Как рассчитать ошибку опыта

Три основных погрешности, которые встречаются чаще всего: статистическая, систематическая и теоретическая (или модельная). Два вида изображения погрешностей у экспериментальных данных: «усы» показывают полные погрешности; засечки показывают статистические, а длина «усов» — полные погрешности.

Какие бывают погрешности

Любое число, которое выдает нам эксперимент, это результат измерения. Измерение производится прибором, и это либо непосредственные показания прибора, либо результат обработки этих показаний. И в том, и в другом случае полученный результат измерения неидеален, он содержит погрешности. И потому любой грамотный физик должен не только предъявить численный результат измерения, но и обязан указать все сопутствующие погрешности. Не будет преувеличением сказать, что численный экспериментальный результат, предъявленный без указания каких-либо погрешностей, бессмыслен.

В физике элементарных частиц к указанию погрешностей относятся исключительно ответственно. Экспериментаторы не только сообщают погрешности, но и разделяют их на разные группы. Три основных погрешности, которые встречаются чаще всего, это статистическая, систематическая и теоретическая (или модельная) погрешности. Цель такого разделения — дать четкое понимание того, что именно ограничивает точность этого конкретного измерения, а значит, за счет чего эту точность можно улучшить в будущем.

Статистическая погрешность связана с разбросом значений, которые выдает эксперимент после каждой попытки измерить величину.

(Подробнее о статистической погрешности)

Систематическая погрешность характеризует несовершенство самого измерительного инструмента или методики обработки данных, а точнее, недостаточное знание того, насколько «сбоит» инструмент или методика.

(Подробнее о систематической погрешности)

Теоретическая/модельная погрешность — это неопределенность результата измерения, которая возникла потому, что методика обработки данных была сложная и в чем-то опиралась на теоретические предположения или результаты моделирования, которые тоже несовершенны. Впрочем, иногда эту погрешность считают просто разновидностью систематических погрешностей.

(Подробнее о погрешности теории и моделирования)

Наконец, в отдельный класс, видимо, можно отнести возможные человеческие ошибки, прежде всего психологического свойства (предвзятость при анализе данных, ленность при проверке того, как результаты зависят от методики анализа). Строго говоря, они не являются погрешностью измерения, поскольку могут и должны быть устранены. Зачастую это избавление от человеческих ошибок может быть вполне формализовано. Так называемый дважды слепой эксперимент в биомедицинских науках — один тому пример. В физике частиц есть похожие приемы (см. заметку Что означает «слепой анализ» при поиске новых частиц?).

Что означает погрешность

Стандартный вид записи измеренной величины с погрешностью знаком всем. Например, результат взвешивания какого-то предмета может быть 100 ± 5 грамм. Это означает, что мы не знаем абсолютно точно массу, она может быть и 101 грамм, и 96 грамм, а может быть и все 108 грамм. Но уж точно не 60 и не 160 грамм. Мы говорим лишь, сколько нам показывают весы, и из каких-то соображений определяем тот примерный разброс, который измерение вполне могло бы дать.

Тут надо подчеркнуть две вещи. Во-первых, в бытовой ситуации значение 100 ± 5 грамм часто интерпретируется так, словно истинная масса гарантированно лежит в этом диапазоне и ни в коей мере не может быть 94 или 106 грамм. Научная запись подразумевает не это. Она означает, что истинная масса скорее всего лежит в этом интервале, но в принципе может случиться и так, что она немножко выходит за его пределы. Это становится наиболее четко, когда речь идет о статистических погрешностях; см. подробности на страничке Что такое «сигма»?.

Во-вторых, надо четко понимать, что погрешности — это не ошибки эксперимента. Наоборот, они являются показателем качества эксперимента. Погрешности характеризуют объективный уровень несовершенства прибора или неидеальности методики обработки. Их нельзя полностью устранить, но зато можно сказать, в каких рамках результату можно доверять.

Некоторые дополнительные тонкости, связанные с тем, что именно означают погрешности, описаны на странице Тонкости анализа данных.

Как записывают погрешности

Указанный выше способ записи не уточняет, что это за погрешность перед нами. В физике элементарных частиц при предъявлении результатов источники погрешностей принято уточнять. В результате запись результата может иногда принять пугающий своей сложностью вид. Таких выражений не надо бояться, просто нужно внимательно посмотреть, что там указано.

В самом простом случае экспериментально измеренное число записывается так: результат и две погрешности одна за другой:

μ = 1,33 ± 0,14 ± 0,15.

Тут вначале всегда идет статистическая, а за ней — систематическая погрешность. Если же измерение не прямое, а в чем-то опирается на теорию, которая тоже не идеально точна, то следом за ними приписывается теоретическая погрешность, например:

μ = 1,33 ± 0,14 ± 0,15 ± 0,11.

Иногда для пущей понятности явно указывают, что есть что, и тогда погрешностей может быть даже больше. Это делается вовсе не для того, чтобы запутать читателя, а с простой целью: упростить в будущем расчет уточенного результата, если какой-то один из источников погрешностей будет уменьшен. Вот пример из статьи arXiv:1205.0934 коллаборации LHCb:

Означает эта длинная строка следующее. Тут записана измеренная детектором вероятность выписанного распада Bs-мезона, которая равна [1,83 ± четыре вида погрешностей] · 10–5. В перечислении погрешностей вначале идет статистическая погрешность, потом систематическая погрешность, затем погрешность, связанная с плохим знанием некоторой величины fs/fd (неважно, что это такое), и наконец, погрешность, связанная с плохим знанием вероятности распада B0-мезона (потому что измерение Bs-распада косвенно опирается на B0-распад).

Нередки также случаи, когда погрешности в сторону увеличения и уменьшения разные. Тогда это тоже указывается явно (пример из статьи hep-ex/0403004):

И наконец, совсем экзотический случай: когда величина настолько плохо определена, что погрешность пишут не к самому числу, а к показателю степени. Например, 1012 ± 2 означает, что величина вполне может лежать где-то между 10 миллиардами и 100 триллионами. В этом случае обычно нет большого смысла разделять погрешности на разные типы.

Величина со всеми явно указанными погрешностями часто не очень удобна для работы, например при сравнении теории и эксперимента. В этом случае погрешности суммируют. Эти слова ни в коем случае нельзя воспринимать как простое сложение! Как правило, речь идет о сложении в квадратах: если все три типа погрешностей обозначить как Δxstat., Δxsys., Δxtheor., то глобальная погрешность обычно вычисляется по формуле

Стоит еще добавить, что в других разделах физики нередко используют иную запись: вместо символа «±» погрешность просто помещают в скобках. Тогда ее понимают так: это погрешность, выраженная в единицах последней значащей цифры. Например, 100(5) означает 100 ± 5, а 1,230(15) означает 1,230 ± 0,015. В этом случае принципиально важно писать правильное число нулей в результате измерения, ведь запись 1,23(15) уже будет означать вдесятеро большую погрешность: 1,23 ± 0,15.

Рис. 1. Два вида изображения погрешностей у экспериментальных данных. Слева: «усы» показывают полные погрешности; справа: засечки показывают статистические, а длина «усов» — полные погрешности

Как изображают погрешности

Когда экспериментально измеренные значения наносятся на график, погрешности тоже приходится указывать. Это обычно делают в виде «усов», как на рисунке слева. Такие «усы» с засечками относятся к глобальной погрешности. Если же хочется разделить статистические и систематические погрешности, то делают так, как показано на рисунке справа. Здесь засечки показывают только статистические погрешности, а полные усы во всю длину отвечают глобальным погрешностям. Другой вариант: выделение полных погрешностей цветом, как это показано, например, на рисунке с данными ATLAS по хиггсовскому бозону.

Наконец, когда экспериментальная точка имеет отдельные погрешности по обеим осям, то их тоже наносят, и результат выглядит в виде крестика.

Статьи
Главная страница

 

Из графика
видно, что существует вероятность, пусть и очень маленькая, что наше единичное
измерение покажет результат, сколь угодно далеко отстоящий от истинного
значения. Выходом из положения является проведение серии измерений. Если на
разброс данных действительно влияет случай, то в результате нескольких
измерений мы скорее всего получим следующее (рис 2):

Будет ли
рассчитанное среднее значение нескольких измерений совпадать с истинным? Как
правило – нет. Но по теории вероятности, чем больше сделано измерений, тем
ближе найденное среднее значение к истинному. На языке математики это можно
записать так:

Но с бесконечностью у всех дело обстоит неважно. Поэтому на практике мы имеем дело
не со всеми возможными результатами измерений, а с некоторой выборкой из этого
бесконечного множества. Сколько же реально следует делать измерений? Наверное,
до тех пор, пока полученное среднее значение не будет отличаться от истинного
меньше чем точность отдельного измерения.


Следовательно,
когда наше среднее значение (рис. 2) отличается от истинного меньше чем
погрешность измерений, дальнейшее увеличение числа опытов бессмысленно. Однако
на практике мы не знаем истинного значения! Значит, получив среднее по
результатам серии опытов, мы должны определить, какова вероятность того, что
истинное значение находится внутри заданного интервала ошибки. Или каков тот
доверительный интервал, в который с заданной надежностью попадет истинное
значение (рис 3).

Рассмотрим
некоторый условный эксперимент, где в серии измерений получены некоторые
значения величины Х (см. табл. 1).  Рассчитаем среднее значение и, чтобы  оценить
разброс данных найдем величины DХ = Х –
Хср

Таблица
1. Данные измерений и их обработка

Х

Х ср

DХ

DХ2

s2

s

1

130

143,5 »

 144

-13,5

182,3

420

20,5

2

162

18,5

342,3

3

160

16,5

272,3

s2ср

sср

4

122

-21,5

462,3

105

10,2

Ясно, что
величины DХ  как-то характеризуют
разброс данных. На практике для усредненной характеристики разброса серии измерений используется
дисперсия выборки:

и среднеквадратичное или стандартное отклонение выборки:

Последнее
показывает, что каждое измерение в данной серии (в данной выборке) отличается
от другого в среднем на ± s.

Понятно, что каждое отдельное
значение оказывает влияние на средний результат. Но это влияние тем меньше, чем
больше измерений в нашей выборке. Поэтому дисперсия и стандартное отклонение
среднего значения, будет определяться по формулам:

Можем ли мы теперь определить вероятность того, что
истинное значение попадет в указанный интервал среднего? Или наоборот,
рассчитать тот доверительный интервал в который истинное значение
попадет с заданной вероятностью (95%)? Поскольку кривая на наших графиках это
распределение вероятностей, то площадь под кривой, попадающая в указанный
интервал и будет равна этой вероятности (доля площади, в процентах). А площади
математики научились рассчитывать хорошо, знать бы только уравнение этой
кривой.


И здесь мы сталкиваемся еще с одной сложностью. Кривая, которая описывает распределение
вероятности для выборки, для ограниченного числа измерений, уже не будет кривой нормального
распределения. Ее форма будет зависеть
не только от дисперсии (разброса данных) но и от степени свободы для выборки
(от числа независимых измерений) (рис 4):

Уравнения этих кривых впервые были предложены в 1908
году английским математиком и химиком Госсетом, который опубликовал их под
псевдонимом Student (студент), откуда пошло хорошо известные термины
«коэффициент Стьюдента» и аналогичные. Коэффициенты Стьюдента получены на
основе обсчета этих кривых для разных степеней свободы (f = n-1) и уровней
надежности (Р) и сведены в специальные таблицы. Для получения доверительного интервала необходимо
умножить уже найденное стандартное отклонение среднего на соответствующий
коэффициент Стьюдента. ДИ = sср*tf, P

Проанализируем, как меняется доверительный интервал
при изменении требований к надежности результата и числа измерений в серии.
Данные в таблице 2 показывают, что чем больше требование к надежности, тем
больше будет коэффициент Стьюдента и, следовательно, доверительный интервал. В большинстве случаев, приемлемым считают значение Р=95%

Таблица
2. Коэффициент Стьюдента для различных уровней надежности.

P

0,9

0,95

0,99

0,999

t5,
P

2,02

2,57

4,03

6,87

Таблица
3. Коэффициент Стьюдента для различных степеней свободы.

f=
n-1

1

2

3

4

5

16

30

tf,
0,95

12,7

4,3

3,18

2,78

2,57

2,23

2,04

Из таблицы 3 и графика
видно, что чем больше число измерений, тем меньше коэффициент и доверительный
интервал для данного уровня надежности. Особенно значительное падение
происходит при переходе от степени свободы 1 (два измерения) к 2 (три
измерения). Отсюда следует, что имеет смысл ставить не менее трех параллельных
опытов, проводить не менее трех измерений.

Окончательно
для измеряемой величины Х получаем значение Хсред±sср*tf,P. В
нашем случае получаем: f=3; t=3,18;
ДИ = 3,18*10,2 = 32,6; X = 143,5 ±32,6

Как правило,
значение доверительного интервала округляется до одной значащей цифры, а
значение измеряемой величины – в соответствии с округлением доверительного
интервала. Поэтому для нашей серии окончательно имеем: X = 140 ±30

Найденная
нами погрешность является абсолютной погрешностью и ничего не говорит еще о
точности измерений. Она свидетельствует о точности измерений только в сравнении
с измеряемой величиной. Отсюда представление об относительной ошибке:

           

Косвенные определения.

Исследуемая величина рассчитывается в этом случае с помощью
математических формул по другим величинам, которые были измерены
непосредственно. В этом случае для расчета ошибок можно использовать
соотношения, приведенные в таблице 4.

Таблица
4. Формулы для расчета абсолютных и относительных ошибок.

Формула

Абсолютная

Относительная

x = a ± b

Dx = Da+Db

e =
(Da+Db) /(a±b )

x = a* b; x = a* k

Dx = bDa+aDb; Dx = kDa

e = Da/a+Db/b = ea + e b

x = a / b

Dx = (bDa+aDb) / b2

e = Da/a+Db/b = ea + e b

x = a*k; (x = a / k)

Dx = Da*k; (Dx = Da/k )

e = ea

x = a2

Dx = 2aDa

e = 2Da/a = 2ea

x = Öa

Dx = Da/(2Öa)

e = Da/2a = ea/2

Из таблицы видно, что относительная ошибка и точность определения не изменяются при умножении (делении) на некоторый постоянный коэффициент. Особенно сильно относительная ошибка может возрасти при вычитании
близких величин, так как при этом абсолютные ошибки суммируются, а значение Х
может уменьшиться на порядки.

Пусть например, нам необходимо определить
объем проволочки.
Если диаметр проволочки измерен с погрешностью 0,01 мм (микрометром) и равен 4 мм, то относительная погрешность составит 0,25% (приборная). Если
длину проволочки (200 мм) мы измерим линейкой с погрешностью 0,5 мм, то относительная погрешность также составит 0,25%. Объем можно рассчитать по формуле: V=(pd2/4)*L. Посмотрим, как будут меняться ошибки
по мере проведения расчетов (табл. 5):

Таблица 5. Расчет абсолютных и относительных ошибок.

Величина

Значение

Абсолютная

Относительная

d2

16

Dx = 2*4*0,01=0,08

e = 0,5%

pd2 *)

50,27

Dx = 0,08*3,14+0,0016*16
=0,28

e = 0,55%

pd2/4

12,57

Dx = 0,28/4 = 0,07

e = 0,55%

(pd2/4)*L

2513

Dx = 12,57*0,5+200*0,07=20

e = 0,8%

*) Если мы возьмем привычное p=3,14, то Dp=0,0016
то ep = 0,05%, но если используем более
точное значение, то Dp и ep можно будет пренебречь

Окончательный
результат V=2510±20 (мм3) e
=0,8%. Чтобы повысить точность косвенного определения, нужно в первую очередь
повышать точность измерения той величины, которая вносит больший вклад в ошибку
(в данном случае – точность измерения диаметра проволочки).

План проведения измерений:

[1]

1.   Знакомство
с методикой, подготовка прибора, оценка приборной погрешности d. Оценка возможных причин
систематических ошибок, их исключение.

2.   
Проведение серии измерений. Если получены совпадающие результаты, можно
считать что случайная ошибка равна 0, DХ
= d. Переходим к пункту 7.

3.   
Исключение промахов – результатов значительно отличающихся по своей
величине от остальных.

4.   
Расчет
среднего значения Хср, и стандартного отклонение среднего
значения scp

5.   
Задание значения уровня надежности P,
определение коэффициента Стьюдента t и
нахождение доверительного интервала ДИ= t*scp

6.   
Сравнение случайной и приборной погрешности, при этом возможны варианты:

—    
ДИ << d, можно
считать, что DХ = d, повысить точность измерения
можно, применив более точный прибор

—    
ДИ >> d, можно
считать, что DХ = ДИ,
повысить точность можно, уменьшая случайную ошибку, повышая число измерений в
серии, снижая требования к надежности.

—    
ДИ » d, в этом
случае расчитываем ошибку по формуле DХ
=

7.   
Записывается окончательный результат Х = Хср ± DХ.
Оценивается относительная ошибка
измерения e = DХ/Хср

Если
проводится несколько однотипных измерений (один прибор, исследователь, порядок
измеряемой величины, условия) то подобную работу можно проводить один раз. В
дальнейшем можно считать DХ
постоянной и ограничиться минимальным числом измерений (два-три измерения
должны отличаться не более, чем на DХ)

Для косвенных
измерений необходимо провести обработку данных измерения каждой величины. При
этом желательно использовать приборы, имеющие близкие относительные погрешности
и задавать одинаковую надежность для расчета доверительного интервала. На
основании полученных значений Da, Db, определяется DХ
для результирующей величины (см табл. 4). Для повышения точности надо
совершенствовать  измерение той величины, вклад ошибки которой в DХ наиболее существенен.

Изучение зависимостей.

Частым вариантом экспериментальной работы является
измерение различных величин с целью установления зависимостей. Характер этих
зависимостей может быть различен: линейный, квадратичный, экспоненциальный,
логарифмический, гиперболический. Для выявления зависимостей широко
используется построение графиков.

При построении графиков вручную важно правильно
выбрать оси, величины, масштаб, шкалы. Следует предупредить школьников, что
шкалы должны иметь равномерный характер, нежелательна как слишком детальная,
так и слишком грубая их разметка. Точки должны заполнять всю площадь графика,
их расположение в одном углу, или «прижатыми» к одной из осей, говорит о
неправильно выбранном масштабе и затрудняет определение характера зависимости.
При проведении линии по точкам надо использовать теоретические представление о
характере зависимости: является она непрерывной или прерывистой, возможно ли ее
прохождение через начало координат, отрицательные значения, максимумы и
минимумы.

Наиболее легко проводится и анализируется прямая
линия. Поэтому часто при изучении более сложных зависимостей часто используется
линеаризация зависимостей, которая достигается подходящей заменой переменных.
Например:

Зависимость . Вводя новую переменную
, получаем уравнение
a = bx, которое
будет изображаться на графике прямой линией. Наклон этой прямой позволяет
рассчитать константу диссоциации.

Разумеется и в этом случае полученные в эксперименте данные включают в себя различные ошибки, и точки редко лежат строго на прямой. Возникает
вопрос, как с наибольшей точностью провести прямую по экспериментальным точкам, каковы ошибки в определении
параметров.

Математическая статистика показывает, что наилучшим
приближением будет такая линия, для которой дисперсия (разброс) точек
относительно ее будет минимальным. А дисперсия определяется как средний квадрат
отклонений наблюдаемого положения точки от расчитанного:

Отсюда название этого метода – метод наименьших
квадратов. Задавая условие, чтобы величина s2
принимала минимальное значение, получают формулы для коэффициентов а и b в уравнении прямой у = а + bx:

и формулы для расчета соответствующих ошибок
[2].

Если
делать расчеты, используя калькулятор, то лучше оформлять их в виде таблицы:

x

x2

y

y2

xy

Sx =

Sx2
=

Sy =

Sy2
=

Sxy =

Подводя
итог, следует сказать, что обработка данных эксперимента достаточно сложный
этап работы ученого. Необходимость проведения большого числа измерений требует
большой затраты времени и материальных ресурсов. Громоздкость формул,  необходимость
использования большого числа значащих цифр затрудняют вычисления. Поэтому, возможно,
не все рекомендации этой статьи применимы в рамках школьного исследования. Но
понимать их сущность, значимость, необходимость, и в соответствии с этим
адекватно оценивать свои результаты, должен любой исследователь.

В настоящее время обработку экспериментальных данных
существенно облегчают современные компьютерные технологии, современное
программное обеспечение. Об том, как их можно использовать –  в следующей
статье.

Литература:


[1]
Кассандрова О.Н., Лебедев В.В. Обработка результатов наблюдений, М., «Наука»,
1970, 194 с.

[2]
Петерс Д., Хайес Дж., Хифтье Г. Химическое разделение и измерение – М.,: Химия,
1978, 816 с.


Предельные ошибки при различных способах измерения

Способ
и прибор

Ошибка
%

1

Стальная
гом-я лента

2

Угломеры
оптические

3

Тахометры
центробежные

4

Весы
торговые и автомобильные

Технические

Аналоговые

5

Динамометры
тяговые пружинные

Гидравлические

Электрические

6

Ртутные
монометры

7

Секундомеры

8

Ртутные
термометры

9

Твердомеры
ударного действия

Ошибки опытов

Под
опытом подразумевается совокупность
разовых измерений различных величин в
одних и тех же условиях. Способы измерения
можно разбить на два вида:


измерить прямые, когда данную величину
измеряют непосредственно


измерения косвенные, когда искомая
величина является функцией измеряемых
величин.

Можно
по-разному ставить опыт и выбирать
способы измерений, так как измерения
косвенные зависят от ряда прямых, то
при прочих равных условиях, выгодней
тот способ, при котором будет меньше
прямых измерений, а значит меньше и
сумма ошибок. Предельную относительную
ошибку опыта определяют на основании
следующих правил:

  1. Ошибка
    суммы заложена между наибольшей и
    наименьшей из относительных ошибок
    слагаемых, практически берут или
    наибольшую относительную ошибку или
    среднюю арифметическую.

  2. Ошибка
    произведения или частного от деления
    равна сумме относительных ошибок
    сомножителей или соответственно
    делимого и частного

  3. Ошибка
    n-ой степени какого-то основания (значения
    величины) в n раз больше относительной
    ошибки основания.

Во
всех случаях установление точности
опыта, точности вычисления результата
должна определяться точностью измерений.
Если рассматривать ошибку измерения
как частное значение переменной величины,
предельную относительную ошибку опыта
можно вычислить по формуле:

А
– является функцией переменных, то есть
предельная относительная ошибка а равна
дифференциалу её натурального логарифма,
причем следует брать сумму абсолютных
значений всех членов такого выражения.
Данное уравнение дает возможность
решить обратную задачу: определить
необходимую точность измерений различными
способами, если задана общая точность
опыта, но проще поступить таким образом:
установить требование заранее к
метрологическим показателям приборов
(цена или интервал деления, пределы
измерения, порог чувствительности,
измерительное усилие, погрешность и
вариация показаний). Вычислить предельную
ошибку и по ней подобрать недостающую
аппаратуру и заменив приборы дающие
слишком большую предельную погрешность.
Используя эту формулу можно найти
измерения, при которых предельная
относительная ошибка функции будет
наименьшей. Условием определенного
решения является наличие минимума
функции. Рассмотрим порядок вычисления
предельной ошибки опыта. Установим
предельную относительную ошибку
вычисления производительности агрегата.

В
– ширина агрегата

v— скорость агрегата

Тр– время работы агрегата

Учитывая
подобранную в этом примере аппаратуру
и средние данные таблицы, получим
предельную ошибку.

Из
изложенного можно сделать вывод: для
того, чтобы правильно подобрать аппаратуру
необходимо провести сравнительную
оценку точности различных способов
измерения, в данном случае полезно
заранее задаться точностью опыта.
Точность измерений должна быть
целесообразной, указав на три основные
обоснования:

  1. Заключается
    в практическом использовании результатов
    (при технологическом процессе заточки
    лезвия нельзя добиться его затупленности
    меньше 10 микрон, тогда не следует
    измерять износ с точностью до десятых
    долей микрона).

  2. В
    некоторых случаях нецелесообразно
    измерять с ошибкой меньше некоторых
    колебаний значений измеряемой величины.

  3. Экономическая
    сторона. Чем точнее измерительная
    аппаратура, тем она сложнее и дороже,
    тем больше затраты не её ремонт и
    калибровку. Может оказаться, что при
    таком количестве измерений и той же
    надежности, что и при большем количестве
    измерений, прибором дающем несколько
    большую ошибку, стоимость измерений
    дорогим прибором будет выше.

При
определении величины случайных ошибок,
кроме предельной, вычисляют статистическую
ошибку многократных измерений, её
устанавливают после измерений при
помощи методов математической статистики
и теории ошибок. Если, например, диаметр
вала, вязкость масла измерять по одному
разу, случайные ошибки могут исказить
результат, поэтому лучше измерять
какую-либо практически постоянную
величину несколько раз и брать среднюю
арифметическую этих измерений. Среднее
арифметическое измерение является
наиболее вероятным значением измеряемой
величины при данном количестве соединений.

В
теории ошибок доказывается, чем больше
проведено измерений какой-либо величины,
тем меньше суммарная ошибка средней и
при бесконечном числе измерений,
случайная ошибка средней бесконечно
мала.

Лекция
5 – 19.10.11

Чем
больше значений случайных ошибок и
разброс, рассеяние отсчетов, тем больше
число раз необходимо измерять одну и
ту же величину чтобы достигнуть заданной
точности и надежности измерений.
Рассеяние результатов измерений
указывает на большую или меньшую их
изменчивость т оценивается средним
квадратом отклонений наблюдаемых
значений аiот их средних h’ и
квадратным корнем из среднего квадрата.

Среднее
арифметическое
сумме всех отдельных результатов
измерений аi, anделение на
количество измерений.

Если
все измерения сгруппированы в m классов
с разными количествами измерений в
каждом классе, то следует вычислять
взвешенную среднюю арифметическую:

а1,
а2, аm– среднее по классу

Отношение
любого отдельного результата измерений
от средней арифметической можно
представить как разность аiи.

аi– результат любого измерения.

Дисперсией
случайной величины
называется среднее
значение величины от её среднего
значения.

Корень
квадратный из дисперсии называется
средним квадратическим отклонением
или стандартом.

При
разделении всех измерений на n классов
с массовыми средними дисперсия будет
равна:

Стандарт:

Стандарт
имеет значение величины, для которой
он вычислен. Дисперсия и стандарт это
меры рассеяния или изменчивости. Чем
больше дисперсия или стандарт, тем
больше рассеяны значения измерений.
Таким образом при измерении неизменной
величины СКО (стандарт) является мерой
точности среднего арифметического
значения неоднократно измеренной
величины. Если же неоднократно измеримая
величина переменна, то вычисленное по
её измерениям значение стандарта
показывает не только меру точности как
случайную ошибку измерений, но и меру
изменчивости переменной.

Абсолютное
значение стандарта зависит и от
совершенства измерительных приборов.
Если одну и ту же величину измерять при
помощи приборов различной точности
абсолютное значение стандарта будет
меньше при измерении более точным
прибором. Например, если dотвизмерить сначала нутромером со шкалой
в мм, а затем индикатором со шкалой в
микронах значение стандарта при последних
измерениях будет меньше.

Это
обстоятельство имеет важное значение
при выборе числа опытов.

Для
большинства технических измерений
можно считать, что наибольшей ошибкой
средней арифметической многократных
измерений является абсолютная величина
равная трем стандартная или относительная
величина.

Эта
ошибка называется наибольшей возможной
статической в отличие от придельной
ошибки.

В
качестве примера приведем результаты
проверки на точность показаний
пневматического калибратора, которым
измеряли относительную не плотность в
одном из цилиндров дизельного двигателя.

Было
проведено 20 измерений, при которых
двигатель работая на оборотах близким
к номинальным, по 2-3мин. И получен ряд
значений неплотности.

0,465 0,450 0,425

Отсюда
наибольшая возможная статистическая
ошибка:

Если
предельную ошибку устанавливают до
измерений, а наибольшую статистическую
вычисляют по результатам неоднократных
измерений. Наибольшая статистическая
ошибка при измерении неизменной величина
будет меньше предельной, так как
отклонения отдельных измерений от
средней неоднозначны как это принято
для предельной ошибки. Иногда из значения
измеряемой величины отсчитывают с
большей точностью, чем это предположено
для предельной ошибки.

Точность
разовых измерений оценивают только по
предельной ошибке. При неоднократных
измерениях до их начала следует
пользоваться предельной ошибкой (для
прибора аппаратуры и представления о
возможностях измерений). А после измерений
оценивать их точность по наибольшей
возможной статистической ошибке.

Лекция
6 – 21.10.11

Измерения,
дающие дисп или одинаковой величины,
называют равноточными. Равноточность
измерений серий и опытов облегчает
обработку результатов измерений и
уменьшает суммарные ошибки исследования.

Практически
добиться равноточности измерений можно
только в тех случаях, когда измерение
будет проводить опытный человек одним
и тем же прибором в одинаковых условиях.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Изучение всех влияющих на исследуемый объект факторов одновременно
провести невозможно, поэтому в эксперименте рассматривается их ограниченное
число. Остальные активные факторы стабилизируются, т.е. устанавливаются на
каких-то одинаковых для всех опытов уровнях.

Некоторые факторы не могут быть обеспечены системами стабилизации
(например, погодные условия, самочувствие оператора и т.д.), другие же
стабилизируются с какой-то погрешностью (например, содержание какого-либо
компонента в среде зависит от ошибки при взятии навески и приготовления
раствора). Учитывая также, что измерение параметра у осуществляется
прибором, обладающим какой-то погрешностью, зависящей от класса точности
прибора, можно прийти к выводу, что результаты повторностей одного и того же
опыта ук будут приближенными и должны
отличаться один от другого и от истинного значения выхода процесса.
Неконтролируемое, случайное изменение и множества других влияющих на процесс
факторов вызывает случайные отклонения измеряемой величины ук
от ее истинного значения – ошибку опыта.

Каждый эксперимент содержит элемент неопределенности вследствие
ограниченности экспериментального материала. Постановка повторных (или
параллельных) опытов не дает полностью совпадающих результатов, потому что
всегда существует ошибка опыта (ошибка воспроизводимости). Эту ошибку и нужно
оценить по параллельным опытам. Для этого опыт воспроизводится по возможности в
одинаковых условиях несколько раз и затем берется среднее арифметическое всех
результатов. Среднее арифметическое у равно сумме всех
n отдельных результатов, деленной на
количество параллельных опытов
n:

Отклонение результата любого опыта от среднего арифметического
можно представить как разность
y2
, где
y2 – результат отдельного
опыта. Наличие отклонения свидетельствует об изменчивости, вариации значений
повторных опытов. Для измерения этой изменчивости чаще всего используют
дисперсию.

Дисперсией называется среднее значение квадрата отклонений
величины от ее среднего значения. Дисперсия обозначается s2 и
выражается формулой:

где (n-1)
– число степеней свободы, равное количеству опытов минус единица. Одна степень
свободы использована для вычисления среднего.

Корень квадратный из дисперсии, взятый с положительным знаком,
называется средним квадратическим отклонением, стандартом или квадратичной
ошибкой:

Ошибка опыта является суммарной величиной, результатом многих
ошибок: ошибок измерений факторов, ошибок измерений параметра оптимизации и др.
Каждую из этих ошибок можно, в свою очередь, разделить на составляющие.

Все ошибки принято разделять на два класса: систематические и
случайные (рисунок 1).

Систематические ошибки порождаются причинами, действующими
регулярно, в определенном направлении. Чаще всего эти ошибки можно изучить и
определить количественно. Систематическая ошибка – это ошибка,
которая остаётся постоянно или закономерно изменяется при повторных измерениях
одной и той же величины. Эти ошибки появляются вследствие неисправности
приборов, неточности метода измерения, какого либо упущения экспериментатора,
либо использования для вычисления неточных данных. Обнаружить систематические
ошибки, а также устранить их во многих случаях нелегко. Требуется тщательный
разбор методов анализа, строгая проверка всех измерительных приборов и
безусловное выполнение выработанных практикой правил экспериментальных работ.
Если систематические ошибки вызваны известными причинами, то их можно
определить. Подобные погрешности можно устранить введением поправок.

Систематические ошибки находят, калибруя измерительные приборы и
сопоставляя опытные данные с изменяющимися внешними условиями (например, при
градуировке термопары по реперным точкам, при сравнении с эталонным прибором).
Если систематические ошибки вызываются внешними условиями (переменной
температуры, сырья и т.д.), следует компенсировать их влияние.

Случайными ошибками называются
те, которые появляются нерегулярно, причины, возникновения которых неизвестны и
которые невозможно учесть заранее. Случайные ошибки вызываются и объективными
причинами и субъективными. Например, несовершенством приборов, их освещением,
расположением, изменением температуры в процессе измерений, загрязнением
реактивов, изменением электрического тока в цепи. Когда случайная ошибка больше
величины погрешности прибора, необходимо многократно повторить одно и тоже
измерение. Это позволяет сделать случайную ошибку сравнимой с погрешностью
вносимой прибором. Если же она меньше погрешности прибора, то уменьшать её нет
смысла. Такие ошибки имеют значение, которое отличается в отдельных измерениях.
Т.е. их значения могут быть неодинаковыми для измерений сделанных даже в
одинаковых условиях. Поскольку причины, приводящие к случайным ошибкам
неодинаковы в каждом эксперименте, и не могут быть учтены, поэтому исключить
случайные ошибки нельзя, можно лишь оценить их значения. При многократном
определении какого-либо показателя могут встречаться результаты, которые
значительно отличаются от других результатов той же серии. Они могут быть
следствием грубой ошибки, которая вызвана невнимательностью экспериментатора.

Систематические и случайные ошибки состоят из множества
элементарных ошибок. Для того чтобы исключать инструментальные ошибки, следует
проверять приборы перед опытом, иногда в течение опыта и обязательно после опыта.
Ошибки при проведении самого опыта возникают вследствие неравномерного нагрева
реакционной среды, разного способа перемешивания и т.п.

При повторении опытов такие ошибки могут вызвать большой разброс
экспериментальных результатов.

Очень важно исключить из экспериментальных данных грубые ошибки,
так называемый брак при повторных опытах. Грубые ошибки легко
обнаружить. Для выявления ошибок необходимо произвести измерения в других
условиях или повторить измерения через некоторое время. Для предотвращения
грубых ошибок нужно соблюдать аккуратность в записях, тщательность в работе и
записи результатов эксперимента. Грубая ошибка должна быть исключена из
экспериментальных данных. Для отброса ошибочных данных существуют определённые
правила.

Например, используют критерий Стьюдента t (Р;
f):
Опыт считается бракованным, если экспериментальное значение критерия t по
модулю больше табличного значения
t (Р; f).

Если в распоряжении исследователя имеется экспериментальная оценка
дисперсии
S2(yk)
с небольшим конечным числом степеней свободы, то доверительные ошибки
рассчитываются с помощью критерий Стьюдента
t (Р;
f):

ε()
= t (
Р; f)* S(yk)/= t (Р; f)* S()

ε(yk) = t (Р; f)* S(yk)

Понравилась статья? Поделить с друзьями:
  • Как ошибок много катится слеза
  • Как программно изменить цвет кнопки 1с
  • Как определяется приборная ошибка
  • Как практически изменить положение рабочей точки на сток затворной характеристике полевого транзистора
  • Как право собственности изменить на частную собственность