Как изменить степень сжатия двигателя

Блог пользователя xz106 на DRIVE2. У каждого автолюбителя свои задачи. Кто-то хочет больше мощности от двигателя и тогда задумывается над увеличением степени сжатия. Другие, желают дефорсировать мотор и уменьшить степень сжатия, чтобы заправлять дешевый низкооктановый бензин. В данной статье поговорим про уменьшение и увеличение сте…

У каждого автолюбителя свои задачи. Кто-то хочет больше мощности от двигателя и тогда задумывается над увеличением степени сжатия. Другие, желают дефорсировать мотор и уменьшить степень сжатия, чтобы заправлять дешевый низкооктановый бензин.

В данной статье поговорим про уменьшение и увеличение степени сжатия, зачем это делают и какой результат.

Увеличение степени сжатия двигателя

Увеличение степени сжатия является одной из основных методик поднятия мощности двигателя. Тем самым можно получить больше отдачи с того же объема двигателя. Одним словом мощность повысится, а расход останется на прежнем уровне.

Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня?

Дело в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования детонации. Если мы значительно повысим степень сжатия, то мощность повысится, но придется заправляться более высокооктановым топливом. С другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене будет несущественна.

Как увеличить степень сжатия? Два лучших способа:

1. Установка более тонкой прокладки двигателя. При таком варианте, клапана могут столкнуться с поршнями и нужно все тщательно рассчитывать. Как вариант, это установка новых поршней двигателя с более глубокими выемки под клапана. Также изменятся фазы газораспределения двигателя и нужно будет их заново настраивать.

2. Растачивание цилиндров двигатель. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение объема возросшего цилиндра к прежнему объему камеры сгорания покажет большую величину степени сжатия.

Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9, чем с 13 до 14.

Уменьшение степени сжатия двигателя

Для чего производиться уменьшение степени сжатия двигателя? Если при увеличении — мы добивались повышения мощности двигателя, то тут ситуация противоположная — уменьшение степени сжатия производиться с целью перевести автомобиль на более дешевый бензин.

Так, в старые времена поступали владельцы «Жигулей» и «Москвичей», когда переводили свои машины с дорогого 92-ого бензина на более дешевый и доступный 76-ой. Для этих целей используется аналогичный способ, только придется увеличить высоту прокладки под головку двигателя. Берем две обычные прокладки и между ними вставляем алюминиевую нужной толщины. Прокладки, если нужно, вырезались самостоятельно в гараже с помощью подручных средств.

После вышеописанной процедуры уменьшиться степень сжатия за счет увеличения камеры сгорания двигателя и можно заливать дешевый бензин. Не рекомендуем делать эту операцию на современном авто, оборудованным большим количеством электроники, во избежании неприятностей.

источник amastercar.ru

Уменьшение и увеличение степени сжатия

Тюнинг авто – излюбленная тема многих автомобилистов. Если условно разделить все виды модернизации машин, то их будет две категории: техническая и визуальная. Во втором случае меняется только внешний вид транспортного средства. Примером тому служит стикербомбинг или модернизация в стиле стенс-авто.

Среди технического тюнинга тоже много вариантов. Если в первом случае автомобиль может только выглядеть спортивным, то модернизация силового агрегата никак не сказывается на внешнем виде машины. Но когда неприметное авто выставляют на гонку, зрители ожидают фурора, потому что понимают: хозяин авто подготовил нечто интересное.

Уменьшение и увеличение степени сжатия

Однако не всегда модернизация двигателя в автомобиле нацелена на то, чтобы повысить его мощность и КПД. Некоторые автовладельцы задаются целью дефорсировать двигатель. Существует несколько способов увеличения и уменьшения производительности агрегата. Рассмотрим один из них подробней. Это увеличение/уменьшение степени сжатия.

Увеличение степени сжатия

Известно, что степень сжатия, помимо других факторов, напрямую влияет на мощность мотора. Если форсирование двигателя при помощи расточки цилиндров приводит к повышению расхода топлива, то данная процедура не влияет на эту характеристику. Причина тому – объем двигателя остается прежним (подробней о том, что это такое, читайте здесь), но при этом топлива расходуется немного меньше.

Некоторые автомобилисты задумываются о проведении этой процедуры, чтобы увеличить компрессию без изменения количества потребляемого топлива. Если расход увеличился, это в первую очередь свидетельствует о том, что в двигателе или системе подачи топлива происходят какие-то сбои. Повышение степени сжатия в этом случае может не только ничего не поменять, а наоборот – спровоцировать некоторые поломки.

Уменьшение и увеличение степени сжатия

Если упала компрессия, то эта неполадка может свидетельствовать о прогорании клапанов, поломке уплотнительных колец и др. Подробней о том, как замеры компрессии позволяют определить некоторые неисправности мотора, рассказывается в отдельной статье. По этой причине, прежде чем начинать форсирование мотора, нужно устранить возникшие неисправности.

Вот что дает увеличенное сжатие воздушно-топливной смеси в исправном двигателе:

  1. Повысить экономичность мотора (отдача двс повышается, но расход не меняется);
  2. Мощность силового агрегата увеличивается за счет более сильных толчков, которые провоцирует сгорание ВТС;
  3. Повышение компрессии.

Помимо плюсов у данной процедуры есть и свои побочные эффекты. Так, после форсирования нужно будет использовать топливо с повышенным октановым числом (подробно об этом значении читайте здесь). Если заливать в бак тот же бензин, что использовался ранее, существует риск образования детонации. Это когда горючая смесь не воспламеняется в момент подачи искры, а взрывается.

Бесконтрольное и резкое сгорание ВТС будет влиять на состояние поршней, клапанов и всего кривошипно-шатунного механизма. Из-за этого рабочий ресурс силового агрегата резко сокращается. Такой эффект критичен для любого двигателя, независимо от того, это двухтактный или четырехтактный агрегат.

Уменьшение и увеличение степени сжатия

Подобной «болячкой» страдает не только бензиновый двигатель, прошедший форсировку при помощи рассматриваемого метода, но также и дизельный агрегат. Чтобы повышение степени сжатия не сказывалось на работе мотора, помимо его переделки нужно будет впоследствии заливать в бак бензинового автомобиля топливо, скажем, не 92-й, а уже 95-й или даже 98-й марки.

Прежде чем приступать к модернизации агрегата, следует взвесить, действительно ли она будет экономически оправдана. Что касается машин, оснащенных газовыми установками (об особенностях установки ГБО читайте отдельно), то в них детонация практически никогда не происходит. Причиной тому – газ имеет высокое ОЧ. Этот показатель у такого топлива 108, благодаря чему в моторах, работающих на газу, можно без страха проводить повышения порога сжатия.

2 способа увеличить степень сжатия

Ключевой принцип данного способа форсирования мотора заключается в изменении объема камеры сгорания. Это пространство над поршнем, в котором происходит смешивание горючего и порции сжатого воздуха (системы непосредственного впрыска) или подается уже готовая смесь.

Уменьшение и увеличение степени сжатия

Еще на заводе производитель рассчитывает определенный показатель степени сжатия для конкретного агрегата. Чтобы менять этот параметр, нужно рассчитать, до какой величины можно уменьшать объем надпоршневого пространства.

Рассмотрим два самые распространенные способа, благодаря которым камера над поршнем в верхней мертвой точке становится меньше.

Установка более тонкой прокладки двигателя

Первый способ – использование более тонкой прокладки ГБЦ. Прежде чем покупать этот элемент, нужно посчитать, насколько уменьшится надпоршневое пространство, а также учесть особенности строения поршней.

Некоторые разновидности поршней при уменьшении камеры сгорания могут сталкиваться с открытыми клапанами. От строения днища будет зависеть, можно ли использовать подобный способ форсирования мотора или нет.

