Как изменить степень корня

Перевод корней в степени и обратно: объяснение, примеры

Часто преобразование и упрощение математических выражений требует перехода от корней к степеням  и наоборот. Данная статья рассказывает о том, как осуществлять перевод корня в степень и обратно. Рассматривается теория, практические примеры и наиболее распространенные ошибки.

Переход от степеней с дробными показателями к корням

Допустим, мы имеем число с показателем степени в виде обыкновенной дроби — amn. Как записать такое выражение в виде корня?

Ответ вытекает из самого определения степени! 

Определение

Положительное число a в степени mn — это корень степени n из числа am.

amn=amn.

При этом, обязательно должно выполнятся условие:

a>0; m∈ℤ; n∈ℕ.

Дробная степень числа нуль определяется аналогично, однако в этом случае число m принимается не целым, а натуральным, чтобы не возникло деления на 0:

0mn=0mn=0.

В соответствии с определением, степень amn можно представить в виде корня amn.

Например: 325=325, 123-34=123-34.

Однако, как уже было сказано, не следует забывать про условия: a > 0 ;   m ∈ ℤ ;   n ∈ ℕ .

Так, выражение -813 нельзя представить в виде -813, так как запись -813 попросту не имеет смысла — степень отрицательных чисел на определена.При этом, сам корень -813 имеет смысл.

Переход от  степеней с выражениями в основании и дробными показателями осуществляется аналогично на всей области допустимых значений (далее — ОДЗ) исходных выражений в основании степени. 

Например, выражение x2+2x+1-412 можно представить в виде квадратного корня x2+2x+1-4.Выражение в степени x2+x·y·z-z3-73 переходит в выражение x2+x·y·z-z3-73 для всех x, y, z из ОДЗ данного выражения.

Как представить корень в виде степени?

Обратная замена корней степенями, когда вместо выражения с корнем записывается выражения со степенью, также возможна. Просто перевернем равенство из предыдущего пункта и получим:

amn=amn

Опять же, переход очевиден для положительных чисел a. Например, 764=764, или27-53=27-53.

Для отрицательных a корни имеют смысл. Например -426, -23. Однако, представить эти корни в виде степеней  -426 и -213 нельзя.  

Можно ли вообще преобразовать такие выражения со степенями? Да, если произвести некоторые предварительные преобразования. Рассмотрим, какие.

Используя свойства степеней, можно выполнить преобразования  выражения -426.

-426=-12·426=426.

Так как 4>0, можно записать: 

426=426.

В случае с корнем нечетной степени из отрицательного числа, можно записать:

-a2m+1=-a2m+1.

Тогда выражение -23 примет вид:

-23=-23=-213.

Разберемся теперь, как корни, под которыми содержатся выражения, заменяются на степени, содержащие эти выражения в основании. 

Обозначим буквой A некоторое выражение. Однако не будем спешить с представлением Amn в виде Amn. Поясним, что здесь имеется в виду. Например, выражение х-323, основываясь на равенстве из первого пункта, хочется представить в виде x-323. Такая замена возможна только при x-3≥0, а для остальных икс из ОДЗ она не подходит, так как для отрицательных a формула amn=amn не имеет смысла.

Таким образом, в рассмотренном примере преобразование вида Amn=Amn является преобразованием, сужающим ОДЗ, а из-за неаккуратного применения формулы Amn=Amn нередко возникают ошибки. 

Чтобы правильно перейти от корня Amn к степени Amn, необходимо соблюдать несколько пунктов:

  • В случае, если число m — целое и нечетное, а n — натуральное и четное, то формула  Amn=Amn справедлива на всей ОДЗ переменных.
  • Если m — целое и нечетное, а n — натуральное и нечетное,то выражение Amn можно заменить:
     — на Amn для всех значений переменных, при которых A≥0;
     — на —Amn для  для всех значений переменных, при которых A<0;
  • Если  m — целое и четное, а n — любое натуральное число, то Amn можно заменить на Amn.

Сведем все эти правила в таблицу и приведем несколько примеров их использования.

Как представить корень в виде степени?

Вернемся к выражению х-323. Здесь m=2 — целое и четное число, а n=3 — натуральное число. Значит, выражение х-323 правильно будет записать в виде:

х-323=x-323.

Приведем еще один пример с корнями и степенями.

Пример. Перевод корня в степень

x+5-35=x+5-35, x>-5—x-5-35, x<-5

Обоснуем результаты, приведенные в таблице. Если число m — целое и нечетное, а n — натуральное и четное, для всех переменных из ОДЗ в выражении Amn значение A положительно или неотрицательно (при m>0). Именно поэтому  Amn=Amn.

Во втором варианте, когда  m — целое, положительное и нечетное, а n — натуральное и нечетное, значения Amn разделяются. Для переменных из ОДЗ, при которых A неотрицательно, Amn=Amn=Amn. Для переменных, при которых A отрицательно, получаем Amn=-Amn=-1m·Amn=-Amn=-Amn=-Amn.

Аналогично рассмотрим и следующий случай, когда m — целое и четное, а n — любое натуральное число. Если значение Aположительно или неотрицательно, то для таких значений переменных из ОДЗ Amn=Amn=Amn. Для отрицательных A получаем Amn=-Amn=-1m·Amn=Amn=Amn.

Таким образом, в третьем случае для всех переменных из ОДЗ можно записать Amn=Amn.

Бингоскул Бингоскул

Подготовьтесь к сдаче ЕГЭ интересно и эффективно!

Формулы корней n-ой степени и их свойства

Свойства степеней

  1. Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное значение:
    (sqrt[n] { a } )^k =sqrt[n] { a^k }
  2. Чтобы извлечь корень из корня, достаточно перемножить показатели корней:
    sqrt[n] { sqrt[k] { a } } =sqrt[n*k] { a }
  3. Значение корня не изменится, если одновременно его показатель увеличить в k раз и подкоренное значение возвести в степень k:
    sqrt[n] { a^m } = sqrt[n*k] { a^ { m*k } }
  4. Корень из произведения равен произведению корней:
    sqrt[n] { a*b } = sqrt[n] { a } * sqrt[n] { b }
  5. Корень из дроби — это корень из числителя и корень из знаменателя:
    sqrt[n] { frac { a } { b } } = frac { sqrt[n] { a } } { sqrt[n] { b } }
  6. Корень из n-ой степени в степени n
    (sqrt[n] { a } )^n =a
  7. Корень из квадрата:
    (sqrt { a^2 } ) = |a|

Формулы степеней и их свойства

Свойства степеней

  1. Возведение в нулевую степень:
    a^0 = 1
  2. Произведение степеней:
    a^m * a^n = a^ { m+n }
  3. Деление степеней:
    a^m : a^n = a^ { m — n }
  4. Возведение степени в степень:
    (a^m)^n = a^ { m*n }
  5. При возведении в степень произведения каждый из множителей возводится в степень и результаты перемножают:
    (a*b)^m = a^m * b^m
  6. При возведении в степень частного возводят в эту степень и делимое, и делитель, результаты делят:
    (frac { a } { b } )^m = frac { a^m } { b^m }
  7. Степень с отрицательным рациональным показателем:
    a^ { -n } = frac { 1 } { a^n }
    Обыкновенная дробь с отрицательным показателем заменяется на обратную ей дробь с положительным показателем:
    (frac { a } { b } )^ { -m } =(frac { b } { a } )^ { m }
  8. Степень с рациональным показателем:
    a^ { frac { 1 } { n } } = sqrt[n] { a }
    a^ { frac { m } { n } } = sqrt[n] { a^m }

Смотри также: Основные формулы по математике

Решай с разбором:

  • задание 2 по математике база
  • задание 4 по математике база
  • задание 5 по математике база
  • задание 7 по математике база
  • задание 5 по математике профиль
  • задание 9 по математике профиль

8 марта 2018, 12:24

Could not load xLike class!

Корни и степени

  • Степень с натуральным показателем

  • Степень с целым показателем

  • Кубический корень

  • Корень -ной степени

  • Сравнение арифметических корней

  • Как избавиться от иррациональности в знаменателе

  • Как упрощать иррациональные выражения, пользуясь формулами сокращенного умножения

Степенью называется выражение вида a^c.

Здесь a — основание степени, c  — показатель степени.

к оглавлению ▴

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

По определению, a^1=a.

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.

a^2=a cdot a.

Возвести число в куб — значит умножить его само на себя три раза.

a^3=a cdot a cdot a.

Возвести число в натуральную степень n — значит умножить его само на себя n раз:

a^n= underbrace{a cdot a cdot a cdot a cdot ldots cdot a}_{displaystyle n}.

