Как рассчитать ошибку прямого измерения

Работа по теме: 100 Ошибки измерений физических величин. Глава: 6. Расчёт ошибок прямых измерений. ВУЗ: МГУПС МИИТ.

Если проведение
неоднократных измерений физической
величины даёт повторяющиеся результаты,
то это означает, что в данных условиях
преобладают приборные погрешности. В
этих случаях погрешность прямых измерений
определяется приборной погрешностью.

Если неоднократные
измерения дают некоторый разброс
результатов, то это означает присутствие
случайных ошибок. Если число измерений
неограниченно возрастает, то для
определения среднего значения и дисперсии
можно воспользоваться формулами (3) …
(7). На практике число измерений всегда
ограничено, по­этому существует
конечная вероятность того, что истинное
значе­ние среднеквадратичного
отклонения отличается от вычисленного
по формуле (6). Поэтому при небольшом
числе измерений для оценки величины 

пользуются
соотношениями, вытекающими из так
называемого распределения Стьюдента,
которое при неограниченном увеличении
числа измерений стремится к нормальному
распределению (5).

В соответствии с
этой методикой сначала находится
среднеарифметическое значение измеряемой
величины по формуле (3).

Следующим шагом
для оценки точности найденного
среднеарифметического значения будет
вычисление вспомогательной величины
S:

(9)

Из Таблицы 1
коэффициентов Стьюдента находим
вспомогательный коэффициент ,
зависящий от числа измерений n и
доверительной вероятности Р. Этот
коэффициент совместно с величиной S
поз­воляет рассчитать доверительный
интервал x.

Абсолютная
погрешность значения искомой величины
«а», найденной как среднеарифметическое
из n измерений составит:

(10)

Искомая величина
«а» представляется в виде:

(11)

Дисперсия всей
совокупности измерений случайной
величины «х»
будет равна S2.

7. Расчёт ошибок косвенных измерений

Пусть искомая
величина А
при выбранном
методе косвенных измерений рассчитывается
по формуле:

A
= f(x1
,x2
,x3
,…,xn
) (12)

где x1,x2,…,xn
— величины, найденные в результате прямых
измерений, с учётом ошибок о которых
шла речь выше. Из-за этих ошибок величина
«А»
так же будет определяться с ошибками.

Пусть X1,X2,…,XN
— значения f(x1
,x2
,x3
,…,xn
), вычисленные
для разных серий измерений (x1,x2,…,xn).

Таблица 1

Таблица коэффициентов
Стьюдента

Число

измерений

Доверительная
вероятность

0.7

0.8

0.9

0.95

0.99

0.999

2

2.0

3.1

6.3

12.7

63.7

636.6

3

1.3

1.9

2.9

4.3

9.9

31.6

4

1.3

1.6

2.4

3.2

5.8

12.9

5

1.2

1.5

2.1

2.8

4.6

8.6

10

1.1

1.4

1.8

2.3

3.3

4.8

15

1.1

1.3

1.8

2.1

3.0

4.1

20

1.1

1.3

1.7

2.1

2.9

3.9

Абсолютной ошибкой
косвенных измерений, по аналогии с
аб­солютной ошибкой прямых измерений,
называют разность между ис­тинным
значением «А» и её значениями,
полученными в результате измерений:

(13)

Размерность
абсолютной ошибки совпадает с размерностью
определяемой величины. Относительной
ошибкой косвенных измерений называют
отвлечённое число:

(14)

Иногда относительную
ошибку выражают в процентах:

(15)

Для определения
величины «А» в формулах (12)…(15) по
теории

вероятностей
следует брать величину Х, которую можно
определить двумя способами:

1) А
= Х
= (Х1
+ Х2
+…+Хn)/n
(16)

2) A
= X
= f(x1
+ x2
+…+xn)
(17)

где x1,
x2
,…, xn
определяют по формуле (3). Если ошибки
измерений малы, то оба способа дают
практически тождественные результаты.

Рассмотрим способы
нахождения ошибки величины А,
опреде­лённой из косвенных измерений,
по найденным значениям оши

бок прямых измерений.
Выше отмечалось, что возможны различные
соотношения между приборной систематической
и случайными ошибками.

1-й случай. Преобладают
приборные ошибки. В этом случае можно
дать только оценку максимальной ошибки.
Формулы для нахож­дения предельной
ошибки косвенных измерений по внешнему
виду совпадают с формулами дифференциального
исчисления. В связи с этим для предельной
абсолютной ошибки используется формула:

(18)

а для расчёта
предельной относительной ошибки пригодна
фор

— 19 —

мула:

(19)

Формулы для расчёта
предельных ошибок некоторых часто
встречающихся функций, когда приборные
ошибки превышают случайные, приведены
в Таблице 2. Эти выражения легко
рассчитываются по формулам (18) и (19).

2-й случай. Преобладают
случайные ошибки. Для определения
среднеквадратичной ошибки теория
вероятностей даёт следующую формулу:

(20)

Относительная
ошибка вычисляется по формуле:

(21)

При выполнении
промежуточных расчётов необходимо
помнить, что число точных цифр в результате
расчётов не может увеличиваться. Поэтому
промежуточные результаты округляют,
сохраняя

1…2 избыточных
знака. При этом последующие цифры,
меньшие

5,отбрасываются;если
первая из отбрасываемых цифр больше 5,

то последняя из
оставшихся цифр увеличивается на
единицу. Ес

ли первая
отбрасываемая цифра 5, то предыдущая
цифра остаётся

без изменений,
если она чётная, и увеличивается на
единицу, если

она нечётная.
Выражения для среднеквадратичной ошибки
некоторых часто встречающихся функций
приведены в Таблице 3. Для определения
ошибок косвенных измерений используют
большую из инструментальной или случайной
ошибок прямого измерения.

Соседние файлы в папке TIU-11

  • #
  • #
  • #
  • #
  • #
  • #

Вычисление погрешностей измерений

Выполнение лабораторных работ связано с измерением физических величин, т. е. определением значений величин опытным путём с помощью измерительных приборов (средств измерения), и обработкой результатов измерений.

Различают прямые и косвенные измерения. При этом результат любого измерения является приблизительным, т. е. содержит погрешность измерения. Точность измерения физической величины характеризуют абсолютная и относительная погрешности.

Прямое измерение — определение значения физической величины непосредственно с помощью измерительного прибора.

Абсолютную погрешность прямых измерений определяют суммой абсолютной инструментальной погрешности и абсолютной погрешности отсчёта Δx = Δиx + Δоx при условии, что случайная погрешность и погрешность вычисления или отсутствуют, или незначительны и ими можно пренебречь.

Абсолютная инструментальная погрешность Δиx связана с классом точности прибора. Абсолютные инструментальные погрешности некоторых средств измерений представлены в таблице 1.

Таблица 1

Средства измерений Диапазон измерений Абсолютная инструментальная погрешность
Линейки:
металлические
деревянные
пластмассовые

150, 300, 500 мм

400, 500, 750 мм
200, 250, 300 мм

0,1 мм

0,5 мм
1 мм
Лента измерительная 150 см 0,5 см
Мензурки 2-го класса 100, 200, 250 см3 5 см3
Амперметр школьный 2 А 0,05 А
Миллиамперметр от 0 до Imax 4 % максимального предела измерений Imax
Вольтметр школьный 6 В 0,15 В
Термометр лабораторный 100 °С 1 °С
Барометр-анероид 720–780 мм рт. ст. 3 мм рт. ст.
Штангенциркули с ценой деления 0,1; 0,05 мм 155, 250, 350 мм 0,1; 0,05 мм в соответствии с ценой деления нониуса
Микрометры с ценой деления 0,01 мм 0–25, 25–50, 50–75 мм 0,004 мм

Абсолютная погрешность отсчёта Δоx связана с дискретностью шкалы прибора. Если величину измеряют с точностью до целого деления шкалы прибора, то погрешность отсчёта принимают равной цене деления. Если при измерении значение величины округляют до половины деления шкалы, то погрешность отсчёта принимают равной половине цены деления.

Абсолютная погрешность определяет значение интервала, в котором лежит истинное значение измеренной величины:

x equals x subscript изм plus-or-minus increment x.

Относительную погрешность прямого измерения определяют отношением абсолютной погрешности к значению измеряемой величины:

straight epsilon subscript x equals fraction numerator increment x over denominator x subscript изм end fraction times 100 percent sign.

Относительная погрешность характеризует точность измерения: чем она меньше, тем точность измерения выше.

Косвенное измерение — определение значения физической величины с использованием формулы, связывающей её с другими величинами, измеренными непосредственно с помощью приборов.

Одним из методов определения погрешности косвенных измерений является метод границ погрешностей. Формулы для вычисления абсолютных и относительных погрешностей косвенных измерений методом границ погрешностей представлены в таблице 2.

Таблица 2

Вид функции y Абсолютная погрешность Δy Относительная погрешность fraction numerator bold increment bold y over denominator bold y end fraction
x1 + x2 Δx1 + Δx2 fraction numerator increment x subscript 1 plus increment x subscript 2 over denominator open vertical bar x subscript 1 plus x subscript 2 close vertical bar end fraction
x1 − x2 Δx1 + Δx2 fraction numerator increment x subscript 1 plus increment x subscript 2 over denominator open vertical bar x subscript 1 minus x subscript 2 close vertical bar end fraction
Cx CΔx fraction numerator increment x over denominator x end fraction
x1x2 |x1| Δx2 + |x2| Δx1 fraction numerator increment x subscript 1 over denominator open vertical bar x subscript 1 close vertical bar end fraction plus fraction numerator increment x subscript 2 over denominator open vertical bar x subscript 2 close vertical bar end fraction
x subscript 1 over x subscript 2 fraction numerator open vertical bar x subscript 1 close vertical bar increment x subscript 2 plus open vertical bar x subscript 2 close vertical bar increment x subscript 1 over denominator x subscript 2 superscript 2 end fraction fraction numerator increment x subscript 1 over denominator open vertical bar x subscript 1 close vertical bar end fraction plus fraction numerator increment x subscript 2 over denominator open vertical bar x subscript 2 close vertical bar end fraction
xn |n||x|n−1Δx open vertical bar n close vertical bar fraction numerator increment x over denominator open vertical bar x close vertical bar end fraction
lnx fraction numerator increment x over denominator x end fraction fraction numerator increment x over denominator x open vertical bar ln x close vertical bar end fraction
sinx |cosx| Δx fraction numerator increment x over denominator open vertical bar tg x close vertical bar end fraction
cosx |sinx| Δx |tgx| Δx
tgx fraction numerator increment x over denominator cos squared x end fraction fraction numerator 2 increment x over denominator open vertical bar sin 2 x close vertical bar end fraction

Абсолютную погрешность табличных величин и фундаментальных физических постоянных определяют как половину единицы последнего разряда значения величины.

Измеряя линей­ные размеры предметов измерительными инстру­ментами : линейкой, штангенциркулем, микрометром, проводя измерения времени секундомером или силы электрического тока или величины напряжения соответствующими электроизмерительными приборами Вы проводите прямые измерения.

Погрешность измерений

Любое измерение проводится с определенной точностью, при этом измеренное значение всегда отличается от истинного, так как инструменты измерения, методики и органы чувств человека несовершенны. Поэтому важную роль играет оценка погрешности измерений, результат измерений с учетом погрешности записывается в виде: X ± ΔX, где ΔX — абсолютная погрешность измерений.

Случайные и систематичес­кие погрешности

Погрешности подразделяются на случайные и систематичес­кие.
Систематические погрешности остаются постоянными или закономерно меняются в процессе измерения. Например неточность прибора, неправильная его регулировка ведет к систематической погрешности. Если причина систематической погрешности известна, то чаще всего такую погрешность можно исключить.
Случайные погрешности вызваны различными случайными факторами, влияющими на точность измерений. Например, при измерении секундомером отрезков времени, случайные погрешности связаны с различным (случайным) временем реакции экспериментатора на события запускающие и останавливающие секундомер. Чтобы уменьшить влияние случайной погрешности необходимо проводить многократное измерение физической величины.
Калькулятор ниже вычисляет случайную погрешность выборки прямых измерений для заданного доверительного интервала. Немного теории можно найти сразу за калькулятором.

PLANETCALC, Расчет погрешностей непосредственных измерений.

Расчет погрешностей непосредственных измерений.

Доверительная вероятность

Точность вычисления

Знаков после запятой: 3

Относительная погрешность в %

В большинстве случаев результат измерения подчиняется нормальному закону распределения, поэтому истинное значение измерения будет равно пределу:
x_0=lim_{n to infty} frac{1}{n}sum_{i=1}^{n} x_i
В случае ограниченного количества измерений, наиболее близким к истинному будет среднее арифметическое:
bar{x}=frac{1}{n}sum_{i=1}^{n} x_i

Согласно элементарной теории ошибок Гаусса случайную погрешность отдельного измерения характеризует так называемое среднеквадратическое отклонение:
S_n=left. sqrt{frac{sum_{i=1}^{n}{(x_i-bar{x})^2}}{n-1}} right, квадрат этой величины называется дисперсией. При увеличении этой величины возрастает разброс результатов измерений, т. е. увеличивается погрешность.

Для оценки погрешности всей серии измерений, вместо отдельного измерения надо найти среднюю квадратичную погрешность среднего арифметического, характеризующую отклонение bar{x} от истинного значения искомой величины x_0.
По закону сложения ошибок среднее арифметическое имеет меньшую ошибку, чем результат каждого отдельного измерения. Cред­няя квадратичная погрешность среднего арифметического равна:
S_{bar{x}}=frac{S_n}{sqrt{n}} = left. sqrt{frac{sum_{i=1}^{n}{(x_i-bar{x})^2}}{{n}({n-1})}} right
Стандартная случайная погрешность Δх равна:
Delta_{x}=t_{alpha,k}S_{bar{x}},, где t_{alpha,k} — коэффициент Стьюдента для заданной доверительной вероятности alpha и числа степеней свободы k = n-1.
Коэффициент Стьюдента можно получить по таблице или воспользоваться нашим калькулятором для вычисления квантилей распределения Стьюдента: Квантильная функция распределения Стьюдента. Следует иметь в виду, что квантильная функция выдает значения одностороннего критерия Стьюдента. Значение двустороннего квантиля для заданной доверительно вероятности alpha соответствует значению одностороннего квантиля для вероятности: 1-frac{1-alpha}{2}

Понравилась статья? Поделить с друзьями:
  • Как рассчитать ошибку прогноза
  • Как рассчитать относительную ошибку вычисления величины работы выхода
  • Как рассчитать абсолютную ошибку
  • Как распознать что муж изменил
  • Как распознать ошибки мышления