Уменьшение и увеличение степени сжатия

Если все-таки принято решение уменьшить объем пространства над поршнем при помощи тоньшей прокладки, то стоит присмотреться к поршням с вогнутым днищем. Помимо установки новых деталей с нестандартными размерами придется также настраивать фазы газораспределения (что это такое, рассказывается здесь).

Когда производится замена прокладки по причине ее прогорания, головка обязательно шлифуется. В зависимости от того, сколько раз уже проводилась подобная процедура, объем надпоршневого пространства будет постепенно уменьшаться.

Прежде чем приступать к увеличению степени сжатия, важно убедиться, выполнялась ли шлифовка прежним владельцем авто или нет. От этого также будет зависеть возможность проведения процедуры.

Растачивание цилиндров

Второй способ изменить показатель сжатия – расточка цилиндров. При этом саму головку не трогаем. В результате немного увеличивается объем двигателя (вместе с этим и повысится расход топлива), но сам объем надпоршневого пространства не меняется. Благодаря этому больший объем ВТС будет сжиматься до размеров неизменившейся камеры сгорания.

Уменьшение и увеличение степени сжатия

При выполнении этой процедуры следует учесть несколько нюансов:

  1. Если форсирование ДВС проводится с целью повышения мощности, но не за счет увеличения расхода топлива, этот метод не подходит. Конечно, «прожорливость» машины увеличивается незначительно, но она все же присутствует.
  2. Прежде чем растачивать цилиндры, нужно измерить, какие нужны будут поршни. Главное, чтобы можно было подобрать подходящие детали после модернизации.
  3. Использование этого метода обязательно приведет к дополнительным растратам – нужно покупать нестандартные поршни, кольца, платить деньги профессиональному токарю, который качественно выполнит работу. И это помимо того, что потребуется перейти на другую марку бензина.
  4. Больший эффект от повышения степени сжатия будет наблюдаться в случае с теми моторами, у которых с завода была настроена небольшая СС. Если машина оснащена уже форсированным агрегатом (с завода), то значительной прибавки от подобной процедуры не будет.

Уменьшение степени сжатия

Эта процедура проводится, если требуется дефорсирование агрегата. Например, уменьшали СС автомобилисты, которые хотели сэкономить на топливе. Меньший показатель сжатия воздушно-топливной смеси позволяет использовать бензин с меньшим октановым числом.

Раньше разница между 92-м и 76-м была существенной, что делало процедуру экономически выгодной. На сегодняшний день 76-й бензин – достаточно редкое явление, что усложняет задачу для автомобилиста, когда ему нужно преодолеть большое расстояние (очень мало заправок продают эту марку горючего).

Такая модернизация имела эффект только в случае со старыми моделями авто. Современные машины оснащаются более качественными топливными системами, которые требовательны к бензину. По этой причине кажущаяся экономия может даже навредить транспортному средству, чем принести пользу.

Уменьшение и увеличение степени сжатия

Уменьшение сжатия производится по следующей схеме. Снимается головка блока цилиндров и шлифуется. Вместо стандартной прокладки устанавливаются два обычные аналога, между которыми помещается алюминиевая с подходящей толщиной.

Так как при использовании такой процедуры снижается компрессия, то современный автомобиль ощутимо потеряет динамику. Чтобы сохранить привычные ощущения от управления транспортом, водителю придется сильнее раскручивать двигатель, что обязательно скажется на его расходе в сторону увеличения. Бензин, худший по качеству, дает не такой чистый выхлоп, из-за чего катализатор быстрее выработает свой ресурс, и будет нуждаться в частой замене.

Стоит ли переходить с 95-го на 92-й такой ценой, конечно, это личное дело каждого. Но здравый смысл подсказывает: дорогостоящие переделки двигателя ради того, чтобы якобы сэкономить на менее дорогом топливе – нерациональное использование средств. Это так, потому что обязательно появятся дополнительные растраты в виде ремонта топливной системы (прочистка форсунок) или катализатора.

Единственная причина, по которой современный автомобиль может нуждаться в подобной модернизации – это установка турбокомпрессора. Когда подключается подобный механизм, в моторе может возникать детонация, поэтому некоторые увеличивают объем надпоршневого пространства.

Дополнительно предлагаем посмотреть видеообзор об увеличении/уменьшении степени сжатия:

SERS: не надо понижать степень сжатия!

Вопросы и ответы:

Можно ли увеличить степень сжатия? Да. Эта процедура позволяет увеличить удельную мощность мотора, а также повышает эффективность мотора, как тепловой машины (увеличивается КПД при том же расходе).

Чем больше степень сжатия, тем лучше? С увеличением степени сжатия увеличивается и мощность мотора, но при этом в бензиновых моторах возрастает риск детонации (нужно заливать бензин с большим ОЧ).

Как увеличивается степень сжатия? Для этого можно установить более тонкую прокладку ГБЦ или отшлифовать нижнюю кромку головки. Второй способ – расточить цилиндры под больший размер поршней.

Как рассчитать и изменить степень сжатия двигателя

Содержание

  • 1 Что такое степень сжатия двигателя
  • 2 На что она влияет
  • 3 Отличие степени сжатия от компрессии
  • 4 Расчет коэффициента сжатия
  • 5 Турбированные моторы
  • 6 Пример подсчета
  • 7 Как увеличить степень сжатия двигателя
  • 8 Дефорсирование ДВС: для чего нужно и как осуществить
  • 9 Таблица: зависимость степени сжатия от октанового
    числа
  • 10 Таблица: популярные двигатели и показатель сжатия

Одним из главнейших технических
показателей автомобильного мотора является коэффициент сжатия. Он показывает соотношение разницы между объёмом
свободного участка над цилиндровым поршнем и под ним в крайних его положениях.

Что такое степень сжатия двигателя

Условно величину сжатия представляют и как
соотношение давлений в устройстве при подаче горючего и взрыве смеси. Конкретно
эта степень обусловлена конструкцией автомобильного двигателя, и может быть
высокой или низкой.

Двигатель

Перед непосредственным процессом
воспламенения горючей смеси, поршни сжимают топливо до определённого объёма.
Инженеры способны варьировать этот показатель, рассчитывая его ещё на стадии
проектирования. Узнав количественное соотношение данной величины к объёму
камеры сгорания, можно делать различные выводы.

На бензиновых силовых установках
показатель сжатия достигает максимум 12 единиц. Чем выше здесь степень сжатия
двигателя или ССД, тем больше удельная мощность
мотора. Однако при сильном увеличении данного показателя снижается ресурс
агрегата, особенно при заправке низкосортным бензином. На дизельных моторах,
ввиду их технических отличий, она может варьироваться от 14 до 18 единиц.

В бензиновые двигатели с увеличенной до 12 единиц степенью сжатия нельзя лить ничего, кроме АИ-98 Премиум. Очевидно, что это существенно удорожает расходы на топливо.

На что она влияет

ССД непосредственно определяет объём
работы, произведённой ДВС. Чем изначально выше рассчитана
степень сжатия, тем продуктивнее будет воспламенение.
Пропорционально увеличится и отдача мотора. Вспомним, как разработчики в 90-е годы
старались повышать этот показатель, полностью не модернизируя двигатель.  Таким
способом они конкурировали между собой, делая агрегаты мощнее, и не затрачивая
при этом много средств. Но что самое интересное — моторы в этом случае не
потребляли больше горючего, а даже становились экономнее.

Однако всему есть предел, и как было
сказано выше, чересчур высокий коэффициент приводит к снижению ресурса ДВС.
Почему это происходит? Дело в том, что при значительном сжатии топливная смесь
начинает самопроизвольно детонировать, взрываться. Особенно это затрагивает
агрегаты на бензине, поэтому здесь данный коэффициент имеет строгое
ограничение.

Помните, что применение низкооктанового топлива становится причиной детонации на агрегатах с повышенной ССД. И наоборот, высокооктановое горючее может не позволять двигателю полностью раскрываться, если будет использовано в агрегатах с низким коэффициентом сжатия. По этой причине оба параметра должны соответствовать. Подробнее в таблице ниже.

Отличие степени сжатия от компрессии

Степень сжатия двигателя не является компрессией. Они полностью различаются, хотя многие их путают. Коэффициент, о котором идёт речь в статье, не раскрывает значение оптимального давления ТВС перед возгоранием. Измеряется ССД лишь относительно, в соотношении к единице объёма камеры.

Под компрессией принято понимать предельное значение сжатия, образуемого в камере сгорания, на конечном этапе давления горючей смеси. Данная величина априори не может быть относительной, поэтому её измеряют в абсолютных значениях — атм, кг/см2, бар.

Измерение сжатия двигателя

Степень сжатия и компрессия неразрывно связаны, но не идентичны. Показатель компрессии зависит не только от сжатия. На него оказывает влияние температура ДВС, наличие зазоров в приводных клапанах, состав топлива и многое другое.

Расчет коэффициента сжатия

Ввиду того, что желательно увеличивать
степень сжатия до определённого значения, необходимо уметь рассчитывать этот
показатель. К тому же это даст возможность избежать детонационных моментов,
разрушающих силовой агрегат изнутри в процессе форсирования.

Таким образом, необходимость в измерении
этого показателя требуется в таких случаях, как:

  • форсировка мотора;
  • подгонка под топливо с другим АИ или для метанового топлива с
    октановым числом 120;
  • послеремонтная корректировка.

Турбированные моторы

На турбомоторах расчёт коэффициента сжатия
отличается. Это объясняется наличием наддува воздуха. Поэтому в этом случае
величину, полученную в ходе вычислений, умножают на показатель
турбокомпрессора.

Кроме того, при вычислении степени сжатия
турбированных моторов учитывается не только давление наддува, но и показатель
эффективного сжатия, климатические изменения и многое другое. В данном случае
процесс значительно усложняется по сравнению с измерениями на атмосферном
двигателе.

Пример подсчета

Вот как выглядит общепринятая расчётная
формула для автомобильного ДВС: «ССД = (РО+ОКС)/ОКС». Степень сжатия здесь
отмечена как «ССД», рабочий объём цилиндра — «РО», а объём камеры сгорания —
«ОКС».

Как высчитывается сжатие

Для расчёта «РО» нужно в первую очередь
разложить единый объём двигателя или литраж на количество используемых
цилиндров. К примеру, литраж мотора «четвёрки» — 1997 см3. Для определения
ёмкости одного цилиндра, надо 1997 разделить на 4. Получится около 499 см3.

Для вычисления параметра «ОКС» специалисты
пользуются проградуированной в см3 трубкой или пипеткой. Под камерой
подразумевается место, где непосредственно происходит возгорание горючего.
Камеру заправляют, а затем измеряют объём с помощью жидкостной бюретки. Если
нет градуированной трубочки, можно жидкость выкачать с помощью шприца, а затем
измерить в мерной посуде или на весах. В этом случае желательно для расчёта
использовать не бензин или солярку, а чистую воду, так как её удельный вес
более соотносим к объёму в см3.

Внимание! Для точного измерения «ОКС» дополнительно приплюсовывается объём толщины прокладки ГБЦ, учитывается форма днища поршней и другие особенности. Поэтому расчёт этой величины рекомендуется доверить специалистам.

Как увеличить степень сжатия двигателя

Если необходимо увеличить данный
показатель, используют несколько способов:

  • расточка блока и установка поршней с большим диаметром;
  • уменьшение объёма камеры сгорания путём удаления слоя металла в месте соединения ГБЦ.

Нельзя забывать, что в некоторых случаях потребуется инсталляция модернизированных поршней. Это делается, чтобы исключить такое нежелательное последствие, как встреча поршней с клапанами. В частности, на элементах увеличивают выемки клапанов. Также в обязательном порядке корректируются заново фазы газораспределения.

Интересно, что лучше всех раскрыли
потенциал степени сжатия ДВС японские производители. В то время как европейские
автокомпании пошли путём усовершенствования гибридных моторов, японцам удалось
увеличить ССД до 14 единиц и на бензиновых силовых агрегатах, применив
изменяемую величину. Но как это возможно без детонационных моментов? Всё
оказалось просто. Оказывается, нужно охладить камеру, где происходит
возгорание. Тогда можно будет без опасения сжимать смесь. И вовсе не
обязательно для этого использовать прохладный воздух: достаточно модернизировать
систему выпуска.

Сравнение двигателей с разным коэффициентом сжатия

Приём, давно известный ещё по гоночным
движкам. Выпускные каналы меняются согласно схеме 4-2-1. Порции выхлопных газов
здесь не мешаются, поочерёдно вылетают в трубу. Благодаря такой чёткой системе
выхлопа, улучшается продувка цилиндров, где остаётся меньше горячих газов.

Секрет японской формулы, согласно которой можно без опаски сжимать горючую смесь, имеет строго математическое соотношение. Так, если процент выхлопа снизить в 2 раза, ССД можно поднимать на 3 единицы, но не больше. Если же при этом ещё и охлаждать воздух, поступающий в цилиндры, можно приплюсовать ещё одну единицу.

Однако для реализации данного метода нужно
будет еще модернизировать газообмен, раскошелившись на фазовращатели обоих
распредвалов. Вдобавок потребуется доработать некоторые моменты. К примеру,
изменить длину поршневого хода посредством компьютерного вмешательства.

Применяется система изменяемого коэффициента на многих японских движках, например, для Inflniti. Способность автоматически менять этот показатель сжатия в зависимости от нагрузки позволяет значительно повышать КПД мотора, особенно турбированного. Каждая порция смеси сгорает при оптимальном на данный момент работы сжатии. Так, если нагрузки на мотор незначительные и смесь обеднённая, включается максимальное сжатие. И наоборот, в нагруженном режиме задействуется минимальная степень, так как бензина впрыскивается много и возможна детонация.

Таким образом, передовая система изменения ССД позволяет вдвое уменьшать литраж мотора, сохраняя при этом мощность и динамические характеристики.

Курс на увеличение
степени сжатия двигателя наблюдался и в середине 20 века в
США. Основная масса американских двигателей, выпущенных в 70-е годы, находилась
в пределах 11-13 единиц. Но работали они только на очень качественном,
высокооктановом топливе, получаемом путём этилирования. После того как
этилирование запретили, в серийных образцах ДВС наблюдалось снижение показателя
сжатия.

Важно знать, что прирост мощности будет наиболее заметен на двигателях, штатно работающих на низкой степени сжатия. Например, моторы с показателем 8 единиц, доведённые до 10, выдадут больше мощности, чем агрегаты со стоковым параметром 11 единиц, форсированные до 12.

Дефорсирование ДВС: для чего нужно и как осуществить

Иногда бывает необходимо уменьшить показатель сжатия. В этом случае устанавливается дополнительная металлическая прокладка ГБЦ. Можно использовать две прокладки вместо одной, тем самым утолщая промежуток — объём камеры растёт за счёт высоты головки блока. Более сложный способ подразумевает укорочение поршня — удаление верхнего слоя на токарном станке.