к оглавлению ▴

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

По определению,

a^0=1.

Это верно для aneq 0. Выражение 00 не определено.

Определим также, что такое степень с целым отрицательным показателем.

a^{-1}=genfrac{}{}{}{0}{1}{a};

a^{-2}=genfrac{}{}{}{0}{1}{a^2};

a^{-n}=genfrac{}{}{}{0}{1}{a^n}.

Конечно, все это верно для aneq 0, поскольку на ноль делить нельзя.

Например,

5^{-2}=genfrac{}{}{}{0}{1}{5^2};

left( genfrac{}{}{}{0}{1}{2} right)^{-1}=2;

left( genfrac{}{}{}{0}{2}{7} right)^{-1}=genfrac{}{}{}{0}{7}{2}.

Заметим, что при возведении в минус первую степень дробь переворачивается.

left( genfrac{}{}{}{0}{5}{3} right)^{-2}=1 : left( genfrac{}{}{}{0}{5}{3} right)^{2}=left( genfrac{}{}{}{0}{3}{5} right)^{2}=genfrac{}{}{}{0}{9}{25}.

Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби genfrac{}{}{}{0}{p}{q}, где p — целое, q — натуральное.

Здесь нам понадобится новое понятие — корень n-степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

Определение.

Арифметический квадратный корень из числа a — это такое неотрицательное число, квадрат которого равен a.

Согласно определению, left (sqrt{a} right )^2=a; , , sqrt{a}geq 0; , , ageq 0.

В школьной математике мы извлекаем корень только из неотрицательных чисел. Выражение  sqrt{a}  для нас сейчас имеет смысл только при ageq 0.

Выражение sqrt{a} всегда неотрицательно, т.е. sqrt{a}geq 0. Например, sqrt{25}=5.

Свойства арифметического квадратного корня:

sqrt{ab}=sqrt{a} cdot sqrt{b}, ; sqrt{a^2}=left|aright| , ; sqrt{a^{2n}}={left|aright|}^n; 

sqrt{genfrac{}{}{}{0}{a}{b}}=genfrac{}{}{}{0}{sqrt{a}}{sqrt{b}}.

Запомним важное правило: sqrt{a^2}=left|aright| .

По определению, .

к оглавлению ▴

Кубический корень

Аналогично, кубический корень из a — это такое число, которое при возведении в третью степень дает число a.

left( sqrt[leftroot{3}scriptstyle 3]{a} right) ^3 = sqrt[leftroot{3}scriptstyle 3]{a} cdot sqrt[leftroot{3}scriptstyle 3]{a} cdot sqrt[leftroot{3}scriptstyle 3]{a}.

Например, sqrt[leftroot{3}scriptstyle 3]{8} = 2, так как 2^3 = 2 cdot 2 cdot 2 = 8 ;

sqrt[leftroot{3}scriptstyle 3]{1000} = 10, так как 10^3 = 1000;

sqrt[leftroot{3}scriptstyle 3]{-genfrac{}{}{}{0}{1}{125}} = -genfrac{}{}{}{0}{1}{5}, так как left( -genfrac{}{}{}{0}{1}{5} right) ^3 = -genfrac{}{}{}{0}{1}{125}.

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Теперь мы можем дать определение корня n-ной степени для любого целого n.

к оглавлению ▴

Корень n-ной степени

Корень n-ной степени из числа a — это такое число, при возведении которого в n-ную степень получается число a.

Например,

sqrt[leftroot{3}scriptstyle 5]{32} = 2;

sqrt[leftroot{3}scriptstyle 4]{81} = 3;

sqrt[leftroot{3}scriptstyle 3]{mathstrut 0,001} = 0,1.

Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Итак, sqrt[leftroot{3}scriptstyle n]{a} — такое число, что left( sqrt[leftroot{3}scriptstyle n]{a} right) ^n = a. Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

По определению,

a^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 2}} = sqrt{a},

a^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = sqrt[leftroot{3}scriptstyle 3]{a},

в общем случае a^{frac{1}{n}} = sqrt[leftroot{3}scriptstyle n]{a}..

Сразу договоримся, что основание степени a больше 0.

Например,

25^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 2}} = 5;

8^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = 2;

81^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 4}} = 3;

100000^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 5}} = 10;

0,001^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = 0,1.

Выражение a^{genfrac{}{}{}{3}{scriptstyle m}{scriptstyle n}} по определению равно sqrt[leftroot{3}scriptstyle n]{a^m}.

При этом также выполняется условие, что a больше 0.

a^{genfrac{}{}{}{3}{scriptstyle m}{scriptstyle n}} = sqrt[leftroot{3}scriptstyle n]{a^m} = left( sqrt[leftroot{3}scriptstyle n]{a} right) ^m.

Например,

8^{genfrac{}{}{}{3}{scriptstyle 4}{scriptstyle 3}} = left( sqrt[leftroot{3} scriptstyle 3]{8} right) ^4 = 2^4 = 16;

a^{genfrac{}{}{}{3}{scriptstyle 3}{scriptstyle 5}} = sqrt[leftroot{3} scriptstyle 5]{a^3} = left( sqrt[leftroot{3} scriptstyle n]{a} right) ^m;

b^{-genfrac{}{}{}{3}{scriptstyle 2}{scriptstyle 3}} = genfrac{}{}{}{0}{1}{sqrt[leftroot{3} scriptstyle 3]{b^2}}.

Запомним правила действий со степенями:

a^ma^n = a^{m+n} — при перемножении степеней показатели складываются;

genfrac{}{}{}{0}{a^m}{a^n} = a^{m-n} — при делении степени на степень показатели вычитаются;

left( a^m right) ^n = left( a^n right) ^m = a^{mn} — при возведении степени в степень показатели перемножаются;

a^nb^n = left( ab right) ^n;

genfrac{}{}{}{0}{a^n}{b^n} = left( genfrac{}{}{}{0}{a}{b} right) ^n.

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

1. genfrac{}{}{}{0}{sqrt{ mathstrut 2,8} cdot sqrt{ mathstrut 4,2}}{sqrt{ mathstrut 0,24}}= sqrt{ mathstrut genfrac{}{}{}{0}{2,8 cdot 4,2}{0,24}} = sqrt{ mathstrut genfrac{}{}{}{0}{28 cdot 42}{24}}=sqrt{ mathstrut genfrac{}{}{}{0}{7 cdot 4 cdot 7 cdot 6}{4 cdot 6}} =

= sqrt{ mathstrut 7 cdot 7} = 7.

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

2. genfrac{}{}{}{0}{left( 2 sqrt{7} right) ^2}{14}= genfrac{}{}{}{0}{ 2^2 cdot left( sqrt{7} right) ^2}{14} = genfrac{}{}{}{0}{4 cdot 7}{14} = 2.

3. genfrac{}{}{}{0}{ sqrt[leftroot{3} scriptstyle 9]{7} cdot sqrt[leftroot{3} scriptstyle 18]{7}}{sqrt[leftroot{3} scriptstyle 6]{7}}=genfrac{}{}{}{0}{7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 9}} cdot 7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 18}}}{7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}}=7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 9} + genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 18}- genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}= 7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6} - genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}=7^0=1.

Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.
4. Найдите значение выражения displaystyle frac{11a^6b^3-{left(3a^2bright)}^3}{4a^6b^6} при b = 2.

Решение:

displaystyle frac{11a^6b^3-{left(3a^2bright)}^3}{4a^6b^6}=displaystyle frac{11a^6b^3-{27a^6b}^3}{4a^6b^6}=displaystyle frac{-16a^6b^3}{4a^6b^6}=-displaystyle frac{4}{b^3}.

При b = 2 получим -displaystyle frac{4}{2^3}=-displaystyle frac{4}{8}=-0,5 .

Ответ: -0,5.

5. Найдите значение выражения displaystyle frac{a^{3,21} cdot  a^{7,36}}{a^{8,57}} при a=12 .

Решение:

displaystyle frac{a^{3,21} cdot  a^{7,36}}{a^{8,57}}=displaystyle frac{a^{3,21+7,36}}{a^{8,57}}=displaystyle frac{a^{10,57}}{a^{8,57}}=a^{10,57-8,57}=a^2.

При a = 12 получим {12}^2=144.

Мы воспользовались свойствами степеней.

Ответ: 144.

6. Найдите значение выражения displaystyle frac{{left(b^{sqrt{3}}right)}^{2sqrt{3}}}{b^4} при b = — 5.

Решение: displaystyle frac{{left(b^{sqrt{3}}right)}^{2sqrt{3}}}{b^3}=displaystyle frac{b^{sqrt{3} cdot  2sqrt{3}}}{b^3}=displaystyle frac{b^6}{b^3}=b^3 .

При b = — 5 получим: {(-5)}^3=-125 .

Ответ: -125.

7. Расположите в порядке возрастания: {left(displaystyle frac{7}{8}right)}^{-3}; displaystyle frac{7}{8}; {left(displaystyle frac{8}{7}right)}^{-3}.

Решение:

Запишем выражения как степени с положительным показателем и сравним.

left(displaystyle frac{7}{8}right)^-3=left(displaystyle frac{8}{7}right)^3. Так как displaystyle frac{8}{7} textgreater 1, то left(displaystyle frac{8}{7}right)^3 textgreater 1.

left(displaystyle frac{8}{7}right)^-3=left(displaystyle frac{7}{8}right)^3. Так как displaystyle frac{7}{8} textless 1, то left(displaystyle frac{7}{8}right)^3 textless 1.

Сравним displaystyle frac{7}{8} и {left(displaystyle frac{7}{8}right)}^3, для этого оценим их разность:

displaystyle frac{7}{8} - {left(displaystyle frac{7}{8}right)}^3=displaystyle frac{7}{8} - displaystyle frac{7^3}{8^3}=displaystyle frac{7 cdot  8^2-7^3}{8^3}=displaystyle frac{7(8^2-7^2)}{8^3}=displaystyle frac{7(64-49)}{8^3} textgreater 0 , значит displaystyle frac{7}{8} textgreater {left(displaystyle frac{7}{8}right)}^3 .

Получим : {left(displaystyle frac{7}{8}right)}^3 textless displaystyle frac{7}{8} textless {left(displaystyle frac{8}{7}right)}^3 , поэтому {left(displaystyle frac{8}{7}right)}^{-3} ; displaystyle frac{7}{8} ; {left(displaystyle frac{7}{8}right)}^{-3} .

Ответ: {left(displaystyle frac{8}{7}right)}^{-3}; displaystyle frac{7}{8} ; {left(displaystyle frac{7}{8}right)}^{-3}.

8. Представьте выражение в виде степени: displaystyle frac{x^{-6}+x^{-4}+x^{-2}}{x^2+x^4+x^6}.

Решение:

Вынесем за скобку степень с меньшим показателем:

displaystyle frac{x^{-6}+x^{-4}+x^{-2}}{x^2+x^4+x^6}=displaystyle frac{x^{-6}(1+x^2+x^4)}{x^2(1+x^2+x^4)}=displaystyle frac{x^{-6}}{x^2}=x^{-6-2}=x^{-8}.

Ответ: x^{-8} .

9. Упростите выражение: displaystyle frac{2^{2n-1} cdot  3^{n+1}}{6 cdot  {12}^n} .

Решение:

Приведем основания 6 и 12 к основаниям 2 и 3:

displaystyle frac{2^{2n-1} cdot  3^{n+1}}{6 cdot  {12}^n}=displaystyle frac{2^{2n-1} cdot  3^{n+1}}{2 cdot 3 cdot  {(2^2 cdot 3 )}^n}= displaystyle frac{2^{2n-1} cdot  3^{n+1}}{2^1cdot 3^1cdot 2^{2n} cdot  3^n} =

(выполним деление степеней с одинаковыми основаниями)

= 2^{2n-1-1-2n}cdot 3^{n+1-1-n}=2^{-2}cdot 3^0=displaystyle frac{1}{2^2}cdot 1=displaystyle frac{1}{4} = 0,25.

Ответ: 0,25.

10. Чему равно значение выражения displaystyle frac{a^{-4}cdot { a}^{-3}}{a^{-5}} при a=displaystyle frac{1}{3}?

Решение:

displaystyle frac{a^{-4}cdot { a}^{-3}}{a^{-5}}=a^{-4+left(-3right)-(-5)}=a^{-2}.

При a=displaystyle frac{1}{3}, получим {left(displaystyle frac{1}{3}right)}^{-2}=3^2=9.

Ответ: 9.

к оглавлению ▴

Сравнение арифметических корней

11. Какое из чисел больше: sqrt{5}+sqrt{6} или 2+sqrt{7}?

Решение:

Возведем в квадрат оба числа (числа положительные):

{left(sqrt{5}+sqrt{6}right)}^2= 5 + 2sqrt{5cdot 6}+6=11+2sqrt{30};

{left(2+7right)}^2={left(sqrt{4}+sqrt{7}right)}^2= 4 + 2sqrt{4cdot 7}+7=11+2sqrt{28}.

Найдем разность полученных результатов:

11+2sqrt{30}-(11+2sqrt{28})=2(sqrt{30}-sqrt{28}) textgreater 0, так как sqrt{30} textgreater sqrt{28}.

Значит, первое число больше второго.

Ответ: sqrt{5}+sqrt{6} textgreater  2+sqrt{7}.

к оглавлению ▴

Как избавиться от иррациональности в знаменателе

Если дана дробь вида displaystyle frac{a}{sqrt{b}}, то нужно умножить числитель и знаменатель дроби на sqrt{b}:

displaystyle frac{a}{sqrt{b}} = displaystyle frac{a cdot sqrt{b}}{sqrt{b}cdot sqrt{b}} = displaystyle frac{a cdot sqrt{b}}{sqrt{b}^2} = displaystyle frac{a cdot sqrt{b}}{b}.

Тогда знаменатель станет рациональным.

Если дана дробь вида displaystyle frac{c}{ a pm  sqrt{b}} или displaystyle frac{c}{  sqrt{a} pm  sqrt{b}}, то нужно умножить числитель и знаменатель дроби на сопряженное выражение, чтобы получить в знаменателе разность квадратов.

Сопряженные выражения — это выражения, отличающиеся только знаками. Например,

a + sqrt{b} и a-sqrt{b}; sqrt{a}+sqrt{b} и sqrt{a}-sqrt{b} — сопряженные выражения.

Пример:

displaystyle frac{c}{sqrt{a}-sqrt{b}}=displaystyle frac{c (sqrt{a}+ sqrt{b})}{ (sqrt{a}- sqrt{b})(sqrt{a}+ sqrt{b})}=

=displaystyle frac{c (sqrt{a}+sqrt{b})}{{ left(sqrt{a}right)}^2-{left(sqrt{b}right)}^2  }=displaystyle frac{c(sqrt{a}+ sqrt{b})}{a-b } .

12. Вот несколько примеров — как избавиться от иррациональности в знаменателе:

Пример 1.

displaystyle frac{2}{sqrt{27}}= displaystyle frac{2 cdot  sqrt{3}}{sqrt{3^3} cdot  sqrt{3}}=displaystyle frac{2 sqrt{3}}{sqrt{3^4} }=displaystyle frac{2 sqrt{3}}{9}.

Пример 2.

displaystyle frac{6}{1+sqrt{3}} = displaystyle frac{6(sqrt{3}-1)}{(sqrt{3}+1)(sqrt{3}-1)}=displaystyle frac{6(sqrt{3}-1)}{3-1}=

=displaystyle frac{6(sqrt{3}-1)}{2}=3(sqrt{3}-1).

Пример 3.

displaystyle frac{33}{7-3sqrt{3}} = displaystyle frac{33(7+3sqrt{3})}{(7-3sqrt{3})(7+3sqrt{3})}= displaystyle frac{33(7+3sqrt{3})}{49 -9 cdot 3}=

displaystyle frac{33(7+3sqrt{3})}{22}=displaystyle frac{3(7+3sqrt{3})}{2}.

Пример 4.

displaystyle frac{12}{sqrt{3}+sqrt{6}}=displaystyle frac{12(sqrt{6}-sqrt{3})}{(sqrt{3}+sqrt{6})(sqrt{6}-sqrt{3})}=displaystyle frac{12(sqrt{6}-sqrt{3})}{6-3}=

=displaystyle frac{12(sqrt{6}-sqrt{3})}{3}=4(sqrt{6}-sqrt{3}).

Совет. Если в знаменателе дана сумма двух корней, то в разности первым числом пишите то, которое больше, и тогда разность квадратов корней будет положительным числом.

Пример 5.

displaystyle frac{5+3sqrt{3}}{sqrt{3}+2}= displaystyle frac{(5+3sqrt{3})(2-sqrt{3})}{(sqrt{3}+2)(2-sqrt{3})}=

=displaystyle frac{10+6sqrt{3}-5sqrt{3}-9}{2^2-{(sqrt{3} )}^2}=displaystyle frac{1+sqrt{3}}{4-3}= 1+sqrt{3}.

13. Сравните sqrt{140} и displaystyle frac{1}{7+4sqrt{3}}+displaystyle frac{1}{7-4sqrt{3}}.

1) displaystyle frac{1}{7+4sqrt{3}}+displaystyle frac{1}{7-4sqrt{3}}=displaystyle frac{7-4sqrt{3}+7+4sqrt{3}}{(7+4sqrt{3})(7-4sqrt{3})}=displaystyle frac{14}{7^2-{(4sqrt{3})}^2}=

=displaystyle frac{14}{49-48}=14.

2) Сравним sqrt{140} и 14.

14 = sqrt{{14}^2}=sqrt{196}, 140 textless 196, то и sqrt{140} textless sqrt{196}, а значит,

sqrt{140} textless displaystyle frac{1}{7+4sqrt{3}}+displaystyle frac{1}{7-4sqrt{3}} .

Ответ: sqrt{140} меньше.

к оглавлению ▴

Как упрощать иррациональные выражения, пользуясь формулами сокращенного умножения

Покажем несколько примеров.

14. Упростите: выражения: sqrt{3-2sqrt{2}}; sqrt{7+4sqrt{3}}; sqrt{19-8sqrt{3}}.

Пример 5.

sqrt{3-2sqrt{2}}=sqrt{2+1-2sqrt{2}}=sqrt{{left(sqrt{2}right)}^2-2cdot 1cdot sqrt{2}+1}=

=sqrt{{left(sqrt{2}-1right)}^2} =  left|sqrt{2}-1right| = sqrt{2}-1, т.к. sqrt{2} textgreater 1.

Пример 6.

sqrt{7+4sqrt{3}} =  sqrt{4+3+4sqrt{3 }}=sqrt{2^2+2cdot 2cdot sqrt{3 }+{(sqrt{3 })}^2} =

= sqrt{{(2+sqrt{3})}^2} = 2+sqrt{3}.

Пример 7.

sqrt{19-8sqrt{3}} =  sqrt{16+3-8sqrt{3 }}=sqrt{4^2-2cdot 4cdot sqrt{3 }+{(sqrt{3 })}^2} =

=sqrt{{(4-sqrt{3})}^2} = 4-sqrt{3},

так как 4-sqrt{3}=sqrt{16}-sqrt{3} textgreater 0 .

Следующие несколько задач решаются с помощью формулы:

sqrt{a^2}=left|aright|.

Решение:

sqrt{{(5-2x)}^2}=left|5-2xright|.

Получим уравнение left|5-2xright|=2x-5, 2x-5ge 0, x geq 2,5.

Ответ: [2,5; + infty ).

19. Вычислите значение выражения: sqrt{{(sqrt{3}-1)}^2}+sqrt{{(sqrt{3}-2)}^2}.

Решение:

sqrt{(sqrt{3}-1)^2}+sqrt{(sqrt{3}-2)^2}=|sqrt{3}-1|+|sqrt{3}-2|=

=sqrt{3}-1+2-sqrt{3}=1.

Ответ: 1.

20. Вычислите значение выражения: sqrt{{(2-sqrt{5})}^2}+sqrt{{(3-sqrt{5})}^2}.

Решение: sqrt{{(2-sqrt{5})}^2}+sqrt{{(3-sqrt{5})}^2}= left|2-sqrt{5}right|+left|3-sqrt{5}right|=

=sqrt{5}-2+3-sqrt{5} = 1.

Ответ: 1.

21. Вычислите значение выражения: (x - 3) sqrt{displaystyle frac{1}{x^2-6x+9}}, если x textless 3.

Решение. (x - 3) sqrt{displaystyle frac{1}{x^2-6x+9}}=left(x - 3right)sqrt{displaystyle frac{1}{{left(x-3right)}^2}}=displaystyle frac{x-3}{left|x-3right|}=

=displaystyle frac{x-3}{3-x}=-1.

Если x textless 3, то x - 3 textless 0, следовательно left|x-3right|=-left(x-3right)=3-x.

Ответ: — 1.

22. Вычислите: (sqrt{3}-2)(sqrt{7+4sqrt{3}}).

Решение: left(sqrt{3}-2right)left(sqrt{7+4sqrt{3}}right) = sqrt{{left(sqrt{3}-2right)}^2(7+4sqrt{3}})=

=sqrt{left(3-4sqrt{3}+4right)left(7+4sqrt{3}right)}=sqrt{left(7-4sqrt{3}right)left(7+4sqrt{3}right)}=sqrt{7^2-{left(4sqrt{3}right)}^2}=

= sqrt{49-48} = 1.

Ответ: 1.

Рассмотрим уравнение вида a^x=a^y, где a textgreater 0.

Это равенство выполняется, только если x = y.

Подробно об таких уравнениях — в статье «Показательные уравнения».

При решении уравнений такого вида мы пользуемся монотонностью показательной функции.

23. Решите уравнение:

а) 2^{3-x}=16;

б) {27}^{displaystyle frac{1}{3}x-1}-3=0;

в) {left(displaystyle frac{1}{sqrt{3}}right)}^{2x+1}={left(3sqrt{3}right)}^x.

Решение.

23. Решите уравнение: 2^{3-x}=16.

Решение:

2^{3-x}=2^4, тогда 3 - x = 4, ; x = - 1.

Ответ: -1.

24. Решите уравнение:

{27}^{displaystyle frac{1}{3}x-1}-3=0.

Решение:

{left(3^3right)}^{left(displaystyle frac{1}{3}x-1right)}=3 , ; 3^{3left(displaystyle frac{1}{3}x-1right)}=3^1;

3left(displaystyle frac{1}{3}x-1right)=1, ; x - 3 = 1, ; x = 4.

Ответ: 4.

25. Решите уравнение: {left(displaystyle frac{1}{sqrt{3}}right)}^{2x+1}={left(3sqrt{3}right)}^x.

Решение:

{left(3^{- displaystyle frac{1}{2}}right)}^{2x+1}={left(3^{1+ displaystyle frac{1}{2}}right)}^x ,; ; 3^{-displaystyle frac{1}{2} cdot (2x+1)}=3^{displaystyle frac{3}{2}x}.

Значит, -displaystyle frac{1}{2} cdot left(2x+1right)=displaystyle frac{3}{2}x, - 2x - 1 = 3x, - 5x = 1 , x = -displaystyle frac{1}{5}.

Ответ: -0,2.

Если вы хотите разобрать большее количество примеров — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Корни и степени» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
07.02.2023

На этой странице вы узнаете:

  • Что скрывают корни?
  • В поисках отличий или как не запутаться в корнях?
  • Как можно изменить запись корня или выражения с корнями?

Понятие корня

Без корня погибнет растение, а слово потеряет свой смысл. В математике корень —  очень важное понятие. Давайте разберемся, что же такое корень n-ой степени и какие действия с ним можно совершить.

Итак:

1. Взятие корня является обратным действием возведению в степень. 
2. Корнем n-ой степени числа х называют такое число, при возведении в степень n которого получается х.

 (sqrt[n]{x}=y) ,  (y^{n}=x) , где 
n — степень корня, которая является натуральным числом
x – подкоренное выражение
y – результат вычисления

Что скрывают корни?

У некоторых корней есть особые названия в зависимости от их степени.
Если n = 2, такой корень называют квадратным корнем, часто его записывают без указания степени (sqrt{х}).
Если n = 3, корень называется кубическим и записывается следующим образом (sqrt[3]{x}).

Теперь давайте разберем работу с четными и нечетными степенями, и чем она отличается.

Посмотрим на примеры:

  1. (sqrt[3]{125} = 5), потому что (5^{3} = 125)
  2. (sqrt[3]{-125} = -5), потому что ((-5)^{3} = -125)
  3. (sqrt[2]{-9} = ?)

Допустим, ответ 3. Проверим: 3 * 3 = 9 – не подходит. 

Пробуем -3. Проверяем: (-3) * (-3) = 9, так как минус на минус дает плюс.

Получается, что (sqrt[2]{-9}) не имеет смысла, так как степень – четная, а подкоренное выражение – отрицательное. Любое число в квадрате будет больше или равно нулю.

В поисках отличий или как не запутаться в корнях?

При работе с четными и нечетными степенями корней важно помнить, что:

— корень нечетной степени можно взять из любого числа
— корень четной степени из отрицательных чисел не существует, его можно брать только из положительного числа.

Могут ли получиться разные результаты, если степень корня и подкоренное выражения одинаковые?
Да, такое возможно. Число, извлеченное из корня четной степени, может быть и положительным, и отрицательным, потому что любое число в четной степени будет больше или равно нулю. Такое число следует записывать в модульных скобках.

(sqrt[2]{9} = |3|), потому что (3^{2} = (-3)^{2} = 9)

Зачем нужны модульные скобки можно прочитать в статье “Модуль”.

Свойства корней

Мы уже узнали, что такое корень. Теперь самое время узнать, как совершать логичные и правильные преобразования с ними.

Как можно изменить запись корня или выражения с корнями?

Очень просто! Для преобразований корней существуют специальные правила, применяя которые можно изменить запись корня или выражения с корнями. Такие правила называются свойствами корней.

Основные свойства корней:

  1. Степень числа а под корнем выносится в числитель, а степень корня в знаменатель.
    [Largesqrt[n]{a^{k}} = a^{frac{k}{n}}]
  1. Если под корнем находится число а в степени корня, то от корня можно избавиться, используя первое свойство корней (так как (а^{frac{n}{n}} = a^{1})), но нужно не забывать про четность степени.
  1. Если степень корня нечетная, а подкоренное выражение отрицательное, можно вынести минус перед корнем, тогда под корнем останется положительное число.

[Largesqrt[n]{-a} = -sqrt[n]{a}, n – нечетно]

  1. Произведение чисел а и b в подкоренном выражении можно записать как произведение корней.

[Largesqrt[n]{a * b} = sqrt[n]{a} * sqrt[n]{b}]

  1. Частное чисел а и b в подкоренном выражении можно записать как частное корней.

[Largesqrt[n]{frac{a}{b}} = frac{sqrt[n]{a}}{sqrt[n]{b}}]

  1. Если в подкоренном выражении находится ещё один корень, от такой вложенности можно избавиться путём перемножения степеней.

[Largesqrt[n]{sqrt[m]{a}} = sqrt[n * m]{a}]

  1. Степень подкоренного выражения можно выносить из под корня, тогда корень будет возводиться в эту степень.

[Largesqrt[n]{a^{m}} = (sqrt[n]{a})^{m}]

  1. Если степень корня и степень подкоренного выражения имеют общий делитель k, тогда обе степени можно разделить на k, и значение выражения не изменится.

[Largesqrt[n * k]{a^{m * k}} = sqrt[n]{a^{m}}]

Стоит отметить, что свойства работаю в обе стороны.

Например:

[Largesqrt[n]{a^{k}} = a^{frac{k}{n}} Longleftrightarrow a^{frac{k}{n}} = sqrt[n]{a^{k}}]

Практика преобразований

Теперь давайте рассмотрим применение свойств корней на практике.

Пример:  (sqrt[3]{-216})

1 способ:

[largesqrt[3]{-216} = -sqrt[3]{6^{3}} = -6]

В этом выражении сначала выносим минус перед корнем (свойство под номером 3), а после избавляемся от корня нечетной степени (свойство под номером 2).

Чтобы прийти к этому результату, можно было использовать и другие преобразования.

2 способ:

[largesqrt[3]{-216} = (-216)^{frac{1}{3}} = (-6)^{3*frac{1}{3}} = -6]

В этом варианте сначала воспользуемся свойством под номером 1, чтобы уйти от знака корня, далее число -216 представим в виде числа в степени 3, после чего перемножаем степени по свойству степеней и  получаем -6.

Давайте рассмотрим другой пример.

Пример: (sqrt{9+16})

[largesqrt{9+16} = sqrt{25} = 5]

В данном случае ни одно из свойств корней не подходит, поэтому складываем слагаемые подкоренного выражения и уже после находим результат.

Важно: Нельзя путать сумму в подкоренном выражении с произведением в подкоренном выражении, потому что свойство корней есть только для произведения, то есть (sqrt{a + b} neq sqrt{a} + sqrt{b}), аналогично и с разностью (sqrt{a — b} neq sqrt{a} — sqrt{b}).

Так же есть распространённая ситуация, когда нужно вынести множитель из-под знака корня.

Пример: (sqrt[4]{80})

[largesqrt[4]{80} = sqrt[4]{2 * 2 * 2 * 2 * 5} = sqrt[4]{2^{4}} * sqrt[4]{5} = 2sqrt[4]{5}]

Сначала 80 нужно разложить на множители. Далее используем свойство под номером 4 и раскладываем произведение подкоренного выражения на произведение корней, а после к первому множителю применяем свойство под номером 2 и избавляемся от корня.

Фактчек

  • Взятие корня – это противоположное действие возведению в степень.
  • Корень нечетной степени берётся из любого числа, а корень четной только из положительных чисел.
  • Извлеченное из корня четной степени число записывается в модульных скобках.
  • Существую специальные правила работы с корнями, они называются свойствами корней.
  • Преобразования корней на практике могут состоять из нескольких действий.

Термины

Натуральные числа – это числа, используемые при счете предметов (например: 1, 2, 3, 4, …)

Проверь себя

Задание 1.
Чему равно данное выражение (sqrt[15]{3^{12}}) ?

  1. (sqrt[3]{3^{4}})
  2. (3^{frac{4}{5}})
  3. (3^{frac{15}{12}})
  4. (sqrt[15]{1^{4}})

Задание 2.
Чему равно данное выражение (sqrt[4]{625})?

  1. 5
  2. (sqrt{15})
  3. (sqrt{5})
  4. |5|

Задание 3.
Чему равно данное выражение (sqrt[5]{sqrt[2]{1}}) ?

  1. 1
  2. (sqrt[7]{1})
  3. 10
  4. 7

Задание 4.
Чему равно данное выражение (sqrt[5]{2^{3} * 7^{5}} * sqrt[5]{4}) ?

  1. 9
  2. 12
  3. 14
  4. 1

Задание 5.
Чему равно данное выражение (sqrt{13^{2} — 5^{2}}) ?

  1. 144
  2. 4
  3. 12
  4. 8

Ответы: 1. — 2; 2. — 4; 3. — 1; 4. — 3; 5. — 3

Свойства арифметического квадратного корня

1 октября 2020

  • Домашняя работа

0. Кратная вводная

Перед любыми манипуляциями с корнями полезно вспомнить свойства степеней с натуральным показателем. Я группирую эти свойства в три блока.

1. Умножаем и делим степени с одинаковым основанием — меняется только показатель:

[begin{align} & {{a}^{x}}cdot {{a}^{y}}={{a}^{x+y}} \ & frac{{{a}^{x}}}{{{a}^{y}}}={{a}^{x-y}} \ & {{left( {{a}^{x}} right)}^{y}}={{a}^{xcdot y}} \ end{align}]

2. Умножаем и делим степени с одинаковым показателем — меняется основание:

[begin{align} & {{left( acdot b right)}^{x}}={{a}^{x}}cdot {{b}^{x}} \ & {{left( frac{a}{b} right)}^{x}}=frac{{{a}^{x}}}{{{b}^{x}}} \ end{align}]

3. Чётные степени «сжигают» минусы, нечётные — нет:

[begin{align} & {{left( -a right)}^{2n}}={{a}^{2n}} \ & {{left( -a right)}^{2n+1}}=-left( {{a}^{2n+1}} right) \ end{align}]

Мы будем использовать эти свойства на всю катушку в третьей части урока. А пока начнём с более простых вещей.

1. Корни из точных степеней

При работе с корнями многие ученики допускают одну и ту же ошибку. Они пытаются подменить чёткие правила алгебры интуитивными размышлениями. И на первый взгляд всё выглядит хорошо. Взгляните на примеры:

Во всех трёх случаях мы видим, что под корнем стоят точные квадраты. Их можно переписать так:

Может показаться, что для упрощения выражения достаточно убрать степень и знак корня. На практике это не так:

Из третьей строки видно, что просто убрать степень и корень с отрицательного основания нельзя, ведь корень не может быть отрицательным! Вторая строка объясняет нам, что именно происходит: квадрат делает число под корнем положительным, а дальше мы извлекаем этот самый корень и вновь получаем положительное число. В итоге строки 1 и 2 ведут к извлечению корня из одного и того же числа — 64.

Вывод?

1.1. Корень из точного квадрата

А вывод такой: корень из квадрата не меняет положительные числа, а отрицательные меняет на противоположные. Это в точности совпадает с определением модуля:

Для удобства дальнейших размышлений предлагаю взять на вооружение вот такое определение модуля:

Это определение чрезвычайно полезно для решения сложных задач с параметрами. Об этом как-нибудь в следующий раз. А пока давайте потренируемся:

Опыт моих учеников: поначалу довольно непривычно выписывать эти множители (1, 0 и −1), но затем человек привыкает и пишет всё на автомате. А затем и вовсе перестаёт писать — всё происходит в его голове, но навык добавления множителей остаётся (и очень пригодится, когда мы считаем коэффициенты многочленов).

Потренируйтесь самостоятельно:

Задание. Найдите значение выражения:

[Показать ответы]

Отдельное внимания заслуживают двойные корни, вложенные друг в друга:

Для них замена корня модулем тоже работает, но возникает вопрос: как корректно раскрыть модуль? Придётся сравнивать корни:

Откуда такое смелое утверждение во второй строке? Существует два способа доказать неравенство в красных скобках:

  • 1.Использовать свойства корней;
  • 2.Составить цепочку неравенств.

Я приведу оба:

Сравнение корней — отдельная серьёзная тема. Ей посвящён целый урок. Поэтому давайте просто решим второе задание:

Задание. Вычислите значение выражения:

[показать ответ]

1.2. Корень из чётной степени

Идём дальше. Вновь запишем нашу волшебную формулу:

Капитан очевидность как бы намекает: эта формула верна не только для квадратов, но и для всех чётных степеней:

Другими словами, корень из любой чётной степени понижает эту степень ровно в два раза, но взамен навешивает на неё модуль! Рассмотрим примеры:

Обратите внимание на последнюю строку: изначально под корнем стоит довольно громоздкое число. Вычислять его напролом — возводить в квадрат, а затем извлекать корень — безумие. Но формула понижения степени редуцирует задачу до устной — отличная экономия времени на экзамене.:)

Попробуйте сами:

Задание 2. Найдите значение выражения:

[Показать ответы]

Вывод: если видите корень из степени, то смело понижайте степень вдвое, убирайте корень, но взамен ставьте модуль. Всегда. Обязательно. Ок? Переходим ко второй части урока.

2. Корни из произведения и частного

Перед тем как давать какие-либо новый формулы, напомню важный факт. Корень из суммы не равен сумме корней:

Иначе мы бы получили вот такие бредовые выкладки:

Вроде бы, капитаноочевидно, но многие даже в старших классах допускают такие ошибки.

А теперь разберём ещё два свойства корней.

2.1. Умножение и деление корней

Корни можно умножать и делить. Правила просты:

Примеры:

Попробуйте сами:

Задание 3. Найдите значение выражения:

[показать ответы]

Как видите, с помощью формул мы разбиваем сложный корень на несколько простых.

Мы знаем, то все формулы работают как слева-направо, так и справа-налево, поэтому корни можно «склеивать». При этом новый корень может легко вычисляться, хотя исходные части — не вычисляются вообще. Например:

Попробуйте повторить этот трюк:

Задание 4. Найдите значение выражения:

[показать ответы]

2.2. Проблемы с областью определения

Но есть одна тонкость. Взгляните, например, на формулу произведения корней:

Напомню: знак радикала обозначает арифметический квадратный корень, который извлекается только из неотрицательных чисел и сам является числом неотрицательным.

С левой стороны от знака равенства стоит один корень, а справа — целых два. Поэтому области определения левой и правой части этого равенства различны:

В чём конкретно состоит различие?

В первой строке мы видим произведение, поэтому неравенство (1) верно всякий раз, когда знаки множителей совпадают. В частности, оба множителя могут быть отрицательными, но их произведение всё равно будет положительным.

Вторая строка — система из двух неравенств, и здесь отрицательные числа нас уже не устроят. Вывод:

Красным я выделил ситуацию, которая допустима для корня из произведения, но становится недопустимой для произведения корней.

Поскольку любое равенство определено лишь тогда, когда определена и левая, и правая его части, дополним исходные правила специальными требованиями:

И вот в таком виде их уже можно использовать — везде и всегда!

Может показаться, что эти ограничения несущественны. Или искусственны. Чуть выше мы никак их не учитывали и всё прекрасно посчитали. Поэтому вопрос: когда ограничения области определения становятся существенным?

Ответ: когда под корнями стоят не конкретные числа, а переменные. К примеру, пусть даны числа:

Очевидно, что произведение двух отрицательных чисел будет положительным. И хотя корень из произведения будет определён, извлекать корни из отдельных множителей нельзя:

Значит, нужно сделать так, чтобы множители под корнем стали положительными. И тут нам на помощь приходит старое доброе число −1:

Добавление минусов к каждому из двух множителей нисколько не повлияло на произведение, но привело к возникновению двух новых множителей, каждый из которых уже точно положителен:

Помните об этом преобразовании, когда сталкиваетесь с произведением отрицательных выражений под знаком корня. Источником такой отрицательности могут быть условия задачи, либо следствия из области определения (такое часто встречается в логарифмических уравнениях и неравенствах, которые изучаются в 10—11 классах).

Ну а мы немного потренируемся и пойдём к третьей части урока — работе с переменными.

Задание 5. Найдите значение выражения:

[показать ответы]

Переходим к самому весёлому.:)

3. Работа с переменными

Если не считать определения, то мы знаем о корнях две вещи. Во-первых, корни понижают степени, но добавляют модули:

Во-вторых, корни можно умножать и делить. Но не всегда:

До сих пор мы тренировались лишь на конкретных числах. И многие могут удивляться: зачем все эти рассуждения про модули и ограничения?

Сейчас мы заменим числа буквами — и задача резко усложнится. Или не усложнится — если вы внимательно изучите то, что написано дальше.:)

3.1. Раскрытие модуля через свойства степеней

Начнём с простого. Мы уже знаем, как избавляться от точной степени:

Попробуем применить эту формулу к двум различным выражениям:

В первой строке мы без труда раскрыли модуль, поскольку знаем, что число под модулем отрицательно. Затем посчитали — получили ответ.

Но как раскрыть модуль во второй строке? Ведь правила раскрытия будут меняться в зависимости от того, какое значение принимает переменная. И если никаких дополнительных ограничений на переменную нет, то модуль так и останется нераскрытым. Взгляните:

Замените выражение тождественно равным, не содержащим знака корня:

Из приведённых примеров видно:

  • В строках (2) и (4) мы можем раскрыть модуль, ничего не зная о переменной;
  • В строках (1) и (3) раскрыть модуль не удалось.

Почему? Чётные степени в строках (2) и (4) при любом значении переменной будут положительным числом или нулём. Поэтому модуль однозначно раскрывается со знаком «плюс».

Нечётная степень в строках (1) и (3) таким свойством не обладает: она может оказаться как положительным числом, так и отрицательным. Поэтому модуль раскрыть нельзя.

Попробуйте сами:

Задание. Замените выражение тождественно равным, не содержащим знака корня:

[показать ответ]

Чётные степени всегда неотрицательны, нечётные степени могут принимать любой знак:

Тем не менее, модуль нечётной степени тоже можно раскрыть. Если в задаче есть дополнительные условия.

3.2. Учёт дополнительных ограничений

Зачастую в самом условии задачи содержатся ограничения на переменную, которые помогают однозначно раскрыть модуль. Пример:

Упростите выражение:

Работаем по тем правилам, которые изучали выше:

Обратите внимание: в строке (2) чётные степени под корнем дают три неотрицательных числа, поэтому корень можно разбить на три изолированных множителя — область определения при этом не поменяется; затем в строке (3) мы видим чётную степень под модулем и раскрываем его.

Ещё раз запишем результат и дополним его исходными условиями:

В первом случае выражение под модулем положительно или ноль, поэтому модуль однозначно раскрывается со знаком «плюс». Во втором — отрицательно или ноль, поэтому модуль раскрывается со знаком «минус»:

Возможно, у вас возникает вопрос: почему мы пишем множитель 1 или −1, но не рассматриваем отдельно множитель 0? В этом фишка модуля:

Таким образом, в нуле модуль можно раскрывать любым удобным способом.

Попробуйте самостоятельно:

Задание. Упростите выражение:

[показать ответ]

Это были весьма примитивные выражения, сводящиеся к раскрытию модуля. На них мы отработали важный новый навык. Теперь воспользуемся этим навыком для решения более интересных задач.

3.3. Упрощение выражений

Последний и самый интересный раздел этого урока.

Откуда берутся дополнительные ограничения на переменные? Существует ровно два источника таких ограничений:

  • 1.Условие задачи. Например, если переменная — это длина отрезка на чертеже, то можно без ущерба для здоровья полагать, что она неотрицательна (а если всё-таки отрицательна, то у вас неправильный чертёж).
  • 2.Неявные следствия из исходного выражения / уравнения / неравенства. Тут всё намного интереснее: анализ следствий из исходного условия — увлекательный процесс, доступный лишь хорошо подготовленным ученикам.

Начнём с первого пункта — ограничений, явно указанных в условии задачи. Примеры:

Упростите выражение:

С первым выражением всё просто:

Со вторым уже интереснее. Заметим, что в первом числителе стоит формула сокращённого умножения, а дробь под корнем гарантированно имеет неотрицательный числитель и знаменатель:

Вспомним исходные ограничения:

И раскроем модули:

Как видите, нам удалось избавиться не только от модулей, но и от дробей.:)

Обратите внимание

Материал, представленный дальше, относится скорее к следующему уроку — «Внесение и вынесение множителей из-под знака корня». Его изучение прямо сейчас не является обязательным, но может оказаться весьма полезным для сильных учеников.

Наконец, разберёмся с неявными ограничениями. Ещё раз запишем самую первую формулу:

Пусть известно, что подмодульное выражение неотрицательно. Тогда модуль можно убрать:

С отрицательными величинами тоже можно провернуть такой трюк:

Но любое равенство работает как слева-направо, так и справа-налево. Следовательно, если нам известен знак переменной, мы можем внести её под знак корня:

Это замечание позволит упрощать выражения, которые неподготовленному ученику покажутся неприступными.

Остаётся лишь один вопрос: где взять знак переменной? Ответ: ограничения на переменную часто скрыты в области определения. Например:

Упростите выражения:

Решение:

В первой строке мы видим корень, поэтому выпишем область определения. Это даст нам ограничения на переменную и поможет внести её под знак корня:

То же самое со вторым выражением:

В итоге мы получили выражение, тождественно равное нулю. Однако помните: это равенство сохраняется только для отрицательных значений переменной! Для положительных значений исходное выражение вообще не определено.

Операция, которую мы только что провернули, как раз и называется внесением переменной под знак радикала.

В заключение хотел бы рассмотреть типичную ситуацию для сложных алгебраических задач, когда под корнем стоят, на первый взгляд, противоположные числа.

Упростите выражение:

Заметим, что самый первый корень накладывает жёсткие ограничения на переменную:

Под остальными корнями стоят неотрицательные выражения, поэтому дальше всё просто:

Наличие неявного ограничения позволило нам раскрыть модуль даже у нечётной степени. Обратите внимание на этот переход:

Как мы помним из краткой вводной, минусы можно выносить (и вносить) из основания нечётной степени. Это можно сделать как после раскрытия модуля, так и в самом начале — прямо под корнем:

Красным я отметил одинаковые выражения, стоящие под корнем и в основании степени. Именно такая форма записи (а не игра с минусами) является предпочтительной, например, в логарифмических уравнениях и неравенствах.

Но это тема совсем другого урока. А на сегодня хватит.:)

Смотрите также:

  1. Умножение корней n-й степени
  2. Корень степени N
  3. Следствия из теоремы Виета
  4. Задача B3 — работа с графиками
  5. C2: расстояние между двумя прямыми
  6. Задача B2 на проценты: вычисление полной стоимости покупки

Что такое корень n-й степени из действительного числа

Чтобы научиться работать с корнями степени (n), необходимо знать, что такое арифметический квадратный корень и его свойства.

Корнем n-й степени ((n=2, 3, 4, 5, 6… )) некоторого числа (a) называют такое неотрицательное число (b), которое при возведении в степень (n in N) дает (a). Корень n-ой степени обозначается при помощи знака радикала (sqrt[n]{a}):

$$ sqrt[n]{a}=b; $$
$$ b^{n}=underbrace{b*b*b*…*b}_{n ; раз}=a. $$

Число (n in N) при этом называют показателем корня, а число (a) покоренным выражением.

Если (n=2), то перед вами корень 2-й степени или обычный арифметический квадратный корень, который все проходили в 8-м классе.

Если (n=3), то это корень 3-й степени, (sqrt[3]{a}). Его обычно называют кубическим корнем. Чтобы его вычислить, нужно найти такое число, которое умноженное на само себя три раза, даст подкоренное выражение.

Если (n=4), то корень 4-й степени, (sqrt[4]{a})и т.д.

Операция извлечения корня n-й степени является обратной к операции возведения в n-ю степень. Для того, чтобы вычислить корень n-й степени от (a), нужно сообразить какое число в степени (n) будет давать (a).

Пример 1
$$ sqrt[3]{27}=3 $$

Кубический корень из числа 27 равняется 3. Действительно, если число 3 возвести в 3-ю степень, то мы получим 27.

Пример 2
$$ sqrt[4]{16}=2 $$

Корень 4-й степени из 16-и равен 2. Двойка в 4-й степени равна 16.

Пример 3
$$ sqrt[n]{0}=0 $$

Если извлечь корень n-й степени из 0, всегда будет 0.

Пример 4
$$ sqrt[n]{1}=1 $$

Если извлечь корень n-й степени из 1, всегда будет 1.

Пример 5
$$ sqrt[3]{19}= ? $$

Мы не можем в уме подобрать такое число, которое при возведении в 3-ю степень даст 19. Если посчитать на калькуляторе, то получим (2,668…) – иррациональное число с бесконечным количеством знаков после запятой.

Обычно, в математике, когда у вас получается иррациональное число, корень не считают и оставляют так как есть (sqrt[3]{19}).

Что же делать, если под рукой нет калькулятора, а нужно оценить, чему равен такой корень. В этом случае нужно подобрать справа и слева ближайшие числа, корень из которых посчитать можно:

$$ sqrt[3]{8} le sqrt[3]{19} le sqrt[3]{27} $$
$$ 2 le sqrt[3]{19} le 3 $$

Получается, что наш корень лежит между числами 2 и 3.

Пример 6

Оценить значение (sqrt[4]{15}= ?)
$$ sqrt[4]{1} le sqrt[4]{15} le sqrt[4]{16}; $$
$$ 1 le sqrt[4]{15} le 2; $$

Корень четной и нечетной степеней

Надо четко различать правила работы c четными и нечетными степенями. Дело в том, что корень четной степени можно взять только из неотрицательного числа. Из отрицательных чисел корень четной степени не существует.

Корень нечетной степени можно посчитать из любых действительных чисел. Иногда в школьной программе встречаются задания, в которых требуется определить имеет ли смысл выражение:

Пример 7
$$ sqrt[3]{-27}=-3 $$

Данное выражение имеет смысл, так как корень нечетной степени можно посчитать из любого числа, даже отрицательного. Напоминаю, что извлечь корень 3-й степени, значит найти такое число, которое при возведении в 3-ю степень даст покоренное выражение. Если ((-3)) умножить на само себя три раза, то мы получим покоренное выражение (-27=(-3)*(-3)*(-3)).

Пример 8
$$ sqrt[4]{-27} $$

Так как корень четной степени, а под корнем стоит отрицательное число, то выражение не имеет смысла. Невозможно найти число, которое при умножении на само себя четыре раза, даст отрицательное значение.

Из-под знака нечетного показателя корня можно выносить минус. Это упрощает процесс подсчета.

$$sqrt[5]{-32}=-sqrt[5]{32}=-2;$$

Свойства корня n-й степени

Пусть есть два числа a и b, для них будут выполняться следующие свойства:

$$ (sqrt[n]{a})^n=a $$
$$ sqrt[n]{a^n}=a $$
$$ sqrt[n]{a*b}=sqrt[n]{a}*sqrt[n]{b} $$
$$ sqrt[n]{frac{a}{b}}=frac{sqrt[n]{a}}{sqrt[n]{b}}, b neq 0 $$
$$ (sqrt[n]{a})^k=sqrt[n]{a^k} $$
$$sqrt[n] {sqrt[k]{a}}=sqrt[n*k]{a} $$
$$ sqrt[n*p]{a^{k*p}}=sqrt[n]{a^k} $$

При использовании вышеперечисленных свойств важно помнить: корень четной степени не существует из отрицательных чисел, и сам корень четной степени всегда положителен. Надо быть внимательным и следить, чтобы в ходе преобразований эти ограничения не нарушались.

Рассмотрим примеры на свойства корня степени (n).

Пример 9
$$(sqrt[5]{7})^5=7;$$
При возведении корня с показателем (n) в степень (n) остается просто подкоренное выражение, так как возведение в степень и извлечение корня это взаимно обратные операции.

Обратите внимание, что неважно, где стоит степень — над корнем или под корнем, результат будет одинаковым.
$$sqrt[5]{7^5}=7$$

Из рассмотренного выше примера следует свойство ((sqrt[n]{a})^k=sqrt[n]{a^k}). Не имеет значения, извлекаете ли вы сначала корень, а потом возводите в степень, или наоборот, сначала возводите в степень подкоренное выражение, и только потом извлекаете корень.

Пример 10
$$sqrt[3]{8^2}=(sqrt[3]{8})^2=2^{2}=4;$$
$$sqrt[3]{8^2}=sqrt[3]{64}=4;$$
Получается одно и тоже.

Более того, показатель корня и степень подкоренного выражения можно домножить на одно и тоже число (p), результат от этого не изменится. Может пригодиться в различных преобразованиях и при сравнении корней между собой.

$$ sqrt[n]{a^k}=sqrt[n*p]{a^{k*p}};$$

Пример 11
$$ sqrt[3]{10^2}=sqrt[3*2]{10^{2*2}}=sqrt[6]{10^{4}}=sqrt[6]{1000};$$

Эту же формулу можно использовать наоборот:
$$ sqrt[n*p]{a^{k*p}}=sqrt[n]{a^k} $$
То есть можно сокращать показатель корня и степень подкоренного выражения, что существенно упрощает вычисления в некоторых случаях.

Пример 12
$$ sqrt[6]{16}=sqrt[6]{2^4}=sqrt[3]{2^2}=sqrt[3]{4};$$

Рассмотрим применение формул корня от произведения и частного, без которых невозможно решить ни один приличный пример.
Корень степени (n) от произведения равен произведению корней степени (n) от этих множителей.
$$ sqrt[n]{a*b}=sqrt[n]{a}*sqrt[n]{b} $$
И аналогично корень степени (n) от частного равен частному корней n-й степени.
$$ sqrt[n]{frac{a}{b}}=frac{sqrt[n]{a}}{sqrt[n]{b}}, b neq 0 $$

Пример 13
$$sqrt[3]{125*8}=sqrt[3]{125}*sqrt[3]{8}=5*2=10;$$
$$sqrt[3]{-frac{27}{8}}=frac{-sqrt[3]{27}}{sqrt[3]{8}}=frac{-3}{2};$$

Формулы справедливы не только для двух множителей:

Пример 14
$$sqrt[3]{125*8*27}=sqrt[3]{125}*sqrt[3]{8}*sqrt{27}=5*2*3=30;$$

Пример 15
$$sqrt[4]{frac{16*81}{625}}=frac{sqrt[4]{16*81}}{sqrt[4]{625}}=frac{sqrt[4]{16}*sqrt[4]{81}}{sqrt[4]{625}}=frac{2*3}{5}=frac{6}{5};$$

Обратите внимание! Формулы произведения и частного корней справедливы только для корней с одинаковыми показателями. Нельзя перемножить корни с разными показателями.

$$sqrt[3]{6}*sqrt[4]{7}=?$$

Ничего здесь сделать мы не можем!

И следите за отрицательными числами при использовании корней четной степени. Произведение двух отрицательных чисел может существовать под одним корнем, так как они при умножении дают знак плюс. Но разбивать такое произведение на два корня четной степени ни в коем случае нельзя: выражение теряет всякий смысл.

$$sqrt[4]{-15*(-7)} neq sqrt[4]{-15}*sqrt[4]{-7};$$
$$sqrt[4]{-15*(-7)} = sqrt[4]{15*7}=sqrt[4]{15}*sqrt[4]{7};$$

Внесение и вынесения множителя из под знака корня степени n

Формулы произведения и частного используются при вынесении множителей из под корня. Рассмотрим на примерах:

Пример 16
$$sqrt[5]{96}=sqrt[5]{32*3}=sqrt[5]{2^5*3}=sqrt[5]{2^5}*sqrt[5]{3}=2*sqrt[5]{3}=2sqrt[5]{3}.$$
$$sqrt[3]{8640}=sqrt[3]{216*40}=sqrt[3]{216*8*5}=sqrt[3]{216}*sqrt[3]{8}*sqrt[3]{5}=6*2*sqrt[3]{5}=12sqrt[3]{5}.$$

Подобным образом можно делать обратное действие — вносить множители под знак корня.

Пример 17
$$2*sqrt[4]{7}=sqrt[4]{2^4}*sqrt[4]{7}=sqrt[4]{16}*sqrt[4]{7}=sqrt[4]{16*7}=sqrt[4]{112}.$$

Внимание! При внесении и вынесении множителей под знак ЧЕТНОГО корня частая ошибка связанна со отрицательными числами: если перед четным корнем стоит отрицательное число, то при внесении его под корень, знак минус оставляем перед корнем. Нельзя заносить минус под корень.

Пример 18
$$-3*sqrt[4]{7}=-sqrt[4]{3^4}*sqrt[4]{7}=-sqrt[4]{81}*sqrt[4]{7}=-sqrt[4]{81*7}=-sqrt[4]{567}.$$

Аналогичные рассуждения при вынесении из под четного корня. Если под корнем есть отрицательный множитель, то его можно вынести, оставив знак минуса под корнем.

Пример 19
$$sqrt[6]{-64*(-3)}=sqrt[6]{-2^6*(-3)}=sqrt[6]{2^6}*sqrt[6]{-(-3)}=2*sqrt[6]{3}=2sqrt[6]{3}.$$

Как сравнивать корни степени n?

Что больше (sqrt{7}) или (sqrt[3]{12})? Чтобы ответить на этот вопрос, нужно помнить, что корень это возрастающая функция: чем больше подкоренное значение, тем больше сам корень. И необходимо привести корни к одинаковому показателю, здесь нам поможет формула (sqrt[n]{a^k}=sqrt[n*p]{a^{k*p}}.) Приведем с ее помощью оба корня к показателю (6).
$$sqrt{7}=sqrt[2]{7^1}=sqrt[2*3]{7^{1*3}}=sqrt[6]{7^3}=sqrt[6]{343};$$
И второй корень тоже приведем к показателю (6):
$$sqrt[3]{12}=sqrt[3*2]{12^{1*2}}=sqrt[6]{12^2}=sqrt[6]{144};$$
Очевидно:
$$sqrt[6]{343} > sqrt[6]{144};$$
$$sqrt{7} > sqrt[3]{12}.$$

Пример 20
Сравните значения (3sqrt[3]{2}) и (2sqrt{3}):

Так как перед корнем есть множители, их нужно внести под знак корня.
$$3sqrt[3]{2}=sqrt[3]{3^3}*sqrt[3]{2}=sqrt[3]{27}*sqrt[3]{2}=sqrt[3]{27*2}=sqrt[3]{54};$$
$$2sqrt{3}=sqrt[2]{2^2}*sqrt[2]{3}=sqrt[2]{4}*sqrt[2]{3}=sqrt[2]{12};$$
У корней разные показатели, легче всего привести к одинаковому показателю (6), логика такая же, как при поиске общего знаменателя.
$$3sqrt[3]{2}=sqrt[3]{54}=sqrt[3*2]{54^{1*2}}=sqrt[6]{54^2}=sqrt[6]{2916};$$
$$2sqrt{3}=sqrt[2]{12}=sqrt[2*3]{12^{1*3}}=sqrt[6]{12^3}=sqrt[6]{1728};$$
$$sqrt[6]{2916}>sqrt[6]{1728};$$
$$3sqrt[3]{2}>2sqrt{3}.$$

Извлечение корня из корня

Что делать если корень вложен в корень? Подобных примеров много и выглядят они страшнее, чем есть на самом деле. Если корень с показателем (n) находится под корнем с показателем (m), то получается корень с показателем (m*n):

$$sqrt[m]{sqrt[n]{a}}=sqrt[m*n]{a};$$

Пример 21
$$sqrt[3]{sqrt[2]{64}}=sqrt[3*2]{64}=sqrt[6]{64}=2;$$

Пример 22
$$sqrt[3]{27sqrt[4]{7}}=sqrt[3]{27}*sqrt[3]{sqrt[4]{7}}=3*sqrt[3*4]{7}=3*sqrt[12]{7};$$

Пример 23
$$sqrt[3]{sqrt[4]{sqrt[5]{2}}}=sqrt[3*4*5]{2}=sqrt[60]{2}.$$

Понравилась статья? Поделить с друзьями:

Читайте также:

  • Как изменить степень инвалидности
  • Как изменить стену вконтакте
  • Как изменить стенки диаграммы
  • Как изменить статью при увольнении
  • Как изменить статью 9 конституции рф

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии