Mean absolute error meaning

From Wikipedia, the free encyclopedia

From Wikipedia, the free encyclopedia

In statistics, mean absolute error (MAE) is a measure of errors between paired observations expressing the same phenomenon. Examples of Y versus X include comparisons of predicted versus observed, subsequent time versus initial time, and one technique of measurement versus an alternative technique of measurement. MAE is calculated as the sum of absolute errors divided by the sample size:[1]

{displaystyle mathrm {MAE} ={frac {sum _{i=1}^{n}left|y_{i}-x_{i}right|}{n}}={frac {sum _{i=1}^{n}left|e_{i}right|}{n}}.}

It is thus an arithmetic average of the absolute errors {displaystyle |e_{i}|=|y_{i}-x_{i}|}, where y_{i} is the prediction and x_{i} the true value. Note that alternative formulations may include relative frequencies as weight factors. The mean absolute error uses the same scale as the data being measured. This is known as a scale-dependent accuracy measure and therefore cannot be used to make comparisons between series using different scales.[2] The mean absolute error is a common measure of forecast error in time series analysis,[3] sometimes used in confusion with the more standard definition of mean absolute deviation. The same confusion exists more generally.

Quantity disagreement and allocation disagreement[edit]

2 data points for which Quantity Disagreement is 0 and Allocation Disagreement is 2 for both MAE and RMSE

It is possible to express MAE as the sum of two components: Quantity Disagreement and Allocation Disagreement. Quantity Disagreement is the absolute value of the Mean Error given by:[4]

{displaystyle mathrm {ME} ={frac {sum _{i=1}^{n}y_{i}-x_{i}}{n}}.}

Allocation Disagreement is MAE minus Quantity Disagreement.

It is also possible to identify the types of difference by looking at an (x,y) plot. Quantity difference exists when the average of the X values does not equal the average of the Y values. Allocation difference exists if and only if points reside on both sides of the identity line.[4][5]

[edit]

The mean absolute error is one of a number of ways of comparing forecasts with their eventual outcomes. Well-established alternatives are the mean absolute scaled error (MASE) and the mean squared error. These all summarize performance in ways that disregard the direction of over- or under- prediction; a measure that does place emphasis on this is the mean signed difference.

Where a prediction model is to be fitted using a selected performance measure, in the sense that the least squares approach is related to the mean squared error, the equivalent for mean absolute error is least absolute deviations.

MAE is not identical to root-mean square error (RMSE), although some researchers report and interpret it that way. MAE is conceptually simpler and also easier to interpret than RMSE: it is simply the average absolute vertical or horizontal distance between each point in a scatter plot and the Y=X line. In other words, MAE is the average absolute difference between X and Y. Furthermore, each error contributes to MAE in proportion to the absolute value of the error. This is in contrast to RMSE which involves squaring the differences, so that a few large differences will increase the RMSE to a greater degree than the MAE.[4] See the example above for an illustration of these differences.

Optimality property[edit]

The mean absolute error of a real variable c with respect to the random variable X is

{displaystyle E(left|X-cright|)}

Provided that the probability distribution of X is such that the above expectation exists, then m is a median of X if and only if m is a minimizer of the mean absolute error with respect to X.[6] In particular, m is a sample median if and only if m minimizes the arithmetic mean of the absolute deviations.[7]

More generally, a median is defined as a minimum of

{displaystyle E(|X-c|-|X|),}

as discussed at Multivariate median (and specifically at Spatial median).

This optimization-based definition of the median is useful in statistical data-analysis, for example, in k-medians clustering.

Proof of optimality[edit]

Statement: The classifier minimising {displaystyle mathbb {E} |y-{hat {y}}|} is {displaystyle {hat {f}}(x)={text{Median}}(y|X=x)} .

Proof:

The Loss functions for classification is

{displaystyle {begin{aligned}L&=mathbb {E} [|y-a||X=x]\&=int _{-infty }^{infty }|y-a|f_{Y|X}(y),dy\&=int _{-infty }^{a}(a-y)f_{Y|X}(y),dy+int _{a}^{infty }(y-a)f_{Y|X}(y),dy\end{aligned}}}

Differentiating with respect to a gives

{displaystyle {frac {partial }{partial a}}L=int _{-infty }^{a}f_{Y|X}(y),dy+int _{a}^{infty }-f_{Y|X}(y),dy=0}

This means

{displaystyle int _{-infty }^{a}f(y),dy=int _{a}^{infty }f(y),dy}

Hence

{displaystyle F_{Y|X}(a)=0.5}

See also[edit]

  • Least absolute deviations
  • Mean absolute percentage error
  • Mean percentage error
  • Symmetric mean absolute percentage error

References[edit]

  1. ^ Willmott, Cort J.; Matsuura, Kenji (December 19, 2005). «Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance». Climate Research. 30: 79–82. doi:10.3354/cr030079.
  2. ^ «2.5 Evaluating forecast accuracy | OTexts». www.otexts.org. Retrieved 2016-05-18.
  3. ^ Hyndman, R. and Koehler A. (2005). «Another look at measures of forecast accuracy» [1]
  4. ^ a b c Pontius Jr., Robert Gilmore; Thontteh, Olufunmilayo; Chen, Hao (2008). «Components of information for multiple resolution comparison between maps that share a real variable». Environmental and Ecological Statistics. 15 (2): 111–142. doi:10.1007/s10651-007-0043-y. S2CID 21427573.
  5. ^ Willmott, C. J.; Matsuura, K. (January 2006). «On the use of dimensioned measures of error to evaluate the performance of spatial interpolators». International Journal of Geographical Information Science. 20: 89–102. doi:10.1080/13658810500286976. S2CID 15407960.
  6. ^ Stroock, Daniel (2011). Probability Theory. Cambridge University Press. pp. 43. ISBN 978-0-521-13250-3.
  7. ^ Nicolas, André (2012-02-25). «The Median Minimizes the Sum of Absolute Deviations (The $ {L}_{1} $ Norm)». StackExchange.

What is mean absolute error (MAE)?

Mean absolute error, or MAE, measures the performance of a regression model. The mean absolute error is defined as the average of the all absolute differences between true and predicted values:

$$mathrm{MAE}=frac{1}{n}sum^{n-1}_{i=0}(|y_i-hat{y}_i|)$$

Where:

  • $n$ is the number of predicted values

  • $y_i$ is the actual true value of the $i$-th data

  • $hat{y}_i$ is the predicted value of the $i$-th data

A model with a high value of MAE means that its performance is subpar, while one a MAE of zero would indicate a perfect model without any error in its predictions.

Simple example to calculate mean absolute error (MAE)

Suppose we have three data points (1,3), (2,2) and (3,2). In order to predict the y-value given the x-value, we have built a simple linear model $hat{y}=x$, as shown in the diagram below:

To get a measure of how good our model performs, we can compute the MAE like so:

$$begin{align*}
mathrm{MAE}&=frac{1}{3}left(|3-1|+|2-2|+|2-3|right)\
&=frac{1}{3}left(2+0+1right)\
&=1
end{align*}$$

This means that our predictions are off by one on average.

Why do we take the absolute value?

The reason is that the absolute value prevents positive and negative differences from cancelling each other out. As an example, consider the following example:

Suppose we computed the MAE without taking the absolute value:

$$begin{align*}
mathrm{MAE’}&=frac{1}{3}Big[(1-3)+(2-2)+(3-2)Big]\
&=frac{1}{3}left(-2+0+2right)\
&=0
end{align*}$$

As you can see, the negative and positive difference of the first and third data points have cancelled each other out. As a result, we end up with a MAE’ of 0, which is obviously misleading because we know that our model is not performing all that well. In order to avoid negative and positive differences to cancel each other out, MAE takes the absolute value of the difference.

Why isn’t mean absolute error (MAE) used as a cost function?

Most machine learning models «learn» by minimising the cost function. The mean absolute error is often not chosen as the cost function because the presence of the absolute value makes differentiation harder, which means the function is difficult to optimise. For this reason, mean squared error is typically chosen as the cost function to train machine learning models.

Computing mean absolute error (MAE) using Python’s Scikit-learn

To compute the mean absolute error given a list of true and predicted values:

from sklearn.metrics import mean_absolute_error

y_true = [2,6,5]

y_pred = [7,4,3]

mean_absolute_error(y_true, y_pred)

3.0

Setting multioutput

By default, multioutput='uniform_average', which returns a the global mean absolute error:

y_true = [[1,2],[3,4]]

y_pred = [[6,7],[9,8]]

mean_absolute_error(y_true, y_pred)

5.0

Introduction

With any machine learning project, it is essential to measure the performance of the model. What we need is a metric to quantify the prediction error in a way that is easily understandable to an audience without a strong technical background. For regression problems, the Mean Absolute Error (MAE) is just such a metric.

The mean absolute error is the average difference between the observations (true values) and model output (predictions). The sign of these differences is ignored so that cancellations between positive and negative values do not occur. If we didn’t ignore the sign, the MAE calculated would likely be far lower than the true difference between model and data.

Mathematically, the MAE is expressed as:

MAE = frac{1}{N}sum_i^N|y_{i,pred}-y_{i,true}|

where y_{pred} are the predicted values, y_{true} are the observations, and N is the total number of samples considered in the calculation.

Python Coding Example

I will work though an example here using Python. First let’s load in the required packages:

## imports ##
import numpy as np
from sklearn.metrics import mean_absolute_error
import matplotlib.pyplot as plt

We can now create a toy dataset. For this example, I’ll generate data using a sine curve with noise added:

## define two arrays: x & y ##
x_true = np.linspace(0,4*np.pi,50)
y_true = np.sin(x_true) + np.random.rand(x_true.shape[0])

We can now plot these data:

## plot the data ##
plt.plot(x_true,y_true)
plt.title('Sinusoidal Data with Noise')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

mean absolute error

Now let’s assume we’ve built a model to predict the y values for every x in our toy dataset. Let’s plot the model output along with our data:

## plot the data & predictions ##
plt.plot(x_true,y_true)
plt.plot(x_true,y_pred)
plt.title('Sinusoidal Data with Noise + Predictions')
plt.xlabel('x')
plt.ylabel('y')
plt.legend(['y_true','y_pred'])
plt.show()

mean absolute error

It’s evident that the model follows the general trend in the data, but there are differences. How can we quantify how large the differences are between the model predictions and data? Let’s address this by calculating the MAE, using the function available from scikit-learn:

## compute the mae ##
mae = mean_absolute_error(y_true,y_pred)
print("The mean absolute error is: {:.2f}".format(mae))

The mean absolute error is: 0.27

We find that the MAE is 0.27, giving us a measure of how accurate our model is for these data. We can plot these results with error bars superimposed on our model prediction values:

## plot the data & predictions with the mae ##
plt.plot(x_true,y_true)
plt.errorbar(x_true,y_pred,mae)
plt.title('Sinusoidal Data with Noise + Predictions')
plt.xlabel('x')
plt.ylabel('y')
plt.legend(['y_true','y_pred'])
plt.show()

mean absolute error

The vertical bars indicate the MAE calculated, and define a zone of uncertainty for our model predictions. We can see that this zone does encompass much of the random fluctuations in our data, and thus provides a reasonable estimate of the model accuracy.

Есть 3 различных API для оценки качества прогнозов модели:

  • Метод оценки оценщика : у оценщиков есть score метод, обеспечивающий критерий оценки по умолчанию для проблемы, для решения которой они предназначены. Это обсуждается не на этой странице, а в документации каждого оценщика.
  • Параметр оценки: инструменты оценки модели с использованием перекрестной проверки (например, model_selection.cross_val_score и model_selection.GridSearchCV) полагаются на внутреннюю стратегию оценки . Это обсуждается в разделе Параметр оценки: определение правил оценки модели .
  • Метрические функции : В sklearn.metrics модуле реализованы функции оценки ошибки прогноза для конкретных целей. Эти показатели подробно описаны в разделах по метрикам классификации , MultiLabel ранжирования показателей , показателей регрессии и показателей кластеризации .

Наконец, фиктивные оценки полезны для получения базового значения этих показателей для случайных прогнозов.

3.3.1. В scoring параметрах: определение правил оценки моделей

Выбор и оценка модели с использованием таких инструментов, как model_selection.GridSearchCV и model_selection.cross_val_score, принимают scoring параметр, который контролирует, какую метрику они применяют к оцениваемым оценщикам.

3.3.1.1. Общие случаи: предопределенные значения

Для наиболее распространенных случаев использования вы можете назначить объект подсчета с помощью scoring параметра; в таблице ниже показаны все возможные значения. Все объекты счетчика следуют соглашению о том, что более высокие возвращаемые значения лучше, чем более низкие возвращаемые значения . Таким образом, метрики, которые измеряют расстояние между моделью и данными, например metrics.mean_squared_error, доступны как neg_mean_squared_error, которые возвращают инвертированное значение метрики.

Подсчет очков Функция Комментарий
Классификация
‘accuracy’ metrics.accuracy_score
‘balanced_accuracy’ metrics.balanced_accuracy_score
‘top_k_accuracy’ metrics.top_k_accuracy_score
‘average_precision’ metrics.average_precision_score
‘neg_brier_score’ metrics.brier_score_loss
‘f1’ metrics.f1_score для двоичных целей
‘f1_micro’ metrics.f1_score микро-усредненный
‘f1_macro’ metrics.f1_score микро-усредненный
‘f1_weighted’ metrics.f1_score средневзвешенное
‘f1_samples’ metrics.f1_score по многопозиционному образцу
‘neg_log_loss’ metrics.log_loss требуется
predict_probaподдержка
‘precision’ etc. metrics.precision_score суффиксы применяются как с ‘f1’
‘recall’ etc. metrics.recall_score суффиксы применяются как с ‘f1’
‘jaccard’ etc. metrics.jaccard_score суффиксы применяются как с ‘f1’
‘roc_auc’ metrics.roc_auc_score
‘roc_auc_ovr’ metrics.roc_auc_score
‘roc_auc_ovo’ metrics.roc_auc_score
‘roc_auc_ovr_weighted’ metrics.roc_auc_score
‘roc_auc_ovo_weighted’ metrics.roc_auc_score
Кластеризация
‘adjusted_mutual_info_score’ metrics.adjusted_mutual_info_score
‘adjusted_rand_score’ metrics.adjusted_rand_score
‘completeness_score’ metrics.completeness_score
‘fowlkes_mallows_score’ metrics.fowlkes_mallows_score
‘homogeneity_score’ metrics.homogeneity_score
‘mutual_info_score’ metrics.mutual_info_score
‘normalized_mutual_info_score’ metrics.normalized_mutual_info_score
‘rand_score’ metrics.rand_score
‘v_measure_score’ metrics.v_measure_score
Регрессия
‘explained_variance’ metrics.explained_variance_score
‘max_error’ metrics.max_error
‘neg_mean_absolute_error’ metrics.mean_absolute_error
‘neg_mean_squared_error’ metrics.mean_squared_error
‘neg_root_mean_squared_error’ metrics.mean_squared_error
‘neg_mean_squared_log_error’ metrics.mean_squared_log_error
‘neg_median_absolute_error’ metrics.median_absolute_error
‘r2’ metrics.r2_score
‘neg_mean_poisson_deviance’ metrics.mean_poisson_deviance
‘neg_mean_gamma_deviance’ metrics.mean_gamma_deviance
‘neg_mean_absolute_percentage_error’ metrics.mean_absolute_percentage_error

Примеры использования:

>>> from sklearn import svm, datasets
>>> from sklearn.model_selection import cross_val_score
>>> X, y = datasets.load_iris(return_X_y=True)
>>> clf = svm.SVC(random_state=0)
>>> cross_val_score(clf, X, y, cv=5, scoring='recall_macro')
array([0.96..., 0.96..., 0.96..., 0.93..., 1.        ])
>>> model = svm.SVC()
>>> cross_val_score(model, X, y, cv=5, scoring='wrong_choice')
Traceback (most recent call last):
ValueError: 'wrong_choice' is not a valid scoring value. Use sorted(sklearn.metrics.SCORERS.keys()) to get valid options.

Примечание

Значения, перечисленные в виде ValueError исключения, соответствуют функциям измерения точности прогнозирования, описанным в следующих разделах. Объекты счетчика для этих функций хранятся в словаре sklearn.metrics.SCORERS.

3.3.1.2. Определение стратегии выигрыша от метрических функций

Модуль sklearn.metrics также предоставляет набор простых функций, измеряющих ошибку предсказания с учетом истинности и предсказания:

  • функции, заканчивающиеся на, _score возвращают значение для максимизации, чем выше, тем лучше.
  • функции, заканчивающиеся на _error или _loss возвращающие значение, которое нужно минимизировать, чем ниже, тем лучше. При преобразовании в объект счетчика с использованием make_scorer установите для greater_is_better параметра значение FalseTrue по умолчанию; см. Описание параметра ниже).

Метрики, доступные для различных задач машинного обучения, подробно описаны в разделах ниже.

Многим метрикам не даются имена для использования в качестве scoring значений, иногда потому, что они требуют дополнительных параметров, например fbeta_score. В таких случаях вам необходимо создать соответствующий объект оценки. Самый простой способ создать вызываемый объект для оценки — использовать make_scorer. Эта функция преобразует метрики в вызываемые объекты, которые можно использовать для оценки модели.

Один из типичных вариантов использования — обернуть существующую метрическую функцию из библиотеки значениями, отличными от значений по умолчанию для ее параметров, такими как beta параметр для fbeta_score функции:

>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]},
...                     scoring=ftwo_scorer, cv=5)

Второй вариант использования — создание полностью настраиваемого объекта скоринга из простой функции Python с использованием make_scorer, которая может принимать несколько параметров:

  • функция Python, которую вы хотите использовать ( my_custom_loss_func в примере ниже)
  • возвращает ли функция Python оценку ( greater_is_better=True, по умолчанию) или потерю ( greater_is_better=False). В случае потери результат функции python аннулируется объектом скоринга в соответствии с соглашением о перекрестной проверке, согласно которому скоринтеры возвращают более высокие значения для лучших моделей.
  • только для показателей классификации: требуется ли для предоставленной вами функции Python постоянная уверенность в принятии решений ( needs_threshold=True). Значение по умолчанию неверно.
  • любые дополнительные параметры, такие как betaили labels в f1_score.

Вот пример создания пользовательских счетчиков очков и использования greater_is_better параметра:

>>> import numpy as np
>>> def my_custom_loss_func(y_true, y_pred):
...     diff = np.abs(y_true - y_pred).max()
...     return np.log1p(diff)
...
>>> # score will negate the return value of my_custom_loss_func,
>>> # which will be np.log(2), 0.693, given the values for X
>>> # and y defined below.
>>> score = make_scorer(my_custom_loss_func, greater_is_better=False)
>>> X = [[1], [1]]
>>> y = [0, 1]
>>> from sklearn.dummy import DummyClassifier
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf = clf.fit(X, y)
>>> my_custom_loss_func(y, clf.predict(X))
0.69...
>>> score(clf, X, y)
-0.69...

3.3.1.3. Реализация собственного скорингового объекта

Вы можете сгенерировать еще более гибкие модели скоринга, создав свой собственный скоринговый объект с нуля, без использования make_scorer фабрики. Чтобы вызываемый может быть бомбардиром, он должен соответствовать протоколу, указанному в следующих двух правилах:

  • Его можно вызвать с параметрами (estimator, X, y), где estimator это модель, которая должна быть оценена, X это данные проверки и y основная истинная цель для (в контролируемом случае) или None (в неконтролируемом случае).
  • Он возвращает число с плавающей запятой, которое количественно определяет estimator качество прогнозирования X со ссылкой на y. Опять же, по соглашению более высокие числа лучше, поэтому, если ваш секретарь сообщает о проигрыше, это значение следует отменить.

Примечание Использование пользовательских счетчиков в функциях, где n_jobs> 1

Хотя определение пользовательской функции оценки вместе с вызывающей функцией должно работать из коробки с бэкэндом joblib по умолчанию (loky), его импорт из другого модуля будет более надежным подходом и будет работать независимо от бэкэнда joblib.

Например, чтобы использовать n_jobsбольше 1 в примере ниже, custom_scoring_function функция сохраняется в созданном пользователем модуле ( custom_scorer_module.py) и импортируется:

>>> from custom_scorer_module import custom_scoring_function 
>>> cross_val_score(model,
...  X_train,
...  y_train,
...  scoring=make_scorer(custom_scoring_function, greater_is_better=False),
...  cv=5,
...  n_jobs=-1) 

3.3.1.4. Использование множественной метрической оценки

Scikit-learn также позволяет оценивать несколько показателей в GridSearchCVRandomizedSearchCV и cross_validate.

Есть три способа указать несколько показателей оценки для scoring параметра:

  • Как итерация строковых показателей:
>>> scoring = ['accuracy', 'precision']
  • В качестве dictсопоставления имени секретаря с функцией подсчета очков:
>>> from sklearn.metrics import accuracy_score
>>> from sklearn.metrics import make_scorer
>>> scoring = {'accuracy': make_scorer(accuracy_score),
...            'prec': 'precision'}

Обратите внимание, что значения dict могут быть либо функциями счетчика, либо одной из предварительно определенных строк показателей.

  • Как вызываемый объект, возвращающий словарь оценок:
>>> from sklearn.model_selection import cross_validate
>>> from sklearn.metrics import confusion_matrix
>>> # A sample toy binary classification dataset
>>> X, y = datasets.make_classification(n_classes=2, random_state=0)
>>> svm = LinearSVC(random_state=0)
>>> def confusion_matrix_scorer(clf, X, y):
...      y_pred = clf.predict(X)
...      cm = confusion_matrix(y, y_pred)
...      return {'tn': cm[0, 0], 'fp': cm[0, 1],
...              'fn': cm[1, 0], 'tp': cm[1, 1]}
>>> cv_results = cross_validate(svm, X, y, cv=5,
...                             scoring=confusion_matrix_scorer)
>>> # Getting the test set true positive scores
>>> print(cv_results['test_tp'])
[10  9  8  7  8]
>>> # Getting the test set false negative scores
>>> print(cv_results['test_fn'])
[0 1 2 3 2]

3.3.2. Метрики классификации

В sklearn.metrics модуле реализованы несколько функций потерь, оценки и полезности для измерения эффективности классификации. Некоторые метрики могут потребовать оценок вероятности положительного класса, значений достоверности или значений двоичных решений. Большинство реализаций позволяют каждой выборке вносить взвешенный вклад в общую оценку с помощью sample_weight параметра.

Некоторые из них ограничены случаем двоичной классификации:

precision_recall_curve(y_true, probas_pred, *) Вычислите пары точности-отзыва для разных пороговых значений вероятности.
roc_curve(y_true, y_score, *[, pos_label, …]) Вычислить рабочую характеристику приемника (ROC).
det_curve(y_true, y_score[, pos_label, …]) Вычислите частоту ошибок для различных пороговых значений вероятности.

Другие также работают в случае мультикласса:

balanced_accuracy_score(y_true, y_pred, *[, …]) Вычислите сбалансированную точность.
cohen_kappa_score(y1, y2, *[, labels, …]) Каппа Коэна: статистика, измеряющая согласованность аннотаторов.
confusion_matrix(y_true, y_pred, *[, …]) Вычислите матрицу неточностей, чтобы оценить точность классификации.
hinge_loss(y_true, pred_decision, *[, …]) Средняя потеря петель (нерегулируемая).
matthews_corrcoef(y_true, y_pred, *[, …]) Вычислите коэффициент корреляции Мэтьюза (MCC).
roc_auc_score(y_true, y_score, *[, average, …]) Вычислить площадь под кривой рабочих характеристик приемника (ROC AUC) по оценкам прогнозов.
top_k_accuracy_score(y_true, y_score, *[, …]) Top-k Рейтинг по классификации точности.

Некоторые также работают в многоярусном регистре:

accuracy_score(y_true, y_pred, *[, …]) Классификационная оценка точности.
classification_report(y_true, y_pred, *[, …]) Создайте текстовый отчет, показывающий основные показатели классификации.
f1_score(y_true, y_pred, *[, labels, …]) Вычислите оценку F1, также известную как сбалансированная оценка F или F-мера.
fbeta_score(y_true, y_pred, *, beta[, …]) Вычислите оценку F-beta.
hamming_loss(y_true, y_pred, *[, sample_weight]) Вычислите среднюю потерю Хэмминга.
jaccard_score(y_true, y_pred, *[, labels, …]) Оценка коэффициента сходства Жаккара.
log_loss(y_true, y_pred, *[, eps, …]) Потеря журнала, также известная как потеря логистики или потеря кросс-энтропии.
multilabel_confusion_matrix(y_true, y_pred, *) Вычислите матрицу неточностей для каждого класса или образца.
precision_recall_fscore_support(y_true, …) Точность вычислений, отзыв, F-мера и поддержка для каждого класса.
precision_score(y_true, y_pred, *[, labels, …]) Вычислите точность.
recall_score(y_true, y_pred, *[, labels, …]) Вычислите отзыв.
roc_auc_score(y_true, y_score, *[, average, …]) Вычислить площадь под кривой рабочих характеристик приемника (ROC AUC) по оценкам прогнозов.
zero_one_loss(y_true, y_pred, *[, …]) Потеря классификации нулевая единица.

А некоторые работают с двоичными и многозначными (но не мультиклассовыми) проблемами:

В следующих подразделах мы опишем каждую из этих функций, которым будут предшествовать некоторые примечания по общему API и определению показателей.

3.3.2.1. От бинарного до мультиклассового и многозначного

Некоторые метрики по существу определены для задач двоичной классификации (например f1_scoreroc_auc_score). В этих случаях по умолчанию оценивается только положительная метка, предполагая по умолчанию, что положительный класс помечен 1 (хотя это можно настроить с помощью pos_label параметра).

При расширении двоичной метрики на задачи с несколькими классами или метками данные обрабатываются как набор двоичных задач, по одной для каждого класса. Затем есть несколько способов усреднить вычисления двоичных показателей по набору классов, каждый из которых может быть полезен в некотором сценарии. Если возможно, вы должны выбрать одно из них с помощью average параметра.

  • "macro" просто вычисляет среднее значение двоичных показателей, придавая каждому классу одинаковый вес. В задачах, где редкие занятия тем не менее важны, макро-усреднение может быть средством выделения их производительности. С другой стороны, предположение, что все классы одинаково важны, часто неверно, так что макро-усреднение будет чрезмерно подчеркивать обычно низкую производительность для нечастого класса.
  • "weighted" учитывает дисбаланс классов, вычисляя среднее значение двоичных показателей, в которых оценка каждого класса взвешивается по его присутствию в истинной выборке данных.
  • "micro" дает каждой паре выборка-класс равный вклад в общую метрику (за исключением результата взвешивания выборки). Вместо того, чтобы суммировать метрику для каждого класса, это суммирует дивиденды и делители, составляющие метрики для каждого класса, для расчета общего частного. Микро-усреднение может быть предпочтительным в настройках с несколькими ярлыками, включая многоклассовую классификацию, когда класс большинства следует игнорировать.
  • "samples" применяется только к задачам с несколькими ярлыками. Он не вычисляет меру для каждого класса, вместо этого вычисляет метрику по истинным и прогнозируемым классам для каждой выборки в данных оценки и возвращает их ( sample_weight — взвешенное) среднее значение.
  • Выбор average=None вернет массив с оценкой для каждого класса.

В то время как данные мультикласса предоставляются метрике, как двоичные цели, в виде массива меток классов, данные с несколькими метками указываются как индикаторная матрица, в которой ячейка [i, j] имеет значение 1, если у образца i есть метка j, и значение 0 в противном случае.

3.3.2.2. Оценка точности

Функция accuracy_score вычисляет точность , либо фракции ( по умолчанию) или количество (нормализует = False) правильных предсказаний.

В классификации с несколькими ярлыками функция возвращает точность подмножества. Если весь набор предсказанных меток для выборки строго соответствует истинному набору меток, то точность подмножества равна 1,0; в противном случае — 0, 0.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец и $y_i$ — соответствующее истинное значение, тогда доля правильных прогнозов по сравнению с $n_{samples}$ определяется как
$$texttt{accuracy}(y, hat{y}) = frac{1}{n_text{samples}} sum_{i=0}^{n_text{samples}-1} 1(hat{y}_i = y_i)$$

где $1(x)$- индикаторная функция .

>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2

В многопозиционном корпусе с бинарными индикаторами меток:

>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

Пример:

  • См. В разделе Проверка с перестановками значимости классификационной оценки пример использования показателя точности с использованием перестановок набора данных.

3.3.2.3. Рейтинг точности Top-k

Функция top_k_accuracy_score представляет собой обобщение accuracy_score. Разница в том, что прогноз считается правильным, если истинная метка связана с одним из kнаивысших прогнозируемых баллов. accuracy_score является частным случаем k = 1.

Функция охватывает случаи двоичной и многоклассовой классификации, но не случай многозначной классификации.

Если $hat{f}_{i,j}$ прогнозируемый класс для $i$-й образец, соответствующий $j$-й по величине прогнозируемый результат и $y_i$ — соответствующее истинное значение, тогда доля правильных прогнозов по сравнению с $n_{samples}$ определяется как
$$texttt{top-k accuracy}(y, hat{f}) = frac{1}{n_text{samples}} sum_{i=0}^{n_text{samples}-1} sum_{j=1}^{k} 1(hat{f}_{i,j} = y_i)$$

где k допустимое количество предположений и 1(x)- индикаторная функция.

>>> import numpy as np
>>> from sklearn.metrics import top_k_accuracy_score
>>> y_true = np.array([0, 1, 2, 2])
>>> y_score = np.array([[0.5, 0.2, 0.2],
...                     [0.3, 0.4, 0.2],
...                     [0.2, 0.4, 0.3],
...                     [0.7, 0.2, 0.1]])
>>> top_k_accuracy_score(y_true, y_score, k=2)
0.75
>>> # Not normalizing gives the number of "correctly" classified samples
>>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)
3

3.3.2.4. Сбалансированный показатель точности

Функция balanced_accuracy_score вычисляет взвешенную точность , что позволяет избежать завышенных оценок производительности на несбалансированных данных. Это макросреднее количество оценок отзыва по классу или, что то же самое, грубая точность, где каждая выборка взвешивается в соответствии с обратной распространенностью ее истинного класса. Таким образом, для сбалансированных наборов данных оценка равна точности.

В двоичном случае сбалансированная точность равна среднему арифметическому чувствительности (истинно положительный показатель) и специфичности (истинно отрицательный показатель) или площади под кривой ROC с двоичными прогнозами, а не баллами:
$$texttt{balanced-accuracy} = frac{1}{2}left( frac{TP}{TP + FN} + frac{TN}{TN + FP}right )$$

Если классификатор одинаково хорошо работает в любом классе, этот термин сокращается до обычной точности (т. е. Количества правильных прогнозов, деленного на общее количество прогнозов).

Напротив, если обычная точность выше вероятности только потому, что классификатор использует несбалансированный набор тестов, тогда сбалансированная точность, при необходимости, упадет до $frac{1}{n_classes}$.

Оценка варьируется от 0 до 1 или, когда adjusted=True используется, масштабируется до диапазона $frac{1}{1 — n_classes}$ до 1 включительно, с произвольной оценкой 0.

Если yi истинная ценность $i$-й образец, и $w_i$ — соответствующий вес образца, затем мы настраиваем вес образца на:
$$hat{w}_i = frac{w_i}{sum_j{1(y_j = y_i) w_j}}$$

где $1(x)$- индикаторная функция . Учитывая предсказанный $hat{y}_i$ для образца $i$, сбалансированная точность определяется как:
$$texttt{balanced-accuracy}(y, hat{y}, w) = frac{1}{sum{hat{w}_i}} sum_i 1(hat{y}_i = y_i) hat{w}_i$$

С adjusted=True сбалансированной точностью сообщает об относительном увеличении от $texttt{balanced-accuracy}(y, mathbf{0}, w) =frac{1}{n_classes}$. В двоичном случае это также известно как * статистика Юдена * , или информированность .

Примечание

Определение мультикласса здесь кажется наиболее разумным расширением метрики, используемой в бинарной классификации, хотя в литературе нет определенного консенсуса:

  • Наше определение: [Mosley2013] , [Kelleher2015] и [Guyon2015] , где [Guyon2015] принимает скорректированную версию, чтобы гарантировать, что случайные предсказания имеют оценку 0 а точные предсказания имеют оценку 1..
  • Точность балансировки классов, как описано в [Mosley2013] : вычисляется минимум между точностью и отзывом для каждого класса. Затем эти значения усредняются по общему количеству классов для получения сбалансированной точности.
  • Сбалансированная точность, как описано в [Urbanowicz2015] : среднее значение чувствительности и специфичности вычисляется для каждого класса, а затем усредняется по общему количеству классов.

Рекомендации:

  • Гийон 2015 ( 1 , 2 ) И. Гайон, К. Беннет, Г. Коули, Х. Дж. Эскаланте, С. Эскалера, Т. К. Хо, Н. Масиа, Б. Рэй, М. Саид, А. Р. Статников, Э. Вьегас, Дизайн конкурса ChaLearn AutoML Challenge 2015 , IJCNN 2015 г.
  • Мосли 2013 ( 1 , 2 ) Л. Мосли, Сбалансированный подход к проблеме мультиклассового дисбаланса , IJCV 2010.
  • Kelleher2015 Джон. Д. Келлехер, Брайан Мак Нейме, Аойф Д’Арси, Основы машинного обучения для прогнозной аналитики данных: алгоритмы, рабочие примеры и тематические исследования , 2015.
  • Урбанович2015 Urbanowicz RJ, Moore, JH ExSTraCS 2.0: описание и оценка масштабируемой системы классификаторов обучения , Evol. Intel. (2015) 8:89.

3.3.2.5. Каппа Коэна

Функция cohen_kappa_score вычисляет каппа-Коэна статистику. Эта мера предназначена для сравнения меток, сделанных разными людьми-аннотаторами, а не классификатором с достоверной информацией.

Показатель каппа (см. Строку документации) представляет собой число от -1 до 1. Баллы выше 0,8 обычно считаются хорошим совпадением; ноль или ниже означает отсутствие согласия (практически случайные метки).

Оценка Каппа может быть вычислена для двоичных или многоклассовых задач, но не для задач с несколькими метками (за исключением ручного вычисления оценки для каждой метки) и не более чем для двух аннотаторов.

>>> from sklearn.metrics import cohen_kappa_score
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> cohen_kappa_score(y_true, y_pred)
0.4285714285714286

3.3.2.6. Матрица неточностей ¶

Точность функции confusion_matrix вычисляет классификацию пути вычисления матрицы путаницы с каждой строкой , соответствующей истинный классом (Википедия и другие ссылки могут использовать различные конвенции для осей).

По определению запись i,j в матрице неточностей — количество наблюдений в группе i, но предполагается, что он будет в группе j. Вот пример:

>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
       [0, 0, 1],
       [1, 0, 2]])

plot_confusion_matrix может использоваться для визуального представления матрицы неточностей, как показано в примере матрицы неточностей, который создает следующий рисунок:

Параметр normalize позволяет сообщать коэффициенты вместо подсчетов. Матрица путаница может быть нормализована в 3 различными способами: 'pred''true'и 'all' которые будут делить счетчики на сумму каждого столбца, строки или всей матрицы, соответственно.

>>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
>>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
>>> confusion_matrix(y_true, y_pred, normalize='all')
array([[0.25 , 0.125],
       [0.25 , 0.375]])

Для двоичных задач мы можем получить подсчет истинно отрицательных, ложноположительных, ложноотрицательных и истинно положительных результатов следующим образом:

>>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
>>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
>>> tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
>>> tn, fp, fn, tp
(2, 1, 2, 3)

Пример:

  • См. В разделе Матрица неточностей пример использования матрицы неточностей для оценки качества выходных данных классификатора.
  • См. В разделе Распознавание рукописных цифр пример использования матрицы неточностей для классификации рукописных цифр.
  • См. Раздел Классификация текстовых документов с использованием разреженных функций для примера использования матрицы неточностей для классификации текстовых документов.

3.3.2.7. Отчет о классификации

Функция classification_report создает текстовый отчет , показывающий основные показатели классификации. Вот небольшой пример с настраиваемыми target_names и предполагаемыми ярлыками:

>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 0]
>>> y_pred = [0, 0, 2, 1, 0]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
              precision    recall  f1-score   support

     class 0       0.67      1.00      0.80         2
     class 1       0.00      0.00      0.00         1
     class 2       1.00      0.50      0.67         2

    accuracy                           0.60         5
   macro avg       0.56      0.50      0.49         5
weighted avg       0.67      0.60      0.59         5

Пример:

  • См. В разделе Распознавание рукописных цифр пример использования отчета о классификации рукописных цифр.
  • См. Раздел Классификация текстовых документов с использованием разреженных функций, где приведен пример использования отчета о классификации для текстовых документов.
  • См. Раздел « Оценка параметров с использованием поиска по сетке с перекрестной проверкой», где приведен пример использования отчета о классификации для поиска по сетке с вложенной перекрестной проверкой.

3.3.2.8. Потеря Хэмминга

hamming_loss вычисляет среднюю потерю Хэмминга или расстояние Хемминга между двумя наборами образцов.

Если $hat{y}_j$ прогнозируемое значение для $j$-я этикетка данного образца, $y_j$ — соответствующее истинное значение, а $n_{labels}$ — количество классов или меток, то потеря Хэмминга $L_{Hamming}$ между двумя образцами определяется как:
$$L_{Hamming}(y, hat{y}) = frac{1}{n_text{labels}} sum_{j=0}^{n_text{labels} — 1} 1(hat{y}_j not= y_j)$$

где $1(x)$- индикаторная функция .

>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25

В многопозиционном корпусе с бинарными индикаторами меток:

>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75

Примечание

В мультиклассовой классификации потери Хэмминга соответствуют расстоянию Хэмминга между y_true и, y_pred что аналогично функции потерь нуля или единицы . Однако, в то время как потеря нуля или единицы наказывает наборы предсказаний, которые не строго соответствуют истинным наборам, потеря Хэмминга наказывает отдельные метки. Таким образом, потеря Хэмминга, ограниченная сверху потерей нуля или единицы, всегда находится между нулем и единицей включительно; и прогнозирование надлежащего подмножества или надмножества истинных меток даст исключительную потерю Хэмминга от нуля до единицы.

3.3.2.9. Точность, отзыв и F-меры

Интуитивно, точность — это способность классификатора не маркировать как положительный образец, который является отрицательным, а отзыв — это способность классификатора находить все положительные образцы.

F-мера ($F_beta$ а также $F_1$ меры) можно интерпретировать как взвешенное гармоническое среднее значение точности и полноты. А $F_beta$ мера достигает своего лучшего значения на уровне 1 и худшего результата на уровне 0. С $beta = 1$, $F_beta$ а также $F_1$ эквивалентны, а отзыв и точность одинаково важны.

precision_recall_curve вычисляет кривую точности-отзыва на основе наземной метки истинности и оценки, полученной классификатором путем изменения порога принятия решения.

Функция average_precision_score вычисляет среднюю точность (AP) от оценки прогнозирования. Значение от 0 до 1 и выше — лучше. AP определяется как
$$text{AP} = sum_n (R_n — R_{n-1}) P_n$$

где $P_n$ а также $R_n$- точность и отзыв на n-м пороге. При случайных прогнозах AP — это доля положительных образцов.

Ссылки [Manning2008] и [Everingham2010] представляют альтернативные варианты AP, которые интерполируют кривую точности-отзыва. В настоящее время average_precision_score не реализован какой-либо вариант с интерполяцией. Ссылки [Davis2006] и [Flach2015] описывают, почему линейная интерполяция точек на кривой точности-отзыва обеспечивает чрезмерно оптимистичный показатель эффективности классификатора. Эта линейная интерполяция используется при вычислении площади под кривой с помощью правила трапеции в auc.

Несколько функций позволяют анализировать точность, отзыв и оценку F-мер:

average_precision_score(y_true, y_score, *) Вычислить среднюю точность (AP) из оценок прогнозов.
f1_score(y_true, y_pred, *[, labels, …]) Вычислите оценку F1, также известную как сбалансированная оценка F или F-мера.
fbeta_score(y_true, y_pred, *, beta[, …]) Вычислите оценку F-beta.
precision_recall_curve(y_true, probas_pred, *) Вычислите пары точности-отзыва для разных пороговых значений вероятности.
precision_recall_fscore_support(y_true, …) Точность вычислений, отзыв, F-мера и поддержка для каждого класса.
precision_score(y_true, y_pred, *[, labels, …]) Вычислите точность.
recall_score(y_true, y_pred, *[, labels, …]) Вычислите рекол.

Обратите внимание, что функция precision_recall_curve ограничена двоичным регистром. Функция average_precision_score работает только в двоичном формате классификации и MultiLabel индикатора. В функции plot_precision_recall_curve графики точности вспомнить следующим образом .

Примеры:

  • См. Раздел Классификация текстовых документов с использованием разреженных функций для примера использования f1_score для классификации текстовых документов.
  • См. Раздел « Оценка параметров с использованием поиска по сетке с перекрестной проверкой», где приведен пример precision_score и recall_score использование для оценки параметров с помощью поиска по сетке с вложенной перекрестной проверкой.
  • См. В разделе Precision-Recall пример использования precision_recall_curve для оценки качества вывода классификатора.

Рекомендации:

  • [Manning2008] г. CD Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval , 2008.
  • [Everingham2010] М. Эверингем, Л. Ван Гул, CKI Уильямс, Дж. Винн, А. Зиссерман, Задача классов визуальных объектов Pascal (VOC) , IJCV 2010.
  • [Davis2006] Дж. Дэвис, М. Гоадрич, Взаимосвязь между точным воспроизведением и кривыми ROC , ICML 2006.
  • [Flach2015] П.А. Флэч, М. Кулл, Кривые точности-отзыва-выигрыша: PR-анализ выполнен правильно , NIPS 2015.

3.3.2.9.1. Бинарная классификация

В задаче бинарной классификации термины «положительный» и «отрицательный» относятся к предсказанию классификатора, а термины «истинный» и «ложный» относятся к тому, соответствует ли этот прогноз внешнему суждению ( иногда известное как «наблюдение»). Учитывая эти определения, мы можем сформулировать следующую таблицу:

Фактический класс (наблюдение)
Прогнозируемый класс (ожидание) tp (истинно положительный результат) Правильный результат fp (ложное срабатывание) Неожиданный результат
Прогнозируемый класс (ожидание) fn (ложноотрицательный) Отсутствует результат tn (истинно отрицательное) Правильное отсутствие результата

В этом контексте мы можем определить понятия точности, отзыва и F-меры:
$$text{precision} = frac{tp}{tp + fp},$$
$$text{recall} = frac{tp}{tp + fn},$$
$$F_beta = (1 + beta^2) frac{text{precision} times text{recall}}{beta^2 text{precision} + text{recall}}.$$

Вот несколько небольших примеров бинарной классификации:

>>> from sklearn import metrics
>>> y_pred = [0, 1, 0, 0]
>>> y_true = [0, 1, 0, 1]
>>> metrics.precision_score(y_true, y_pred)
1.0
>>> metrics.recall_score(y_true, y_pred)
0.5
>>> metrics.f1_score(y_true, y_pred)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=0.5)
0.83...
>>> metrics.fbeta_score(y_true, y_pred, beta=1)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=2)
0.55...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5)
(array([0.66..., 1.        ]), array([1. , 0.5]), array([0.71..., 0.83...]), array([2, 2]))


>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, threshold = precision_recall_curve(y_true, y_scores)
>>> precision
array([0.66..., 0.5       , 1.        , 1.        ])
>>> recall
array([1. , 0.5, 0.5, 0. ])
>>> threshold
array([0.35, 0.4 , 0.8 ])
>>> average_precision_score(y_true, y_scores)
0.83...

3.3.2.9.2. Мультиклассовая и многозначная классификация

В задаче классификации по нескольким классам и меткам понятия точности, отзыва и F-меры могут применяться к каждой метке независимо. Есть несколько способов , чтобы объединить результаты по этикеткам, указанных в average аргументе к average_precision_score (MultiLabel только) f1_scorefbeta_scoreprecision_recall_fscore_supportprecision_score и recall_score функция, как описано выше . Обратите внимание, что если включены все метки, «микро» -усреднение в настройке мультикласса обеспечит точность, отзыв и $F$ все они идентичны по точности. Также обратите внимание, что «взвешенное» усреднение может дать оценку F, которая не находится между точностью и отзывом.

Чтобы сделать это более явным, рассмотрим следующие обозначения:

  • $y$ набор предсказанных ($sample$, $label$) пары
  • $hat{y}$ набор истинных ($sample$, $label$) пары
  •  $L$ набор лейблов
  • $S$ набор образцов
  • $y_s$ подмножество $y$ с образцом $s$, т.е $y_s := left{(s’, l) in y | s’ = sright}$. 
  • $y_l$ подмножество $y$ с этикеткой $l$
  • по аналогии, $hat{y}_s$ а также $hat{y}_l$ являются подмножествами $hat{y}$
  • $P(A, B) := frac{left| A cap B right|}{left|Aright|}$ для некоторых наборов $A$ и $B$
  • $R(A, B) := frac{left| A cap B right|}{left|Bright|}$ (Условные обозначения различаются в зависимости от обращения $B = emptyset$; эта реализация использует $R(A, B):=0$, и аналогичные для $P$.)
  • $$F_beta(A, B) := left(1 + beta^2right) frac{P(A, B) times R(A, B)}{beta^2 P(A, B) + R(A, B)}$$

Тогда показатели определяются как:

average Точность Отзывать F_beta
«micro» $P(y, hat{y})$ $R(y, hat{y})$ $F_beta(y, hat{y})$
«samples» $frac{1}{left|Sright|} sum_{s in S} P(y_s, hat{y}_s)$ $frac{1}{left|Sright|} sum_{s in S} R(y_s, hat{y}_s)$ $frac{1}{left|Sright|} sum_{s in S} F_beta(y_s, hat{y}_s)$
«macro» $frac{1}{left|Lright|} sum_{l in L} P(y_l, hat{y}_l)$ $frac{1}{left|Lright|} sum_{l in L} R(y_l, hat{y}_l)$ $frac{1}{left|Lright|} sum_{l in L} F_beta(y_l, hat{y}_l)$
«weighted» $frac{1}{sum_{l in L} left|hat{y}lright|} sum{l in L} left|hat{y}_lright| P(y_l, hat{y}_l)$ $frac{1}{sum_{l in L} left|hat{y}lright|} sum{l in L} left|hat{y}_lright| R(y_l, hat{y}_l)$ $frac{1}{sum_{l in L} left|hat{y}lright|} sum{l in L} left|hat{y}lright| Fbeta(y_l, hat{y}_l)$
None $langle P(y_l, hat{y}_l) | l in L rangle$ $langle R(y_l, hat{y}_l) | l in L rangle$ $langle F_beta(y_l, hat{y}_l) | l in L rangle$
>>> from sklearn import metrics
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> metrics.precision_score(y_true, y_pred, average='macro')
0.22...
>>> metrics.recall_score(y_true, y_pred, average='micro')
0.33...
>>> metrics.f1_score(y_true, y_pred, average='weighted')
0.26...
>>> metrics.fbeta_score(y_true, y_pred, average='macro', beta=0.5)
0.23...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5, average=None)
(array([0.66..., 0.        , 0.        ]), array([1., 0., 0.]), array([0.71..., 0.        , 0.        ]), array([2, 2, 2]...))

Для мультиклассовой классификации с «отрицательным классом» можно исключить некоторые метки:

>>> metrics.recall_score(y_true, y_pred, labels=[1, 2], average='micro')
... # excluding 0, no labels were correctly recalled
0.0

Точно так же метки, отсутствующие в выборке данных, могут учитываться при макро-усреднении.

>>> metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average='macro')
0.166...

3.3.2.10. Оценка коэффициента сходства Жаккара

Функция jaccard_score вычисляет среднее значение коэффициентов сходства Jaccard , также называемый индексом Jaccard, между парами множеств меток.

Коэффициент подобия Жаккара i-ые образцы, с набором меток наземной достоверности yi и прогнозируемый набор меток y^i, определяется как
$$J(y_i, hat{y}_i) = frac{|y_i cap hat{y}_i|}{|y_i cup hat{y}_i|}.$$

jaccard_score работает как precision_recall_fscore_support наивно установленная мера, применяемая изначально к бинарным целям, и расширена для применения к множественным меткам и мультиклассам за счет использования average(см. выше ).

В двоичном случае:

>>> import numpy as np
>>> from sklearn.metrics import jaccard_score
>>> y_true = np.array([[0, 1, 1],
...                    [1, 1, 0]])
>>> y_pred = np.array([[1, 1, 1],
...                    [1, 0, 0]])
>>> jaccard_score(y_true[0], y_pred[0])
0.6666...

В многопозиционном корпусе с бинарными индикаторами меток:

>>> jaccard_score(y_true, y_pred, average='samples')
0.5833...
>>> jaccard_score(y_true, y_pred, average='macro')
0.6666...
>>> jaccard_score(y_true, y_pred, average=None)
array([0.5, 0.5, 1. ])

Задачи с несколькими классами преобразуются в двоичную форму и обрабатываются как соответствующая задача с несколькими метками:

>>> y_pred = [0, 2, 1, 2]
>>> y_true = [0, 1, 2, 2]
>>> jaccard_score(y_true, y_pred, average=None)
array([1. , 0. , 0.33...])
>>> jaccard_score(y_true, y_pred, average='macro')
0.44...
>>> jaccard_score(y_true, y_pred, average='micro')
0.33...

3.3.2.11. Петля лосс

Функция hinge_loss вычисляет среднее расстояние между моделью и данными с использованием петля лосс, односторонний показателем , который учитывает только ошибки прогнозирования. (Потери на шарнирах используются в классификаторах максимальной маржи, таких как опорные векторные машины.)

Если метки закодированы с помощью +1 и -1, $y$: истинное значение, а $w$ — прогнозируемые решения на выходе decision_function, тогда потери на шарнирах определяются как:
$$L_text{Hinge}(y, w) = maxleft{1 — wy, 0right} = left|1 — wyright|_+$$

Если имеется более двух ярлыков, hinge_loss используется мультиклассовый вариант, разработанный Crammer & Singer. Вот статья, описывающая это.

Если $y_w$ прогнозируемое решение для истинного лейбла и $y_t$ — это максимум предсказанных решений для всех других меток, где предсказанные решения выводятся функцией принятия решений, тогда потеря шарнира в нескольких классах определяется следующим образом:
$$L_text{Hinge}(y_w, y_t) = maxleft{1 + y_t — y_w, 0right}$$

Вот небольшой пример, демонстрирующий использование hinge_loss функции с классификатором svm в задаче двоичного класса:

>>> from sklearn import svm
>>> from sklearn.metrics import hinge_loss
>>> X = [[0], [1]]
>>> y = [-1, 1]
>>> est = svm.LinearSVC(random_state=0)
>>> est.fit(X, y)
LinearSVC(random_state=0)
>>> pred_decision = est.decision_function([[-2], [3], [0.5]])
>>> pred_decision
array([-2.18...,  2.36...,  0.09...])
>>> hinge_loss([-1, 1, 1], pred_decision)
0.3...

Вот пример, демонстрирующий использование hinge_loss функции с классификатором svm в мультиклассовой задаче:

>>> X = np.array([[0], [1], [2], [3]])
>>> Y = np.array([0, 1, 2, 3])
>>> labels = np.array([0, 1, 2, 3])
>>> est = svm.LinearSVC()
>>> est.fit(X, Y)
LinearSVC()
>>> pred_decision = est.decision_function([[-1], [2], [3]])
>>> y_true = [0, 2, 3]
>>> hinge_loss(y_true, pred_decision, labels)
0.56...

3.3.2.12. Лог лосс

Лог лосс, также называемые потерями логистической регрессии или кросс-энтропийными потерями, определяются на основе оценок вероятности. Он обычно используется в (полиномиальной) логистической регрессии и нейронных сетях, а также в некоторых вариантах максимизации ожидания и может использоваться для оценки выходов вероятности ( predict_proba) классификатора вместо его дискретных прогнозов.

Для двоичной классификации с истинной меткой $y in {0,1}$ и оценка вероятности $p = operatorname{Pr}(y = 1)$, логарифмическая потеря на выборку представляет собой отрицательную логарифмическую вероятность классификатора с истинной меткой:
$$L_{log}(y, p) = -log operatorname{Pr}(y|p) = -(y log (p) + (1 — y) log (1 — p))$$

Это распространяется на случай мультикласса следующим образом. Пусть истинные метки для набора выборок будут закодированы размером 1 из K как двоичная индикаторная матрица $Y$, т.е. $y_{i,k}=1$ если образец $i$ есть ярлык $k$ взят из набора $K$ этикетки. Пусть $P$ — матрица оценок вероятностей, с $p_{i,k} = operatorname{Pr}(y_{i,k} = 1)$. Тогда потеря журнала всего набора равна
$$L_{log}(Y, P) = -log operatorname{Pr}(Y|P) = — frac{1}{N} sum_{i=0}^{N-1} sum_{k=0}^{K-1} y_{i,k} log p_{i,k}$$

Чтобы увидеть, как это обобщает приведенную выше потерю двоичного журнала, обратите внимание, что в двоичном случае $p_{i,0} = 1 — p_{i,1}$ и $y_{i,0} = 1 — y_{i,1}$, поэтому разложив внутреннюю сумму на $y_{i,k} in {0,1}$ дает двоичную потерю журнала.

В log_loss функции вычисляет журнал потеря дана список меток приземной истины и матриц вероятностей, возвращенный оценщик predict_proba методом.

>>> from sklearn.metrics import log_loss
>>> y_true = [0, 0, 1, 1]
>>> y_pred = [[.9, .1], [.8, .2], [.3, .7], [.01, .99]]
>>> log_loss(y_true, y_pred)
0.1738...

Первое [.9, .1] в y_pred означает 90% вероятность того, что первая выборка будет иметь метку 0. Лог лос неотрицательны.

3.3.2.13. Коэффициент корреляции Мэтьюза

Функция matthews_corrcoef вычисляет коэффициент корреляции Матфея (MCC) для двоичных классов. Цитата из Википедии:

«Коэффициент корреляции Мэтьюза используется в машинном обучении как мера качества двоичных (двухклассных) классификаций. Он учитывает истинные и ложные положительные и отрицательные результаты и обычно рассматривается как сбалансированная мера, которую можно использовать, даже если классы очень разных размеров. MCC — это, по сути, значение коэффициента корреляции между -1 и +1. Коэффициент +1 представляет собой идеальное предсказание, 0 — среднее случайное предсказание и -1 — обратное предсказание. Статистика также известна как коэффициент фи ».

В бинарном (двухклассовом) случае $tp$, $tn$, $fp$ а также $fn$ являются соответственно количеством истинно положительных, истинно отрицательных, ложноположительных и ложноотрицательных результатов, MCC определяется как
$$MCC = frac{tp times tn — fp times fn}{sqrt{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}}.$$

В случае мультикласса коэффициент корреляции Мэтьюза может быть определен в терминах confusion_matrix C для Kклассы. Чтобы упростить определение, рассмотрим следующие промежуточные переменные:

  • $t_k=sum_{i}^{K} C_{ik}$ количество занятий k действительно произошло,
  • $p_k=sum_{i}^{K} C_{ki}$ количество занятий k был предсказан,
  • $c=sum_{k}^{K} C_{kk}$ общее количество правильно спрогнозированных образцов,
  • $s=sum_{i}^{K} sum_{j}^{K} C_{ij}$ общее количество образцов.

Тогда мультиклассовый MCC определяется как:
$$MCC = frac{ c times s — sum_{k}^{K} p_k times t_k }{sqrt{ (s^2 — sum_{k}^{K} p_k^2) times (s^2 — sum_{k}^{K} t_k^2) }}$$

Когда имеется более двух меток, значение MCC больше не будет находиться в диапазоне от -1 до +1. Вместо этого минимальное значение будет где-то между -1 и 0 в зависимости от количества и распределения наземных истинных меток. Максимальное значение всегда +1.

Вот небольшой пример, иллюстрирующий использование matthews_corrcoef функции:

>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...

3.3.2.14. Матрица путаницы с несколькими метками

Функция multilabel_confusion_matrix вычисляет класс-накрест ( по умолчанию) или samplewise (samplewise = True) MultiLabel матрицы спутанности для оценки точности классификации. Multilabel_confusion_matrix также обрабатывает данные мультикласса, как если бы они были многоклассовыми, поскольку это преобразование, обычно применяемое для оценки проблем мультикласса с метриками двоичной классификации (такими как точность, отзыв и т. д.).

При вычислении классовой матрицы путаницы с несколькими метками $C$, количество истинных негативов для класса i является $C_{i,0,0}$, ложноотрицательные $C_{i,1,0}$, истинные положительные стороны $C_{i,1,1}$ а ложные срабатывания $C_{i,0,1}$.

Вот пример, демонстрирующий использование multilabel_confusion_matrix функции с вводом многозначной индикаторной матрицы:

>>> import numpy as np
>>> from sklearn.metrics import multilabel_confusion_matrix
>>> y_true = np.array([[1, 0, 1],
...                    [0, 1, 0]])
>>> y_pred = np.array([[1, 0, 0],
...                    [0, 1, 1]])
>>> multilabel_confusion_matrix(y_true, y_pred)
array([[[1, 0],
        [0, 1]],

       [[1, 0],
        [0, 1]],

       [[0, 1],
        [1, 0]]])

Или можно построить матрицу неточностей для каждой метки образца:

>>> multilabel_confusion_matrix(y_true, y_pred, samplewise=True)
array([[[1, 0],
        [1, 1]],

       [[1, 1],
        [0, 1]]])

Вот пример, демонстрирующий использование multilabel_confusion_matrix функции с многоклассовым вводом:

>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> multilabel_confusion_matrix(y_true, y_pred,
...                             labels=["ant", "bird", "cat"])
array([[[3, 1],
        [0, 2]],

       [[5, 0],
        [1, 0]],

       [[2, 1],
        [1, 2]]])

Вот несколько примеров, демонстрирующих использование multilabel_confusion_matrix функции для расчета отзыва (или чувствительности), специфичности, количества выпадений и пропусков для каждого класса в задаче с вводом многозначной индикаторной матрицы.

Расчет отзыва (также называемого истинно положительным коэффициентом или чувствительностью) для каждого класса:

>>> y_true = np.array([[0, 0, 1],
...                    [0, 1, 0],
...                    [1, 1, 0]])
>>> y_pred = np.array([[0, 1, 0],
...                    [0, 0, 1],
...                    [1, 1, 0]])
>>> mcm = multilabel_confusion_matrix(y_true, y_pred)
>>> tn = mcm[:, 0, 0]
>>> tp = mcm[:, 1, 1]
>>> fn = mcm[:, 1, 0]
>>> fp = mcm[:, 0, 1]
>>> tp / (tp + fn)
array([1. , 0.5, 0. ])

Расчет специфичности (также называемой истинно отрицательной ставкой) для каждого класса:

>>> tn / (tn + fp)
array([1. , 0. , 0.5])

Расчет количества выпадений (также называемый частотой ложных срабатываний) для каждого класса:

>>> fp / (fp + tn)
array([0. , 1. , 0.5])

Расчет процента промахов (также называемого ложноотрицательным показателем) для каждого класса:

>>> fn / (fn + tp)
array([0. , 0.5, 1. ])

3.3.2.15. Рабочая характеристика приемника (ROC)

Функция roc_curve вычисляет рабочую характеристическую кривую приемника или кривую ROC . Цитата из Википедии:

«Рабочая характеристика приемника (ROC), или просто кривая ROC, представляет собой графический график, который иллюстрирует работу системы двоичного классификатора при изменении ее порога дискриминации. Он создается путем построения графика доли истинных положительных результатов из положительных (TPR = частота истинных положительных результатов) по сравнению с долей ложных положительных результатов из отрицательных (FPR = частота ложных положительных результатов) при различных настройках пороговых значений. TPR также известен как чувствительность, а FPR — это единица минус специфичность или истинно отрицательный показатель ».

Для этой функции требуется истинное двоичное значение и целевые баллы, которые могут быть либо оценками вероятности положительного класса, либо значениями достоверности, либо двоичными решениями. Вот небольшой пример использования roc_curve функции:

>>> import numpy as np
>>> from sklearn.metrics import roc_curve
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = roc_curve(y, scores, pos_label=2)
>>> fpr
array([0. , 0. , 0.5, 0.5, 1. ])
>>> tpr
array([0. , 0.5, 0.5, 1. , 1. ])
>>> thresholds
array([1.8 , 0.8 , 0.4 , 0.35, 0.1 ])

На этом рисунке показан пример такой кривой ROC:

Функция roc_auc_score вычисляет площадь под операционной приемника характеристика (ROC) кривой, которая также обозначается через ППК или AUROC. При вычислении площади под кривой roc информация о кривой суммируется в одном номере. Для получения дополнительной информации см. Статью в Википедии о AUC.

По сравнению с такими показателями, как точность подмножества, потеря Хэмминга или оценка F1, ROC не требует оптимизации порога для каждой метки.

3.3.2.15.1. Двоичный регистр

В двоичном случае вы можете либо предоставить оценки вероятности, используя classifier.predict_proba() метод, либо значения решения без пороговых значений, заданные classifier.decision_function() методом. В случае предоставления оценок вероятности следует указать вероятность класса с «большей меткой». «Большая метка» соответствует classifier.classes_[1] и, следовательно classifier.predict_proba(X) [:, 1]. Следовательно, параметр y_score имеет размер (n_samples,).

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.metrics import roc_auc_score
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear").fit(X, y)
>>> clf.classes_
array([0, 1])

Мы можем использовать оценки вероятностей, соответствующие clf.classes_[1].

>>> y_score = clf.predict_proba(X)[:, 1]
>>> roc_auc_score(y, y_score)
0.99...

В противном случае мы можем использовать значения решения без порога.

>>> roc_auc_score(y, clf.decision_function(X))
0.99...

3.3.2.15.2. Мультиклассовый кейс

Функция roc_auc_score также может быть использована в нескольких классах классификации . В настоящее время поддерживаются две стратегии усреднения: алгоритм «один против одного» вычисляет среднее попарных оценок AUC ROC, а алгоритм «один против остальных» вычисляет среднее значение оценок ROC AUC для каждого класса по сравнению со всеми другими классами. В обоих случаях предсказанные метки предоставляются в виде массива со значениями от 0 до n_classes, а оценки соответствуют оценкам вероятности того, что выборка принадлежит определенному классу. Алгоритмы OvO и OvR поддерживают равномерное взвешивание ( average='macro') и по распространенности ( average='weighted').

Алгоритм «один против одного» : вычисляет средний AUC всех возможных попарных комбинаций классов. [HT2001] определяет метрику AUC мультикласса, взвешенную равномерно:
$$frac{1}{c(c-1)}sum_{j=1}^{c}sum_{k > j}^c (text{AUC}(j | k) + text{AUC}(k | j))$$

где $c$ количество классов и $text{AUC}(j | k)$ AUC с классом $j$ как положительный класс и класс $k$ как отрицательный класс. В общем, $text{AUC}(j | k) neq text{AUC}(k | j))$ в случае мультикласса. Этот алгоритм используется, установив аргумент ключевого слова , multiclass чтобы 'ovo' и average в 'macro'.

[HT2001] мультиклассируют AUC метрика может быть расширена , чтобы быть взвешены по распространенности:
$$frac{1}{c(c-1)}sum_{j=1}^{c}sum_{k > j}^c p(j cup k)( text{AUC}(j | k) + text{AUC}(k | j))$$

где cколичество классов. Этот алгоритм используется, установив аргумент ключевого слова , multiclass чтобы 'ovo' и average в 'weighted'. В 'weighted' опции возвращает распространенность усредненные , как описано в [FC2009] .

Алгоритм «один против остальных» : вычисляет AUC каждого класса относительно остальных [PD2000] . Алгоритм функционально такой же, как и в случае с несколькими этикетками. Чтобы включить этот алгоритм, установите для аргумента ключевого слова multiclass значение 'ovr'. Как и OvO, OvR поддерживает два типа усреднения: 'macro' [F2006] и 'weighted' [F2001] .

В приложениях , где высокий процент ложных срабатываний не терпимый параметр max_fpr из roc_auc_score может быть использовано , чтобы суммировать кривую ROC до заданного предела.

3.3.2.15.3. Кейс с несколькими метками

В классификации несколько меток, функция roc_auc_score распространяются путем усреднения меток , как выше . В этом случае вы должны указать y_score форму . Таким образом, при использовании оценок вероятности необходимо выбрать вероятность класса с большей меткой для каждого выхода.(n_samples, n_classes)

>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.multioutput import MultiOutputClassifier
>>> X, y = make_multilabel_classification(random_state=0)
>>> inner_clf = LogisticRegression(solver="liblinear", random_state=0)
>>> clf = MultiOutputClassifier(inner_clf).fit(X, y)
>>> y_score = np.transpose([y_pred[:, 1] for y_pred in clf.predict_proba(X)])
>>> roc_auc_score(y, y_score, average=None)
array([0.82..., 0.86..., 0.94..., 0.85... , 0.94...])

И значения решений не требуют такой обработки.

>>> from sklearn.linear_model import RidgeClassifierCV
>>> clf = RidgeClassifierCV().fit(X, y)
>>> y_score = clf.decision_function(X)
>>> roc_auc_score(y, y_score, average=None)
array([0.81..., 0.84... , 0.93..., 0.87..., 0.94...])

Примеры:

  • См. В разделе « Рабочие характеристики приемника» (ROC) пример использования ROC для оценки качества выходных данных классификатора.
  • См. В разделе « Рабочие характеристики приемника» (ROC) с перекрестной проверкой пример использования ROC для оценки качества выходных данных классификатора с помощью перекрестной проверки.
  • См. В разделе Моделирование распределения видов пример использования ROC для моделирования распределения видов.
  • HT2001 ( 1 , 2 ) Рука, DJ и Тилль, RJ, (2001). Простое обобщение области под кривой ROC для задач классификации нескольких классов. Машинное обучение, 45 (2), стр. 171-186.
  • FC2009 Ферри, Сезар и Эрнандес-Оралло, Хосе и Модройу, Р. (2009). Экспериментальное сравнение показателей эффективности для классификации.  Письма о распознавании образов. 30. 27-38.
  • PD2000 Провост Ф., Домингос П. (2000). Хорошо обученные ПЭТ: Улучшение деревьев оценки вероятностей (Раздел 6.2), Рабочий документ CeDER № IS-00-04, Школа бизнеса Стерна, Нью-Йоркский университет.
  • F2006 Фосетт, Т., 2006. Введение в анализ ROC.  Письма о распознавании образов, 27 (8), стр. 861-874.
  • F2001Фосетт, Т., 2001. Использование наборов правил для максимизации производительности ROC в интеллектуальном анализе данных, 2001. Труды Международной конференции IEEE, стр. 131-138.

3.3.2.16. Компромисс при обнаружении ошибок (DET)

Функция det_curve вычисляет кривую компенсации ошибок обнаружения (DET) [WikipediaDET2017] . Цитата из Википедии:

«График компромисса ошибок обнаружения (DET) — это графическая диаграмма частоты ошибок для систем двоичной классификации, отображающая частоту ложных отклонений по сравнению с частотой ложных приемов. Оси x и y масштабируются нелинейно по их стандартным нормальным отклонениям (или просто с помощью логарифмического преобразования), в результате получаются более линейные кривые компромисса, чем кривые ROC, и большая часть области изображения используется для выделения важных различий в критический рабочий регион ».

Кривые DET представляют собой вариацию кривых рабочих характеристик приемника (ROC), где ложная отрицательная скорость нанесена на ось y вместо истинной положительной скорости. Кривые DET обычно строятся в масштабе нормального отклонения путем преобразования $phi^{-1}$ (с участием $phi$ — кумулятивная функция распределения). Полученные кривые производительности явно визуализируют компромисс типов ошибок для заданных алгоритмов классификации. См. [Martin1997], где приведены примеры и мотивация.

На этом рисунке сравниваются кривые ROC и DET двух примеров классификаторов для одной и той же задачи классификации:

Характеристики:

  • Кривые DET образуют линейную кривую по шкале нормального отклонения, если оценки обнаружения нормально (или близки к нормальному) распределены. В [Navratil2007] было показано, что обратное не обязательно верно, и даже более общие распределения могут давать линейные кривые DET.
  • При обычном преобразовании масштаба с отклонением точки распределяются таким образом, что занимает сравнительно большее пространство графика. Следовательно, кривые с аналогичными характеристиками классификации легче различить на графике DET.
  • С ложноотрицательной скоростью, «обратной» истинной положительной скорости, точкой совершенства для кривых DET является начало координат (в отличие от верхнего левого угла для кривых ROC).

Приложения и ограничения:

Кривые DET интуитивно понятны для чтения и, следовательно, позволяют быстро визуально оценить работу классификатора. Кроме того, кривые DET можно использовать для анализа пороговых значений и выбора рабочей точки. Это особенно полезно, если требуется сравнение типов ошибок.

С другой стороны, кривые DET не представляют свою метрику в виде единого числа. Поэтому для автоматической оценки или сравнения с другими задачами классификации лучше подходят такие показатели, как производная площадь под кривой ROC.

Примеры:

  • См. Кривую компенсации ошибок обнаружения (DET) для примера сравнения кривых рабочих характеристик приемника (ROC) и кривых компенсации ошибок обнаружения (DET).

Рекомендации:

  • ВикипедияDET2017 Авторы Википедии. Компромисс ошибки обнаружения. Википедия, свободная энциклопедия. 4 сентября 2017 г., 23:33 UTC. Доступно по адресу: https://en.wikipedia.org/w/index.php?title=Detection_error_tradeoff&oldid=798982054 . По состоянию на 19 февраля 2018 г.
  • Мартин 1997 А. Мартин, Дж. Доддингтон, Т. Камм, М. Ордовски и М. Пшибоцки, Кривая DET в оценке эффективности задач обнаружения , NIST 1997.
  • Навратил2007 Дж. Наврактил и Д. Клусачек, « О линейных DET », 2007 г. Международная конференция IEEE по акустике, обработке речи и сигналов — ICASSP ’07, Гонолулу, Гавайи, 2007 г., стр. IV-229-IV-232.

3.3.2.17. Нулевой проигрыш

Функция zero_one_loss вычисляет сумму или среднее значение потери 0-1 классификации ($L_{0−1}$) над $n_{samples}$. По умолчанию функция нормализуется по выборке. Чтобы получить сумму $L_{0−1}$, установите normalize значение False.

В классификации по zero_one_loss нескольким меткам подмножество оценивается как единое целое, если его метки строго соответствуют прогнозам, и как ноль, если есть какие-либо ошибки. По умолчанию функция возвращает процент неправильно спрогнозированных подмножеств. Чтобы вместо этого получить количество таких подмножеств, установите normalize значение False

Если $hat{y}_i$ прогнозируемое значение $i$-й образец и $y_i$ — соответствующее истинное значение, тогда потеря 0-1 $L_{0−1}$ определяется как:
$$L_{0-1}(y_i, hat{y}_i) = 1(hat{y}_i not= y_i)$$

где $1(x)$- индикаторная функция.

>>> from sklearn.metrics import zero_one_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize=False)
1

В случае с несколькими метками с двоичными индикаторами меток, где первый набор меток [0,1] содержит ошибку:

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)),  normalize=False)
1

Пример:

  • См. В разделе « Рекурсивное исключение функции с перекрестной проверкой» пример использования нулевой потери для выполнения рекурсивного исключения функции с перекрестной проверкой.

3.3.2.18. Потеря очков по Брайеру

Функция brier_score_loss вычисляет оценку Шиповник для бинарных классов [Brier1950] . Цитата из Википедии:

«Оценка Бриера — это правильная функция оценки, которая измеряет точность вероятностных прогнозов. Это применимо к задачам, в которых прогнозы должны назначать вероятности набору взаимоисключающих дискретных результатов ».

Эта функция возвращает среднеквадратичную ошибку фактического результата. y∈{0,1} и прогнозируемая оценка вероятности $p=Pr⁡(y=1)$ ( pred_proba ) как выведено :
$$BS = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}} — 1}(y_i — p_i)^2$$

Потеря по шкале Бриера также составляет от 0 до 1, и чем ниже значение (средняя квадратичная разница меньше), тем точнее прогноз.

Вот небольшой пример использования этой функции:

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss
>>> y_true = np.array([0, 1, 1, 0])
>>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])
>>> y_prob = np.array([0.1, 0.9, 0.8, 0.4])
>>> y_pred = np.array([0, 1, 1, 0])
>>> brier_score_loss(y_true, y_prob)
0.055
>>> brier_score_loss(y_true, 1 - y_prob, pos_label=0)
0.055
>>> brier_score_loss(y_true_categorical, y_prob, pos_label="ham")
0.055
>>> brier_score_loss(y_true, y_prob > 0.5)
0.0

Балл Бриера можно использовать для оценки того, насколько хорошо откалиброван классификатор. Однако меньшая потеря по шкале Бриера не всегда означает лучшую калибровку. Это связано с тем, что по аналогии с разложением среднеквадратичной ошибки на дисперсию смещения потеря оценки по Бриеру может быть разложена как сумма потерь калибровки и потерь при уточнении [Bella2012]. Потеря калибровки определяется как среднеквадратическое отклонение от эмпирических вероятностей, полученных из наклона ROC-сегментов. Потери при переработке можно определить как ожидаемые оптимальные потери, измеренные по площади под кривой оптимальных затрат. Потери при уточнении могут изменяться независимо от потерь при калибровке, таким образом, более низкие потери по шкале Бриера не обязательно означают более качественную калибровку модели. «Только когда потеря точности остается неизменной, более низкая потеря по шкале Бриера всегда означает лучшую калибровку» [Bella2012] , [Flach2008] .

Пример:

  • См. Раздел « Калибровка вероятности классификаторов», где приведен пример использования потерь по шкале Бриера для выполнения калибровки вероятности классификаторов.

Рекомендации:

  • Brier1950 Дж. Брайер, Проверка прогнозов, выраженных в терминах вероятности , Ежемесячный обзор погоды 78.1 (1950)
  • Bella2012 ( 1 , 2 ) Белла, Ферри, Эрнандес-Оралло и Рамирес-Кинтана «Калибровка моделей машинного обучения» в Хосров-Пур, М. «Машинное обучение: концепции, методологии, инструменты и приложения». Херши, Пенсильвания: Справочник по информационным наукам (2012).
  • Flach2008 Флак, Питер и Эдсон Мацубара. «О классификации, ранжировании и оценке вероятности».  Дагштульский семинар. Schloss Dagstuhl-Leibniz-Zentrum от Informatik (2008).

3.3.3. Метрики ранжирования с несколькими ярлыками

В многоэлементном обучении с каждой выборкой может быть связано любое количество меток истинности. Цель состоит в том, чтобы дать высокие оценки и более высокий рейтинг наземным лейблам.

3.3.3.1. Ошибка покрытия

Функция coverage_error вычисляет среднее число меток , которые должны быть включены в окончательном предсказании таким образом, что все истинные метки предсказанные. Это полезно, если вы хотите знать, сколько меток с наивысшими баллами вам нужно предсказать в среднем, не пропуская ни одной истинной. Таким образом, наилучшее значение этого показателя — среднее количество истинных ярлыков.

Примечание

Оценка нашей реализации на 1 больше, чем оценка, приведенная в Tsoumakas et al., 2010. Это расширяет ее для обработки вырожденного случая, когда экземпляр имеет 0 истинных меток.

Формально, учитывая двоичную индикаторную матрицу наземных меток истинности $y in left{0, 1right}^{n_text{samples} times n_text{labels}}$ и оценка, связанная с каждой меткой $hat{f} in mathbb{R}^{n_text{samples} times n_text{labels}}$ покрытие определяется как
$$coverage(y, hat{f}) = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}} — 1} max_{j:y_{ij} = 1} text{rank}_{ij}$$

с участием $text{rank}{ij} = left|left{k: hat{f}{ik} geq hat{f}_{ij} right}right|$. Учитывая определение ранга, связи y_scores разрываются путем присвоения максимального ранга, который был бы присвоен всем связанным значениям.

Вот небольшой пример использования этой функции:

>>> import numpy as np
>>> from sklearn.metrics import coverage_error
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> coverage_error(y_true, y_score)
2.5

3.3.3.2. Средняя точность ранжирования метки

В label_ranking_average_precision_score функции реализует маркировать ранжирование средней точности (LRAP). Этот показатель связан с average_precision_score функцией, но основан на понятии ранжирования меток, а не на точности и отзыве.

Средняя точность ранжирования меток (LRAP) усредняет по выборкам ответ на следующий вопрос: для каждой основной метки истинности какая доля меток с более высоким рейтингом была истинной? Этот показатель эффективности будет выше, если вы сможете лучше ранжировать метки, связанные с каждым образцом. Полученная оценка всегда строго больше 0, а наилучшее значение равно 1. Если имеется ровно одна релевантная метка для каждой выборки, средняя точность ранжирования меток эквивалентна среднему обратному рангу .

Формально, учитывая двоичную индикаторную матрицу наземных меток истинности $y in left{0, 1right}^{n_text{samples} times n_text{labels}}$ и оценка, связанная с каждой меткой $hat{f} in mathbb{R}^{n_text{samples} times n_text{labels}}$, средняя точность определяется как
$$LRAP(y, hat{f}) = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}} — 1} frac{1}{||y_i||0} sum{j:y_{ij} = 1} frac{|mathcal{L}{ij}|}{text{rank}{ij}}$$

где $mathcal{L}{ij} = left{k: y{ik} = 1, hat{f}{ik} geq hat{f}{ij} right}$, $text{rank}{ij} = left|left{k: hat{f}{ik} geq hat{f}_{ij} right}right|$, |cdot| вычисляет мощность набора (т. е. количество элементов в наборе), и $||cdot||_0$ это $ell_0$ «Norm» (который вычисляет количество ненулевых элементов в векторе).

Вот небольшой пример использования этой функции:

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score)
0.416...

3.3.3.3. Потеря рейтинга

Функция label_ranking_loss вычисляет ранжирование потери , которые в среднем более образцы числа пар меток, которые неправильно упорядочены, т.е. истинные метки имеют более низкую оценку , чем ложные метки, взвешенную по обратной величине числа упорядоченных пар ложных и истинных меток. Наименьшая возможная потеря рейтинга равна нулю.

Формально, учитывая двоичную индикаторную матрицу наземных меток истинности $y in left{0, 1right}^{n_text{samples} times n_text{labels}}$ и оценка, связанная с каждой меткой $hat{f} in mathbb{R}^{n_text{samples} times n_text{labels}}$ потеря ранжирования определяется как
$$ranking_loss(y, hat{f}) = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}} — 1} frac{1}{||y_i||0(ntext{labels} — ||y_i||0)} left|left{(k, l): hat{f}{ik} leq hat{f}{il}, y{ik} = 1, y_{il} = 0 right}right|$$

где $|cdot|$ вычисляет мощность набора (т. е. количество элементов в наборе) и $||cdot||_0$ это $ell_0$ «Norm» (который вычисляет количество ненулевых элементов в векторе).

Вот небольшой пример использования этой функции:

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_loss
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_loss(y_true, y_score)
0.75...
>>> # With the following prediction, we have perfect and minimal loss
>>> y_score = np.array([[1.0, 0.1, 0.2], [0.1, 0.2, 0.9]])
>>> label_ranking_loss(y_true, y_score)
0.0

Рекомендации:

  • Цумакас, Г., Катакис, И., и Влахавас, И. (2010). Майнинг данных с несколькими метками. В справочнике по интеллектуальному анализу данных и открытию знаний (стр. 667-685). Springer США.

3.3.3.4. Нормализованная дисконтированная совокупная прибыль

Дисконтированный совокупный выигрыш (DCG) и Нормализованный дисконтированный совокупный выигрыш (NDCG) — это показатели ранжирования, реализованные в dcg_score и ndcg_score; они сравнивают предсказанный порядок с оценками достоверности, такими как релевантность ответов на запрос.

Со страницы Википедии о дисконтированной совокупной прибыли:

«Дисконтированная совокупная прибыль (DCG) — это показатель качества ранжирования. При поиске информации он часто используется для измерения эффективности алгоритмов поисковой системы или связанных приложений. Используя шкалу градуированной релевантности документов в наборе результатов поисковой системы, DCG измеряет полезность или выгоду документа на основе его позиции в списке результатов. Прирост накапливается сверху вниз в списке результатов, причем прирост каждого результата дисконтируется на более низких уровнях »

DCG упорядочивает истинные цели (например, релевантность ответов на запросы) в предсказанном порядке, затем умножает их на логарифмическое убывание и суммирует результат. Сумма может быть усечена после первогоKрезультатов, и в этом случае мы называем это DCG @ K. NDCG или NDCG @ $K$ — это DCG, деленная на DCG, полученную с помощью точного прогноза, так что оно всегда находится между 0 и 1. Обычно NDCG предпочтительнее DCG.

По сравнению с потерей ранжирования, NDCG может принимать во внимание оценки релевантности, а не ранжирование на основе фактов. Таким образом, если основополагающая информация состоит только из упорядочивания, предпочтение следует отдавать потере ранжирования; если основополагающая информация состоит из фактических оценок полезности (например, 0 для нерелевантного, 1 для релевантного, 2 для очень актуального), можно использовать NDCG.

Для одного образца, учитывая вектор непрерывных значений истинности для каждой цели $y in R^M$, где $M$ это количество выходов, а прогноз $hat{y}$, что индуцирует функцию ранжирования $f$, оценка DCG составляет
$$sum_{r=1}^{min(K, M)}frac{y_{f(r)}}{log(1 + r)}$$

а оценка NDCG — это оценка DCG, деленная на оценку DCG, полученную для $y$.

Рекомендации:

  • Запись в Википедии о дисконтированной совокупной прибыли
  • Джарвелин, К., и Кекалайнен, Дж. (2002). Оценка IR методов на основе накопленного коэффициента усиления. Транзакции ACM в информационных системах (TOIS), 20 (4), 422-446.
  • Ван, Ю., Ван, Л., Ли, Ю., Хе, Д., Чен, В., и Лю, Т. Ю. (2013, май). Теоретический анализ показателей рейтинга NDCG. В материалах 26-й ежегодной конференции по теории обучения (COLT 2013)
  • МакШерри Ф. и Наджорк М. (2008, март). Эффективность вычислений при поиске информации измеряется эффективно при наличии связанных оценок. В Европейской конференции по поиску информации (стр. 414-421). Шпрингер, Берлин, Гейдельберг.

3.3.4. Метрики регрессии

В sklearn.metrics модуле реализованы несколько функций потерь, оценки и полезности для измерения эффективности регрессии. Некоторые из них были расширены , чтобы обработать случай multioutput: mean_squared_error, mean_absolute_error, explained_variance_score и r2_score

У этих функций есть multioutput аргумент ключевого слова, который определяет способ усреднения результатов или проигрышей для каждой отдельной цели. По умолчанию используется значение 'uniform_average', которое определяет равномерно взвешенное среднее значение по выходным данным. Если передается ndarrayформа shape (n_outputs,), то ее записи интерпретируются как веса, и возвращается соответствующее средневзвешенное значение. Если multioutputесть 'raw_values'указан, то все неизменные индивидуальные баллы или потери будут возвращены в массиве формы (n_outputs,).

r2_score и  explained_variance_score принять дополнительное значение 'variance_weighted' для multioutput параметра. Эта опция приводит к взвешиванию каждой индивидуальной оценки по дисперсии соответствующей целевой переменной. Этот параметр определяет количественно зафиксированную немасштабированную дисперсию на глобальном уровне. Если целевые переменные имеют разную шкалу, то этот балл придает большее значение хорошему объяснению переменных с более высокой дисперсией. multioutput='variance_weighted' — значение по умолчанию r2_score для обратной совместимости. В будущем это будет изменено на uniform_average.

3.3.4.1. Оценка объясненной дисперсии

explained_variance_score вычисляет объясненной дисперсии регрессии балл.

Если $hat{y}$ — расчетный целевой объем производства, y соответствующий (правильный) целевой результат, и $Var$- Дисперсия , квадрат стандартного отклонения, то объясненная дисперсия оценивается следующим образом:
$$explained_{}variance(y, hat{y}) = 1 — frac{Var{ y — hat{y}}}{Var{y}}$$

Наилучшая возможная оценка — 1.0, более низкие значения — хуже.

Вот небольшой пример использования explained_variance_score функции:

>>> from sklearn.metrics import explained_variance_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> explained_variance_score(y_true, y_pred)
0.957...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='raw_values')
array([0.967..., 1.        ])
>>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.990...

3.3.4.2. Максимальная ошибка

Функция max_error вычисляет максимальную остаточную ошибку , показатель , который фиксирует худшую ошибку случае между предсказанным значением и истинным значением. В идеально подобранной модели регрессии с одним выходом он max_error будет находиться 0 в обучающем наборе, и хотя это маловероятно в реальном мире, этот показатель показывает степень ошибки, которую имела модель при подборе.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец, и $y_i$ — соответствующее истинное значение, тогда максимальная ошибка определяется как
$$text{Max Error}(y, hat{y}) = max(| y_i — hat{y}_i |)$$

Вот небольшой пример использования функции max_error:

>>> from sklearn.metrics import max_error
>>> y_true = [3, 2, 7, 1]
>>> y_pred = [9, 2, 7, 1]
>>> max_error(y_true, y_pred)
6

max_error не поддерживает multioutput.

3.3.4.3. Средняя абсолютная ошибка

Функция mean_absolute_error вычисляет среднюю абсолютную погрешность , риск метрики , соответствующей ожидаемого значение абсолютной потери или ошибок $l1$-нормальная потеря.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец, и $y_i$ — соответствующее истинное значение, тогда средняя абсолютная ошибка (MAE), оцененная за $n_{samples}$ определяется как
$$text{MAE}(y, hat{y}) = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}}-1} left| y_i — hat{y}_i right|.$$

Вот небольшой пример использования функции mean_absolute_error:

>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...

3.3.4.4. Среднеквадратичная ошибка

Функция mean_squared_error вычисляет среднюю квадратическую ошибку , риск метрики , соответствующую ожидаемое значение квадрата (квадратичной) ошибки или потерю.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец, и $y_i$ — соответствующее истинное значение, тогда среднеквадратичная ошибка (MSE), оцененная на $n_{samples}$ определяется как
$$text{MSE}(y, hat{y}) = frac{1}{n_text{samples}} sum_{i=0}^{n_text{samples} — 1} (y_i — hat{y}_i)^2.$$

Вот небольшой пример использования функции mean_squared_error:

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.7083...

Примеры:

  • См. В разделе Регрессия повышения градиента пример использования среднеквадратичной ошибки для оценки регрессии повышения градиента.

3.3.4.5. Среднеквадратичная логарифмическая ошибка

Функция mean_squared_log_error вычисляет риск метрики , соответствующий ожидаемому значению квадрата логарифмической (квадратичной) ошибки или потери.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец, и $y_i$ — соответствующее истинное значение, тогда среднеквадратичная логарифмическая ошибка (MSLE), оцененная на $n_{samples}$ определяется как
$$text{MSLE}(y, hat{y}) = frac{1}{n_text{samples}} sum_{i=0}^{n_text{samples} — 1} (log_e (1 + y_i) — log_e (1 + hat{y}_i) )^2.$$

Где $log_e (x)$ означает натуральный логарифм $x$. Эту метрику лучше всего использовать, когда цели имеют экспоненциальный рост, например, численность населения, средние продажи товара в течение нескольких лет и т. Д. Обратите внимание, что эта метрика штрафует за заниженную оценку больше, чем за завышенную оценку.

Вот небольшой пример использования функции mean_squared_log_error:

>>> from sklearn.metrics import mean_squared_log_error
>>> y_true = [3, 5, 2.5, 7]
>>> y_pred = [2.5, 5, 4, 8]
>>> mean_squared_log_error(y_true, y_pred)
0.039...
>>> y_true = [[0.5, 1], [1, 2], [7, 6]]
>>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]]
>>> mean_squared_log_error(y_true, y_pred)
0.044...

3.3.4.6. Средняя абсолютная ошибка в процентах

mean_absolute_percentage_error (MAPE), также известный как среднее абсолютное отклонение в процентах (МАПД), является метрикой для оценки проблем регрессии. Идея этой метрики — быть чувствительной к относительным ошибкам. Например, он не изменяется глобальным масштабированием целевой переменной.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец и $y_i$ — соответствующее истинное значение, тогда средняя абсолютная процентная ошибка (MAPE), оцененная за $n_{samples}$ определяется как
$$text{MAPE}(y, hat{y}) = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}}-1} frac{{}left| y_i — hat{y}_i right|}{max(epsilon, left| y_i right|)}$$

где $epsilon$ — произвольное маленькое, но строго положительное число, чтобы избежать неопределенных результатов, когда y равно нулю.

В функции mean_absolute_percentage_error опоры multioutput.

Вот небольшой пример использования функции mean_absolute_percentage_error:

>>> from sklearn.metrics import mean_absolute_percentage_error
>>> y_true = [1, 10, 1e6]
>>> y_pred = [0.9, 15, 1.2e6]
>>> mean_absolute_percentage_error(y_true, y_pred)
0.2666...

В приведенном выше примере, если бы мы использовали mean_absolute_error, он бы проигнорировал небольшие значения магнитуды и только отразил бы ошибку в предсказании максимального значения магнитуды. Но эта проблема решена в случае MAPE, потому что он вычисляет относительную процентную ошибку по отношению к фактическому выходу.

3.3.4.7. Средняя абсолютная ошибка

Это median_absolute_error особенно интересно, потому что оно устойчиво к выбросам. Убыток рассчитывается путем взятия медианы всех абсолютных различий между целью и прогнозом.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец и $y_i$ — соответствующее истинное значение, тогда средняя абсолютная ошибка (MedAE), оцененная на $n_{samples}$ определяется как
$$text{MedAE}(y, hat{y}) = text{median}(mid y_1 — hat{y}_1 mid, ldots, mid y_n — hat{y}_n mid).$$

median_absolute_error Не поддерживает multioutput.

Вот небольшой пример использования функции median_absolute_error:

>>> from sklearn.metrics import median_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> median_absolute_error(y_true, y_pred)
0.5

3.3.4.8. R² балл, коэффициент детерминации

Функция r2_score вычисляет коэффициент детерминации , как правило , обозначенный как R².

Он представляет собой долю дисперсии (y), которая была объяснена независимыми переменными в модели. Он обеспечивает показатель степени соответствия и, следовательно, меру того, насколько хорошо невидимые выборки могут быть предсказаны моделью через долю объясненной дисперсии.

Поскольку такая дисперсия зависит от набора данных, R² не может быть значимо сопоставимым для разных наборов данных. Наилучшая возможная оценка — 1,0, и она может быть отрицательной (потому что модель может быть произвольно хуже). Постоянная модель, которая всегда предсказывает ожидаемое значение y, игнорируя входные характеристики, получит оценку R² 0,0.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец и $y_i$ соответствующее истинное значение для общего n образцов, расчетный R² определяется как:
$$R^2(y, hat{y}) = 1 — frac{sum_{i=1}^{n} (y_i — hat{y}i)^2}{sum{i=1}^{n} (y_i — bar{y})^2}$$

где $bar{y} = frac{1}{n} sum_{i=1}^{n} y_i$ и $sum_{i=1}^{n} (y_i — hat{y}i)^2 = sum{i=1}^{n} epsilon_i^2$.

Обратите внимание, что r2_score вычисляется нескорректированное R² без поправки на смещение выборочной дисперсии y.

Вот небольшой пример использования функции r2_score:

>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')
0.938...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='uniform_average')
0.936...
>>> r2_score(y_true, y_pred, multioutput='raw_values')
array([0.965..., 0.908...])
>>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.925...

Пример:

  • См. В разделе « Лассо и эластичная сеть для разреженных сигналов» приведен пример использования показателя R² для оценки лассо и эластичной сети для разреженных сигналов.

3.3.4.9. Средние отклонения Пуассона, Гаммы и Твиди

Функция mean_tweedie_deviance вычисляет среднюю ошибку Deviance Tweedie с powerпараметром ($p$). Это показатель, который выявляет прогнозируемые ожидаемые значения целей регрессии.

Существуют следующие особые случаи:

  • когда power=0 это эквивалентно mean_squared_error.
  • когда power=1 это эквивалентно mean_poisson_deviance.
  • когда power=2 это эквивалентно mean_gamma_deviance.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец и $y_i$ — соответствующее истинное значение, тогда средняя ошибка отклонения Твиди (D) для мощности $p$, оценивается более $n_{samples}$ определяется как

Отклонение от твиди — однородная функция степени 2-power. Таким образом, гамма-распределение power=2 означает, что одновременно масштабируется y_true и y_pred не влияет на отклонение. Для распределения Пуассона power=1 отклонение масштабируется линейно, а для нормального распределения ( power=0) — квадратично. В общем, чем выше, powerтем меньше веса придается крайним отклонениям между истинными и прогнозируемыми целевыми значениями.

Например, давайте сравним два прогноза 1.0 и 100, которые оба составляют 50% от их соответствующего истинного значения.

Среднеквадратичная ошибка ( power=0) очень чувствительна к разнице прогнозов второй точки:

>>> from sklearn.metrics import mean_tweedie_deviance
>>> mean_tweedie_deviance([1.0], [1.5], power=0)
0.25
>>> mean_tweedie_deviance([100.], [150.], power=0)
2500.0

Если увеличить powerдо 1:

>>> mean_tweedie_deviance([1.0], [1.5], power=1)
0.18...
>>> mean_tweedie_deviance([100.], [150.], power=1)
18.9...

разница в ошибках уменьшается. Наконец, установив power=2:

>>> mean_tweedie_deviance([1.0], [1.5], power=2)
0.14...
>>> mean_tweedie_deviance([100.], [150.], power=2)
0.14...

мы получим идентичные ошибки. Таким образом, отклонение when power=2чувствительно только к относительным ошибкам.

3.3.5. Метрики кластеризации

В модуле sklearn.metrics реализованы несколько функций потерь, оценки и полезности. Для получения дополнительной информации см. Раздел « Оценка производительности кластеризации » для кластеризации экземпляров и « Оценка бикластеризации» для бикластеризации.

3.3.6. Фиктивные оценки

При обучении с учителем простая проверка работоспособности состоит из сравнения своей оценки с простыми практическими правилами. DummyClassifier реализует несколько таких простых стратегий классификации:

  • stratified генерирует случайные прогнозы, соблюдая распределение классов обучающего набора.
  • most_frequent всегда предсказывает наиболее частую метку в обучающем наборе.
  • prior всегда предсказывает класс, который максимизирует предыдущий класс (как most_frequent) и predict_proba возвращает предыдущий класс.
  • uniform генерирует предсказания равномерно в случайном порядке.
  • constant всегда предсказывает постоянную метку, предоставленную пользователем. Основная мотивация этого метода — оценка F1, когда положительный класс находится в меньшинстве.

Обратите внимание, что со всеми этими стратегиями predict метод полностью игнорирует входные данные!

Для иллюстрации DummyClassifier сначала создадим несбалансированный набор данных:

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_iris(return_X_y=True)
>>> y[y != 1] = -1
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

Далее сравним точность SVC и most_frequent:

>>> from sklearn.dummy import DummyClassifier
>>> from sklearn.svm import SVC
>>> clf = SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.63...
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf.fit(X_train, y_train)
DummyClassifier(random_state=0, strategy='most_frequent')
>>> clf.score(X_test, y_test)
0.57...

Мы видим, что SVC это не намного лучше, чем фиктивный классификатор. Теперь давайте изменим ядро:

>>> clf = SVC(kernel='rbf', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.94...

Мы видим, что точность увеличена почти до 100%. Для лучшей оценки точности рекомендуется стратегия перекрестной проверки, если она не требует слишком больших затрат на ЦП. Для получения дополнительной информации см. Раздел « Перекрестная проверка: оценка производительности оценщика ». Более того, если вы хотите оптимизировать пространство параметров, настоятельно рекомендуется использовать соответствующую методологию; подробности см. в разделе « Настройка гиперпараметров оценщика ».

В более общем плане, когда точность классификатора слишком близка к случайной, это, вероятно, означает, что что-то пошло не так: функции бесполезны, гиперпараметр настроен неправильно, классификатор страдает от дисбаланса классов и т. Д.

DummyRegressor также реализует четыре простых правила регрессии:

  • mean всегда предсказывает среднее значение тренировочных целей.
  • median всегда предсказывает медианное значение тренировочных целей.
  • quantile всегда предсказывает предоставленный пользователем квантиль учебных целей.
  • constant всегда предсказывает постоянное значение, предоставляемое пользователем.

Во всех этих стратегиях predict метод полностью игнорирует входные данные.

Anomaly detection

Patrick Schneider, Fatos Xhafa, in Anomaly Detection and Complex Event Processing over IoT Data Streams, 2022

Mean Absolute Error (MAE)

Mean absolute error (MAE) is a popular metric because, as with Root mean squared error (RMSE), see next subsection, the error value units match the predicted target value units. Unlike RMSE, the changes in MAE are linear and therefore intuitive. MSE and RMSE penalize larger errors more, inflating or increasing the mean error value due to the square of the error value. In MAE, different errors are not weighted more or less, but the scores increase linearly with the increase in errors. The MAE score is measured as the average of the absolute error values. The Absolute is a mathematical function that makes a number positive. Therefore, the difference between an expected value and a predicted value can be positive or negative and will necessarily be positive when calculating the MAE.

The MAE value can be calculated as follows:

(3.3)MAE=1n∑i=1n|y1−yiˆ|2

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128238189000134

Characterization of forecast errors and benchmarking of renewable energy forecasts

Stefano Alessandrini, Simone Sperati, in Renewable Energy Forecasting, 2017

9.2.2.6 Golagh test case (Fig. 9.6)

Figure 9.6. Normalized mean absolute error (NMAE) for Golagh test case by Kariniotakis et al. (2004).

The NMAE values for the Golagh wind farm are less dependent on the forecast horizon than for the other wind farms. The range of variation of NMAE for 24 h horizon is 10%–16%, being comparable for longer forecast horizons.

The main evident conclusion coming out from these test cases is the strong dependence of predictability upon the terrain complexity. The performance of the prediction models is related to the complexity of the terrain. Fig. 9.7 represents the average value of the NMAE for the 12 h forecast horizon as a function of RIX index, for each test case.

Figure 9.7. Average normalized mean absolute error (NMAE) for 12 h forecast horizon versus RIX at each test case. Qualitative comparison over six wind farms: Tunø Knob (TUN), Klim (KLI), Wusterhusen (WUS), Sotavento (SOT), Golagh (GOL), Alaiz (ALA) by Kariniotakis et al. (2004).

Higher RIX values correspond to higher values of NMAE. It is also demonstrated that offshore wind farms (Tunø Knob) do not necessarily guarantee a better predictability than wind farms on flat terrain in similar climatic conditions.

Different performances between test cases could also be attributed to the use of different prediction models. In fact, the NWP used in the test case has been provided by the meteorological services of the different countries (Germany, Spain, Denmark, and Ireland). However, some of the cases, Alaiz and Sotavento, have the NWP obtained with the same model and the increase of NMAE with RIX still appears.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780081005040000093

Validation methodologies

Ranadip Pal, in Predictive Modeling of Drug Sensitivity, 2017

4.2.1 Norm-Based Fitness Measures

MAE denotes the ratio of the 1 norm of the error vector Y−Y~ to the number of samples and is defined as

(4.1)MAE=1n∑i=1n|yi−y~i|

Mean bias error (MBE) captures the average bias in the prediction and is calculated as

(4.2)MBE=1n∑i=1n(y~i−yi)

MSE denotes the ratio of the square of the two norms of the error vector to the number of samples and is defined as

(4.3)MSE=1n∑i=1n(yi−y~i)2

Root mean square error (RMSE) denotes the square root of the MSE.

The MBE is usually not used as a measure of the model error as high individual errors in prediction can also produce a low MBE. MBE is primarily used to estimate the average bias in the model and to decide if any steps need to be taken to correct the model bias. The MBE, MAE, and RMSE are related by the following inequalities: MBE≤MAE≤RMSE≤nMAE. If any subsequent theoretical analysis is conducted on the error measure, MSE or RMSE is often preferred, as compared to MAE due to the ease of applying derivatives and other analytical measures. However, studies [2] have pointed out that RMSE is an inappropriate measure for average model performance, as it is a function of three characteristics: the variability in the error distribution, the square root of the number of error samples, and the average error magnitude (MAE). Due to the squaring portion of RMSE, larger errors will have more impact on the MSE than smaller errors. Furthermore, the upper limit of RMSE (MAE≤RMSE≤nMAE) varies with n and can have different interpretations for different sample sizes.

Note that the above measures will have the same units as the variable to be predicted and thus cannot be compared for different variables that are scaled differently. The normalization of the error can be handled either as normalized versions described next or using measures such as correlation coefficients and R2.

NRMSE as used in [3] is defined as

(4.4)NRMSE=∑i=1n(yi−y~i)2∑i=1n(yi−y-)2

or it can be defined as ratio of the RMSE to the range of the data or mean of the data.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B978012805274700004X

Renewable energy system for industrial internet of things model using fusion-AI

Anand Singh Rajawat, … Ankush Ghosh, in Applications of AI and IOT in Renewable Energy, 2022

6.6 Results analysis

We evaluate different AI algorithms on different IIoT based datasets. Dissimilar assessment metrics were used to examine the goodness of the AI-based model, such as mean absolute error, mean absolute percent error, mean squared error, and root mean squared logarithmic error. We similarly selected the state-of-the-art models for the assessment through the proposed Fusion AI-based model.

6.6.1 Mean absolute error

The mean absolute error (MAE) characterizes the alteration among the original and predictable values and is mined as the dataset’s total alteration mean.

MAE=1n∑i=1n|Yi−Yiˆ|

6.6.2 Mean squared error

The mean squared error (MSE) is the alteration between the original value and the predictable value. It is mined by forming the mean formed error of the dataset.

MSE=1n∑i=1n(Yi−Yiˆ)2

6.6.3 Root mean squared logarithmic error

The root mean squared logarithmic error (RMSLE).

RMSLE=1n∑i=1n(log(yiˆ+1)−log(yi+1))2

6.6.4 Mean absolute percent error

The mean absolute percent error (MAPE) is theamount of the accuracy of a prediction. It measures the size of the error (Fig. 6.5; Table 6.1).

Figure 6.5. Comparative analysis in term of accuracy.

Table 6.1. Evaluation metrics.

Model name MAE MSE Root mean square error RMSLE
Support Vector Machines(SVM) 45.6755 1176.765 65.6675 0.1487659
Recurrent Neural Network(RNN) 28.9875 765.345 32.7657 0.701233
Long Short-term Memory(LSTM) 26.7865 657.765 30.6754 0.645361
Fusion Artificial Intelligence 14.564 352.6785 19.5643 0.023456

MAPE=∑|A−F|A×100N

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780323916998000061

Model development and validation methodology

Yen-Hsiung Kiang, in Fuel Property Estimation and Combustion Process Characterization, 2018

2.9.1 The Use of Mean Absolute Percentage Error/Mean Bias Percentage Error and Mean Absolute Error/Mean Bias Error

In this book, the MAPE/MBPE and MAE/MPE are used selectively. The complete data population is used in the validation analyses.

For the MAE/MBE and MAPE/MBPE methods, there are basic selection criteria.

1.

If the value of data is large, e.g., higher heating values ranging from 1000 to 10,000, the use of MAPE/MBPE method is a better choice. The reason is that the value of MAE/MBE may be too big and lead to confusion. For example, for a data value of 10,000, the value for MAE is 500 and the corresponding value for MAPE is 5%, which is within good engineering tolerance. However, if the absolute value of 500 is used, it is quite large in an absolute sense and just leads to confusion.

2.

If the absolute value of data is small (e.g., the chlorine content in the fuels) ranging from 0.1% to 2%, MAPE/MBPE methods should not be used. MAE/MBE methods are to be used to avoid confusion. The reason is that when the real concentration of chlorine in the fuel is 0.3%, if the estimated value is 0.6%, in practical engineering point of view, the estimated value is good enough for the applications. However, when using MAPE method, the value of MAPE is 100%. This greatly enlarges the significance of error. Thus the MAPE/MBPE methods are not recommended in these cases.

3.

In this book, the following definitions are used. The “deviation” or “% deviation” means the percentage difference from the absolute data value. And, “difference” is the difference of absolute values. For example, for an absolute value of 50, the deviation of ±5% means the range is between 50+5% and 50–5%, or, between absolute values of 47.5 and 52.5. However, the difference of 5 means the range is between 50–5 and 50+5, or between absolute values of 45 and 55.

4.

In this book, both MAE and MBE as well as MAPE and MBPE are used for the validations of higher heating values. MAE and MBE are only used for the validations of concentrations of carbon, nitrogen, oxygen, nitrogen, sulfur, and chlorine.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128134733000027

Forecasting of renewable generation for applications in smart grid power systems

Debesh Shankar Tripathy, B. Rajanarayan Prusty, in Advances in Smart Grid Power System, 2021

2.5 Forecast evaluation

Before utilizing forecasts for any real-life applications, they must be evaluated and analyzed based on the type of forecast. Two essential things to keep in mind are the quality of the forecasts to accurately present future realizations by proper modeling of the process, and the value of the forecast derived by using them for decision-making [14]. The quality of forecasts is assessed quantitatively by validating them over a period whose data has not been used for building (identifying and learning/training) the model.

2.5.1 Evaluating point forecasts

Point forecasts are widely assessed by calculating the forecast error via the use of different error measures. The most popular error measures are root mean square error (RMSE) and mean absolute error (MAE), which are discussed below. Apart from these, a variety of other error measures are available: mean square error, mean bias error, mean absolute percentage error, etc.

2.5.1.1 Root mean square error

The RMSE between the ith observation, Yi, and the corresponding forecast Yˆi for n forecast instants is given as

(10.2)RMSE=1n∑i=1n(Yi−Yˆi)2.

2.5.1.2 Mean absolute error

MAE is given as

(10.3)MAE=1n∑i=1n|Yi−Yˆi|.

In Eq. (10.3), the terms have the same meanings as in Eq. (10.2).

Note: RMSE and MAE are used to assess point forecasts but also can be extended to the probabilistic framework by replacing the point forecast with a quantile forecast to get the error measure for the corresponding quantile. Then the errors across different quantiles can be averaged to get a single value.

2.5.2 Evaluating probabilistic forecasts

Probabilistic forecasts, such as quantile, interval, and density forecasts, have different measures for evaluating their quality. Quantile forecasts can be assessed by the quantile score (QS) [12], which uses the PL function to differentially weigh the quantiles. Measures to evaluate the interval forecast include the Winkler score (WS) [12], prediction interval coverage probability (PICP) [15], and prediction interval normalized average width (PINAW) [15], which assess coverage and interval widths. Continuous ranked probability score (CRPS) [15] is the most widely used measure to determine the reliability and sharpness of density forecasts.

2.5.2.1 Quantile score

The QS uses the PL as a measure for the error in quantile forecasts. The PL function is defined as

(10.4)PL(Yi,Yˆi,τ,τundefined)={(1−τ)(Yˆi,τ−Yi)ifYi<Yˆi,ττ(Yi−Yˆi,τ)if Yi≥Yˆi,τ.undefined

In Eq. (10.4), Yi is the ith observation, and Yˆi,τ is the τth quantile forecast of the ith observation. The QS is the average PL across the nq predicted quantiles across the forecast horizon n and is given as

(10.5)QS=1nnq∑i=1n∑undefinedj=1nqPL(Yi,Yˆi,τ,τundefined).undefined

In Eq. (10.5), j is an index variable that represents the number of the quantile forecast. A lower score indicates a better prediction of the quantiles. The QS helps to assess both the reliability and sharpness of the quantile forecasts.

2.5.2.2 Winkler score

The WS is used to assess the accuracy of the coverage as well as the interval width for the PIs. For a PI centered at the median with (1−α)100% nominal coverage, this score is defined as the mean across the forecast horizon of

(10.6)WS={ΔiifLi≤Yi≤UiΔi+2(Li−Yi)/αifYi<LiΔi+2(Yi−Ui)/αifYi>Ui.undefined

In Eq. (10.6), Li is the lower-bound quantile, Ui is the upper-bound quantile, and Δi=Ui−Li is the interval width for the ith observation. It penalizes observations for lying outside the PI and rewards narrower interval widths. Hence, a lower WS is an indication of a better PI.

2.5.2.3 Prediction interval coverage probability

The PICP helps to ensure whether the observed probability distribution is bounded within the PI. The PICP index is calculated by counting the fraction of the number of observations lying within the forecast PI. It is mathematically represented as

(10.7)PICP=1n∑i=1nɛi,

where ɛi is defined as

(10.8)ɛi={1ifYi∈[Li,Ui]0ifYi∉[Li,Ui].

In Eqs. (10.7) and (10.8), the terms have their usual meaning as defined earlier. A higher PICP is desirable, as it indicates that more observations lie within the constructed PI. PICP quantitatively expresses reliability. A valid PICP should always be greater than the nominal confidence level.

2.5.2.4 Prediction interval normalized average width

The sole use of PICP can sometimes be misleading due to concentrating only on coverage of the PIs. The widths of PIs also play a significant role in assessing their informativeness. The quantitative expression of PI width is provided by the PINAW, which is given below:

(10.9)PINAW=1nR∑i=1nΔi.undefined

In Eq. (10.9), Δi is the interval width as in Eq. (10.6), and R is the normalizing factor given by the difference between the maximum and minimum forecast values. Hence, combined use of PICP and PINAW is required for proper evaluation of PIs.

2.5.2.5 Continuous ranked probability score

The CRPS robustly measures the reliability and sharpness of the probabilistic forecast. It is analogous to the MAE for point forecasts because it reduces to the absolute error for the point forecasts, hence allowing comparison of probabilistic and point forecasts. Since it is a measure of the absolute error of the forecast distribution, a lower CRPS is preferable. It considers the entire distribution of the forecasts contrary to QS, which uses the PL to weigh the different quantiles asymmetrically. It can be expressed as below:

(10.10)CRPS(F,y)=∫−∞∞(F(u)−I{y≤u})2du=EF|Y−y|−12EF|Y−Y’|undefined}.

In Eq. (10.10), y is the observation, F(u) is the CDF of density forecasts, I is the Heaviside step function, and Y and Y′ are two random variables with F as the distribution function.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128243374000102

Intelligence-Based Health Recommendation System Using Big Data Analytics

Abhaya Kumar Sahoo, … Himansu Das, in Big Data Analytics for Intelligent Healthcare Management, 2019

9.4.2 Experimental Result Analysis

Here we compare the results in terms of MAE value among existing methods and the proposed HRS by analyzing the healthcare dataset. As we obtained a lower MAE value for our proposed approach, we can say that our approach is a useful healthcare recommendation system.

In Table 9.3, MAE values are shown for the healthcare dataset where 10,000 patient ratings for 500 doctors are divided among 5 parties. Here p represents a number of parties collaborating, which varies from 1 to 5 where p = 1 meaning that there is no collaboration and all parties are generating predictions individually. The p = 2 signifies that two parties are collaborating and likewise for p = 3, 4, or 5. Fig. 9.7 depicts that MAE value is lower when all parties are collaborating, that is, p = 5. The lower the MAE value, the higher the accuracy. By using a collaborative-based filtering technique on the proposed HRS, we achieve lower MAE values and high accuracy when compared to existing approaches.

Table 9.3. Comparison Among Existing Approaches and Proposed HRS

Contribution Average MAE Values (Patients) Average MAE Values (Doctors)
Yakut and Polat 0.724 0.795
Kaur et al. 0.739 0.807
Proposed HRS 0.649 0.717

Fig. 9.7

Fig. 9.7. Shows comparison among MAE and number of parties of proposed HRS.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B978012818146100009X

Meta-Model Development

Bouzid Ait-Amir, … Abdelkhalak El Hami, in Embedded Mechatronic Systems 2 (Second Edition), 2020

6.5.3 Model comparison and validation

Once a model is built, the next step is validation. To choose one model or another two properties of the response surface are assessed as to their ability to match the experimental data and make predictions.

Certain mathematical criteria make it possible to test how the model results match the data. This is performed by the coefficient of determination R2, the adjusted R2 coefficient, or the study of the residues, etc.

The determination coefficient R2, which is the criterion generally used in linear regression to test how the model matches the data, is defined by:

[6.2]R2=1−∑i=1nyi−yi^2∑i=1nyi−y¯2

where y is an estimation of the average response and n is the number of points in the design of experiments.

The R2 criterion can be used to measure the percentage of the total variability of the response explained by the model. This coefficient should not be used to compare between various models, since it is highly dependent on the model used. Indeed, R2 increases when the number of terms goes up, even if all the predictors are not significant. To overcome this problem, the adjusted determination coefficient Radj2 can be used instead, defined by:

[6.3]Radj2=1−1n−p+1∑i=1nyi−yi^21n−1∑i=1nyi−yi¯2

where p represents the number of terms in the model (constant term not included). If Radj2 is expressed in terms of R2, it can be noted that Radj2 is always smaller than R2 and that the difference between these two coefficients increases with the number of predictors. Radj2 is, therefore, a compromise between a model which faithfully represents the variability of the response and a model which is not too rich in predictors.

Some methods have underlying hypotheses on the residuals ε^1,…,ε^n. For instance, for regression, the residuals are assumed to be centered. A residual analysis may be useful to compare the information provided by the determination coefficients.

Once the ability of the model to match the experimental data is checked, a second diagnosis is performed to check the ability of the adjusted surface to perform predictions. The experimental design space represents only a small domain of the possible values for the explanatory variables, whereas the adjusted model must be able to construct an approximate value of the response at any point in the field of study. It is therefore necessary to study if the proposed model can be applied to the total field of study and thus provide accurate predictions.

This method consists in comparing the predictions of the model at points which differ from those of the design of experiments. In the case where the number of feasible simulations is not constrained, it is possible to define a set of test points on which the prediction error criteria (MAE, RMSE, etc.) are evaluated. If not, it is possible to use cross-validation techniques.

In order to study the predictive qualities of the model, it is assumed that there are a reasonable number of test points. The indicators proposed below generally measure the mismatch between the prediction calculated by the adjusted model and the value of the response given by the simulator.

The determination coefficient R2 evaluated over a test process (also known as external R2) gives an indication of the prediction ability of the meta-model. The value of R2 can be negative, meaning that the model creates variability in comparison to a model providing constant prediction mismatch.

The mean square error (MSE) corresponds to the mean of the square of the prediction errors (L2– criterion method):

[6.4]MSE=1m∑i=1nyi−yi^2

where m represents the number of data from the test set. This criterion measures the mean square error of the mismatch between the predicted results and the test data. A low MSE value means that the predicted values match the real values.

The root mean square error (RMSE) criterion can also be used. It is defined by: RMSE=MSE

The RMSE depends on the order of magnitude of the observed values. It may, therefore, vary significantly from one application to the next. There are two ways to solve this problem. The first solution is to center and reduce the response (which is the solution usually taken). The second solution is to consider the criteria as being relative both in terms of mean (RRM) and standard deviation (RRE) defined as follows:

[6.5]RRM=1m∑i=1myi−yi^yi

[6.6]RRE=Varyi−yi^yi

The mean absolute error (MAE) criterion (which corresponds to standard L1) is defined by:

[6.7]MAE=1m∑i=1myi−yi^

This criterion is similar to the RMSE coefficient. Nevertheless, it is more robust since it is less sensitive to extreme values than MSE.

All distance measurements (MSE, RMSE and MAE) are equivalent and make it possible to quantify how the approximated solutions match the simulated data. A small value for these criteria means that the estimated model is able to predict the values of the response of the more complex model.

Table 6.8. Comparison of MSE and MAE criteria results for two meta-models (PLS regression and Kriging) on three responses Cmix, PdC and BPR

Cmix PdC BPR
PLS regression MSE 1.4 × 10− 4 2.6 × 10− 7 2.7 × 10− 2
MAE 1.4 × 10− 2 1.6 × 10− 2 2.2 × 10− 2
Kriging MSE 2×10− 5 1.2 × 10− 8 4.3 × 10− 4
MAE 5.4 × 10− 3 3.6 × 10− 3 2.6 × 10− 3

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9781785481901500062

27th European Symposium on Computer Aided Process Engineering

Sarah E. Davis, … Mario R. Eden, in Computer Aided Chemical Engineering, 2017

5 Results and Discussion

Four performance measures, MaAE, MPE, RMSE, and MAE, were calculated for each challenge function and a “unique” surrogate model combination. A “unique” surrogate model was trained using each of the data sets, which were generated from each challenge function using LHS, Sobol and Halton sequences. The differences between the performance measures of “unique” surrogate models for each challenge function were not statistically significant. Therefore, the performance metrics of “unique” surrogate models of each challenge function were averaged for the comparisons presented in this section.

The comparisons of MaAE and MPE, and RMSE and MAE provided similar trends. Hence, the results are summarized in terms of MaAE and RMSE. Figure 1(a) portrays how the MaAE changes for challenge functions with different number of inputs for each surrogate model type in a box-plot format. For each surrogate model type and number of inputs, the central mark represents the median, the cross shows the mean, and the edges of the rectangles are the 25th and 75th percentiles. Where present, the whiskers represent the most extreme points that are not considered outliers, and the outliers are plotted as individual dots. Figure 1(b) gives a similar plot for RMSE; and Figures 1(c) and 1(d) show the box-plots for MaAE and RMSE grouped based on challenge function shapes.

Figure 1

Figure 1. Box plots of performance for different surrogate models. Change in (a) MaAE, (b) RMSE with the number of function inputs; and (c) MaAE and (d) RMSE with function shape.

Figure 1(a) reveals that the surrogate models developed using ALAMO yielded the lowest MaAE for functions with two and five inputs, and the ones developed using ANN and ELM the lowest MaAE for functions with four and 10 inputs. The performance of ANN, ALAMO, and ELM models are comparable for functions with three inputs. In terms of RMSE (Figure 1(b)), the models developed using ANNs consistently provided the lowest values for all functions, where the RMSEs of the models developed using ALAMO were comparable to the RMSEs of ANN models for functions with four and 10 inputs. Overall, these comparisons suggest that the models developed using ANNs and ALAMO have comparable accuracy for functions with different dimensions. However, it should be noted that the surrogate models generated by ALAMO are consistently simpler functions than ANN models.

When the performance of surrogate model types are compared based on the shape of the challenge functions, ANN models yielded the smallest RMSE for all function shapes (Figure 1(d)). However, when the models are compared based on MaAE, in general, models developed using ALAMO and ELM yielded lower MaAEs than the ANN models (Figure 1(c)). For example, ALAMO models yielded the lowest MaAE for bowl shaped functions, whereas ELM models for valley shaped functions. Nevertheless, Figures 1(c) and (d) suggest that ANN, ALAMO, and ELM models overall consistently provided more accurate representation of the input-output data sets than the surrogate model forms considered.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780444639653500787

Sky-Imaging Systems for Short-Term Forecasting

Bryan Urquhart, … Jan Kleissl, in Solar Energy Forecasting and Resource Assessment, 2013

9.5.4 Error Metrics

To evaluate the forecast, mean bias error (MBE), mean absolute error (MAE), and root mean square error (RMSE) were computed over the given period during daylight hours (SZA < 80°). The sky imager generates a forecast every 30 s, whereas the plant reports power output every 1 s, so to compare the forecast to actual power production, a 30 s average of power output data centered on the image capture time was used. These error metrics were computed for each of the 31 forecast intervals out to a 15 min forecast horizon.

While the metrics used provide a numerical evaluation of forecast accuracy, they are difficult to assess without a baseline comparison. The use of persistence as a baseline forecast is especially useful for short term forecasts. To generate a persistence forecast for comparison, the plant’s aggregate normalized power was averaged for 1 min prior to forecast issue and was then applied to the remainder of the 15 min forecast window. Adjustments were made for changing solar geometry throughout the 15 min forecast window by computing the clear-sky GI for each of the 30 s intervals.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780123971777000097

In this tutorial, you’ll learn how to calculate the mean absolute error, or MAE, in Python. The mean absolute error can help measure the accuracy of a given machine learning model. The MAE can be a good complement or alternative to the mean squared error (MSE).

By the end of this tutorial, you’ll have learned:

  • What the mean absolute error is
  • How to interpret the mean absolute error
  • How to calculate the mae in Python

Let’s get started!

What is the Mean Absolute Error

The mean absolute error measures the average differences between predicted values and actual values. The formula for the mean absolute error is:

In calculating the mean absolute error, you

  1. Find the absolute difference between the predicted value and the actual value,
  2. Sum all these values, and
  3. Find their average.

This error metric is often used in regression models and can help predict the accuracy of a model.

How Does the MAE Compare to MSE?

The mean absolute error and the mean squared error are two common measures to evaluate the performance of regression problems. There are a number of key differences betwee the two:

  • Unlike the mean squared error (MSE), the MAE calculates the error on the same scale as the data. This means it’s easier to interpret.
  • The MAE doesn’t square the differences and is less susceptible to outliers

Both values are negatively-oriented. This means that, while both range from 0 to infinity, lower values are better.

How do You Interpret the Mean Absolute Error

Interpreting the MAE can be easier than interpreting the MSE. Say that you have a MAE of 10. This means that, on average, the MAE is 10 away from the predicted value.

In any case, the closer the value of the MAE is to 0, the better. That said, the interpretation of the MAE is completely dependent on the data. In some cases, a MAE of 10 can be incredibly good, while in others it can mean that the model is a complete failure.

The interpretation of the MAE depends on:

  1. The range of the values,
  2. The acceptability of error

For example, in our earlier example of a MAE of 10, if the values ranged from 10,000 to 100,000 a MAE of 10 would be great. However, if the values ranged from 0 through 20, a MAE would be terrible.

The MAE can often be used interpreted a little easier in conjunction with the mean absolute percentage error (MAPE). Calculating these together allows you to see the scope of the error, relative to your data.

In this section, you’ll learn how to calculate the mean absolute error in Python. In the next section, you’ll learn how to calculate the MAE using sklearn. However, it can be helpful to understand the mechanics of a calculation.

We can define a custom function to calculate the MAE. This is made easier using numpy, which can easily iterate over arrays.

# Creating a custom function for MAE
import numpy as np

def mae(y_true, predictions):
    y_true, predictions = np.array(y_true), np.array(predictions)
    return np.mean(np.abs(y_true - predictions))

Let’s break down what we did here:

  1. We imported numpy to make use of its array methods
  2. We defined a function mae, that takes two arrays (true valuse and predictions)
  3. We converted the two arrays into Numpy arrays
  4. We calculated the mean of the absolute differences between iterative values in the arrays

Let’s see how we can use this function:

# Calculating the MAE with a custom function
import numpy as np

def mae(y_true, predictions):
    y_true, predictions = np.array(y_true), np.array(predictions)
    return np.mean(np.abs(y_true - predictions))

true = [1,2,3,4,5,6]
predicted = [1,3,4,4,5,9]

print(mae(true, predicted))

# Returns: 0.833

We can see that in the example above, a MAE of 0.833 was returned. This means that, on average, the predicted values will be 0.833 units off.

In the following section, you’ll learn how to use sklearn to calculate the MAE.

Use Sklearn to Calculate the Mean Absolute Error (MAE)

In this section, you’ll learn how to use sklearn to calculate the mean absolute error. Scikit-learn comes with a function for calculating the mean absolute error, mean_absolute_error. As with many other metrics, with function is in the metrics module.

Let’s see what the function looks like:

# Importing the function
from sklearn.metrics import mean_absolute_error

mean_absolute_error(
    y_true=,
    y_pred=
)

The function takes two important parameters, the true values and the predicted values.

Now let’s recreate our earlier example with this function:

import numpy as np
from sklearn.metrics import mean_absolute_error

true = [1,2,3,4,5,6]
predicted = [1,3,4,4,5,9]

print(mean_absolute_error(true, predicted))

# Returns: 0.833

Conclusion

In this tutorial, you learned about the mean absolute error in Python. You learned what the mean absolute error, or MAE, is and how it can be interpreted. You then learned how to calculate the MAE from scratch in Python, as well as how to use the Scikit-Learn library to calculate the MAE.

Additional Resources

To learn more about related topics, check out the tutorials below:

  • Introduction to Scikit-Learn (sklearn) in Python
  • Splitting Your Dataset with Scitkit-Learn train_test_split
  • How to Calculate Mean Squared Error in Python
  • How to Calculate the Mean Absolute Percentage Error in Python
  • Official Documentation: MAE in Sklearn

Понравилась статья? Поделить с друзьями:
  • Mean absolute error gradient descent
  • Mean absolute error distribution
  • Mean absolute error and mean squared error
  • Me7 95040 error 0x01
  • Me returned a temporary error мегафон как исправить