Дефорсирование двигателя, как правило, процедура
вынужденная. В том числе это делается для снижения налоговых выплат или в целях
увеличения ресурса агрегата. Как известно, моторы с низкой степенью сжатия дольше
работают, меньше подвержены износу. Однако любой такой процесс усложняется
законом, чтобы недобросовестные владельцы искусственно не занижали технические
данные.

Дефорсифицированный двигатель

Что касается снижения показателя сжатия на
турбированных моторах, то здесь потребуется модернизация системы электрики с
датчиками, всей поршневой группы и форсунок, если это дизельный агрегат.

В отдельных случаях дефорсированию предпочитают свап, когда менее мощный контрактный мотор устанавливают вместо штатного.

Таблица: зависимость степени сжатия от октанового
числа

Степень сжатия Октановое число
5,5-7 АИ 66-72
7-7,5 АИ 72-76
7,5-8,5 АИ 76-85
10 АИ 92
10,5-12,5 АИ 95
12-14,5 АИ 98

Таблица: популярные двигатели и показатель сжатия

Двигатели Степень сжатия
BMW M54B30 10,2
 
Mercedes-Benz M112 E32 3.2 л
 10
 
Ford-Mazda 2,0 л Duratec HE/MZR LF
 10,8
 
Infiniti VQ37VHR (Nissan) 3.7 л
 11.0
 
Mitsubishi 4М41
 17.0
 
Audi 3.6 FSI
 12.0
ЗМЗ 406 2.3 л. 8-9,3

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Изменение степени сжатия

После того как мы определились со степенью сжатия перед нами стоит вопрос как правильно добиться нужной нам степени сжатия. Для начала нужно рассчитать на сколько необходимо увеличить камеру сгорания. Это не сложно. Формула для вычисления степени сжатия имеет следующий вид:
Ɛ=(VP+VB)/VB
Где Ɛ— степень сжатия
VP — рабочий объём
VB — объём камеры сгорания

Преобразовав уравнение можно получить формулу для вычисления камеры сгорания при известной степени сжатия.
VB=VP1/Ɛ
Где VP1 — объём одного цилиндра

По этой формуле вычисляем объём имеющейся камеры сгорания и вычитаем из него объём желаемой (вычисленный по той же формуле), полученная разница и есть интересующее на значение на которое и нужно увеличить камеру сгорания.

Существуют разнообразнве способы увеличения камеры сгорания но далеко не все из них верные. Камера сгорания современного автомобиля спроектирована таким образом, что при достижении поршнем ВМТ топливо воздушная смесь вытесняется к центру камеры сгорания. Это пожалуй самая действенная разработка препятствующая детонации.

Самостоятельная доработка камеры в ГБЦ под силу далеко не многим. Это обусловлено тем, что вопервых вы можите нарушить спроектированную форму камеры, так же при доработке могут «вскрыться» стенки т.к. не известна их толщина. Так же не рекомендуется «расжимать мотор» толстыми прокладками т.к. Это нарушит процессы вытеснения в камере сгорания. Наиболее простым и правельным способом считается установка новых поршней в которых задан необходимый объём камеры. Для турбо-двигателя сферическая форма считается наиболее эффективной. Лучше использовать для этих целей специально разработанные и изготовленные поршни. Возможен вариант самостоятельной доработки стоковых поршней. Но сдесь нужно учесть что толщина дна поршня не должна быть меньше 6% от диаметра.

Степень сжатия в турбо двигателе

Одной из самых важных и пожалуй самой сложной задачей при проектировании турбодвигателя является принятие решения о степени сжатия. Этот параметр влияет на большое количество факторов в общей характеристике автомобиля. Мощность, экономичность, приёмистость, детонационная стойкость (параметр от которого сильно зависит эксплуатационная надёжность двигателя в целом), все эти факторы в значительной степени определяются степенью сжатия. Также это влияет на расход топлива и состав отработавших газов. В теории, степень сжатия для турбо-мотора рассчитать не составляет большого труда.

Сначала разберём понятие «Сжатие» или «Геометрическая степень сжатия». Оно представляет собой отношение полного объёма цилиндра (рабочий объём плюс пространство сжатия, остающееся над поршнем при положении в верхней мёртвой точки (ВМТ)), к чистому пространству сжатия. Формула имеет следующий вид: Ɛ=(VP+VB)/VB

Где Ɛ— степень сжатия
VP — рабочий объём
VB — объём камеры сгорания

Не нужно забывать о существенных расхождениях между геометрической и фактической степенью сжатия даже на атмосферных моторах. В турбодвигателях к этим же процессам добавляется и предварительно сжатая компрессором смесь. На сколько фактически от этого увеличиться степень сжатия, видно из следующей формулы:
Ɛeff=Egeom*k√(PL/PO)
Где Ɛeff — эффективное сжатие
Ɛgeom — геометрическая степень сжатия
Ɛ=(VP+VB)/VB, PL — Давление наддува (абсолютное значение),
PO — давление окружающей среды,
k — адиабатическая экспонента (числовое значение 1,4)

Эта упрощённая формула будет справедлива при условии, что температура в конце процесса сжатия для двигателей с наддувом и без наддува достигает одинакового значения. Иными словами, чем выше давление наддува, тем меньше возможное геометрическое сжатие. Итак, согласно нашей формуле для атмосферного двигателя со степенью сжатия 10:1 при давлении наддува 0.3 бара степень сжатия следует уменьшить до 8.3:1, при давлении 0.8 бара до 6.6:1. Но, слава богу, это теория. Все современные двигатели с турбонаддувом работают не с такими через мерно низкими значениями. Правильная степень сжатия для работы определяется сложными термодинамическими вычислениями и всесторонними испытаниями. Всё это из области высоких технологий и сложных расчётов, но много тюнинговых моторов собрано на основе некоторого опыта, как собственного, так и взятого за пример, от известных автомобильных производителей. Эти правила будут справедливы в большинстве случаев.

Есть несколько важных факторов влияющих на расчёт степени сжатия и их нужно принимать во внимание при проектировании. Я перечислю наиболее важные. Конечно, это желаемый наддув, октановое число топлива, форма камеры сгорания, эффективность промежуточного охладителя, и, безусловно те мероприятия которые вы в состоянии провести по снижению температурной напряжённости в камере сгорания. Углом опережения зажигания (УОЗ) так же можно частично компенсировать возросшие нагрузки. Но это темы для отдельной разговора, и мы безусловно затронем их позже в следующих статьях.

From Wikipedia, the free encyclopedia

Variable compression ratio (VCR) is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. This is done to increase fuel efficiency while under varying loads. Variable compression engines allow the volume above the piston at top dead centre to be changed. Higher loads require lower ratios to increase power, while lower loads need higher ratios to increase efficiency, i.e. to lower fuel consumption. For automotive use this needs to be done as the engine is running in response to the load and driving demands. The 2019 Infiniti QX50 is the first commercially available vehicle that uses a variable compression ratio engine.

Advantages[edit]

Gasoline engines have a limit on the maximum pressure during the compression stroke, after which the fuel/air mixture detonates rather than burns. To achieve higher power outputs at the same speed, more fuel must be burned and therefore more air is needed. To achieve this, turbochargers or superchargers are used to increase the inlet pressure. This would result in detonation of the fuel/air mixture unless the compression ratio was decreased, i.e. the volume above the piston made greater. This can be done to a greater or lesser extent with massive increases in power being possible. The down side of this is that under light loading, the engine can lack power and torque. The solution is to be able to vary the inlet pressure and adjust the compression ratio to suit. This gives the best of both worlds, a small efficient engine capable of great power on demand. In addition, VCR allows free use of different fuels besides petrol e.g. LPG or ethanol .

Cylinder displacement is altered by using a hydraulic system connected to the crankshaft, and adjusted according to the load and acceleration required.

Production[edit]

Variable compression engines have existed for decades but only in laboratories for the purposes of studying combustion processes. These designs usually have a second adjustable piston set in the head opposing the working piston.

In 2018 Infiniti began production of their variable compression turbo engine, which uses a mechanical linkage to achieve the variability. It was installed in their QX50 SUV. The engine can produce any compression ratio from 8:1 to 14:1. The highest torque is achieved at 8:1, giving high acceleration, while the best gas mileage (fuel efficiency) is achieved at 14:1. The electronic engine controller responds to the pressure on the gas pedal, in real-time, altering the compression ratio seamlessly. Although this engine has a displacement of 2.0 L, and is an inline-four engine, it does not use balance shafts to eliminate the secondary vibrations. It is inherently balanced by the mechanical linkage.

Two-stroke engines[edit]

Due to the comparative simplicity of cylinder head design (lacking intake valves) it is somewhat easier to implement in two-stroke engines. From the late 90s on up models which expand on this idea have been available, such as from Yamaha,[1] which dynamically vary the size of the combustion chamber. As of late (in the 2000s) this technology has seen some renewed interest, due it being able to burn a wide range of fuels (e.g. including alcohols) such as the Lotus Omnivore.[2][3]

A much earlier commercialized two-stroke engine, but very small (18 cc) and not powerful enough to be very successful, was the Lohmann engine produced in the early 1950’s as a retrofit engine for bicycles [4]. This engine had a one-piece cylinder head and sleeve, whose distance from the crankshaft was adjusted by a jackscrew operated by cables from a twist grip on the handlebar. Compression adjustment was essential to the operation of this engine because it used compression ignition of a fuel mixture which was introduced prior to the compression stroke and which therefore ignited whenever the compression brought it to a sufficient temperature. This meant that the compression needed would vary with air temperature, engine temperature, and fuel type: with too much compression the engine would suffer premature ignition and with too little it would fail to ignite at all. Thus the operator had to adjust the compression continually as operating conditions varied. The Lohmann engine was produced for only about five years because the control of compression (simultaneously with fuel flow) required considerable practice, and because even at optimal adjustment it provided no more power than a moderately fit rider could provide without assistance.

Engine designs[edit]

The first VCR engine built and tested was by Harry Ricardo in the 1920s. This work led to him devising the octane rating system that is still in use today. Many companies have been undertaking their own research into VCR Engines, including Saab, Nissan, Volvo, PSA/Peugeot-Citroën and Renault.[4] The 2019 Infiniti QX50 is available with a production version of the turbocharged variable compression engine.[5][6]

Peugeot MCE-5[edit]

Principle of the MCE-5 («Multi Cycle Engine — 5 parameters»), the variable compression ratio engine made by Peugeot.

The Peugeot design works by varying the effective length of the con-rods connecting the piston to the crank. When the con-rod is shorter, the compression ratio is lower and vice versa. On the left hand-side of the diagram is the conventional piston of an internal combustion engine. On the right is an hydraulic cylinder with double-acting piston. This acts through a rod-crank system with a gear wheel, whose movement adjusts the effective con-rod length and thus the compression ratio in the left cylinder.[7]

Saab SVC[edit]

SAAB Automobile rekindled interest in variable compression when they introduced their SVC engine to the world at the Geneva motor show in 2000. SAAB had been involved in working with the ‘Office of Advanced Automotive Technologies’, to produce a modern petrol VCR engine that showed an efficiency comparable with that of a Diesel. The SAAB SVC was an advanced and workable addition to the world of VCR engines, but it never reached production due to the company’s bankruptcy in 2016.

The design, an implementation of the Larsen VCR engine,[8] consisted of a monobloc head, which contained all of the valve gear, and the crankshaft/crankcase assembly. These parts were connected by a pivot which allowed 4 degrees of movement controlled by a hydraulic actuator. This mechanism allows the distance between the crankshaft centre line and the cylinder crown to be varied. Unlike the Peugeot design, the effective connecting rod length is fixed.
A supercharger was chosen in preference to a turbocharger to achieve the necessary response time and high boost pressure.

To alter Vc, the SVC ‘lowers’ the cylinder head closer to the crankshaft. It does this by replacing the typical one-part engine block with a two-part unit, with the crankshaft in the lower block and the cylinders in the upper portion. The two blocks are hinged together at one side (imagine a book, lying flat on a table, with the front cover held an inch or so above the title page). By pivoting the upper block around the hinge point, the Vc (imagine the air between the front cover of the book and the title page) can be modified. In practice, the SVC adjusts the upper block through a small range of motion, using a hydraulic actuator.

See also[edit]

  • Continuously variable transmission
  • DiesOtto
  • Miller cycle
  • Variable valve timing
  • Infiniti VC-T — First Variable Compression Engine — Road & Track

References[edit]

  1. ^ «Yamaha Environment-Friendly «SD (Super Diesel) Engine»«. Archived from the original on 2009-05-20. Retrieved 2009-04-30.
  2. ^ Green Car Congress: Lotus, QUB and Jaguar to Develop Variable Compression Ratio, 2-Stroke OMNIVORE Research Engine [1]
  3. ^ Lotus Engineering Omnivore Variable Compression Ratio Engine to Debut in Geneva [2]
  4. ^ Variable compression ratio engines
  5. ^ «A look inside the Infiniti VC-Turbo engine». 21 November 2017.
  6. ^ «VC-Turbo Engine Technology | Infiniti USA».
  7. ^ Motortrend.com, February 25, 2009 [3].
  8. ^ US patent 5025757, Gregory J. Larsen, «Reciprocating piston engine with a varying compression ratio», issued 1991-06-25
  • Waulis Patent Application
  • Saab press release
  • Automotive engineering international article
  • Infiniti Introduces the First Production Engine With Variable Compression

From Wikipedia, the free encyclopedia

Variable compression ratio (VCR) is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. This is done to increase fuel efficiency while under varying loads. Variable compression engines allow the volume above the piston at top dead centre to be changed. Higher loads require lower ratios to increase power, while lower loads need higher ratios to increase efficiency, i.e. to lower fuel consumption. For automotive use this needs to be done as the engine is running in response to the load and driving demands. The 2019 Infiniti QX50 is the first commercially available vehicle that uses a variable compression ratio engine.

Advantages[edit]

Gasoline engines have a limit on the maximum pressure during the compression stroke, after which the fuel/air mixture detonates rather than burns. To achieve higher power outputs at the same speed, more fuel must be burned and therefore more air is needed. To achieve this, turbochargers or superchargers are used to increase the inlet pressure. This would result in detonation of the fuel/air mixture unless the compression ratio was decreased, i.e. the volume above the piston made greater. This can be done to a greater or lesser extent with massive increases in power being possible. The down side of this is that under light loading, the engine can lack power and torque. The solution is to be able to vary the inlet pressure and adjust the compression ratio to suit. This gives the best of both worlds, a small efficient engine capable of great power on demand. In addition, VCR allows free use of different fuels besides petrol e.g. LPG or ethanol .

Cylinder displacement is altered by using a hydraulic system connected to the crankshaft, and adjusted according to the load and acceleration required.

Production[edit]

Variable compression engines have existed for decades but only in laboratories for the purposes of studying combustion processes. These designs usually have a second adjustable piston set in the head opposing the working piston.

In 2018 Infiniti began production of their variable compression turbo engine, which uses a mechanical linkage to achieve the variability. It was installed in their QX50 SUV. The engine can produce any compression ratio from 8:1 to 14:1. The highest torque is achieved at 8:1, giving high acceleration, while the best gas mileage (fuel efficiency) is achieved at 14:1. The electronic engine controller responds to the pressure on the gas pedal, in real-time, altering the compression ratio seamlessly. Although this engine has a displacement of 2.0 L, and is an inline-four engine, it does not use balance shafts to eliminate the secondary vibrations. It is inherently balanced by the mechanical linkage.

Two-stroke engines[edit]

Due to the comparative simplicity of cylinder head design (lacking intake valves) it is somewhat easier to implement in two-stroke engines. From the late 90s on up models which expand on this idea have been available, such as from Yamaha,[1] which dynamically vary the size of the combustion chamber. As of late (in the 2000s) this technology has seen some renewed interest, due it being able to burn a wide range of fuels (e.g. including alcohols) such as the Lotus Omnivore.[2][3]

A much earlier commercialized two-stroke engine, but very small (18 cc) and not powerful enough to be very successful, was the Lohmann engine produced in the early 1950’s as a retrofit engine for bicycles [4]. This engine had a one-piece cylinder head and sleeve, whose distance from the crankshaft was adjusted by a jackscrew operated by cables from a twist grip on the handlebar. Compression adjustment was essential to the operation of this engine because it used compression ignition of a fuel mixture which was introduced prior to the compression stroke and which therefore ignited whenever the compression brought it to a sufficient temperature. This meant that the compression needed would vary with air temperature, engine temperature, and fuel type: with too much compression the engine would suffer premature ignition and with too little it would fail to ignite at all. Thus the operator had to adjust the compression continually as operating conditions varied. The Lohmann engine was produced for only about five years because the control of compression (simultaneously with fuel flow) required considerable practice, and because even at optimal adjustment it provided no more power than a moderately fit rider could provide without assistance.

Engine designs[edit]

The first VCR engine built and tested was by Harry Ricardo in the 1920s. This work led to him devising the octane rating system that is still in use today. Many companies have been undertaking their own research into VCR Engines, including Saab, Nissan, Volvo, PSA/Peugeot-Citroën and Renault.[4] The 2019 Infiniti QX50 is available with a production version of the turbocharged variable compression engine.[5][6]

Peugeot MCE-5[edit]

Principle of the MCE-5 («Multi Cycle Engine — 5 parameters»), the variable compression ratio engine made by Peugeot.

The Peugeot design works by varying the effective length of the con-rods connecting the piston to the crank. When the con-rod is shorter, the compression ratio is lower and vice versa. On the left hand-side of the diagram is the conventional piston of an internal combustion engine. On the right is an hydraulic cylinder with double-acting piston. This acts through a rod-crank system with a gear wheel, whose movement adjusts the effective con-rod length and thus the compression ratio in the left cylinder.[7]

Saab SVC[edit]

SAAB Automobile rekindled interest in variable compression when they introduced their SVC engine to the world at the Geneva motor show in 2000. SAAB had been involved in working with the ‘Office of Advanced Automotive Technologies’, to produce a modern petrol VCR engine that showed an efficiency comparable with that of a Diesel. The SAAB SVC was an advanced and workable addition to the world of VCR engines, but it never reached production due to the company’s bankruptcy in 2016.

The design, an implementation of the Larsen VCR engine,[8] consisted of a monobloc head, which contained all of the valve gear, and the crankshaft/crankcase assembly. These parts were connected by a pivot which allowed 4 degrees of movement controlled by a hydraulic actuator. This mechanism allows the distance between the crankshaft centre line and the cylinder crown to be varied. Unlike the Peugeot design, the effective connecting rod length is fixed.
A supercharger was chosen in preference to a turbocharger to achieve the necessary response time and high boost pressure.

To alter Vc, the SVC ‘lowers’ the cylinder head closer to the crankshaft. It does this by replacing the typical one-part engine block with a two-part unit, with the crankshaft in the lower block and the cylinders in the upper portion. The two blocks are hinged together at one side (imagine a book, lying flat on a table, with the front cover held an inch or so above the title page). By pivoting the upper block around the hinge point, the Vc (imagine the air between the front cover of the book and the title page) can be modified. In practice, the SVC adjusts the upper block through a small range of motion, using a hydraulic actuator.

See also[edit]

  • Continuously variable transmission
  • DiesOtto
  • Miller cycle
  • Variable valve timing
  • Infiniti VC-T — First Variable Compression Engine — Road & Track

References[edit]

  1. ^ «Yamaha Environment-Friendly «SD (Super Diesel) Engine»«. Archived from the original on 2009-05-20. Retrieved 2009-04-30.
  2. ^ Green Car Congress: Lotus, QUB and Jaguar to Develop Variable Compression Ratio, 2-Stroke OMNIVORE Research Engine [1]
  3. ^ Lotus Engineering Omnivore Variable Compression Ratio Engine to Debut in Geneva [2]
  4. ^ Variable compression ratio engines
  5. ^ «A look inside the Infiniti VC-Turbo engine». 21 November 2017.
  6. ^ «VC-Turbo Engine Technology | Infiniti USA».
  7. ^ Motortrend.com, February 25, 2009 [3].
  8. ^ US patent 5025757, Gregory J. Larsen, «Reciprocating piston engine with a varying compression ratio», issued 1991-06-25
  • Waulis Patent Application
  • Saab press release
  • Automotive engineering international article
  • Infiniti Introduces the First Production Engine With Variable Compression

Двигатель с изменяемой переменной степенью сжатия

Как может показаться на первый взгляд, современный двигатель внутреннего сгорания достиг высшей ступени своей эволюции. На данный момент серийно выпускаются  различные бензиновые и дизельные моторы, появились гибридные установки, дополнительно реализована возможность перевести двигатель на газ.

В списке наиболее значимых наработок за последние годы можно выделить: внедрение систем высокоточного впрыска под управлением сложной электроники, получение большой мощности  без увеличения рабочего объема благодаря системам турбонаддува, увеличение количества клапанов на цилиндр, использование систем изменения фаз газораспределения и т.д.

Результатом стало заметное улучшение характеристик ДВС, а также снижение уровня токсичности отработавших газов. Однако это еще не все. Конструкторы и инженеры по всему миру продолжают не только активно работать над усовершенствованием уже имеющихся решений, но и пытаются создать абсолютно новую конструкцию.

Достаточно вспомнить попытки построить двигатель без коленвала и шатунов, избавиться от распредвала в устройстве ГРМ или динамично изменять степень сжатия двигателя. Сразу отметим, хотя одни проекты еще находятся в стадии разработки, другие уже стали реальностью. Например, двигатели с изменяемой степенью сжатия. Давайте рассмотрим особенности, преимущества и недостатки таких ДВС.

 Изменение степени сжатия: зачем это нужно

Степень сжатия двигателя и КПД

Многие опытные водители знакомы с такими понятиями, как степень сжатия двигателя и октановое число для бензиновых моторов, а также цетановое число для дизельных. Для менее осведомленных читателей напомним, что степень сжатия представляет собой отношение объема над поршнем, который опущен в НМТ (нижняя мертвая точка) к тому объему, когда поршень поднялся в ВМТ (верхняя мертвая точка).

Бензиновые агрегаты имеют, в среднем, показатель 8-14, дизели 18 -23. Степень сжатия является фиксированной величиной и конструктивно закладывается во время разработки того или иного двигателя. Также от степени сжатия будут зависеть и требования к использованию октанового числа бензина в том или ином моторе. Параллельно учитывается и то, атмосферный двигатель или с наддувом.

Если говорить о самой степени сжатия, фактически это показатель, который определяет, насколько сильно будет сжиматься топливно-воздушная смесь в цилиндрах двигателя. Если просто, хорошо сжатая смесь лучше воспламеняется и полноценнее сгорает. Получается, увеличение степени сжатия позволяет добиться роста КПД двигателя, получить улучшенную отдачу от мотора, снизить расход топлива и т.д.

Однако есть и нюансы. Прежде всего, это детонация двигателя. Опять же, если не вдаваться в подробности, в норме заряд топлива и воздуха в цилиндрах должен именно гореть, а не взрываться. Более того, воспламенение смеси должно начинаться и оканчиваться в строго заданные моменты.

При этом топливо имеет так называемую «детонационную стойкость», то есть способность противостоять детонации. Если же сильно увеличить степень сжатия, тогда горючее может начать детонировать в двигателе при определенных режимах работы ДВС.

Результат — неконтролируемый взрывной процесс сгорания в цилиндрах, быстрое разрушение деталей мотора ударной волной, значительный рост температуры в камере сгорания и т.д.  Как видно, сделать постоянной высокую степень сжатия нельзя именно по этим причинам. При этом единственным выходом в данной ситуации является возможность гибко изменять данный показатель применительно к разным режимам работы двигателя.

Такой «рабочий» мотор недавно предложили инженеры премиального бренда Infiniti (элитное подразделение Nissan). Также в аналогичные разработки были и остаются вовлечены другие автопроизводители (SAAB, Peugeot ,Volkswagen и т.д). Итак, давайте рассмотрим двигатель с изменяемой степенью сжатия.

Переменная степень сжатия двигателя: как это работает

Двигатель с изменяемой степенью сжатия

Прежде всего,  доступная возможность изменять степень сжатия позволяет в значительной мере увеличить производительность турбомоторов с одновременным уменьшением расхода топлива. В двух словах, в зависимости от режима работы и нагрузок на ДВС топливный заряд сжимается и сгорает в самых оптимальных условиях.

Когда нагрузки на силовой агрегат минимальны, в цилиндры подается экономичная «бедная» смесь (много воздуха и мало топлива). Для такой смеси хорошо подходит высокая степень сжатия. Если же нагрузки на мотор растут (подается «богатая» смесь, в которой больше бензина), тогда закономерно возрастает риск возникновения детонации. Соответственно, чтобы этого не произошло, степень сжатия динамично уменьшается.

В двигателях, где степень сжатия постоянна, своеобразной защитой от детонации является изменение УОЗ (угол опережения зажигания). Данный угол сдвигается «назад». Естественно, такой сдвиг угла приводит к тому, что хотя детонации нет, но при этом теряется и мощность. Что касается мотора с изменяемой степенью сжатия, сдвигать УОЗ нет необходимости, то есть не происходит мощностных потерь.

Что касается самой реализации схемы, фактически задача сводится к тому, что происходит физическое уменьшение рабочего объема двигателя, однако сохраняются все характеристики (мощность, момент и т.д.)

Сразу отметим, над таким решением трудились разные компании. В результате появились разные способы управления степенью сжатия, например, изменяемый объем камеры сгорания, шатуны с возможностью подъема поршней и т.д.

  • Одной из самых ранних разработок стало внедрение дополнительного поршня в камеру сгорания. Указанный поршень имел возможность перемещаться, одновременно изменяя объем. Минусом всей конструкции стала необходимость устанавливать дополнительные детали в БЦ. Также сразу проявились изменения формы камеры сгорания, горючее сгорало неравномерно и неполноценно.

По указанным причинам данный проект так и не был завершен. Такая же участь постигла и разработку, которая имела поршни с возможностью изменения их высоты. Указанные поршни разрезного типа оказались тяжелыми, еще добавились трудности  касательно реализации управления высотой подъема крышки поршня и т.д.

  • Дальнейшие разработки уже не затрагивали поршни и камеру сгорания, максимум внимания был уделен вопросу подъема коленчатого вала. Другими словами, стояла задача реализовать управление высотой подъема коленвала.

Схема устройства такова, что опорные шейки вала расположены в специальных муфтах эксцентрикового типа. Указанные муфты приводятся в движение посредством шестерен, которые связаны с электрическим двигателем.

Проворот эксцентриков позволяет поднять или опустить коленчатый вал, что и приводит к изменению высоты подъема поршней по отношению к ГБЦ. В результате объем камеры сгорания увеличивается или уменьшается, одновременно меняется и степень сжатия.

Отметим, что было построено несколько прототипов на базе 1.8-литрового турбированного агрегата от Volkswagen, степень сжатия менялась от 8 до 16. Двигатель долго испытывали, но серийным агрегат так и не стал.

  • Еще одной попыткой найти решение стал двигатель, в котором степень сжатия менялась посредством подъема всего блока цилиндров. Разработка принадлежит бренду Saab, а сам агрегат чуть даже не попал в серию. Двигатель известен как SVC, объем 1.6 литра, агрегат с 5 цилиндрами, оснащен турбонаддувом.

Мощность составила около 220 л. с., крутящий момент чуть более 300 Нм. Примечательно то, что расход горючего в режиме средних нагрузок снизился почти на треть. Что касается самого топлива, появилась возможность заливать как АИ-76, так и 98-й.

Инженеры Saab разделили блок цилиндров, выделив две условные части. В верхней находились головки и гильзы цилиндров, тогда как в нижней части коленчатый вал. Своеобразным соединением этих частей блока с одной стороны был подвижный шарнир, а с другой  особый механизм, оснащенный электроприводом.

Так была реализована возможность немного поднять верхнюю часть под определенным углом. Такой угол подъема составил всего несколько градусов, при этом степень сжатия менялась от 8 до 14. При этом герметизировать «стык» должен был кожух из резины.

На практике сами детали для подъема верхней части блока, а также и сам защитный кожух оказались весьма слабыми элементами. Возможно, именно это помешало мотору попасть в серию и проект дальше закрыли.

  • Очередную разработку далее предложили инженеры из Франции. Турбомотор с рабочим объемом 1.5 литра получил возможность менять степень сжатия от 7 до 18 и выдавал мощность около 225 л.с. Моментная характеристика зафиксирована на отметке 420 Нм.

Конструктивно агрегат сложный, с разделенным шатуном. В той области, где шатун крепится к коленвалу, деталь оснастили особым зубчатым коромыслом. В месте соединения шатуна с поршнем также была внедрена планка-рейка зубчатого типа.

С другой стороной к коромыслу была прикреплена рейка поршня, который реализовывал управление. Система приводилась от системы смазки, рабочая жидкость проходила через сложную систему каналов, клапанов, а также имелся дополнительный электропривод.

Фосрисрование двигателя тюнингРекомендуем также прочитать статью о том, как форсировать двигатель. Из этой статьи вы узнаете о существующих доступных способах форсирования двигателя внутреннего сгорания для получения большей мощности, лучшего отклика на педаль газа, увеличения крутящего момента и т.д.

В двух словах, перемещение управляющего поршня оказывало воздействие на коромысло. В результате менялась и высота подъема основного поршня в цилиндре. Отметим, что двигатель также не стал серийным, а проект был заморожен.

  • Следующей попыткой создать двигатель с изменяемой степенью сжатия стало решение инженеров Infiniti, а именно двигатель VCT (от англ. Variable Compression Turbocharged). В этом моторе стало возможным менять степень сжатия от 8 до 14. Особенностью конструкции является уникальный траверсный механизм.

В основе лежит соединение шатуна с нижней шейкой, которое является подвижным. Также использована система рычагов, которые приводятся в действие от электродвигателя.

Управляет процессом контроллер, посылая сигналы на электродвигатель. Электромотор после получения команды от блока управления смещает тягу, а система рычагов реализует смену положения, что и позволяет менять высоту подъема поршня.

В результате агрегат Infiniti VCT с рабочим объемом 2.0 литра с мощностью около 265 л.с. позволил экономить почти 30%  горючего сравнительно с аналогичными ДВС, которые при этом имеют постоянную степень сжатия.

Если производителю удастся эффективно решить имеющиеся на данный момент проблемы (сложность конструкции, повышенные вибрации, надежность, высокая конечная стоимость производства агрегата и т.д.), тогда оптимистичные заявления представителей компании вполне могут воплотиться в реальность, а сам двигатель имеет все шансы стать серийным уже в 2018-2019 году.

Подведем итоги

С учетом приведенной выше информации становится понятно, что двигатели с переменной степенью сжатия способны обеспечить значительное снижение расхода топлива на бензиновых моторах с турбонаддувом.

Что такое турбонаддувРекомендуем также прочитать статью о том, что такое турбонаддув двигателя. Из этой статьи вы узнаете об особенностях конструкции турбины, принципах действия системы, а также о преимуществах и недостатках данного решения.

На фоне глобального топливного кризиса, а также постоянного ужесточения экологических норм эти моторы позволяют не только эффективно сжигать горючее, но и не ограничивать при этом мощность двигателя.

Другими словами, подобный ДВС вполне способен предложить все преимущества мощного бензинового высокооборотистого турбодвигателя. При этом по расходу топлива подобный агрегат может вплотную приблизиться к турбодизельным аналогам, которые сегодня популярны, в первую очередь, благодаря своей экономичности.


Повышение степени сжатия

Термический КПД двигателя ηt в значительной степени зависит от величины степени сжатия ε. Чем выше степень сжатия, тем меньше топлива используется для получения той же самой мощности, поэтому повышение степени сжатия — один из основных методов увеличения мощности двигателя. Термический КПД двигателя при увеличении степени сжатия увеличивается сначала быстро, а после значений степени сжатия 12-13 — несколько медленнее.

Увеличение степени сжатия ограничивается появлением детонации вследствие роста температуры рабочей смеси в конце хода сжатия, в результате чего двигатель перегревается, наполнение цилиндров бензовоздушной смесью ухудшается, износ основных деталей двигателя повышается в 2-3 раза. Сильная детонация может привести к прогоранию днища поршня. Практически предельное значение степени сжатия ограничивается октановым числом применяемого моторного топлива. Наиболее рациональным является форсировка двигателя до степени сжатия 9,8 — 10, что подтверждается опытом участия в спортивных соревнованиях в нашей стране и за рубежом. Указанные значения также типичны для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам многих форсированных двигателей. При увеличении продолжительности такта впуска посредством установки распределительного вала с более длительным периодом впуска прирост мощности от степени сжатия становится еще более значительным.

Прирост мощности при увеличении степени сжатия можно определить по приведенной ниже таблице, показывающей приращение мощности двигателя от исходной величины при изменении степени сжатия. Для этого находят в таблице столбец с исходной степенью сжатия и колонку с новой предполагаемой степенью сжатия. Прочитанное значение в элементе таблицы покажет увеличение мощности в процентах.

исходная степень сжатия

8

9

10

11

12

13

14

новая степень сжатия

14

8.7

6.7

5.0

3.5

2.2

1.0

0

13

7.6

5.6

3.9

2.4

1.2

0

12

6.5

4.5

2.8

1.3

0

11

5.2

3.2

1.5

0

10

3.7

1.7

0

9

2

0

8

0

Данные таблицы базируются на механических степенях сжатия, определенных путем математических расчетов из фиксированного объема, а не на динамических степенях сжатия, которые будут увеличиваться при увеличении эффективности впуска. При улучшении наполнения цилиндра динамическая степень сжатия увеличивается подобно увеличению объема цилиндра, т.к. в цилиндр будет поступать больше воздуха и топлива.

Практически увеличение степени сжатия не всегда приводит к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, ее дальнейшее увеличение может ухудшить мощность и/или надежность двигателя. Это особенно справедливо, когда достигнут коэффициент наполнения цилиндра больше 1. К тому же, когда коэффициент наполнения цилиндра больше 1, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. Однако если мы увеличиваем степень сжатия путем уменьшения объема камеры сгорания или путем увеличения выпуклости поршня, то общее количество бензовоздушной смеси, которую может принять цилиндр, уменьшится на эту величину, и, как следствие, при увеличении степени сжатия ухудшается наполнение цилиндров. Чем лучше наполнение цилиндров (полученное турбиной, насосом, полировкой каналов, изменением фаз газораспределения и т.д.), тем меньше будет требуемая степень сжатия.

Замеренное компрессометром давление в цилиндре в конце такта сжатия может быть пересчитано в степень сжатия по формуле: ε= (Pc+3.9)/1.55, где Pc — давление, замеренное компрессометром, кг/с м² . Разница значения компрессии в разных цилиндрах не должна превышать 0.5 — 1 кг/с м² .

Практически степень сжатия двигателя зависит от объема камеры сгорания, размера и формы поршня и его хода. Так, для двигателей УЗАМ 3313 и 3318, имеющих одинаковый диаметр цилиндра и ход поршня и одинаковую головку блока цилиндров, за счет изменения формы поршня степень сжатия изменяется с 7.6 в двигателе УЗАМ-3313 до 9.2 в двигателе УЗАМ-3318, что приводит к увеличению максимальной мощности с 85 до 90 л.с., а максимального крутящего момента с 135 н/м до 145 н/м.

Наиболее просто увеличить степень сжатия двигателя можно фрезеровкой головки блока цилиндров, что позволяет уменьшить объем камеры сгорания. При этом необходимо следить за тем, чтобы при открывании клапана он не ударял по днищу поршня во всем диапазоне частот вращения двигателя .к. пружины клапанов имеют определенную инерцию), и при необходимости выполнить в поршне проточки под клапаны.В двигателях с чугунным блоком цилиндров возможна также фрезеровка поверхности блока цилиндров, сопрягаемой с головкой блока, самостоятельно или вместе с фрезеровкой поверхности головки блока цилиндров.

Ниже в таблице показана зависимость степени сжатия двигателя УЗАМ-412 от глубины фрезерования головки блока цилиндров:

Глубина фрезерования, мм

0

0,5

0,8

1,0

1,2

1,4

1,6

1,8

2,0

Степень сжатия

8,8

9,25

9,64

9,83

10,09

10,48

10,81

11,62

12,85

Зависимость степени сжатия двигателя ВАЗ-2106 от глубины фрезерования головки блока цилиндров представлена в таблице:

Фрезерование головки, мм

0,2

0,5

0,8

1,0

1.2

1,5

1.8

2,0

0,2

0,8

1.3

1,8

Фрезерование блока, мм

0,2

0,5

0,9

1,2

1,5

1,8

1,8

1,8

1,8

Степень сжатия

8,8

8,9

9,0

9,1

9,2

9,3

9,4

9,5

9,6

9,8

9,8

10,0

10,0

10,5

11,0

11,5

12,0

При фрезеровании головки блока цилиндров происходит смещение установочного угла механизма газораспределения, что необходимо учитывать при его установке. Чем на большую величину произведена фрезеровка головки блока цилиндров, тем на большую величину распределительный вал будет отставать.

Приведем зависимость отставания положения распределительного вала от глубины фрезеровки головки блока цилиндров:

Глубина фрезерования, мм

0,5

0.8

1,0

1,2

1,4

1,6

2,0

3,0

4,0

5,0

Угол отставания распределительного вала, град

0,53

0,83

1,1

1,3

1,6

1,7

2,1

3,2

4,3

5,4

Дата публикации:
2007-09-04


Понравилась статья? Поделить с друзьями:

Читайте также:

  • Как изменить степень сжатия архива
  • Как изменить степень сжатия 7zip
  • Как изменить степень корня
  • Как изменить степень инвалидности
  • Как изменить стену вконтакте

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии