoid, like an MRI magnet. Just like a spherical cow in a vacuum beloved of physicists, this allows us to concentrate on the important bits.

To change the field quickly requires a lot of power, so more volts at any given current. If you alter the windings so you need more current to produce the field (reduce the inductance), then you will need fewer volts to slew the field at the same speed, and vice versa.

For any given electromagnet, you slew it as fast as possible by using the maximum drive voltage you can achieve. This might be limited by the breakdown voltage of your windings, or switching devices, or power supply. To slew the field up, you need to supply energy. To slew the field down, you are withdrawing energy, so you can generate the voltage by passing the current through a resistor, you do not need a power supply.

If the voltage range you can handle is limited, and you are not yet at your current limit, then you can improve the slew speed if you rewind your magnet to use more current, obviously limited by the maximum current you can tolerate. This will reduce the voltage needed to get the same slew power.

Finally, what about that pesky copper resistance? It means you have to supply power to keep the magnet on, and that your slew up takes longer, and your slew down is quicker. It does not alter the general conclusions that more slew power means faster field changes.

Take a couple of steps back to energy, this will allow you to clear your head of the details of turns, volts, inductance etc.

When the magnet is on, and operating at its design flux, there will be a certain amount of energy stored in the magnetic field.

If you are happy to change the field slowly, so change the amount of stored energy slowly, then you only need a small amount of power. To change it quickly, you need a large amount of power. Power is rate of change of energy.

Power is volts times current. Now unfortunately, the copper wire has resistance, and this confuses the situation a bit, because we also need power to push the current through the resistance of the copper wire. However, let’s simplify for a moment and imagine that we have a superconducting solenoid, like an MRI magnet. Just like a spherical cow in a vacuum beloved of physicists, this allows us to concentrate on the important bits.

To change the field quickly requires a lot of power, so more volts at any given current. If you alter the windings so you need more current to produce the field (reduce the inductance), then you will need fewer volts to slew the field at the same speed, and vice versa.

For any given electromagnet, you slew it as fast as possible by using the maximum drive voltage you can achieve. This might be limited by the breakdown voltage of your windings, or switching devices, or power supply. To slew the field up, you need to supply energy. To slew the field down, you are withdrawing energy, so you can generate the voltage by passing the current through a resistor, you do not need a power supply.

If the voltage range you can handle is limited, and you are not yet at your current limit, then you can improve the slew speed if you rewind your magnet to use more current, obviously limited by the maximum current you can tolerate. This will reduce the voltage needed to get the same slew power.

Finally, what about that pesky copper resistance? It means you have to supply power to keep the magnet on, and that your slew up takes longer, and your slew down is quicker. It does not alter the general conclusions that more slew power means faster field changes.

Реактивное сопротивление XL и XC

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС, равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), которая пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока со сдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2).
Тогда для синусоидального напряжения u = Uampsin(ωt) запишем выражение мгновенного значения тока следующим образом:

i = UampωCsin(ωt+π/2).

Отсюда выразим соотношение среднеквадратичных значений .

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора называют ёмкостным.

Предлагаем Вам рассмотреть непосредственно связанные с данным материалом статьи:
Что такое коэффициент мощности — Cos(φ)?

Понравилась статья? Поделить с друзьями:

Читайте также:

  • Как изменить рдп файл запуска программы
  • Как изменить ргб подсветку
  • Как изменить расширения экрана на мониторе
  • Как изменить расширение ютуб
  • Как изменить расширение экрана через ярлык

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии