Mean absolute percentage error перевод

Перевод контекст "mean absolute percentage error" c английский на русский от Reverso Context: As a result, we got a final forecasting model that minimizes the mean absolute percentage error (MAPE) to 6% for one particular city and 10% for the entire country in general.


На основании Вашего запроса эти примеры могут содержать грубую лексику.


На основании Вашего запроса эти примеры могут содержать разговорную лексику.


As a result, we got a final forecasting model that minimizes the mean absolute percentage error (MAPE) to 6% for one particular city and 10% for the entire country in general.



В итоге мы получили финальную прогнозную модель, которая обеспечила значение средней абсолютной ошибки, выраженной в процентах (mean absolute percentage error, MAPE), равное 6% для одного данного города, и 10% — для страны в целом.


The trend of modernization influence on demand for labour force is revealed and taken under consideration while developing the mathematical model, enabling to predict the demand for labour force with not more than 2% mean absolute percentage error.



Выявлены тенденции влияния модернизации на величину потребности в рабочей силе, с учетом которых разработана математическая модель, позволяющая спрогнозировать потребность региона в рабочей силе со средним значением ошибки прогноза, не превышающим 2%.


With this definition of an error, two of the most popular methods for measuring accuracy are mean absolute error (mae) and mean absolute percentage error (mape).


mean absolute percentage of errors (MAPE),

Ничего не найдено для этого значения.

Результатов: 111. Точных совпадений: 3. Затраченное время: 118 мс

Documents

Корпоративные решения

Спряжение

Синонимы

Корректор

Справка и о нас

Индекс слова: 1-300, 301-600, 601-900

Индекс выражения: 1-400, 401-800, 801-1200

Индекс фразы: 1-400, 401-800, 801-1200

From Wikipedia, the free encyclopedia

The mean absolute percentage error (MAPE), also known as mean absolute percentage deviation (MAPD), is a measure of prediction accuracy of a forecasting method in statistics. It usually expresses the accuracy as a ratio defined by the formula:

{displaystyle {mbox{MAPE}}={frac {100%}{n}}sum _{t=1}^{n}left|{frac {A_{t}-F_{t}}{A_{t}}}right|}

where At is the actual value and Ft is the forecast value. Their difference is divided by the actual value At. The absolute value of this ratio is summed for every forecasted point in time and divided by the number of fitted points n.

MAPE in regression problems[edit]

Mean absolute percentage error is commonly used as a loss function for regression problems and in model evaluation, because of its very intuitive interpretation in terms of relative error.

Definition[edit]

Consider a standard regression setting in which the data are fully described by a random pair {displaystyle Z=(X,Y)} with values in {displaystyle mathbb {R} ^{d}times mathbb {R} }, and n i.i.d. copies {displaystyle (X_{1},Y_{1}),...,(X_{n},Y_{n})} of (X,Y). Regression models aims at finding a good model for the pair, that is a measurable function g from mathbb {R} ^{d} to mathbb {R} such that g(X) is close to Y.

In the classical regression setting, the closeness of g(X) to Y is measured via the L2 risk, also called the mean squared error (MSE). In the MAPE regression context,[1] the closeness of g(X) to Y is measured via the MAPE, and the aim of MAPE regressions is to find a model {displaystyle g_{text{MAPE}}} such that:

{displaystyle g_{text{MAPE}}(x)=arg min _{gin {mathcal {G}}}mathbb {E} left[left|{frac {g(X)-Y}{Y}}right||X=xright]}

where {mathcal {G}} is the class of models considered (e.g. linear models).

In practice

In practice {displaystyle g_{text{MAPE}}(x)} can be estimated by the empirical risk minimization strategy, leading to

{displaystyle {widehat {g}}_{text{MAPE}}(x)=arg min _{gin {mathcal {G}}}sum _{i=1}^{n}left|{frac {g(X_{i})-Y_{i}}{Y_{i}}}right|}

From a practical point of view, the use of the MAPE as a quality function for regression model is equivalent to doing weighted mean absolute error (MAE) regression, also known as quantile regression. This property is trivial since

{displaystyle {widehat {g}}_{text{MAPE}}(x)=arg min _{gin {mathcal {G}}}sum _{i=1}^{n}omega (Y_{i})left|g(X_{i})-Y_{i}right|{mbox{ with }}omega (Y_{i})=left|{frac {1}{Y_{i}}}right|}

As a consequence, the use of the MAPE is very easy in practice, for example using existing libraries for quantile regression allowing weights.

Consistency[edit]

The use of the MAPE as a loss function for regression analysis is feasible both on a practical point of view and on a theoretical one, since the existence of an optimal model and the consistency of the empirical risk minimization can be proved.[1]

WMAPE[edit]

WMAPE (sometimes spelled wMAPE) stands for weighted mean absolute percentage error.[2] It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume).[3]. Effectively, this overcomes the ‘infinite error’ issue.[4]
Its formula is:[4]

{displaystyle {mbox{wMAPE}}={frac {sum _{i=1}^{n}(w_{i}cdot {frac {left|A_{i}-F_{i}right|}{|A_{i}|}})}{sum _{i=1}^{n}w_{i}}}={frac {sum _{i=1}^{n}(|A_{i}|cdot {frac {left|A_{i}-F_{i}right|}{|A_{i}|}})}{sum _{i=1}^{n}left|A_{i}right|}}}

Where w_{i} is the weight, A is a vector of the actual data and F is the forecast or prediction.
However, this effectively simplifies to a much simpler formula:

{displaystyle {mbox{wMAPE}}={frac {sum _{i=1}^{n}left|A_{i}-F_{i}right|}{sum _{i=1}^{n}left|A_{i}right|}}}

Confusingly, sometimes when people refer to wMAPE they are talking about a different model in which the numerator and denominator of the wMAPE formula above are weighted again by another set of custom weights w_{i}. Perhaps it would be more accurate to call this the double weighted MAPE (wwMAPE). Its formula is:

{displaystyle {mbox{wMAPE}}={frac {sum _{i=1}^{n}w_{i}left|A_{i}-F_{i}right|}{sum _{i=1}^{n}w_{i}left|A_{i}right|}}}

Issues[edit]

Although the concept of MAPE sounds very simple and convincing, it has major drawbacks in practical application,[5] and there are many studies on shortcomings and misleading results from MAPE.[6][7]

To overcome these issues with MAPE, there are some other measures proposed in literature:

  • Mean Absolute Scaled Error (MASE)
  • Symmetric Mean Absolute Percentage Error (sMAPE)
  • Mean Directional Accuracy (MDA)
  • Mean Arctangent Absolute Percentage Error (MAAPE): MAAPE can be considered a slope as an angle, while MAPE is a slope as a ratio.[7]

See also[edit]

  • Least absolute deviations
  • Mean absolute error
  • Mean percentage error
  • Symmetric mean absolute percentage error

External links[edit]

  • Mean Absolute Percentage Error for Regression Models
  • Mean Absolute Percentage Error (MAPE)
  • Errors on percentage errors — variants of MAPE
  • Mean Arctangent Absolute Percentage Error (MAAPE)

References[edit]

  1. ^ a b de Myttenaere, B Golden, B Le Grand, F Rossi (2015). «Mean absolute percentage error for regression models», Neurocomputing 2016 arXiv:1605.02541
  2. ^ Forecast Accuracy: MAPE, WAPE, WMAPE https://www.baeldung.com/cs/mape-vs-wape-vs-wmape%7Ctitle=Understanding Forecast Accuracy: MAPE, WAPE, WMAPE. ;
  3. ^ Weighted Mean Absolute Percentage Error https://ibf.org/knowledge/glossary/weighted-mean-absolute-percentage-error-wmape-299%7Ctitle=WMAPE: Weighted Mean Absolute Percentage Error. ;
  4. ^ a b «Statistical Forecast Errors».
  5. ^ a b Tofallis (2015). «A Better Measure of Relative Prediction Accuracy for Model Selection and Model Estimation», Journal of the Operational Research Society, 66(8):1352-1362. archived preprint
  6. ^ Hyndman, Rob J., and Anne B. Koehler (2006). «Another look at measures of forecast accuracy.» International Journal of Forecasting, 22(4):679-688 doi:10.1016/j.ijforecast.2006.03.001.
  7. ^ a b Kim, Sungil and Heeyoung Kim (2016). «A new metric of absolute percentage error for intermittent demand forecasts.» International Journal of Forecasting, 32(3):669-679 doi:10.1016/j.ijforecast.2015.12.003.
  8. ^ Kim, Sungil; Kim, Heeyoung (1 July 2016). «A new metric of absolute percentage error for intermittent demand forecasts». International Journal of Forecasting. 32 (3): 669–679. doi:10.1016/j.ijforecast.2015.12.003.
  9. ^ Makridakis, Spyros (1993) «Accuracy measures: theoretical and practical concerns.» International Journal of Forecasting, 9(4):527-529 doi:10.1016/0169-2070(93)90079-3

From Wikipedia, the free encyclopedia

The mean absolute percentage error (MAPE), also known as mean absolute percentage deviation (MAPD), is a measure of prediction accuracy of a forecasting method in statistics. It usually expresses the accuracy as a ratio defined by the formula:

{displaystyle {mbox{MAPE}}={frac {100%}{n}}sum _{t=1}^{n}left|{frac {A_{t}-F_{t}}{A_{t}}}right|}

where At is the actual value and Ft is the forecast value. Their difference is divided by the actual value At. The absolute value of this ratio is summed for every forecasted point in time and divided by the number of fitted points n.

MAPE in regression problems[edit]

Mean absolute percentage error is commonly used as a loss function for regression problems and in model evaluation, because of its very intuitive interpretation in terms of relative error.

Definition[edit]

Consider a standard regression setting in which the data are fully described by a random pair {displaystyle Z=(X,Y)} with values in {displaystyle mathbb {R} ^{d}times mathbb {R} }, and n i.i.d. copies {displaystyle (X_{1},Y_{1}),...,(X_{n},Y_{n})} of (X,Y). Regression models aims at finding a good model for the pair, that is a measurable function g from mathbb {R} ^{d} to mathbb {R} such that g(X) is close to Y.

In the classical regression setting, the closeness of g(X) to Y is measured via the L2 risk, also called the mean squared error (MSE). In the MAPE regression context,[1] the closeness of g(X) to Y is measured via the MAPE, and the aim of MAPE regressions is to find a model {displaystyle g_{text{MAPE}}} such that:

{displaystyle g_{text{MAPE}}(x)=arg min _{gin {mathcal {G}}}mathbb {E} left[left|{frac {g(X)-Y}{Y}}right||X=xright]}

where {mathcal {G}} is the class of models considered (e.g. linear models).

In practice

In practice {displaystyle g_{text{MAPE}}(x)} can be estimated by the empirical risk minimization strategy, leading to

{displaystyle {widehat {g}}_{text{MAPE}}(x)=arg min _{gin {mathcal {G}}}sum _{i=1}^{n}left|{frac {g(X_{i})-Y_{i}}{Y_{i}}}right|}

From a practical point of view, the use of the MAPE as a quality function for regression model is equivalent to doing weighted mean absolute error (MAE) regression, also known as quantile regression. This property is trivial since

{displaystyle {widehat {g}}_{text{MAPE}}(x)=arg min _{gin {mathcal {G}}}sum _{i=1}^{n}omega (Y_{i})left|g(X_{i})-Y_{i}right|{mbox{ with }}omega (Y_{i})=left|{frac {1}{Y_{i}}}right|}

As a consequence, the use of the MAPE is very easy in practice, for example using existing libraries for quantile regression allowing weights.

Consistency[edit]

The use of the MAPE as a loss function for regression analysis is feasible both on a practical point of view and on a theoretical one, since the existence of an optimal model and the consistency of the empirical risk minimization can be proved.[1]

WMAPE[edit]

WMAPE (sometimes spelled wMAPE) stands for weighted mean absolute percentage error.[2] It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume).[3]. Effectively, this overcomes the ‘infinite error’ issue.[4]
Its formula is:[4]

{displaystyle {mbox{wMAPE}}={frac {sum _{i=1}^{n}(w_{i}cdot {frac {left|A_{i}-F_{i}right|}{|A_{i}|}})}{sum _{i=1}^{n}w_{i}}}={frac {sum _{i=1}^{n}(|A_{i}|cdot {frac {left|A_{i}-F_{i}right|}{|A_{i}|}})}{sum _{i=1}^{n}left|A_{i}right|}}}

Where w_{i} is the weight, A is a vector of the actual data and F is the forecast or prediction.
However, this effectively simplifies to a much simpler formula:

{displaystyle {mbox{wMAPE}}={frac {sum _{i=1}^{n}left|A_{i}-F_{i}right|}{sum _{i=1}^{n}left|A_{i}right|}}}

Confusingly, sometimes when people refer to wMAPE they are talking about a different model in which the numerator and denominator of the wMAPE formula above are weighted again by another set of custom weights w_{i}. Perhaps it would be more accurate to call this the double weighted MAPE (wwMAPE). Its formula is:

{displaystyle {mbox{wMAPE}}={frac {sum _{i=1}^{n}w_{i}left|A_{i}-F_{i}right|}{sum _{i=1}^{n}w_{i}left|A_{i}right|}}}

Issues[edit]

Although the concept of MAPE sounds very simple and convincing, it has major drawbacks in practical application,[5] and there are many studies on shortcomings and misleading results from MAPE.[6][7]

To overcome these issues with MAPE, there are some other measures proposed in literature:

  • Mean Absolute Scaled Error (MASE)
  • Symmetric Mean Absolute Percentage Error (sMAPE)
  • Mean Directional Accuracy (MDA)
  • Mean Arctangent Absolute Percentage Error (MAAPE): MAAPE can be considered a slope as an angle, while MAPE is a slope as a ratio.[7]

See also[edit]

  • Least absolute deviations
  • Mean absolute error
  • Mean percentage error
  • Symmetric mean absolute percentage error

External links[edit]

  • Mean Absolute Percentage Error for Regression Models
  • Mean Absolute Percentage Error (MAPE)
  • Errors on percentage errors — variants of MAPE
  • Mean Arctangent Absolute Percentage Error (MAAPE)

References[edit]

  1. ^ a b de Myttenaere, B Golden, B Le Grand, F Rossi (2015). «Mean absolute percentage error for regression models», Neurocomputing 2016 arXiv:1605.02541
  2. ^ Forecast Accuracy: MAPE, WAPE, WMAPE https://www.baeldung.com/cs/mape-vs-wape-vs-wmape%7Ctitle=Understanding Forecast Accuracy: MAPE, WAPE, WMAPE. ;
  3. ^ Weighted Mean Absolute Percentage Error https://ibf.org/knowledge/glossary/weighted-mean-absolute-percentage-error-wmape-299%7Ctitle=WMAPE: Weighted Mean Absolute Percentage Error. ;
  4. ^ a b «Statistical Forecast Errors».
  5. ^ a b Tofallis (2015). «A Better Measure of Relative Prediction Accuracy for Model Selection and Model Estimation», Journal of the Operational Research Society, 66(8):1352-1362. archived preprint
  6. ^ Hyndman, Rob J., and Anne B. Koehler (2006). «Another look at measures of forecast accuracy.» International Journal of Forecasting, 22(4):679-688 doi:10.1016/j.ijforecast.2006.03.001.
  7. ^ a b Kim, Sungil and Heeyoung Kim (2016). «A new metric of absolute percentage error for intermittent demand forecasts.» International Journal of Forecasting, 32(3):669-679 doi:10.1016/j.ijforecast.2015.12.003.
  8. ^ Kim, Sungil; Kim, Heeyoung (1 July 2016). «A new metric of absolute percentage error for intermittent demand forecasts». International Journal of Forecasting. 32 (3): 669–679. doi:10.1016/j.ijforecast.2015.12.003.
  9. ^ Makridakis, Spyros (1993) «Accuracy measures: theoretical and practical concerns.» International Journal of Forecasting, 9(4):527-529 doi:10.1016/0169-2070(93)90079-3
  • 1
    mean absolute percentage error

    Универсальный англо-русский словарь > mean absolute percentage error

  • 2
    mean absolute percentage error

    English-Russian electronics dictionary > mean absolute percentage error

  • 3
    mean absolute percentage error

    The New English-Russian Dictionary of Radio-electronics > mean absolute percentage error

  • 4
    error

    English-Russian electronics dictionary > error

  • 5
    error

    The New English-Russian Dictionary of Radio-electronics > error

  • 6
    error

    [ˈerə]

    absolute error абсолютная ошибка accidental error случайная ошибка accounting error ошибка бухгалтерского учета accuracy error постоянная ошибка addressing error вчт. ошибка адресации alignment error погрешность юстировки altering error нерегулярная ошибка analytic truncation error ошибка аналитического усечения average error средняя ошибка bad call format error вчт. ошибка из-за неправильного вызова bad command error вчт. ошибка из-за неправильной команды balancing error сбалансированная ошибка error ошибка, заблуждение; to make an error совершить ошибку, ошибиться; in error по ошибке, ошибочно; to be in error заблуждаться bias error постоянная ошибка biased error постоянная ошибка biased error систематическая ошибка burst error вчт. пакет ошибок calculating error погрешность расчета call error вчт. ошибка вызова chance error случайная ошибка checksum error вчт. ошибка в контрольной сумме code error вчт. ошибка в коде coincidence error вчт. ошибка совпадения common error вчт. обычная ошибка compensating error вчт. компенсирующая ошибка compensating error компенсирующая ошибка compile-time error вчт. ошибка при трансляции completeness error вчт. ошибка завершения configuration error вчт. ошибка компоновки configuration error вчт. ошибка конфигурации connection error вчт. ошибка монтажа consistency error вчт. ошибка из-за несовместимости constant error постоянная ошибка constant error систематическая ошибка constructional error вчт. ошибка монтажа contributory error вчт. внесенная ошибка control error вчт. ошибка регулирования critical error вчт. неустранимая ошибка crude error вчт. грубая ошибка cumulative error накопленная ошибка data error вчт. ошибка в данных data-bit error вчт. ошибка в битах данных deletion error вчт. ложное исключение design error ошибка проектирования detectable error вчт. обнаруживаемая ошибка detectable error вчт. обнаружимая ошибка difficult-to-locate error вчт. труднообнаружимая ошибка displacement error вчт. ошибка из-за смещения documentation error ошибка в документации double-bit error вчт. двухбитовая ошибка dropout error вчт. ошибка из-за выпадения error поэт. блуждание error грех error заблуждение error ложное представление error отклонение, уклонение, погрешность error отклонение от номинала error ошибка, заблуждение; to make an error совершить ошибку, ошибиться; in error по ошибке, ошибочно; to be in error заблуждаться error вчт. ошибка error ошибка error вчт. погрешность error погрешность error потеря точности error «приказ об ошибке» (т.е. о передаче материалов по делу в апелляционный суд для пересмотра вынесенного судебного решения на основании ошибки, допущенной при рассмотрении дела) error радио рассогласование error рассогласование error due to sampling вчт. ошибка выборки error frequency limit вчт. максимальная частота однобитовых ошибок error in addition мат. ошибка сложения error in standard deviation ошибка среднего квадратического отклонения error in subtraction мат. ошибка вычитания error of estimation ошибка оценивания error of judgment неверное суждение error of judgment ошибочная оценка error of posting ошибка бухгалтерской проводки error status flag вчт. флаг состояния ошибки estimated error оцениваемая ошибка estimation error ошибка оценивания estimation error ошибка оценки execution error вчт. ошибка выполнения experimental error погрешность эксперемента factual error фактическая ошибка fatal error вчт. неисправимая ошибка fatal hard error вчт. неисправимая аппаратная ошибка file error вчт. ошибка при работе с файлом fixed error постоянная ошибка fixed error систематическая ошибка following error ошибка слежения formal error формальная ошибка framing error ошибка кадровой синхронизации frequency error погрешность частоты general error вчт. ошибка общего характера gross error грубая ошибка hardware error вчт. аппаратная ошибка human error вчт. ошибка оператора error ошибка, заблуждение; to make an error совершить ошибку, ошибиться; in error по ошибке, ошибочно; to be in error заблуждаться in-process error ошибка изготовления inherent error вчт. унаследованная ошибка inherited error вчт. предвнесенная ошибка inherited error вчт. унаследованная ошибка initial error вчт. начальная ошибка input error вчт. ошибка на входе insertion error вчт. ошибка ложного восприятия instantaneous error вчт. текущее значение ошибки intentional error вчт. умышленная ошибка intermediate error вчт. нерегулярная ошибка intermittent error случайная ошибка interpolation error ошибка интерполяции intrinsic error вчт. исходная ошибка introduced error вчт. внесенная ошибка introduced error вчт. допущенная ошибка irrecoverable error непоправимая ошибка isolated error вчт. локализованная ошибка isolated error вчт. одиночная ошибка judicial error судебная ошибка limiting error предел точности literal error полигр. опечатка literal: error буквенный; literal error опечатка error ошибка, заблуждение; to make an error совершить ошибку, ошибиться; in error по ошибке, ошибочно; to be in error заблуждаться marginal error вчт. краевая ошибка matching error вчт. ошибка неточного согласования material error существенная ошибка maximum error максимальная ошибка maximum error предельная ошибка maximum permissible error максимальная допустимая ошибка mean error средняя ошибка mean probable error средняя вероятная ошибка metering error ошибка измерения missing error вчт. ошибка из-за отсутствия данных nautical error навигационная ошибка no-paper error вчт. ошибка из-за отсутствия бумаги nonsampling error постоянная ошибка nonsampling error систематическая ошибка observation error ошибка наблюдения observational error ошибка наблюдения offsetting error компенсирующая ошибка operating error ошибка в процессе работы operating error ошибка из-за нарушения правил эксплуатации operation error ошибка в работе operational error ошибка из-за нарушения правил эксплуатации operator error вчт. ошибка оператора output error вчт. ошибка выхода parity error ошибка, выявленная контролем по четности parity error вчт. ошибка четности pattern-sensitive error вчт. кодочувствительная ошибка percentage error ошибка в процентах permissible error допустимая ошибка posting error ошибка при переносе в бухгалтерскую книгу precautionary error подозреваемая ошибка predictable error предсказуемая ошибка probable error вероятная ошибка probable error стат. вероятная ошибка procedural error процедурная ошибка procedural error процеждурная ошибка professional error профессиональная ошибка program error вчт. ошибка в программе program error вчт. программная ошибка propagated error накапливаемая ошибка propagated error вчт. распространяющаяся ошибка propagation error вчт. накапливающаяся ошибка pure error вчт. истинная ошибка quantitative error количественная ошибка quantization error вчт. ошибка дискретизации quiet error вчт. исправимая ошибка quite error вчт. исправимая ошибка random error случайная ошибка random sampling error ошибка случайной выборки read fault error вчт. сбой при чтении reasonable error допустимая ошибка recoverable error вчт. исправимая ошибка recoverable error исправимая ошибка recurrent error вчт. повторяющаяся ошибка reduced error приведенная погрешность relative error относительная ошибка remediable error поправимая ошибка residual error остаточная ошибка responce error вчт. ошибка ответной реакции resultant error суммарная ошибка return an error code вчт. выдавать код ошибки root-mean-square error среднеквадратичная ошибка round error вчт. ошибка округления round-off error вчт. ошибка округления rounding error вчт. ошибка округления rounding error ошибка округления run-time error вчт. ошибка при выполнении runtime error вчт. ошибка при выполнении sample error вчт. ошибка выборки sampling error вчт. ошибка выборки sampling error stat. ошибка выборки sampling error stat. ошибка выборочного обследования sampling error вчт. ошибка квантования seek error вчт. ошибка при поиске дорожки select error вчт. ошибка выборки select error вчт. ошибка отсутствия связи semantic error вчт. семантическая ошибка sequence error вчт. неправильный порядок setup error вчт. ошибка настройки severe error серьезная ошибка size error вчт. переполнение размера сетки smoothing error ошибка сглаживания soft error нерегулярная ошибка soft error вчт. случайный сбой software error comp. ошибка в системе программного обеспечения software error вчт. программная ошибка solid burst error вчт. плотный пакет ошибок solid error вчт. постоянная ошибка spelling error орфографическая ошибка srecification error ошибка в описании standard error среднеквадратическая ошибка standard error (SE) stat. среднеквадратическая ошибка steady-state error статическая ошибка stored error вчт. накопленная ошибка substantial error существенная ошибка substitution error вчт. ошибка замещения subtle error неявная ошибка syntactical error синтаксическая ошибка syntax error вчт. синтаксическая ошибка system error вчт. ошибка системы systematic error stat. систематическая ошибка tabulation error вчт. неправильная классификация technical error формальная ошибка technical error формально-юридическая ошибка time-base error вчт. ошибка синхронизации timing error вчт. ошибка синхронизации total error накопленная ошибка total error общая ошибка transient error вчт. перемежающая ошибка translation error ошибка в переводе transmission error вчт. ошибка передачи true error вчт. истинная ошибка truncation error вчт. ошибка отбрасывания членов ряда truncation error вчт. ошибка усечения typing error опечатка unbiased error случайная ошибка uncompensated error нескомпенсированная ошибка underflow error вчт. ошибка обнаружения undetectable error вчт. необнаруживаемая ошибка undetectable error вчт. необнаружимая ошибка unexpected error occured вчт. произошла непредвиденная ошибка unrecoverable error вчт. неисправимая ошибка wiring error ошибка монтажа write fault error вчт. сбой при записи write protect error вчт. ошибка в связи с защитой от записи zero error сдвиг нуля

    English-Russian short dictionary > error

  • 7
    error

    1) ошибка, погрешность

    2) промах; просчёт; недосмотр

    5) отклонение; расхождение; рассогласование

    error due to — ошибка, обусловленная ; ошибка, связанная с

    English-Russian scientific dictionary > error

  • 8
    error

    ˈerə сущ.
    1) заблуждение, оплошность, ошибка( во взглядах, расчетах и т. д.) in error, by error, through error ≈ по ошибке, ошибочно through a clerical error ≈ из-за канцелярской ошибки to admit to (making) an error ≈ признать ошибку to commit an error, make an error ≈ совершить ошибку, ошибиться to correct an error, rectify an error ≈ устранять ошибку, исправлять ошибку to compound an error ≈ сглаживать ошибку cardinal error ≈ главная, кардинальная ошибка costly error ≈ дорого обошедшаяся ошибка egregious error, flagrant error, glaring error ≈ грубая, вопиющая ошибка grievous error ≈ прискорбная ошибка grammatical error ≈ грамматическая ошибка printer’s error, typographical error ≈ типографская ошибка procedural error ≈ процессуальная ошибка tactical error ≈ тактическая ошибка typing error ≈ опечатка through a typing error ≈ из-за ошибки машинистки, по вине машинистки to be in error ≈ заблуждаться Syn: mistake, fault
    2) проступок, грех Syn: transgression, wrong-doing
    3) поэт. блуждание
    4) тех. изменение, ответвление, отклонение, погрешность, уклонение Syn: deviation, digression;
    swerve
    5) радио рассогласование
    ошибка, заблуждение, ложное представление — human * ошибка, свойственная человеку — *s of taste плохой вкус в одежде — an * of judgement неверное суждение, ошибочный расчет, ошибочная оценка — in * ошибочно, по ошибке — to do smth. in * ошибиться, сделать что-либо по ошибке — to make an * сделать ошибку;
    впасть в заблуждение — to be in * ошибаться, заблуждаться — to dispossess smb. of an * (книжное) выводить кого-либо из заблуждения — to lead smb. into * вводить кого-либо в заблуждение — to fall into a serious * впасть в серьезную ошибку — he has seen the * of his ways он понял, что поступал неправильно ошибка, погрешность — spelling * ошибка в правописании — printers’ * опечатка — noise * (специальное) искажение, вызванное шумами — permissible * (техническое) допуск — actual( специальное) истинная ошибка, истинная величина ошибки — appreciable * существенная ошибка — inappreciable * незначительная погрешность — * code (компьютерное) код ошибки — * log (компьютерное) файл регистрации ошибок — * of omission упущение, недосмотр — * in reading( специальное) ошибка отсчета — to eliminate the *s устранять ошибки проступок, грех — cardinal * смертный грех — *s of youth грехи молодости — to repent one’s *s покаяться в грехах (техническое) отклонение (от номинала) ;
    потеря точности — station * уклонение отвеса (радиотехника) рассогласование (юридическое) фактическая или юридическая ошибка, допущенная судом в судебном процессе — * in fact фактическая ошибка — * in procedure процессуальная ошибка — writ of * ходатайство об отмене приговора суда вследствие допущенной им при рассмотрении дела ошибки;
    аппеляционная жалоба
    absolute ~ абсолютная ошибка
    accidental ~ случайная ошибка
    accounting ~ ошибка бухгалтерского учета
    accuracy ~ постоянная ошибка
    addressing ~ вчт. ошибка адресации
    alignment ~ погрешность юстировки
    altering ~ нерегулярная ошибка
    analytic truncation ~ ошибка аналитического усечения
    average ~ средняя ошибка
    bad call format ~ вчт. ошибка из-за неправильного вызова
    bad command ~ вчт. ошибка из-за неправильной команды
    balancing ~ сбалансированная ошибка
    ~ ошибка, заблуждение;
    to make an error совершить ошибку, ошибиться;
    in error по ошибке, ошибочно;
    to be in error заблуждаться
    bias ~ постоянная ошибка
    biased ~ постоянная ошибка biased ~ систематическая ошибка
    burst ~ вчт. пакет ошибок
    calculating ~ погрешность расчета
    call ~ вчт. ошибка вызова
    chance ~ случайная ошибка
    checksum ~ вчт. ошибка в контрольной сумме
    code ~ вчт. ошибка в коде
    coincidence ~ вчт. ошибка совпадения
    common ~ вчт. обычная ошибка
    compensating ~ вчт. компенсирующая ошибка compensating ~ компенсирующая ошибка
    compile-time ~ вчт. ошибка при трансляции
    completeness ~ вчт. ошибка завершения
    configuration ~ вчт. ошибка компоновки configuration ~ вчт. ошибка конфигурации
    connection ~ вчт. ошибка монтажа
    consistency ~ вчт. ошибка из-за несовместимости
    constant ~ постоянная ошибка constant ~ систематическая ошибка
    constructional ~ вчт. ошибка монтажа
    contributory ~ вчт. внесенная ошибка
    control ~ вчт. ошибка регулирования
    critical ~ вчт. неустранимая ошибка
    crude ~ вчт. грубая ошибка
    cumulative ~ накопленная ошибка
    data ~ вчт. ошибка в данных
    data-bit ~ вчт. ошибка в битах данных
    deletion ~ вчт. ложное исключение
    design ~ ошибка проектирования
    detectable ~ вчт. обнаруживаемая ошибка detectable ~ вчт. обнаружимая ошибка
    difficult-to-locate ~ вчт. труднообнаружимая ошибка
    displacement ~ вчт. ошибка из-за смещения
    documentation ~ ошибка в документации
    double-bit ~ вчт. двухбитовая ошибка
    dropout ~ вчт. ошибка из-за выпадения
    error поэт. блуждание ~ грех ~ заблуждение ~ ложное представление ~ отклонение, уклонение, погрешность ~ отклонение от номинала ~ ошибка, заблуждение;
    to make an error совершить ошибку, ошибиться;
    in error по ошибке, ошибочно;
    to be in error заблуждаться ~ вчт. ошибка ~ ошибка ~ вчт. погрешность ~ погрешность ~ потеря точности ~ «приказ об ошибке» (т.е. о передаче материалов по делу в апелляционный суд для пересмотра вынесенного судебного решения на основании ошибки, допущенной при рассмотрении дела) ~ радио рассогласование ~ рассогласование
    ~ due to sampling вчт. ошибка выборки
    ~ frequency limit вчт. максимальная частота однобитовых ошибок
    ~ in addition мат. ошибка сложения
    ~ in standard deviation ошибка среднего квадратического отклонения
    ~ in subtraction мат. ошибка вычитания
    ~ of estimation ошибка оценивания
    ~ of judgment неверное суждение ~ of judgment ошибочная оценка
    ~ of posting ошибка бухгалтерской проводки
    ~ status flag вчт. флаг состояния ошибки
    estimated ~ оцениваемая ошибка
    estimation ~ ошибка оценивания estimation ~ ошибка оценки
    execution ~ вчт. ошибка выполнения
    experimental ~ погрешность эксперемента
    factual ~ фактическая ошибка
    fatal ~ вчт. неисправимая ошибка
    fatal hard ~ вчт. неисправимая аппаратная ошибка
    file ~ вчт. ошибка при работе с файлом
    fixed ~ постоянная ошибка fixed ~ систематическая ошибка
    following ~ ошибка слежения
    formal ~ формальная ошибка
    framing ~ ошибка кадровой синхронизации
    frequency ~ погрешность частоты
    general ~ вчт. ошибка общего характера
    gross ~ грубая ошибка
    hardware ~ вчт. аппаратная ошибка
    human ~ вчт. ошибка оператора
    ~ ошибка, заблуждение;
    to make an error совершить ошибку, ошибиться;
    in error по ошибке, ошибочно;
    to be in error заблуждаться
    in-process ~ ошибка изготовления
    inherent ~ вчт. унаследованная ошибка
    inherited ~ вчт. предвнесенная ошибка inherited ~ вчт. унаследованная ошибка
    initial ~ вчт. начальная ошибка
    input ~ вчт. ошибка на входе
    insertion ~ вчт. ошибка ложного восприятия
    instantaneous ~ вчт. текущее значение ошибки
    intentional ~ вчт. умышленная ошибка
    intermediate ~ вчт. нерегулярная ошибка
    intermittent ~ случайная ошибка
    interpolation ~ ошибка интерполяции
    intrinsic ~ вчт. исходная ошибка
    introduced ~ вчт. внесенная ошибка introduced ~ вчт. допущенная ошибка
    irrecoverable ~ непоправимая ошибка
    isolated ~ вчт. локализованная ошибка isolated ~ вчт. одиночная ошибка
    judicial ~ судебная ошибка
    limiting ~ предел точности
    literal ~ полигр. опечатка literal: ~ буквенный;
    literal error опечатка
    ~ ошибка, заблуждение;
    to make an error совершить ошибку, ошибиться;
    in error по ошибке, ошибочно;
    to be in error заблуждаться
    marginal ~ вчт. краевая ошибка
    matching ~ вчт. ошибка неточного согласования
    material ~ существенная ошибка
    maximum ~ максимальная ошибка maximum ~ предельная ошибка
    maximum permissible ~ максимальная допустимая ошибка
    mean ~ средняя ошибка
    mean probable ~ средняя вероятная ошибка
    metering ~ ошибка измерения
    missing ~ вчт. ошибка из-за отсутствия данных
    nautical ~ навигационная ошибка
    no-paper ~ вчт. ошибка из-за отсутствия бумаги
    nonsampling ~ постоянная ошибка nonsampling ~ систематическая ошибка
    observation ~ ошибка наблюдения
    observational ~ ошибка наблюдения
    offsetting ~ компенсирующая ошибка
    operating ~ ошибка в процессе работы operating ~ ошибка из-за нарушения правил эксплуатации
    operation ~ ошибка в работе
    operational ~ ошибка из-за нарушения правил эксплуатации
    operator ~ вчт. ошибка оператора
    output ~ вчт. ошибка выхода
    parity ~ ошибка, выявленная контролем по четности parity ~ вчт. ошибка четности
    pattern-sensitive ~ вчт. кодочувствительная ошибка
    percentage ~ ошибка в процентах
    permissible ~ допустимая ошибка
    posting ~ ошибка при переносе в бухгалтерскую книгу
    precautionary ~ подозреваемая ошибка
    predictable ~ предсказуемая ошибка
    probable ~ вероятная ошибка probable ~ стат. вероятная ошибка
    procedural ~ процедурная ошибка procedural ~ процеждурная ошибка
    professional ~ профессиональная ошибка
    program ~ вчт. ошибка в программе program ~ вчт. программная ошибка
    propagated ~ накапливаемая ошибка propagated ~ вчт. распространяющаяся ошибка
    propagation ~ вчт. накапливающаяся ошибка
    pure ~ вчт. истинная ошибка
    quantitative ~ количественная ошибка
    quantization ~ вчт. ошибка дискретизации
    quiet ~ вчт. исправимая ошибка
    quite ~ вчт. исправимая ошибка
    random ~ случайная ошибка
    random sampling ~ ошибка случайной выборки
    read fault ~ вчт. сбой при чтении
    reasonable ~ допустимая ошибка
    recoverable ~ вчт. исправимая ошибка recoverable ~ исправимая ошибка
    recurrent ~ вчт. повторяющаяся ошибка
    reduced ~ приведенная погрешность
    relative ~ относительная ошибка
    remediable ~ поправимая ошибка
    residual ~ остаточная ошибка
    responce ~ вчт. ошибка ответной реакции
    resultant ~ суммарная ошибка
    return an ~ code вчт. выдавать код ошибки
    root-mean-square ~ среднеквадратичная ошибка
    round ~ вчт. ошибка округления
    round-off ~ вчт. ошибка округления
    rounding ~ вчт. ошибка округления rounding ~ ошибка округления
    run-time ~ вчт. ошибка при выполнении
    runtime ~ вчт. ошибка при выполнении
    sample ~ вчт. ошибка выборки
    sampling ~ вчт. ошибка выборки sampling ~ stat. ошибка выборки sampling ~ stat. ошибка выборочного обследования sampling ~ вчт. ошибка квантования
    seek ~ вчт. ошибка при поиске дорожки
    select ~ вчт. ошибка выборки select ~ вчт. ошибка отсутствия связи
    semantic ~ вчт. семантическая ошибка
    sequence ~ вчт. неправильный порядок
    setup ~ вчт. ошибка настройки
    severe ~ серьезная ошибка
    size ~ вчт. переполнение размера сетки
    smoothing ~ ошибка сглаживания
    soft ~ нерегулярная ошибка soft ~ вчт. случайный сбой
    software ~ comp. ошибка в системе программного обеспечения software ~ вчт. программная ошибка
    solid burst ~ вчт. плотный пакет ошибок
    solid ~ вчт. постоянная ошибка
    spelling ~ орфографическая ошибка
    srecification ~ ошибка в описании
    standard ~ среднеквадратическая ошибка standard ~ (SE) stat. среднеквадратическая ошибка
    steady-state ~ статическая ошибка
    stored ~ вчт. накопленная ошибка
    substantial ~ существенная ошибка
    substitution ~ вчт. ошибка замещения
    subtle ~ неявная ошибка
    syntactical ~ синтаксическая ошибка
    syntax ~ вчт. синтаксическая ошибка
    system ~ вчт. ошибка системы
    systematic ~ stat. систематическая ошибка
    tabulation ~ вчт. неправильная классификация
    technical ~ формальная ошибка technical ~ формально-юридическая ошибка
    time-base ~ вчт. ошибка синхронизации
    timing ~ вчт. ошибка синхронизации
    total ~ накопленная ошибка total ~ общая ошибка
    transient ~ вчт. перемежающая ошибка
    translation ~ ошибка в переводе
    transmission ~ вчт. ошибка передачи
    true ~ вчт. истинная ошибка
    truncation ~ вчт. ошибка отбрасывания членов ряда truncation ~ вчт. ошибка усечения
    typing ~ опечатка
    unbiased ~ случайная ошибка
    uncompensated ~ нескомпенсированная ошибка
    underflow ~ вчт. ошибка обнаружения
    undetectable ~ вчт. необнаруживаемая ошибка undetectable ~ вчт. необнаружимая ошибка
    unexpected ~ occured вчт. произошла непредвиденная ошибка
    unrecoverable ~ вчт. неисправимая ошибка
    wiring ~ ошибка монтажа
    write fault ~ вчт. сбой при записи
    write protect ~ вчт. ошибка в связи с защитой от записи
    zero ~ сдвиг нуля

    Большой англо-русский и русско-английский словарь > error

  • 9
    variation of the mean error

    1. дополнительная погрешность электрического реле

    Англо-русский словарь нормативно-технической терминологии > variation of the mean error

  • 10
    MAPE

    English-Russian electronics dictionary > MAPE

  • 11
    MAPE

    Универсальный англо-русский словарь > MAPE

  • 12
    MAPE

    mean absolute percentage error

    The New English-Russian Dictionary of Radio-electronics > MAPE

См. также в других словарях:

  • Mean absolute percentage error — (MAPE) is measure of accuracy in a fitted time series value in statistics, specifically trending. It usually expresses accuracy as a percentage, and is defined by the formula: where At is the actual value and Ft is the forecast value. The… …   Wikipedia

  • Mean absolute scaled error — In statistics, the mean absolute scaled error (MASE) is a measure of the accuracy of forecasts . It was proposed in 2006 by Australian statistician Rob Hyndman, who described it as a generally applicable measurement of forecast accuracy without… …   Wikipedia

  • Mean squared error — In statistics, the mean squared error (MSE) of an estimator is one of many ways to quantify the difference between values implied by a kernel density estimator and the true values of the quantity being estimated. MSE is a risk function,… …   Wikipedia

  • Mean — This article is about the statistical concept. For other uses, see Mean (disambiguation). In statistics, mean has two related meanings: the arithmetic mean (and is distinguished from the geometric mean or harmonic mean). the expected value of a… …   Wikipedia

  • MAPE — mean absolute percentage error …   Medical dictionary

  • MAPE — • mean absolute percentage error …   Dictionary of medical acronyms & abbreviations

  • Margin of error — This article is about the statistical precision of estimates from sample surveys. For safety margins in engineering, see Factor of safety. For tolerance in engineering, see Tolerance (engineering). Not to be confused with Margin for Error. The… …   Wikipedia

  • List of statistics topics — Please add any Wikipedia articles related to statistics that are not already on this list.The Related changes link in the margin of this page (below search) leads to a list of the most recent changes to the articles listed below. To see the most… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Forecasting — is the process of estimation in unknown situations. Prediction is a similar, but more general term. Both can refer to estimation of time series, cross sectional or longitudinal data. Usage can differ between areas of application: for example in… …   Wikipedia

  • Forecast — Die Prognose (griechisch, πρóγνωσις – wörtlich „das Vorwissen“, die „Voraus Kenntnis“), deutsch Vorhersage oder Voraussage, selten auch: Prädiktion (lat. praedicare „ im Voraus“ und „sagen“) bezeichnet die Aussagen über Ereignisse, Zustände oder… …   Deutsch Wikipedia

Для того чтобы модель линейной регрессии можно было применять на практике необходимо сначала оценить её качество. Для этих целей предложен ряд показателей, каждый из которых предназначен для использования в различных ситуациях и имеет свои особенности применения (линейные и нелинейные, устойчивые к аномалиям, абсолютные и относительные, и т.д.). Корректный выбор меры для оценки качества модели является одним из важных факторов успеха в решении задач анализа данных.

  • Среднеквадратичная ошибка (Mean Squared Error)
  • Корень из среднеквадратичной ошибки (Root Mean Squared Error)
  • Среднеквадратичная ошибка в процентах (Mean Squared Percentage Error)
  • Cредняя абсолютная ошибка (Mean Absolute Error)
  • Средняя абсолютная процентная ошибка (Mean Absolute Percentage Error)
  • Cимметричная средняя абсолютная процентная ошибка (Symmetric Mean Absolute Percentage Error)
  • Средняя абсолютная масштабированная ошибка (Mean absolute scaled error)
  • Средняя относительная ошибка (Mean Relative Error)
  • Среднеквадратичная логарифмическая ошибка (Root Mean Squared Logarithmic Error
  • R-квадрат
  • Скорректированный R-квадрат
  • Сравнение метрик

«Хорошая» аналитическая модель должна удовлетворять двум, зачастую противоречивым, требованиям — как можно лучше соответствовать данным и при этом быть удобной для интерпретации пользователем. Действительно, повышение соответствия модели данным как правило связано с её усложнением (в случае регрессии — увеличением числа входных переменных модели). А чем сложнее модель, тем ниже её интерпретируемость.

Поэтому при выборе между простой и сложной моделью последняя должна значимо увеличивать соответствие модели данным чтобы оправдать рост сложности и соответствующее снижение интерпретируемости. Если это условие не выполняется, то следует выбрать более простую модель.

Таким образом, чтобы оценить, насколько повышение сложности модели значимо увеличивает её точность, необходимо использовать аппарат оценки качества регрессионных моделей. Он включает в себя следующие меры:

  • Среднеквадратичная ошибка (MSE).
  • Корень из среднеквадратичной ошибки (RMSE).
  • Среднеквадратичная ошибка в процентах (MSPE).
  • Средняя абсолютная ошибка (MAE).
  • Средняя абсолютная ошибка в процентах (MAPE).
  • Cимметричная средняя абсолютная процентная ошибка (SMAPE).
  • Средняя абсолютная масштабированная ошибка (MASE)
  • Средняя относительная ошибка (MRE).
  • Среднеквадратичная логарифмическая ошибка (RMSLE).
  • Коэффициент детерминации R-квадрат.
  • Скорректированный коэффициент детеминации.

Прежде чем перейти к изучению метрик качества, введём некоторые базовые понятия, которые нам в этом помогут. Для этого рассмотрим рисунок.

Рисунок 1. Линейная регрессия

Наклонная прямая представляет собой линию регрессии с переменной, на которой расположены точки, соответствующие предсказанным значениям выходной переменной widehat{y} (кружки синего цвета). Оранжевые кружки представляют фактические (наблюдаемые) значения y . Расстояния между ними и линией регрессии — это ошибка предсказания модели y-widehat{y} (невязка, остатки). Именно с её использованием вычисляются все приведённые в статье меры качества.

Горизонтальная линия представляет собой модель простого среднего, где коэффициент при независимой переменной x равен нулю, и остаётся только свободный член b, который становится равным среднему арифметическому фактических значений выходной переменной, т.е. b=overline{y}. Очевидно, что такая модель для любого значения входной переменной будет выдавать одно и то же значение выходной — overline{y}.

В линейной регрессии такая модель рассматривается как «бесполезная», хуже которой работает только «случайный угадыватель». Однако, она используется для оценки, насколько дисперсия фактических значений y относительно линии среднего, больше, чем относительно линии регрессии с переменной, т.е. насколько модель с переменной лучше «бесполезной».

MSE

Среднеквадратичная ошибка (Mean Squared Error) применяется в случаях, когда требуется подчеркнуть большие ошибки и выбрать модель, которая дает меньше именно больших ошибок. Большие значения ошибок становятся заметнее за счет квадратичной зависимости.

Действительно, допустим модель допустила на двух примерах ошибки 5 и 10. В абсолютном выражении они отличаются в два раза, но если их возвести в квадрат, получив 25 и 100 соответственно, то отличие будет уже в четыре раза. Таким образом модель, которая обеспечивает меньшее значение MSE допускает меньше именно больших ошибок.

MSE рассчитывается по формуле:

MSE=frac{1}{n}sumlimits_{i=1}^{n}(y_{i}-widehat{y}_{i})^{2},

где n — количество наблюдений по которым строится модель и количество прогнозов, y_{i} — фактические значение зависимой переменной для i-го наблюдения, widehat{y}_{i} — значение зависимой переменной, предсказанное моделью.

Таким образом, можно сделать вывод, что MSE настроена на отражение влияния именно больших ошибок на качество модели.

Недостатком использования MSE является то, что если на одном или нескольких неудачных примерах, возможно, содержащих аномальные значения будет допущена значительная ошибка, то возведение в квадрат приведёт к ложному выводу, что вся модель работает плохо. С другой стороны, если модель даст небольшие ошибки на большом числе примеров, то может возникнуть обратный эффект — недооценка слабости модели.

RMSE

Корень из среднеквадратичной ошибки (Root Mean Squared Error) вычисляется просто как квадратный корень из MSE:

RMSE=sqrt{frac{1}{n}sumlimits_{i=1}^{n}(y_{i}-widehat{y_{i}})^{2}}

MSE и RMSE могут минимизироваться с помощью одного и того же функционала, поскольку квадратный корень является неубывающей функцией. Например, если у нас есть два набора результатов работы модели, A и B, и MSE для A больше, чем MSE для B, то мы можем быть уверены, что RMSE для A больше RMSE для B. Справедливо и обратное: если MSE(A)<MSE(B), то и RMSE(A)<RMSE(B).

Следовательно, сравнение моделей с помощью RMSE даст такой же результат, что и для MSE. Однако с MSE работать несколько проще, поэтому она более популярна у аналитиков. Кроме этого, имеется небольшая разница между этими двумя ошибками при оптимизации с использованием градиента:

frac{partial RMSE}{partial widehat{y}_{i}}=frac{1}{2sqrt{MSE}}frac{partial MSE}{partial widehat{y}_{i}}

Это означает, что перемещение по градиенту MSE эквивалентно перемещению по градиенту RMSE, но с другой скоростью, и скорость зависит от самой оценки MSE. Таким образом, хотя RMSE и MSE близки с точки зрения оценки моделей, они не являются взаимозаменяемыми при использовании градиента для оптимизации.

Влияние каждой ошибки на RMSE пропорционально величине квадрата ошибки. Поэтому большие ошибки оказывают непропорционально большое влияние на RMSE. Следовательно, RMSE можно считать чувствительной к аномальным значениям.

MSPE

Среднеквадратичная ошибка в процентах (Mean Squared Percentage Error) представляет собой относительную ошибку, где разность между наблюдаемым и фактическим значениями делится на наблюдаемое значение и выражается в процентах:

MSPE=frac{100}{n}sumlimits_{i=1}^{n}left ( frac{y_{i}-widehat{y}_{i}}{y_{i}} right )^{2}

Проблемой при использовании MSPE является то, что, если наблюдаемое значение выходной переменной равно 0, значение ошибки становится неопределённым.

MSPE можно рассматривать как взвешенную версию MSE, где вес обратно пропорционален квадрату наблюдаемого значения. Таким образом, при возрастании наблюдаемых значений ошибка имеет тенденцию уменьшаться.

MAE

Cредняя абсолютная ошибка (Mean Absolute Error) вычисляется следующим образом:

MAE=frac{1}{n}sumlimits_{i=1}^{n}left | y_{i}-widehat{y}_{i} right |

Т.е. MAE рассчитывается как среднее абсолютных разностей между наблюдаемым и предсказанным значениями. В отличие от MSE и RMSE она является линейной оценкой, а это значит, что все ошибки в среднем взвешены одинаково. Например, разница между 0 и 10 будет вдвое больше разницы между 0 и 5. Для MSE и RMSE, как отмечено выше, это не так.

Поэтому MAE широко используется, например, в финансовой сфере, где ошибка в 10 долларов должна интерпретироваться как в два раза худшая, чем ошибка в 5 долларов.

MAPE

Средняя абсолютная процентная ошибка (Mean Absolute Percentage Error) вычисляется следующим образом:

MAPE=frac{100}{n}sumlimits_{i=1}^{n}frac{left | y_{i}-widehat{y_{i}} right |}{left | y_{i} right |}

Эта ошибка не имеет размерности и очень проста в интерпретации. Её можно выражать как в долях, так и в процентах. Если получилось, например, что MAPE=11.4, то это говорит о том, что ошибка составила 11.4% от фактического значения.

SMAPE

Cимметричная средняя абсолютная процентная ошибка (Symmetric Mean Absolute Percentage Error) — это мера точности, основанная на процентных (или относительных) ошибках. Обычно определяется следующим образом:

SMAPE=frac{100}{n}sumlimits_{i=1}^{n}frac{left | y_{i}-widehat{y_{i}} right |}{(left | y_{i} right |+left | widehat{y}_{i} right |)/2}

Т.е. абсолютная разность между наблюдаемым и предсказанным значениями делится на полусумму их модулей. В отличие от обычной MAPE, симметричная имеет ограничение на диапазон значений. В приведённой формуле он составляет от 0 до 200%. Однако, поскольку диапазон от 0 до 100% гораздо удобнее интерпретировать, часто используют формулу, где отсутствует деление знаменателя на 2.

Одной из возможных проблем SMAPE является неполная симметрия, поскольку в разных диапазонах ошибка вычисляется неодинаково. Это иллюстрируется следующим примером: если y_{i}=100 и widehat{y}_{i}=110, то SMAPE=4.76, а если y_{i}=100 и widehat{y}_{i}=90, то SMAPE=5.26.

Ограничение SMAPE заключается в том, что, если наблюдаемое или предсказанное значение равно 0, ошибка резко возрастет до верхнего предела (200% или 100%).

MASE

Средняя абсолютная масштабированная ошибка (Mean absolute scaled error) — это показатель, который позволяет сравнивать две модели. Если поместить MAE для новой модели в числитель, а MAE для исходной модели в знаменатель, то полученное отношение и будет равно MASE. Если значение MASE меньше 1, то новая модель работает лучше, если MASE равно 1, то модели работают одинаково, а если значение MASE больше 1, то исходная модель работает лучше, чем новая модель. Формула для расчета MASE имеет вид:

MASE=frac{MAE_{i}}{MAE_{j}}

MASE симметрична и устойчива к выбросам.

MRE

Средняя относительная ошибка (Mean Relative Error) вычисляется по формуле:

MRE=frac{1}{n}sumlimits_{i=1}^{n}frac{left | y_{i}-widehat{y}_{i}right |}{left | y_{i} right |}

Несложно увидеть, что данная мера показывает величину абсолютной ошибки относительно фактического значения выходной переменной (поэтому иногда эту ошибку называют также средней относительной абсолютной ошибкой, MRAE). Действительно, если значение абсолютной ошибки, скажем, равно 10, то сложно сказать много это или мало. Например, относительно значения выходной переменной, равного 20, это составляет 50%, что достаточно много. Однако относительно значения выходной переменной, равного 100, это будет уже 10%, что является вполне нормальным результатом.

Очевидно, что при вычислении MRE нельзя применять наблюдения, в которых y_{i}=0.

Таким образом, MRE позволяет более адекватно оценить величину ошибки, чем абсолютные ошибки. Кроме этого она является безразмерной величиной, что упрощает интерпретацию.

RMSLE

Среднеквадратичная логарифмическая ошибка (Root Mean Squared Logarithmic Error) представляет собой RMSE, вычисленную в логарифмическом масштабе:

RMSLE=sqrt{frac{1}{n}sumlimits_{i=1}^{n}(log(widehat{y}_{i}+1)-log{(y_{i}+1}))^{2}}

Константы, равные 1, добавляемые в скобках, необходимы чтобы не допустить обращения в 0 выражения под логарифмом, поскольку логарифм нуля не существует.

Известно, что логарифмирование приводит к сжатию исходного диапазона изменения значений переменной. Поэтому применение RMSLE целесообразно, если предсказанное и фактическое значения выходной переменной различаются на порядок и больше.

R-квадрат

Перечисленные выше ошибки не так просто интерпретировать. Действительно, просто зная значение средней абсолютной ошибки, скажем, равное 10, мы сразу не можем сказать хорошая это ошибка или плохая, и что нужно сделать чтобы улучшить модель.

В этой связи представляет интерес использование для оценки качества регрессионной модели не значения ошибок, а величину показывающую, насколько данная модель работает лучше, чем модель, в которой присутствует только константа, а входные переменные отсутствуют или коэффициенты регрессии при них равны нулю.

Именно такой мерой и является коэффициент детерминации (Coefficient of determination), который показывает долю дисперсии зависимой переменной, объяснённой с помощью регрессионной модели. Наиболее общей формулой для вычисления коэффициента детерминации является следующая:

R^{2}=1-frac{sumlimits_{i=1}^{n}(widehat{y}_{i}-y_{i})^{2}}{sumlimits_{i=1}^{n}({overline{y}}_{i}-y_{i})^{2}}

Практически, в числителе данного выражения стоит среднеквадратическая ошибка оцениваемой модели, а в знаменателе — модели, в которой присутствует только константа.

Главным преимуществом коэффициента детерминации перед мерами, основанными на ошибках, является его инвариантность к масштабу данных. Кроме того, он всегда изменяется в диапазоне от −∞ до 1. При этом значения близкие к 1 указывают на высокую степень соответствия модели данным. Очевидно, что это имеет место, когда отношение в формуле стремится к 0, т.е. ошибка модели с переменными намного меньше ошибки модели с константой. R^{2}=0 показывает, что между независимой и зависимой переменными модели имеет место функциональная зависимость.

Когда значение коэффициента близко к 0 (т.е. ошибка модели с переменными примерно равна ошибке модели только с константой), это указывает на низкое соответствие модели данным, когда модель с переменными работает не лучше модели с константой.

Кроме этого, бывают ситуации, когда коэффициент R^{2} принимает отрицательные значения (обычно небольшие). Это произойдёт, если ошибка модели среднего становится меньше ошибки модели с переменной. В этом случае оказывается, что добавление в модель с константой некоторой переменной только ухудшает её (т.е. регрессионная модель с переменной работает хуже, чем предсказание с помощью простой средней).

На практике используют следующую шкалу оценок. Модель, для которой R^{2}>0.5, является удовлетворительной. Если R^{2}>0.8, то модель рассматривается как очень хорошая. Значения, меньшие 0.5 говорят о том, что модель плохая.

Скорректированный R-квадрат

Основной проблемой при использовании коэффициента детерминации является то, что он увеличивается (или, по крайней мере, не уменьшается) при добавлении в модель новых переменных, даже если эти переменные никак не связаны с зависимой переменной.

В связи с этим возникают две проблемы. Первая заключается в том, что не все переменные, добавляемые в модель, могут значимо увеличивать её точность, но при этом всегда увеличивают её сложность. Вторая проблема — с помощью коэффициента детерминации нельзя сравнивать модели с разным числом переменных. Чтобы преодолеть эти проблемы используют альтернативные показатели, одним из которых является скорректированный коэффициент детерминации (Adjasted coefficient of determinftion).

Скорректированный коэффициент детерминации даёт возможность сравнивать модели с разным числом переменных так, чтобы их число не влияло на статистику R^{2}, и накладывает штраф за дополнительно включённые в модель переменные. Вычисляется по формуле:

R_{adj}^{2}=1-frac{sumlimits_{i=1}^{n}(widehat{y}_{i}-y_{i})^{2}/(n-k)}{sumlimits_{i=1}^{n}({overline{y}}_{i}-y_{i})^{2}/(n-1)}

где n — число наблюдений, на основе которых строится модель, k — количество переменных в модели.

Скорректированный коэффициент детерминации всегда меньше единицы, но теоретически может принимать значения и меньше нуля только при очень малом значении обычного коэффициента детерминации и большом количестве переменных модели.

Сравнение метрик

Резюмируем преимущества и недостатки каждой приведённой метрики в следующей таблице:

Мера Сильные стороны Слабые стороны
MSE Позволяет подчеркнуть большие отклонения, простота вычисления. Имеет тенденцию занижать качество модели, чувствительна к выбросам. Сложность интерпретации из-за квадратичной зависимости.
RMSE Простота интерпретации, поскольку измеряется в тех же единицах, что и целевая переменная. Имеет тенденцию занижать качество модели, чувствительна к выбросам.
MSPE Нечувствительна к выбросам. Хорошо интерпретируема, поскольку имеет линейный характер. Поскольку вклад всех ошибок отдельных наблюдений взвешивается одинаково, не позволяет подчёркивать большие и малые ошибки.
MAPE Является безразмерной величиной, поэтому её интерпретация не зависит от предметной области. Нельзя использовать для наблюдений, в которых значения выходной переменной равны нулю.
SMAPE Позволяет корректно работать с предсказанными значениями независимо от того больше они фактического, или меньше. Приближение к нулю фактического или предсказанного значения приводит к резкому росту ошибки, поскольку в знаменателе присутствует как фактическое, так и предсказанное значения.
MASE Не зависит от масштаба данных, является симметричной: положительные и отрицательные отклонения от фактического значения учитываются одинаково. Устойчива к выбросам. Позволяет сравнивать модели. Сложность интерпретации.
MRE Позволяет оценить величину ошибки относительно значения целевой переменной. Неприменима для наблюдений с нулевым значением выходной переменной.
RMSLE Логарифмирование позволяет сделать величину ошибки более устойчивой, когда разность между фактическим и предсказанным значениями различается на порядок и выше Может быть затруднена интерпретация из-за нелинейности.
R-квадрат Универсальность, простота интерпретации. Возрастает даже при включении в модель бесполезных переменных. Плохо работает когда входные переменные зависимы.
R-квадрат скорр. Корректно отражает вклад каждой переменной в модель. Плохо работает, когда входные переменные зависимы.

В данной статье рассмотрены наиболее популярные меры качества регрессионных моделей, которые часто используются в различных аналитических приложениях. Эти меры имеют свои особенности применения, знание которых позволит обоснованно выбирать и корректно применять их на практике.

Однако в литературе можно встретить и другие меры качества моделей регрессии, которые предлагаются различными авторами для решения конкретных задач анализа данных.

Другие материалы по теме:

Отбор переменных в моделях линейной регрессии

Репрезентативность выборочных данных

Логистическая регрессия и ROC-анализ — математический аппарат

Гораздо легче что-то измерить, чем понять, что именно вы измеряете

Джон Уильям Салливан

Задачи машинного обучения с учителем как правило состоят в восстановлении зависимости между парами (признаковое описание, целевая переменная) по данным, доступным нам для анализа. Алгоритмы машинного обучения (learning algorithm), со многими из которых вы уже успели познакомиться, позволяют построить модель, аппроксимирующую эту зависимость. Но как понять, насколько качественной получилась аппроксимация?

Почти наверняка наша модель будет ошибаться на некоторых объектах: будь она даже идеальной, шум или выбросы в тестовых данных всё испортят. При этом разные модели будут ошибаться на разных объектах и в разной степени. Задача специалиста по машинному обучению – подобрать подходящий критерий, который позволит сравнивать различные модели.

Перед чтением этой главы мы хотели бы ещё раз напомнить, что качество модели нельзя оценивать на обучающей выборке. Как минимум, это стоит делать на отложенной (тестовой) выборке, но, если вам это позволяют время и вычислительные ресурсы, стоит прибегнуть и к более надёжным способам проверки – например, кросс-валидации (о ней вы узнаете в отдельной главе).

Выбор метрик в реальных задачах

Возможно, вы уже участвовали в соревнованиях по анализу данных. На таких соревнованиях метрику (критерий качества модели) организатор выбирает за вас, и она, как правило, довольно понятным образом связана с результатами предсказаний. Но на практике всё бывает намного сложнее.

Например, мы хотим:

  • решить, сколько коробок с бананами нужно завтра привезти в конкретный магазин, чтобы минимизировать количество товара, который не будет выкуплен и минимизировать ситуацию, когда покупатель к концу дня не находит желаемый продукт на полке;
  • увеличить счастье пользователя от работы с нашим сервисом, чтобы он стал лояльным и обеспечивал тем самым стабильный прогнозируемый доход;
  • решить, нужно ли направить человека на дополнительное обследование.

В каждом конкретном случае может возникать целая иерархия метрик. Представим, например, что речь идёт о стриминговом музыкальном сервисе, пользователей которого мы решили порадовать сгенерированными самодельной нейросетью треками – не защищёнными авторским правом, а потому совершенно бесплатными. Иерархия метрик могла бы иметь такой вид:

  1. Самый верхний уровень: будущий доход сервиса – невозможно измерить в моменте, сложным образом зависит от совокупности всех наших усилий;
  2. Медианная длина сессии, возможно, служащая оценкой радости пользователей, которая, как мы надеемся, повлияет на их желание продолжать платить за подписку – её нам придётся измерять в продакшене, ведь нас интересует реакция настоящих пользователей на новшество;
  3. Доля удовлетворённых качеством сгенерированной музыки асессоров, на которых мы потестируем её до того, как выставить на суд пользователей;
  4. Функция потерь, на которую мы будем обучать генеративную сеть.

На этом примере мы можем заметить сразу несколько общих закономерностей. Во-первых, метрики бывают offline и online (оффлайновыми и онлайновыми). Online метрики вычисляются по данным, собираемым с работающей системы (например, медианная длина сессии). Offline метрики могут быть измерены до введения модели в эксплуатацию, например, по историческим данным или с привлечением специальных людей, асессоров. Последнее часто применяется, когда метрикой является реакция живого человека: скажем, так поступают поисковые компании, которые предлагают людям оценить качество ранжирования экспериментальной системы еще до того, как рядовые пользователи увидят эти результаты в обычном порядке. На самом же нижнем этаже иерархии лежат оптимизируемые в ходе обучения функции потерь.

В данном разделе нас будут интересовать offline метрики, которые могут быть измерены без привлечения людей.

Функция потерь $neq$ метрика качества

Как мы узнали ранее, методы обучения реализуют разные подходы к обучению:

  • обучение на основе прироста информации (как в деревьях решений)
  • обучение на основе сходства (как в методах ближайших соседей)
  • обучение на основе вероятностной модели данных (например, максимизацией правдоподобия)
  • обучение на основе ошибок (минимизация эмпирического риска)

И в рамках обучения на основе минимизации ошибок мы уже отвечали на вопрос: как можно штрафовать модель за предсказание на обучающем объекте.

Во время сведения задачи о построении решающего правила к задаче численной оптимизации, мы вводили понятие функции потерь и, обычно, объявляли целевой функцией сумму потерь от предсказаний на всех объектах обучающей выборке.

Важно понимать разницу между функцией потерь и метрикой качества. Её можно сформулировать следующим образом:

  • Функция потерь возникает в тот момент, когда мы сводим задачу построения модели к задаче оптимизации. Обычно требуется, чтобы она обладала хорошими свойствами (например, дифференцируемостью).

  • Метрика – внешний, объективный критерий качества, обычно зависящий не от параметров модели, а только от предсказанных меток.

В некоторых случаях метрика может совпадать с функцией потерь. Например, в задаче регрессии MSE играет роль как функции потерь, так и метрики. Но, скажем, в задаче бинарной классификации они почти всегда различаются: в качестве функции потерь может выступать кросс-энтропия, а в качестве метрики – число верно угаданных меток (accuracy). Отметим, что в последнем примере у них различные аргументы: на вход кросс-энтропии нужно подавать логиты, а на вход accuracy – предсказанные метки (то есть по сути argmax логитов).

Бинарная классификация: метки классов

Перейдём к обзору метрик и начнём с самой простой разновидности классификации – бинарной, а затем постепенно будем наращивать сложность.

Напомним постановку задачи бинарной классификации: нам нужно по обучающей выборке ${(x_i, y_i)}_{i=1}^N$, где $y_iin{0, 1}$ построить модель, которая по объекту $x$ предсказывает метку класса $f(x)in{0, 1}$.

Первым критерием качества, который приходит в голову, является accuracy – доля объектов, для которых мы правильно предсказали класс:

$$ color{#348FEA}{text{Accuracy}(y, y^{pred}) = frac{1}{N} sum_{i=1}^N mathbb{I}[y_i = f(x_i)]} $$

Или же сопряженная ей метрика – доля ошибочных классификаций (error rate):

$$text{Error rate} = 1 — text{Accuracy}$$

Познакомившись чуть внимательнее с этой метрикой, можно заметить, что у неё есть несколько недостатков:

  • она не учитывает дисбаланс классов. Например, в задаче диагностики редких заболеваний классификатор, предсказывающий всем пациентам отсутствие болезни будет иметь достаточно высокую accuracy просто потому, что больных людей в выборке намного меньше;
  • она также не учитывает цену ошибки на объектах разных классов. Для примера снова можно привести задачу медицинской диагностики: если ошибочный положительный диагноз для здорового больного обернётся лишь ещё одним обследованием, то ошибочно отрицательный вердикт может повлечь роковые последствия.

Confusion matrix (матрица ошибок)

Исторически задача бинарной классификации – это задача об обнаружении чего-то редкого в большом потоке объектов, например, поиск человека, больного туберкулёзом, по флюорографии. Или задача признания пятна на экране приёмника радиолокационной станции бомбардировщиком, представляющем угрозу охраняемому объекту (в противовес стае гусей).

Поэтому класс, который представляет для нас интерес, называется «положительным», а оставшийся – «отрицательным».

Заметим, что для каждого объекта в выборке возможно 4 ситуации:

  • мы предсказали положительную метку и угадали. Будет относить такие объекты к true positive (TP) группе (true – потому что предсказали мы правильно, а positive – потому что предсказали положительную метку);
  • мы предсказали положительную метку, но ошиблись в своём предсказании – false positive (FP) (false, потому что предсказание было неправильным);
  • мы предсказали отрицательную метку и угадалиtrue negative (TN);
  • и наконец, мы предсказали отрицательную метку, но ошиблисьfalse negative (FN). Для удобства все эти 4 числа изображают в виде таблицы, которую называют confusion matrix (матрицей ошибок):

6_1.png

Не волнуйтесь, если первое время эти обозначения будут сводить вас с ума (будем откровенны, даже профи со стажем в них порой путаются), однако логика за ними достаточно простая: первая часть названия группы показывает угадали ли мы с классом, а вторая – какой класс мы предсказали.

6_2.png

Пример

Попробуем воспользоваться введёнными метриками в боевом примере: сравним работу нескольких моделей классификации на Breast cancer wisconsin (diagnostic) dataset.

Объектами выборки являются фотографии биопсии грудных опухолей. С их помощью было сформировано признаковое описание, которое заключается в характеристиках ядер клеток (таких как радиус ядра, его текстура, симметричность). Положительным классом в такой постановке будут злокачественные опухоли, а отрицательным – доброкачественные.

Модель 1. Константное предсказание.

Решение задачи начнём с самого простого классификатора, который выдаёт на каждом объекте константное предсказание – самый часто встречающийся класс.

Зачем вообще замерять качество на такой модели?При разработке модели машинного обучения для проекта всегда желательно иметь некоторую baseline модель. Так нам будет легче проконтролировать, что наша более сложная модель действительно дает нам прирост качества.

from sklearn.datasets 
import load_breast_cancer 
the_data = load_breast_cancer()    

# 0 – "доброкачественный" 
# 1 – "злокачественный" 
relabeled_target = 1 - the_data["target"] 

from sklearn.model_selection import train_test_split 
X = the_data["data"] 
y = relabeled_target 
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) 

from sklearn.dummy import DummyClassifier 
dc_mf = DummyClassifier(strategy="most_frequent") 
dc_mf.fit(X_train, y_train) 

from sklearn.metrics import confusion_matrix 
y_true = y_test y_pred = dc_mf.predict(X_test) 
dc_mf_tn, dc_mf_fp, dc_mf_fn, dc_mf_tp = confusion_matrix(y_true, y_pred, labels = [0, 1]).ravel() 
Прогнозируемый класс + Прогнозируемый класс —
Истинный класс + TP = 0 FN = 53
Истинный класс — FP = 0 TN = 90

Обучающие данные таковы, что наш dummy-классификатор все объекты записывает в отрицательный класс, то есть признаёт все опухоли доброкачественными. Такой наивный подход позволяет нам получить минимальный штраф за FP (действительно, нельзя ошибиться в предсказании, если положительный класс вообще не предсказывается), но и максимальный штраф за FN (в эту группу попадут все злокачественные опухоли).

Модель 2. Случайный лес.

Настало время воспользоваться всем арсеналом моделей машинного обучения, и начнём мы со случайного леса.

from sklearn.ensemble import RandomForestClassifier 
rfc = RandomForestClassifier()       
rfc.fit(X_train, y_train)       
y_true = y_test       
y_pred = rfc.predict(X_test)       
rfc_tn, rfc_fp, rfc_fn, rfc_tp = confusion_matrix(y_true, y_pred, labels = [0, 1]).ravel()
Прогнозируемый класс + Прогнозируемый класс —
Истинный класс + TP = 52 FN = 1
Истинный класс — FP = 4 TN = 86

Можно сказать, что этот классификатор чему-то научился, т.к. главная диагональ матрицы стала содержать все объекты из отложенной выборки, за исключением 4 + 1 = 5 объектов (сравните с 0 + 53 объектами dummy-классификатора, все опухоли объявляющего доброкачественными).

Отметим, что вычисляя долю недиагональных элементов, мы приходим к метрике error rate, о которой мы говорили в самом начале:

$$text{Error rate} = frac{FP + FN}{ TP + TN + FP + FN}$$

тогда как доля объектов, попавших на главную диагональ – это как раз таки accuracy:

$$text{Accuracy} = frac{TP + TN}{ TP + TN + FP + FN}$$

Модель 3. Метод опорных векторов.

Давайте построим еще один классификатор на основе линейного метода опорных векторов.

Не забудьте привести признаки к единому масштабу, иначе численный алгоритм не сойдется к решению и мы получим гораздо более плохо работающее решающее правило. Попробуйте проделать это упражнение.

from sklearn.svm import LinearSVC
from sklearn.preprocessing import StandardScaler 
ss = StandardScaler() ss.fit(X_train) 
scaled_linsvc = LinearSVC(C=0.01,random_state=42) 
scaled_linsvc.fit(ss.transform(X_train), y_train) 
y_true = y_test 
y_pred = scaled_linsvc.predict(ss.transform(X_test)) 
tn, fp, fn, tp = confusion_matrix(y_true, y_pred, labels = [0, 1]).ravel() 
Прогнозируемый класс + Прогнозируемый класс —
Истинный класс + TP = 50 FN = 3
Истинный класс — FP = 1 TN = 89

Сравним результаты

Легко заметить, что каждая из двух моделей лучше классификатора-пустышки, однако давайте попробуем сравнить их между собой. С точки зрения error rate модели практически одинаковы: 5/143 для леса против 4/143 для SVM.

Посмотрим на структуру ошибок чуть более внимательно: лес – (FP = 4, FN = 1), SVM – (FP = 1, FN = 3). Какая из моделей предпочтительнее?

Замечание: Мы сравниваем несколько классификаторов на основании их предсказаний на отложенной выборке. Насколько ошибки данных классификаторов зависят от разбиения исходного набора данных? Иногда в процессе оценки качества мы будем получать модели, чьи показатели эффективности будут статистически неразличимыми.

Пусть мы учли предыдущее замечание и эти модели действительно статистически значимо ошибаются в разную сторону. Мы встретились с очевидной вещью: на матрицах нет отношения порядка. Когда мы сравнивали dummy-классификатор и случайный лес с помощью Accuracy, мы всю сложную структуру ошибок свели к одному числу, т.к. на вещественных числах отношение порядка есть. Сводить оценку модели к одному числу очень удобно, однако не стоит забывать, что у вашей модели есть много аспектов качества.

Что же всё-таки важнее уменьшить: FP или FN? Вернёмся к задаче: FP – доля доброкачественных опухолей, которым ошибочно присваивается метка злокачественной, а FN – доля злокачественных опухолей, которые классификатор пропускает. В такой постановке становится понятно, что при сравнении выиграет модель с меньшим FN (то есть лес в нашем примере), ведь каждая не обнаруженная опухоль может стоить человеческой жизни.

Рассмотрим теперь другую задачу: по данным о погоде предсказать, будет ли успешным запуск спутника. FN в такой постановке – это ошибочное предсказание неуспеха, то есть не более, чем упущенный шанс (если вас, конечно не уволят за срыв сроков). С FP всё серьёзней: если вы предскажете удачный запуск спутника, а на деле он потерпит крушение из-за погодных условий, то ваши потери будут в разы существеннее.

Итак, из примеров мы видим, что в текущем виде введенная нами доля ошибочных классификаций не даст нам возможности учесть неравную важность FP и FN. Поэтому введем две новые метрики: точность и полноту.

Точность и полнота

Accuracy — это метрика, которая характеризует качество модели, агрегированное по всем классам. Это полезно, когда классы для нас имеют одинаковое значение. В случае, если это не так, accuracy может быть обманчивой.

Рассмотрим ситуацию, когда положительный класс это событие редкое. Возьмем в качестве примера поисковую систему — в нашем хранилище хранятся миллиарды документов, а релевантных к конкретному поисковому запросу на несколько порядков меньше.

Пусть мы хотим решить задачу бинарной классификации «документ d релевантен по запросу q». Благодаря большому дисбалансу, Accuracy dummy-классификатора, объявляющего все документы нерелевантными, будет близка к единице. Напомним, что $text{Accuracy} = frac{TP + TN}{TP + TN + FP + FN}$, и в нашем случае высокое значение метрики будет обеспечено членом TN, в то время для пользователей более важен высокий TP.

Поэтому в случае ассиметрии классов, можно использовать метрики, которые не учитывают TN и ориентируются на TP.

Если мы рассмотрим долю правильно предсказанных положительных объектов среди всех объектов, предсказанных положительным классом, то мы получим метрику, которая называется точностью (precision)

$$color{#348FEA}{text{Precision} = frac{TP}{TP + FP}}$$

Интуитивно метрика показывает долю релевантных документов среди всех найденных классификатором. Чем меньше ложноположительных срабатываний будет допускать модель, тем больше будет её Precision.

Если же мы рассмотрим долю правильно найденных положительных объектов среди всех объектов положительного класса, то мы получим метрику, которая называется полнотой (recall)

$$color{#348FEA}{text{Recall} = frac{TP}{TP + FN}}$$

Интуитивно метрика показывает долю найденных документов из всех релевантных. Чем меньше ложно отрицательных срабатываний, тем выше recall модели.

Например, в задаче предсказания злокачественности опухоли точность показывает, сколько из определённых нами как злокачественные опухолей действительно являются злокачественными, а полнота – какую долю злокачественных опухолей нам удалось выявить.

Хорошее понимание происходящего даёт следующая картинка: 6_3.png (источник картинки)

Recall@k, Precision@k

Метрики Recall и Precision хорошо подходят для задачи поиска «документ d релевантен запросу q», когда из списка рекомендованных алгоритмом документов нас интересует только первый. Но не всегда алгоритм машинного обучения вынужден работать в таких жестких условиях. Может быть такое, что вполне достаточно, что релевантный документ попал в первые k рекомендованных. Например, в интерфейсе выдачи первые три подсказки видны всегда одновременно и вообще не очень понятно, какой у них порядок. Тогда более честной оценкой качества алгоритма будет «в выдаче D размера k по запросу q нашлись релевантные документы». Для расчёта метрики по всей выборке объединим все выдачи и рассчитаем precision, recall как обычно подокументно.

F1-мера

Как мы уже отмечали ранее, модели очень удобно сравнивать, когда их качество выражено одним числом. В случае пары Precision-Recall существует популярный способ скомпоновать их в одну метрику — взять их среднее гармоническое. Данный показатель эффективности исторически носит название F1-меры (F1-measure).

$$
color{#348FEA}{F_1 = frac{2}{frac{1}{Recall} + frac{1}{Precision}}} = $$

$$ = 2 frac{Recall cdot Precision }{Recall + Precision} = frac
{TP} {TP + frac{FP + FN}{2}}
$$

Стоит иметь в виду, что F1-мера предполагает одинаковую важность Precision и Recall, если одна из этих метрик для вас приоритетнее, то можно воспользоваться $F_{beta}$ мерой:

$$
F_{beta} = (beta^2 + 1) frac{Recall cdot Precision }{Recall + beta^2Precision}
$$

Бинарная классификация: вероятности классов

Многие модели бинарной классификации устроены так, что класс объекта получается бинаризацией выхода классификатора по некоторому фиксированному порогу:

$$fleft(x ; w, w_{0}right)=mathbb{I}left[g(x, w) > w_{0}right].$$

Например, модель логистической регрессии возвращает оценку вероятности принадлежности примера к положительному классу. Другие модели бинарной классификации обычно возвращают произвольные вещественные значения, но существуют техники, называемые калибровкой классификатора, которые позволяют преобразовать предсказания в более или менее корректную оценку вероятности принадлежности к положительному классу.

Как оценить качество предсказываемых вероятностей, если именно они являются нашей конечной целью? Общепринятой мерой является логистическая функция потерь, которую мы изучали раньше, когда говорили об устройстве некоторых методов классификации (например уже упоминавшейся логистической регрессии).

Если же нашей целью является построение прогноза в терминах метки класса, то нам нужно учесть, что в зависимости от порога мы будем получать разные предсказания и разное качество на отложенной выборке. Так, чем ниже порог отсечения, тем больше объектов модель будет относить к положительному классу. Как в этом случае оценить качество модели?

AUC

Пусть мы хотим учитывать ошибки на объектах обоих классов. При уменьшении порога отсечения мы будем находить (правильно предсказывать) всё большее число положительных объектов, но также и неправильно предсказывать положительную метку на всё большем числе отрицательных объектов. Естественным кажется ввести две метрики TPR и FPR:

TPR (true positive rate) – это полнота, доля положительных объектов, правильно предсказанных положительными:

$$ TPR = frac{TP}{P} = frac{TP}{TP + FN} $$

FPR (false positive rate) – это доля отрицательных объектов, неправильно предсказанных положительными:

$$FPR = frac{FP}{N} = frac{FP}{FP + TN}$$

Обе эти величины растут при уменьшении порога. Кривая в осях TPR/FPR, которая получается при варьировании порога, исторически называется ROC-кривой (receiver operating characteristics curve, сокращённо ROC curve). Следующий график поможет вам понять поведение ROC-кривой.

Желтая и синяя кривые показывают распределение предсказаний классификатора на объектах положительного и отрицательного классов соответственно. То есть значения на оси X (на графике с двумя гауссианами) мы получаем из классификатора. Если классификатор идеальный (две кривые разделимы по оси X), то на правом графике мы получаем ROC-кривую (0,0)->(0,1)->(1,1) (убедитесь сами!), площадь под которой равна 1. Если классификатор случайный (предсказывает одинаковые метки положительным и отрицательным объектам), то мы получаем ROC-кривую (0,0)->(1,1), площадь под которой равна 0.5. Поэкспериментируйте с разными вариантами распределения предсказаний по классам и посмотрите, как меняется ROC-кривая.

Чем лучше классификатор разделяет два класса, тем больше площадь (area under curve) под ROC-кривой – и мы можем использовать её в качестве метрики. Эта метрика называется AUC и она работает благодаря следующему свойству ROC-кривой:

AUC равен доле пар объектов вида (объект класса 1, объект класса 0), которые алгоритм верно упорядочил, т.е. предсказание классификатора на первом объекте больше:

$$
color{#348FEA}{operatorname{AUC} = frac{sumlimits_{i = 1}^{N} sumlimits_{j = 1}^{N}mathbb{I}[y_i < y_j] I^{prime}[f(x_{i}) < f(x_{j})]}{sumlimits_{i = 1}^{N} sumlimits_{j = 1}^{N}mathbb{I}[y_i < y_j]}}
$$

$$
I^{prime}left[f(x_{i}) < f(x_{j})right]=
left{
begin{array}{ll}
0, & f(x_{i}) > f(x_{j}) \
0.5 & f(x_{i}) = f(x_{j}) \
1, & f(x_{i}) < f(x_{j})
end{array}
right.
$$

$$
Ileft[y_{i}< y_{j}right]=
left{
begin{array}{ll}
0, & y_{i} geq y_{j} \
1, & y_{i} < y_{j}
end{array}
right.
$$

Чтобы детальнее разобраться, почему это так, советуем вам обратиться к материалам А.Г.Дьяконова.

В каких случаях лучше отдать предпочтение этой метрике? Рассмотрим следующую задачу: некоторый сотовый оператор хочет научиться предсказывать, будет ли клиент пользоваться его услугами через месяц. На первый взгляд кажется, что задача сводится к бинарной классификации с метками 1, если клиент останется с компанией и $0$ – иначе.

Однако если копнуть глубже в процессы компании, то окажется, что такие метки практически бесполезны. Компании скорее интересно упорядочить клиентов по вероятности прекращения обслуживания и в зависимости от этого применять разные варианты удержания: кому-то прислать скидочный купон от партнёра, кому-то предложить скидку на следующий месяц, а кому-то и новый тариф на особых условиях.

Таким образом, в любой задаче, где нам важна не метка сама по себе, а правильный порядок на объектах, имеет смысл применять AUC.

Утверждение выше может вызывать у вас желание использовать AUC в качестве метрики в задачах ранжирования, но мы призываем вас быть аккуратными.

ПодробнееУтверждение выше может вызывать у вас желание использовать AUC в качестве метрики в задачах ранжирования, но мы призываем вас быть аккуратными.» details=»Продемонстрируем это на следующем примере: пусть наша выборка состоит из $9100$ объектов класса $0$ и $10$ объектов класса $1$, и модель расположила их следующим образом:

$$underbrace{0 dots 0}_{9000} ~ underbrace{1 dots 1}_{10} ~ underbrace{0 dots 0}_{100}$$

Тогда AUC будет близка к единице: количество пар правильно расположенных объектов будет порядка $90000$, в то время как общее количество пар порядка $91000$.

Однако самыми высокими по вероятности положительного класса будут совсем не те объекты, которые мы ожидаем.

Average Precision

Будем постепенно уменьшать порог бинаризации. При этом полнота будет расти от $0$ до $1$, так как будет увеличиваться количество объектов, которым мы приписываем положительный класс (а количество объектов, на самом деле относящихся к положительному классу, очевидно, меняться не будет). Про точность же нельзя сказать ничего определённого, но мы понимаем, что скорее всего она будет выше при более высоком пороге отсечения (мы оставим только объекты, в которых модель «уверена» больше всего). Варьируя порог и пересчитывая значения Precision и Recall на каждом пороге, мы получим некоторую кривую примерно следующего вида:

6_4.png (источник картинки)

Рассмотрим среднее значение точности (оно равно площади под кривой точность-полнота):

$$ text { AP }=int_{0}^{1} p(r) d r$$

Получим показатель эффективности, который называется average precision. Как в случае матрицы ошибок мы переходили к скалярным показателям эффективности, так и в случае с кривой точность-полнота мы охарактеризовали ее в виде числа.

Многоклассовая классификация

Если классов становится больше двух, расчёт метрик усложняется. Если задача классификации на $K$ классов ставится как $K$ задач об отделении класса $i$ от остальных ($i=1,ldots,K$), то для каждой из них можно посчитать свою матрицу ошибок. Затем есть два варианта получения итогового значения метрики из $K$ матриц ошибок:

  1. Усредняем элементы матрицы ошибок (TP, FP, TN, FN) между бинарными классификаторами, например $TP = frac{1}{K}sum_{i=1}^{K}TP_i$. Затем по одной усреднённой матрице ошибок считаем Precision, Recall, F-меру. Это называют микроусреднением.
  2. Считаем Precision, Recall для каждого классификатора отдельно, а потом усредняем. Это называют макроусреднением.

Порядок усреднения влияет на результат в случае дисбаланса классов. Показатели TP, FP, FN — это счётчики объектов. Пусть некоторый класс обладает маленькой мощностью (обозначим её $M$). Тогда значения TP и FN при классификации этого класса против остальных будут не больше $M$, то есть тоже маленькие. Про FP мы ничего уверенно сказать не можем, но скорее всего при дисбалансе классов классификатор не будет предсказывать редкий класс слишком часто, потому что есть большая вероятность ошибиться. Так что FP тоже мало. Поэтому усреднение первым способом сделает вклад маленького класса в общую метрику незаметным. А при усреднении вторым способом среднее считается уже для нормированных величин, так что вклад каждого класса будет одинаковым.

Рассмотрим пример. Пусть есть датасет из объектов трёх цветов: желтого, зелёного и синего. Желтого и зелёного цветов почти поровну — 21 и 20 объектов соответственно, а синих объектов всего 4.

6_5.png

Модель по очереди для каждого цвета пытается отделить объекты этого цвета от объектов оставшихся двух цветов. Результаты классификации проиллюстрированы матрицей ошибок. Модель «покрасила» в жёлтый 25 объектов, 20 из которых были действительно жёлтыми (левый столбец матрицы). В синий был «покрашен» только один объект, который на самом деле жёлтый (средний столбец матрицы). В зелёный — 19 объектов, все на самом деле зелёные (правый столбец матрицы).

6_6.png

Посчитаем Precision классификации двумя способами:

  1. С помощью микроусреднения получаем $$
    text{Precision} = frac{dfrac{1}{3}left(20 + 0 + 19right)}{dfrac{1}{3}left(20 + 0 + 19right) + dfrac{1}{3}left(5 + 1 + 0right)} = 0.87
    $$
  2. С помощью макроусреднения получаем $$
    text{Precision} = dfrac{1}{3}left( frac{20}{20 + 5} + frac{0}{0 + 1} + frac{19}{19 + 0}right) = 0.6
    $$

Видим, что макроусреднение лучше отражает тот факт, что синий цвет, которого в датасете было совсем мало, модель практически игнорирует.

Как оптимизировать метрики классификации?

Пусть мы выбрали, что метрика качества алгоритма будет $F(a(X), Y)$. Тогда мы хотим обучить модель так, чтобы $F$ на валидационной выборке была минимальная/максимальная. Лучший способ добиться минимизации метрики $F$ — оптимизировать её напрямую, то есть выбрать в качестве функции потерь ту же $F(a(X), Y)$. К сожалению, это не всегда возможно. Рассмотрим, как оптимизировать метрики иначе.

Метрики precision и recall невозможно оптимизировать напрямую, потому что эти метрики нельзя рассчитать на одном объекте, а затем усреднить. Они зависят от того, какими были правильная метка класса и ответ алгоритма на всех объектах. Чтобы понять, как оптимизировать precision, recall, рассмотрим, как расчитать эти метрики на отложенной выборке. Пусть модель обучена на стандартную для классификации функцию потерь (LogLoss). Для получения меток класса специалист по машинному обучению сначала применяет на объектах модель и получает вещественные предсказания модели ($p_i in left(0, 1right)$). Затем предсказания бинаризуются по порогу, выбранному специалистом: если предсказание на объекте больше порога, то метка класса 1 (или «положительная»), если меньше — 0 (или «отрицательная»). Рассмотрим, что будет с метриками precision, recall в крайних положениях порога.

  1. Пусть порог равен нулю. Тогда всем объектам будет присвоена положительная метка. Следовательно, все объекты будут либо TP, либо FP, потому что отрицательных предсказаний нет, $TP + FP = N$, где $N$ — размер выборки. Также все объекты, у которых метка на самом деле 1, попадут в TP. По формуле точность $text{Precision} = frac{TP}{TP + FP} = frac1N sum_{i = 1}^N mathbb{I} left[ y_i = 1 right]$ равна среднему таргету в выборке. А полнота $text{Recall} = frac{TP}{TP + FN} = frac{TP}{TP + 0} = 1$ равна единице.
  2. Пусть теперь порог равен единице. Тогда ни один объект не будет назван положительным, $TP = FP = 0$. Все объекты с меткой класса 1 попадут в FN. Если есть хотя бы один такой объект, то есть $FN ne 0$, будет верна формула $text{Recall} = frac{TP}{TP + FN} = frac{0}{0+ FN} = 0$. То есть при пороге единица, полнота равна нулю. Теперь посмотрим на точность. Формула для Precision состоит только из счётчиков положительных ответов модели (TP, FP). При единичном пороге они оба равны нулю, $text{Precision} = frac{TP}{TP + FP} = frac{0}{0 + 0}$то есть при единичном пороге точность неопределена. Пусть мы отступили чуть-чуть назад по порогу, чтобы хотя бы несколько объектов были названы моделью положительными. Скорее всего это будут самые «простые» объекты, которые модель распознает хорошо, потому что её предсказание близко к единице. В этом предположении $FP approx 0$. Тогда точность $text{Precision} = frac{TP}{TP + FP} approx frac{TP}{TP + 0} approx 1$ будет близка к единице.

Изменяя порог, между крайними положениями, получим графики Precision и Recall, которые выглядят как-то так:

6_7.png

Recall меняется от единицы до нуля, а Precision от среднего тагрета до какого-то другого значения (нет гарантий, что график монотонный).

Итого оптимизация precision и recall происходит так:

  1. Модель обучается на стандартную функцию потерь (например, LogLoss).
  2. Используя вещественные предсказания на валидационной выборке, перебирая разные пороги от 0 до 1, получаем графики метрик в зависимости от порога.
  3. Выбираем нужное сочетание точности и полноты.

Пусть теперь мы хотим максимизировать метрику AUC. Стандартный метод оптимизации, градиентный спуск, предполагает, что функция потерь дифференцируема. AUC этим качеством не обладает, то есть мы не можем оптимизировать её напрямую. Поэтому для метрики AUC приходится изменять оптимизационную задачу. Метрика AUC считает долю верно упорядоченных пар. Значит от исходной выборки можно перейти к выборке упорядоченных пар объектов. На этой выборке ставится задача классификации: метка класса 1 соответствует правильно упорядоченной паре, 0 — неправильно. Новой метрикой становится accuracy — доля правильно классифицированных объектов, то есть доля правильно упорядоченных пар. Оптимизировать accuracy можно по той же схеме, что и precision, recall: обучаем модель на LogLoss и предсказываем вероятности положительной метки у объекта выборки, считаем accuracy для разных порогов по вероятности и выбираем понравившийся.

Регрессия

В задачах регрессии целевая метка у нас имеет потенциально бесконечное число значений. И природа этих значений, обычно, связана с каким-то процессом измерений:

  • величина температуры в определенный момент времени на метеостанции
  • количество прочтений статьи на сайте
  • количество проданных бананов в конкретном магазине, сети магазинов или стране
  • дебит добывающей скважины на нефтегазовом месторождении за месяц и т.п.

Мы видим, что иногда метка это целое число, а иногда произвольное вещественное число. Обычно случаи целочисленных меток моделируют так, словно это просто обычное вещественное число. При таком подходе может оказаться так, что модель A лучше модели B по некоторой метрике, но при этом предсказания у модели A могут быть не целыми. Если в бизнес-задаче ожидается именно целочисленный ответ, то и оценивать нужно огрубление.

Общая рекомендация такова: оценивайте весь каскад решающих правил: и те «внутренние», которые вы получаете в результате обучения, и те «итоговые», которые вы отдаёте бизнес-заказчику.

Например, вы можете быть удовлетворены, что стали ошибаться не во втором, а только в третьем знаке после запятой при предсказании погоды. Но сами погодные данные измеряются с точностью до десятых долей градуса, а пользователь и вовсе может интересоваться лишь целым числом градусов.

Итак, напомним постановку задачи регрессии: нам нужно по обучающей выборке ${(x_i, y_i)}_{i=1}^N$, где $y_i in mathbb{R}$ построить модель f(x).

Величину $ e_i = f(x_i) — y_i $ называют ошибкой на объекте i или регрессионным остатком.

Весь набор ошибок на отложенной выборке может служить аналогом матрицы ошибок из задачи классификации. А именно, когда мы рассматриваем две разные модели, то, глядя на то, как и на каких объектах они ошиблись, мы можем прийти к выводу, что для решения бизнес-задачи нам выгоднее взять ту или иную модель. И, аналогично со случаем бинарной классификации, мы можем начать строить агрегаты от вектора ошибок, получая тем самым разные метрики.

MSE, RMSE, $R^2$

MSE – одна из самых популярных метрик в задаче регрессии. Она уже знакома вам, т.к. применяется в качестве функции потерь (или входит в ее состав) во многих ранее рассмотренных методах.

$$ MSE(y^{true}, y^{pred}) = frac1Nsum_{i=1}^{N} (y_i — f(x_i))^2 $$

Иногда для того, чтобы показатель эффективности MSE имел размерность исходных данных, из него извлекают квадратный корень и получают показатель эффективности RMSE.

MSE неограничен сверху, и может быть нелегко понять, насколько «хорошим» или «плохим» является то или иное его значение. Чтобы появились какие-то ориентиры, делают следующее:

  • Берут наилучшее константное предсказание с точки зрения MSE — среднее арифметическое меток $bar{y}$. При этом чтобы не было подглядывания в test, среднее нужно вычислять по обучающей выборке

  • Рассматривают в качестве показателя ошибки:

    $$ R^2 = 1 — frac{sum_{i=1}^{N} (y_i — f(x_i))^2}{sum_{i=1}^{N} (y_i — bar{y})^2}.$$

    У идеального решающего правила $R^2$ равен $1$, у наилучшего константного предсказания он равен $0$ на обучающей выборке. Можно заметить, что $R^2$ показывает, какая доля дисперсии таргетов (знаменатель) объяснена моделью.

MSE квадратично штрафует за большие ошибки на объектах. Мы уже видели проявление этого при обучении моделей методом минимизации квадратичных ошибок – там это проявлялось в том, что модель старалась хорошо подстроиться под выбросы.

Пусть теперь мы хотим использовать MSE для оценки наших регрессионных моделей. Если большие ошибки для нас действительно неприемлемы, то квадратичный штраф за них — очень полезное свойство (и его даже можно усиливать, повышая степень, в которую мы возводим ошибку на объекте). Однако если в наших тестовых данных присутствуют выбросы, то нам будет сложно объективно сравнить модели между собой: ошибки на выбросах будет маскировать различия в ошибках на основном множестве объектов.

Таким образом, если мы будем сравнивать две модели при помощи MSE, у нас будет выигрывать та модель, у которой меньше ошибка на объектах-выбросах, а это, скорее всего, не то, чего требует от нас наша бизнес-задача.

История из жизни про бананы и квадратичный штраф за ошибкуИз-за неверно введенных данных метка одного из объектов оказалась в 100 раз больше реального значения. Моделировалась величина при помощи градиентного бустинга над деревьями решений. Функция потерь была MSE.

Однажды уже во время эксплуатации случилось ч.п.: у нас появились предсказания, в 100 раз превышающие допустимые из соображений физического смысла значения. Представьте себе, например, что вместо обычных 4 ящиков бананов система предлагала поставить в магазин 400. Были распечатаны все деревья из ансамбля, и мы увидели, что постепенно число ящиков действительно увеличивалось до прогнозных 400.

Было решено проверить гипотезу, что был выброс в данных для обучения. Так оно и оказалось: всего одна точка давала такую потерю на объекте, что алгоритм обучения решил, что лучше переобучиться под этот выброс, чем смириться с большим штрафом на этом объекте. А в эксплуатации у нас возникли точки, которые плюс-минус попадали в такие же листья ансамбля, что и объект-выброс.

Избежать такого рода проблем можно двумя способами: внимательнее контролируя качество данных или адаптировав функцию потерь.

Аналогично, можно поступать и в случае, когда мы разрабатываем метрику качества: менее жёстко штрафовать за большие отклонения от истинного таргета.

MAE

Использовать RMSE для сравнения моделей на выборках с большим количеством выбросов может быть неудобно. В таких случаях прибегают к также знакомой вам в качестве функции потери метрике MAE (mean absolute error):

$$ MAE(y^{true}, y^{pred}) = frac{1}{N}sum_{i=1}^{N} left|y_i — f(x_i)right| $$

Метрики, учитывающие относительные ошибки

И MSE и MAE считаются как сумма абсолютных ошибок на объектах.

Рассмотрим следующую задачу: мы хотим спрогнозировать спрос товаров на следующий месяц. Пусть у нас есть два продукта: продукт A продаётся в количестве 100 штук, а продукт В в количестве 10 штук. И пусть базовая модель предсказывает количество продаж продукта A как 98 штук, а продукта B как 8 штук. Ошибки на этих объектах добавляют 4 штрафных единицы в MAE.

И есть 2 модели-кандидата на улучшение. Первая предсказывает товар А 99 штук, а товар B 8 штук. Вторая предсказывает товар А 98 штук, а товар B 9 штук.

Обе модели улучшают MAE базовой модели на 1 единицу. Однако, с точки зрения бизнес-заказчика вторая модель может оказаться предпочтительнее, т.к. предсказание продажи редких товаров может быть приоритетнее. Один из способов учесть такое требование – рассматривать не абсолютную, а относительную ошибку на объектах.

MAPE, SMAPE

Когда речь заходит об относительных ошибках, сразу возникает вопрос: что мы будем ставить в знаменатель?

В метрике MAPE (mean absolute percentage error) в знаменатель помещают целевое значение:

$$ MAPE(y^{true}, y^{pred}) = frac{1}{N} sum_{i=1}^{N} frac{ left|y_i — f(x_i)right|}{left|y_iright|} $$

С особым случаем, когда в знаменателе оказывается $0$, обычно поступают «инженерным» способом: или выдают за непредсказание $0$ на таком объекте большой, но фиксированный штраф, или пытаются застраховаться от подобного на уровне формулы и переходят к метрике SMAPE (symmetric mean absolute percentage error):

$$ SMAPE(y^{true}, y^{pred}) = frac{1}{N} sum_{i=1}^{N} frac{ 2 left|y_i — f(x_i)right|}{y_i + f(x_i)} $$

Если же предсказывается ноль, штраф считаем нулевым.

Таким переходом от абсолютных ошибок на объекте к относительным мы сделали объекты в тестовой выборке равнозначными: даже если мы делаем абсурдно большое предсказание, на фоне которого истинная метка теряется, мы получаем штраф за этот объект порядка 1 в случае MAPE и 2 в случае SMAPE.

WAPE

Как и любая другая метрика, MAPE имеет свои границы применимости: например, она плохо справляется с прогнозом спроса на товары с прерывистыми продажами. Рассмотрим такой пример:

Понедельник Вторник Среда
Прогноз 55 2 50
Продажи 50 1 50
MAPE 10% 100% 0%

Среднее MAPE – 36.7%, что не очень отражает реальную ситуацию, ведь два дня мы предсказывали с хорошей точностью. В таких ситуациях помогает WAPE (weighted average percentage error):

$$ WAPE(y^{true}, y^{pred}) = frac{sum_{i=1}^{N} left|y_i — f(x_i)right|}{sum_{i=1}^{N} left|y_iright|} $$

Если мы предсказываем идеально, то WAPE = 0, если все предсказания отдаём нулевыми, то WAPE = 1.

В нашем примере получим WAPE = 5.9%

RMSLE

Альтернативный способ уйти от абсолютных ошибок к относительным предлагает метрика RMSLE (root mean squared logarithmic error):

$$ RMSLE(y^{true}, y^{pred}| c) = sqrt{ frac{1}{N} sum_{i=1}^N left(vphantom{frac12}log{left(y_i + c right)} — log{left(f(x_i) + c right)}right)^2 } $$

где нормировочная константа $c$ вводится искусственно, чтобы не брать логарифм от нуля. Также по построению видно, что метрика пригодна лишь для неотрицательных меток.

Веса в метриках

Все вышеописанные метрики легко допускают введение весов для объектов. Если мы из каких-то соображений можем определить стоимость ошибки на объекте, можно брать эту величину в качестве веса. Например, в задаче предсказания спроса в качестве веса можно использовать стоимость объекта.

Доля предсказаний с абсолютными ошибками больше, чем d

Еще одним способом охарактеризовать качество модели в задаче регрессии является доля предсказаний с абсолютными ошибками больше заданного порога $d$:

$$frac{1}{N} sum_{i=1}^{N} mathbb{I}left[ left| y_i — f(x_i) right| > d right] $$

Например, можно считать, что прогноз погоды сбылся, если ошибка предсказания составила меньше 1/2/3 градусов. Тогда рассматриваемая метрика покажет, в какой доле случаев прогноз не сбылся.

Как оптимизировать метрики регрессии?

Пусть мы выбрали, что метрика качества алгоритма будет $F(a(X), Y)$. Тогда мы хотим обучить модель так, чтобы F на валидационной выборке была минимальная/максимальная. Аналогично задачам классификации лучший способ добиться минимизации метрики $F$ — выбрать в качестве функции потерь ту же $F(a(X), Y)$. К счастью, основные метрики для регрессии: MSE, RMSE, MAE можно оптимизировать напрямую. С формальной точки зрения MAE не дифференцируема, так как там присутствует модуль, чья производная не определена в нуле. На практике для этого выколотого случая в коде можно возвращать ноль.

Для оптимизации MAPE придётся изменять оптимизационную задачу. Оптимизацию MAPE можно представить как оптимизацию MAE, где объектам выборки присвоен вес $frac{1}{vert y_ivert}$.

Есть 3 различных API для оценки качества прогнозов модели:

  • Метод оценки оценщика : у оценщиков есть score метод, обеспечивающий критерий оценки по умолчанию для проблемы, для решения которой они предназначены. Это обсуждается не на этой странице, а в документации каждого оценщика.
  • Параметр оценки: инструменты оценки модели с использованием перекрестной проверки (например, model_selection.cross_val_score и model_selection.GridSearchCV) полагаются на внутреннюю стратегию оценки . Это обсуждается в разделе Параметр оценки: определение правил оценки модели .
  • Метрические функции : В sklearn.metrics модуле реализованы функции оценки ошибки прогноза для конкретных целей. Эти показатели подробно описаны в разделах по метрикам классификации , MultiLabel ранжирования показателей , показателей регрессии и показателей кластеризации .

Наконец, фиктивные оценки полезны для получения базового значения этих показателей для случайных прогнозов.

3.3.1. В scoring параметрах: определение правил оценки моделей

Выбор и оценка модели с использованием таких инструментов, как model_selection.GridSearchCV и model_selection.cross_val_score, принимают scoring параметр, который контролирует, какую метрику они применяют к оцениваемым оценщикам.

3.3.1.1. Общие случаи: предопределенные значения

Для наиболее распространенных случаев использования вы можете назначить объект подсчета с помощью scoring параметра; в таблице ниже показаны все возможные значения. Все объекты счетчика следуют соглашению о том, что более высокие возвращаемые значения лучше, чем более низкие возвращаемые значения . Таким образом, метрики, которые измеряют расстояние между моделью и данными, например metrics.mean_squared_error, доступны как neg_mean_squared_error, которые возвращают инвертированное значение метрики.

Подсчет очков Функция Комментарий
Классификация
‘accuracy’ metrics.accuracy_score
‘balanced_accuracy’ metrics.balanced_accuracy_score
‘top_k_accuracy’ metrics.top_k_accuracy_score
‘average_precision’ metrics.average_precision_score
‘neg_brier_score’ metrics.brier_score_loss
‘f1’ metrics.f1_score для двоичных целей
‘f1_micro’ metrics.f1_score микро-усредненный
‘f1_macro’ metrics.f1_score микро-усредненный
‘f1_weighted’ metrics.f1_score средневзвешенное
‘f1_samples’ metrics.f1_score по многопозиционному образцу
‘neg_log_loss’ metrics.log_loss требуется
predict_probaподдержка
‘precision’ etc. metrics.precision_score суффиксы применяются как с ‘f1’
‘recall’ etc. metrics.recall_score суффиксы применяются как с ‘f1’
‘jaccard’ etc. metrics.jaccard_score суффиксы применяются как с ‘f1’
‘roc_auc’ metrics.roc_auc_score
‘roc_auc_ovr’ metrics.roc_auc_score
‘roc_auc_ovo’ metrics.roc_auc_score
‘roc_auc_ovr_weighted’ metrics.roc_auc_score
‘roc_auc_ovo_weighted’ metrics.roc_auc_score
Кластеризация
‘adjusted_mutual_info_score’ metrics.adjusted_mutual_info_score
‘adjusted_rand_score’ metrics.adjusted_rand_score
‘completeness_score’ metrics.completeness_score
‘fowlkes_mallows_score’ metrics.fowlkes_mallows_score
‘homogeneity_score’ metrics.homogeneity_score
‘mutual_info_score’ metrics.mutual_info_score
‘normalized_mutual_info_score’ metrics.normalized_mutual_info_score
‘rand_score’ metrics.rand_score
‘v_measure_score’ metrics.v_measure_score
Регрессия
‘explained_variance’ metrics.explained_variance_score
‘max_error’ metrics.max_error
‘neg_mean_absolute_error’ metrics.mean_absolute_error
‘neg_mean_squared_error’ metrics.mean_squared_error
‘neg_root_mean_squared_error’ metrics.mean_squared_error
‘neg_mean_squared_log_error’ metrics.mean_squared_log_error
‘neg_median_absolute_error’ metrics.median_absolute_error
‘r2’ metrics.r2_score
‘neg_mean_poisson_deviance’ metrics.mean_poisson_deviance
‘neg_mean_gamma_deviance’ metrics.mean_gamma_deviance
‘neg_mean_absolute_percentage_error’ metrics.mean_absolute_percentage_error

Примеры использования:

>>> from sklearn import svm, datasets
>>> from sklearn.model_selection import cross_val_score
>>> X, y = datasets.load_iris(return_X_y=True)
>>> clf = svm.SVC(random_state=0)
>>> cross_val_score(clf, X, y, cv=5, scoring='recall_macro')
array([0.96..., 0.96..., 0.96..., 0.93..., 1.        ])
>>> model = svm.SVC()
>>> cross_val_score(model, X, y, cv=5, scoring='wrong_choice')
Traceback (most recent call last):
ValueError: 'wrong_choice' is not a valid scoring value. Use sorted(sklearn.metrics.SCORERS.keys()) to get valid options.

Примечание

Значения, перечисленные в виде ValueError исключения, соответствуют функциям измерения точности прогнозирования, описанным в следующих разделах. Объекты счетчика для этих функций хранятся в словаре sklearn.metrics.SCORERS.

3.3.1.2. Определение стратегии выигрыша от метрических функций

Модуль sklearn.metrics также предоставляет набор простых функций, измеряющих ошибку предсказания с учетом истинности и предсказания:

  • функции, заканчивающиеся на, _score возвращают значение для максимизации, чем выше, тем лучше.
  • функции, заканчивающиеся на _error или _loss возвращающие значение, которое нужно минимизировать, чем ниже, тем лучше. При преобразовании в объект счетчика с использованием make_scorer установите для greater_is_better параметра значение FalseTrue по умолчанию; см. Описание параметра ниже).

Метрики, доступные для различных задач машинного обучения, подробно описаны в разделах ниже.

Многим метрикам не даются имена для использования в качестве scoring значений, иногда потому, что они требуют дополнительных параметров, например fbeta_score. В таких случаях вам необходимо создать соответствующий объект оценки. Самый простой способ создать вызываемый объект для оценки — использовать make_scorer. Эта функция преобразует метрики в вызываемые объекты, которые можно использовать для оценки модели.

Один из типичных вариантов использования — обернуть существующую метрическую функцию из библиотеки значениями, отличными от значений по умолчанию для ее параметров, такими как beta параметр для fbeta_score функции:

>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]},
...                     scoring=ftwo_scorer, cv=5)

Второй вариант использования — создание полностью настраиваемого объекта скоринга из простой функции Python с использованием make_scorer, которая может принимать несколько параметров:

  • функция Python, которую вы хотите использовать ( my_custom_loss_func в примере ниже)
  • возвращает ли функция Python оценку ( greater_is_better=True, по умолчанию) или потерю ( greater_is_better=False). В случае потери результат функции python аннулируется объектом скоринга в соответствии с соглашением о перекрестной проверке, согласно которому скоринтеры возвращают более высокие значения для лучших моделей.
  • только для показателей классификации: требуется ли для предоставленной вами функции Python постоянная уверенность в принятии решений ( needs_threshold=True). Значение по умолчанию неверно.
  • любые дополнительные параметры, такие как betaили labels в f1_score.

Вот пример создания пользовательских счетчиков очков и использования greater_is_better параметра:

>>> import numpy as np
>>> def my_custom_loss_func(y_true, y_pred):
...     diff = np.abs(y_true - y_pred).max()
...     return np.log1p(diff)
...
>>> # score will negate the return value of my_custom_loss_func,
>>> # which will be np.log(2), 0.693, given the values for X
>>> # and y defined below.
>>> score = make_scorer(my_custom_loss_func, greater_is_better=False)
>>> X = [[1], [1]]
>>> y = [0, 1]
>>> from sklearn.dummy import DummyClassifier
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf = clf.fit(X, y)
>>> my_custom_loss_func(y, clf.predict(X))
0.69...
>>> score(clf, X, y)
-0.69...

3.3.1.3. Реализация собственного скорингового объекта

Вы можете сгенерировать еще более гибкие модели скоринга, создав свой собственный скоринговый объект с нуля, без использования make_scorer фабрики. Чтобы вызываемый может быть бомбардиром, он должен соответствовать протоколу, указанному в следующих двух правилах:

  • Его можно вызвать с параметрами (estimator, X, y), где estimator это модель, которая должна быть оценена, X это данные проверки и y основная истинная цель для (в контролируемом случае) или None (в неконтролируемом случае).
  • Он возвращает число с плавающей запятой, которое количественно определяет estimator качество прогнозирования X со ссылкой на y. Опять же, по соглашению более высокие числа лучше, поэтому, если ваш секретарь сообщает о проигрыше, это значение следует отменить.

Примечание Использование пользовательских счетчиков в функциях, где n_jobs> 1

Хотя определение пользовательской функции оценки вместе с вызывающей функцией должно работать из коробки с бэкэндом joblib по умолчанию (loky), его импорт из другого модуля будет более надежным подходом и будет работать независимо от бэкэнда joblib.

Например, чтобы использовать n_jobsбольше 1 в примере ниже, custom_scoring_function функция сохраняется в созданном пользователем модуле ( custom_scorer_module.py) и импортируется:

>>> from custom_scorer_module import custom_scoring_function 
>>> cross_val_score(model,
...  X_train,
...  y_train,
...  scoring=make_scorer(custom_scoring_function, greater_is_better=False),
...  cv=5,
...  n_jobs=-1) 

3.3.1.4. Использование множественной метрической оценки

Scikit-learn также позволяет оценивать несколько показателей в GridSearchCVRandomizedSearchCV и cross_validate.

Есть три способа указать несколько показателей оценки для scoring параметра:

  • Как итерация строковых показателей:
>>> scoring = ['accuracy', 'precision']
  • В качестве dictсопоставления имени секретаря с функцией подсчета очков:
>>> from sklearn.metrics import accuracy_score
>>> from sklearn.metrics import make_scorer
>>> scoring = {'accuracy': make_scorer(accuracy_score),
...            'prec': 'precision'}

Обратите внимание, что значения dict могут быть либо функциями счетчика, либо одной из предварительно определенных строк показателей.

  • Как вызываемый объект, возвращающий словарь оценок:
>>> from sklearn.model_selection import cross_validate
>>> from sklearn.metrics import confusion_matrix
>>> # A sample toy binary classification dataset
>>> X, y = datasets.make_classification(n_classes=2, random_state=0)
>>> svm = LinearSVC(random_state=0)
>>> def confusion_matrix_scorer(clf, X, y):
...      y_pred = clf.predict(X)
...      cm = confusion_matrix(y, y_pred)
...      return {'tn': cm[0, 0], 'fp': cm[0, 1],
...              'fn': cm[1, 0], 'tp': cm[1, 1]}
>>> cv_results = cross_validate(svm, X, y, cv=5,
...                             scoring=confusion_matrix_scorer)
>>> # Getting the test set true positive scores
>>> print(cv_results['test_tp'])
[10  9  8  7  8]
>>> # Getting the test set false negative scores
>>> print(cv_results['test_fn'])
[0 1 2 3 2]

3.3.2. Метрики классификации

В sklearn.metrics модуле реализованы несколько функций потерь, оценки и полезности для измерения эффективности классификации. Некоторые метрики могут потребовать оценок вероятности положительного класса, значений достоверности или значений двоичных решений. Большинство реализаций позволяют каждой выборке вносить взвешенный вклад в общую оценку с помощью sample_weight параметра.

Некоторые из них ограничены случаем двоичной классификации:

precision_recall_curve(y_true, probas_pred, *) Вычислите пары точности-отзыва для разных пороговых значений вероятности.
roc_curve(y_true, y_score, *[, pos_label, …]) Вычислить рабочую характеристику приемника (ROC).
det_curve(y_true, y_score[, pos_label, …]) Вычислите частоту ошибок для различных пороговых значений вероятности.

Другие также работают в случае мультикласса:

balanced_accuracy_score(y_true, y_pred, *[, …]) Вычислите сбалансированную точность.
cohen_kappa_score(y1, y2, *[, labels, …]) Каппа Коэна: статистика, измеряющая согласованность аннотаторов.
confusion_matrix(y_true, y_pred, *[, …]) Вычислите матрицу неточностей, чтобы оценить точность классификации.
hinge_loss(y_true, pred_decision, *[, …]) Средняя потеря петель (нерегулируемая).
matthews_corrcoef(y_true, y_pred, *[, …]) Вычислите коэффициент корреляции Мэтьюза (MCC).
roc_auc_score(y_true, y_score, *[, average, …]) Вычислить площадь под кривой рабочих характеристик приемника (ROC AUC) по оценкам прогнозов.
top_k_accuracy_score(y_true, y_score, *[, …]) Top-k Рейтинг по классификации точности.

Некоторые также работают в многоярусном регистре:

accuracy_score(y_true, y_pred, *[, …]) Классификационная оценка точности.
classification_report(y_true, y_pred, *[, …]) Создайте текстовый отчет, показывающий основные показатели классификации.
f1_score(y_true, y_pred, *[, labels, …]) Вычислите оценку F1, также известную как сбалансированная оценка F или F-мера.
fbeta_score(y_true, y_pred, *, beta[, …]) Вычислите оценку F-beta.
hamming_loss(y_true, y_pred, *[, sample_weight]) Вычислите среднюю потерю Хэмминга.
jaccard_score(y_true, y_pred, *[, labels, …]) Оценка коэффициента сходства Жаккара.
log_loss(y_true, y_pred, *[, eps, …]) Потеря журнала, также известная как потеря логистики или потеря кросс-энтропии.
multilabel_confusion_matrix(y_true, y_pred, *) Вычислите матрицу неточностей для каждого класса или образца.
precision_recall_fscore_support(y_true, …) Точность вычислений, отзыв, F-мера и поддержка для каждого класса.
precision_score(y_true, y_pred, *[, labels, …]) Вычислите точность.
recall_score(y_true, y_pred, *[, labels, …]) Вычислите отзыв.
roc_auc_score(y_true, y_score, *[, average, …]) Вычислить площадь под кривой рабочих характеристик приемника (ROC AUC) по оценкам прогнозов.
zero_one_loss(y_true, y_pred, *[, …]) Потеря классификации нулевая единица.

А некоторые работают с двоичными и многозначными (но не мультиклассовыми) проблемами:

В следующих подразделах мы опишем каждую из этих функций, которым будут предшествовать некоторые примечания по общему API и определению показателей.

3.3.2.1. От бинарного до мультиклассового и многозначного

Некоторые метрики по существу определены для задач двоичной классификации (например f1_scoreroc_auc_score). В этих случаях по умолчанию оценивается только положительная метка, предполагая по умолчанию, что положительный класс помечен 1 (хотя это можно настроить с помощью pos_label параметра).

При расширении двоичной метрики на задачи с несколькими классами или метками данные обрабатываются как набор двоичных задач, по одной для каждого класса. Затем есть несколько способов усреднить вычисления двоичных показателей по набору классов, каждый из которых может быть полезен в некотором сценарии. Если возможно, вы должны выбрать одно из них с помощью average параметра.

  • "macro" просто вычисляет среднее значение двоичных показателей, придавая каждому классу одинаковый вес. В задачах, где редкие занятия тем не менее важны, макро-усреднение может быть средством выделения их производительности. С другой стороны, предположение, что все классы одинаково важны, часто неверно, так что макро-усреднение будет чрезмерно подчеркивать обычно низкую производительность для нечастого класса.
  • "weighted" учитывает дисбаланс классов, вычисляя среднее значение двоичных показателей, в которых оценка каждого класса взвешивается по его присутствию в истинной выборке данных.
  • "micro" дает каждой паре выборка-класс равный вклад в общую метрику (за исключением результата взвешивания выборки). Вместо того, чтобы суммировать метрику для каждого класса, это суммирует дивиденды и делители, составляющие метрики для каждого класса, для расчета общего частного. Микро-усреднение может быть предпочтительным в настройках с несколькими ярлыками, включая многоклассовую классификацию, когда класс большинства следует игнорировать.
  • "samples" применяется только к задачам с несколькими ярлыками. Он не вычисляет меру для каждого класса, вместо этого вычисляет метрику по истинным и прогнозируемым классам для каждой выборки в данных оценки и возвращает их ( sample_weight — взвешенное) среднее значение.
  • Выбор average=None вернет массив с оценкой для каждого класса.

В то время как данные мультикласса предоставляются метрике, как двоичные цели, в виде массива меток классов, данные с несколькими метками указываются как индикаторная матрица, в которой ячейка [i, j] имеет значение 1, если у образца i есть метка j, и значение 0 в противном случае.

3.3.2.2. Оценка точности

Функция accuracy_score вычисляет точность , либо фракции ( по умолчанию) или количество (нормализует = False) правильных предсказаний.

В классификации с несколькими ярлыками функция возвращает точность подмножества. Если весь набор предсказанных меток для выборки строго соответствует истинному набору меток, то точность подмножества равна 1,0; в противном случае — 0, 0.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец и $y_i$ — соответствующее истинное значение, тогда доля правильных прогнозов по сравнению с $n_{samples}$ определяется как
$$texttt{accuracy}(y, hat{y}) = frac{1}{n_text{samples}} sum_{i=0}^{n_text{samples}-1} 1(hat{y}_i = y_i)$$

где $1(x)$- индикаторная функция .

>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2

В многопозиционном корпусе с бинарными индикаторами меток:

>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

Пример:

  • См. В разделе Проверка с перестановками значимости классификационной оценки пример использования показателя точности с использованием перестановок набора данных.

3.3.2.3. Рейтинг точности Top-k

Функция top_k_accuracy_score представляет собой обобщение accuracy_score. Разница в том, что прогноз считается правильным, если истинная метка связана с одним из kнаивысших прогнозируемых баллов. accuracy_score является частным случаем k = 1.

Функция охватывает случаи двоичной и многоклассовой классификации, но не случай многозначной классификации.

Если $hat{f}_{i,j}$ прогнозируемый класс для $i$-й образец, соответствующий $j$-й по величине прогнозируемый результат и $y_i$ — соответствующее истинное значение, тогда доля правильных прогнозов по сравнению с $n_{samples}$ определяется как
$$texttt{top-k accuracy}(y, hat{f}) = frac{1}{n_text{samples}} sum_{i=0}^{n_text{samples}-1} sum_{j=1}^{k} 1(hat{f}_{i,j} = y_i)$$

где k допустимое количество предположений и 1(x)- индикаторная функция.

>>> import numpy as np
>>> from sklearn.metrics import top_k_accuracy_score
>>> y_true = np.array([0, 1, 2, 2])
>>> y_score = np.array([[0.5, 0.2, 0.2],
...                     [0.3, 0.4, 0.2],
...                     [0.2, 0.4, 0.3],
...                     [0.7, 0.2, 0.1]])
>>> top_k_accuracy_score(y_true, y_score, k=2)
0.75
>>> # Not normalizing gives the number of "correctly" classified samples
>>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)
3

3.3.2.4. Сбалансированный показатель точности

Функция balanced_accuracy_score вычисляет взвешенную точность , что позволяет избежать завышенных оценок производительности на несбалансированных данных. Это макросреднее количество оценок отзыва по классу или, что то же самое, грубая точность, где каждая выборка взвешивается в соответствии с обратной распространенностью ее истинного класса. Таким образом, для сбалансированных наборов данных оценка равна точности.

В двоичном случае сбалансированная точность равна среднему арифметическому чувствительности (истинно положительный показатель) и специфичности (истинно отрицательный показатель) или площади под кривой ROC с двоичными прогнозами, а не баллами:
$$texttt{balanced-accuracy} = frac{1}{2}left( frac{TP}{TP + FN} + frac{TN}{TN + FP}right )$$

Если классификатор одинаково хорошо работает в любом классе, этот термин сокращается до обычной точности (т. е. Количества правильных прогнозов, деленного на общее количество прогнозов).

Напротив, если обычная точность выше вероятности только потому, что классификатор использует несбалансированный набор тестов, тогда сбалансированная точность, при необходимости, упадет до $frac{1}{n_classes}$.

Оценка варьируется от 0 до 1 или, когда adjusted=True используется, масштабируется до диапазона $frac{1}{1 — n_classes}$ до 1 включительно, с произвольной оценкой 0.

Если yi истинная ценность $i$-й образец, и $w_i$ — соответствующий вес образца, затем мы настраиваем вес образца на:
$$hat{w}_i = frac{w_i}{sum_j{1(y_j = y_i) w_j}}$$

где $1(x)$- индикаторная функция . Учитывая предсказанный $hat{y}_i$ для образца $i$, сбалансированная точность определяется как:
$$texttt{balanced-accuracy}(y, hat{y}, w) = frac{1}{sum{hat{w}_i}} sum_i 1(hat{y}_i = y_i) hat{w}_i$$

С adjusted=True сбалансированной точностью сообщает об относительном увеличении от $texttt{balanced-accuracy}(y, mathbf{0}, w) =frac{1}{n_classes}$. В двоичном случае это также известно как * статистика Юдена * , или информированность .

Примечание

Определение мультикласса здесь кажется наиболее разумным расширением метрики, используемой в бинарной классификации, хотя в литературе нет определенного консенсуса:

  • Наше определение: [Mosley2013] , [Kelleher2015] и [Guyon2015] , где [Guyon2015] принимает скорректированную версию, чтобы гарантировать, что случайные предсказания имеют оценку 0 а точные предсказания имеют оценку 1..
  • Точность балансировки классов, как описано в [Mosley2013] : вычисляется минимум между точностью и отзывом для каждого класса. Затем эти значения усредняются по общему количеству классов для получения сбалансированной точности.
  • Сбалансированная точность, как описано в [Urbanowicz2015] : среднее значение чувствительности и специфичности вычисляется для каждого класса, а затем усредняется по общему количеству классов.

Рекомендации:

  • Гийон 2015 ( 1 , 2 ) И. Гайон, К. Беннет, Г. Коули, Х. Дж. Эскаланте, С. Эскалера, Т. К. Хо, Н. Масиа, Б. Рэй, М. Саид, А. Р. Статников, Э. Вьегас, Дизайн конкурса ChaLearn AutoML Challenge 2015 , IJCNN 2015 г.
  • Мосли 2013 ( 1 , 2 ) Л. Мосли, Сбалансированный подход к проблеме мультиклассового дисбаланса , IJCV 2010.
  • Kelleher2015 Джон. Д. Келлехер, Брайан Мак Нейме, Аойф Д’Арси, Основы машинного обучения для прогнозной аналитики данных: алгоритмы, рабочие примеры и тематические исследования , 2015.
  • Урбанович2015 Urbanowicz RJ, Moore, JH ExSTraCS 2.0: описание и оценка масштабируемой системы классификаторов обучения , Evol. Intel. (2015) 8:89.

3.3.2.5. Каппа Коэна

Функция cohen_kappa_score вычисляет каппа-Коэна статистику. Эта мера предназначена для сравнения меток, сделанных разными людьми-аннотаторами, а не классификатором с достоверной информацией.

Показатель каппа (см. Строку документации) представляет собой число от -1 до 1. Баллы выше 0,8 обычно считаются хорошим совпадением; ноль или ниже означает отсутствие согласия (практически случайные метки).

Оценка Каппа может быть вычислена для двоичных или многоклассовых задач, но не для задач с несколькими метками (за исключением ручного вычисления оценки для каждой метки) и не более чем для двух аннотаторов.

>>> from sklearn.metrics import cohen_kappa_score
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> cohen_kappa_score(y_true, y_pred)
0.4285714285714286

3.3.2.6. Матрица неточностей ¶

Точность функции confusion_matrix вычисляет классификацию пути вычисления матрицы путаницы с каждой строкой , соответствующей истинный классом (Википедия и другие ссылки могут использовать различные конвенции для осей).

По определению запись i,j в матрице неточностей — количество наблюдений в группе i, но предполагается, что он будет в группе j. Вот пример:

>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
       [0, 0, 1],
       [1, 0, 2]])

plot_confusion_matrix может использоваться для визуального представления матрицы неточностей, как показано в примере матрицы неточностей, который создает следующий рисунок:

Параметр normalize позволяет сообщать коэффициенты вместо подсчетов. Матрица путаница может быть нормализована в 3 различными способами: 'pred''true'и 'all' которые будут делить счетчики на сумму каждого столбца, строки или всей матрицы, соответственно.

>>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
>>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
>>> confusion_matrix(y_true, y_pred, normalize='all')
array([[0.25 , 0.125],
       [0.25 , 0.375]])

Для двоичных задач мы можем получить подсчет истинно отрицательных, ложноположительных, ложноотрицательных и истинно положительных результатов следующим образом:

>>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
>>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
>>> tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
>>> tn, fp, fn, tp
(2, 1, 2, 3)

Пример:

  • См. В разделе Матрица неточностей пример использования матрицы неточностей для оценки качества выходных данных классификатора.
  • См. В разделе Распознавание рукописных цифр пример использования матрицы неточностей для классификации рукописных цифр.
  • См. Раздел Классификация текстовых документов с использованием разреженных функций для примера использования матрицы неточностей для классификации текстовых документов.

3.3.2.7. Отчет о классификации

Функция classification_report создает текстовый отчет , показывающий основные показатели классификации. Вот небольшой пример с настраиваемыми target_names и предполагаемыми ярлыками:

>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 0]
>>> y_pred = [0, 0, 2, 1, 0]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
              precision    recall  f1-score   support

     class 0       0.67      1.00      0.80         2
     class 1       0.00      0.00      0.00         1
     class 2       1.00      0.50      0.67         2

    accuracy                           0.60         5
   macro avg       0.56      0.50      0.49         5
weighted avg       0.67      0.60      0.59         5

Пример:

  • См. В разделе Распознавание рукописных цифр пример использования отчета о классификации рукописных цифр.
  • См. Раздел Классификация текстовых документов с использованием разреженных функций, где приведен пример использования отчета о классификации для текстовых документов.
  • См. Раздел « Оценка параметров с использованием поиска по сетке с перекрестной проверкой», где приведен пример использования отчета о классификации для поиска по сетке с вложенной перекрестной проверкой.

3.3.2.8. Потеря Хэмминга

hamming_loss вычисляет среднюю потерю Хэмминга или расстояние Хемминга между двумя наборами образцов.

Если $hat{y}_j$ прогнозируемое значение для $j$-я этикетка данного образца, $y_j$ — соответствующее истинное значение, а $n_{labels}$ — количество классов или меток, то потеря Хэмминга $L_{Hamming}$ между двумя образцами определяется как:
$$L_{Hamming}(y, hat{y}) = frac{1}{n_text{labels}} sum_{j=0}^{n_text{labels} — 1} 1(hat{y}_j not= y_j)$$

где $1(x)$- индикаторная функция .

>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25

В многопозиционном корпусе с бинарными индикаторами меток:

>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75

Примечание

В мультиклассовой классификации потери Хэмминга соответствуют расстоянию Хэмминга между y_true и, y_pred что аналогично функции потерь нуля или единицы . Однако, в то время как потеря нуля или единицы наказывает наборы предсказаний, которые не строго соответствуют истинным наборам, потеря Хэмминга наказывает отдельные метки. Таким образом, потеря Хэмминга, ограниченная сверху потерей нуля или единицы, всегда находится между нулем и единицей включительно; и прогнозирование надлежащего подмножества или надмножества истинных меток даст исключительную потерю Хэмминга от нуля до единицы.

3.3.2.9. Точность, отзыв и F-меры

Интуитивно, точность — это способность классификатора не маркировать как положительный образец, который является отрицательным, а отзыв — это способность классификатора находить все положительные образцы.

F-мера ($F_beta$ а также $F_1$ меры) можно интерпретировать как взвешенное гармоническое среднее значение точности и полноты. А $F_beta$ мера достигает своего лучшего значения на уровне 1 и худшего результата на уровне 0. С $beta = 1$, $F_beta$ а также $F_1$ эквивалентны, а отзыв и точность одинаково важны.

precision_recall_curve вычисляет кривую точности-отзыва на основе наземной метки истинности и оценки, полученной классификатором путем изменения порога принятия решения.

Функция average_precision_score вычисляет среднюю точность (AP) от оценки прогнозирования. Значение от 0 до 1 и выше — лучше. AP определяется как
$$text{AP} = sum_n (R_n — R_{n-1}) P_n$$

где $P_n$ а также $R_n$- точность и отзыв на n-м пороге. При случайных прогнозах AP — это доля положительных образцов.

Ссылки [Manning2008] и [Everingham2010] представляют альтернативные варианты AP, которые интерполируют кривую точности-отзыва. В настоящее время average_precision_score не реализован какой-либо вариант с интерполяцией. Ссылки [Davis2006] и [Flach2015] описывают, почему линейная интерполяция точек на кривой точности-отзыва обеспечивает чрезмерно оптимистичный показатель эффективности классификатора. Эта линейная интерполяция используется при вычислении площади под кривой с помощью правила трапеции в auc.

Несколько функций позволяют анализировать точность, отзыв и оценку F-мер:

average_precision_score(y_true, y_score, *) Вычислить среднюю точность (AP) из оценок прогнозов.
f1_score(y_true, y_pred, *[, labels, …]) Вычислите оценку F1, также известную как сбалансированная оценка F или F-мера.
fbeta_score(y_true, y_pred, *, beta[, …]) Вычислите оценку F-beta.
precision_recall_curve(y_true, probas_pred, *) Вычислите пары точности-отзыва для разных пороговых значений вероятности.
precision_recall_fscore_support(y_true, …) Точность вычислений, отзыв, F-мера и поддержка для каждого класса.
precision_score(y_true, y_pred, *[, labels, …]) Вычислите точность.
recall_score(y_true, y_pred, *[, labels, …]) Вычислите рекол.

Обратите внимание, что функция precision_recall_curve ограничена двоичным регистром. Функция average_precision_score работает только в двоичном формате классификации и MultiLabel индикатора. В функции plot_precision_recall_curve графики точности вспомнить следующим образом .

Примеры:

  • См. Раздел Классификация текстовых документов с использованием разреженных функций для примера использования f1_score для классификации текстовых документов.
  • См. Раздел « Оценка параметров с использованием поиска по сетке с перекрестной проверкой», где приведен пример precision_score и recall_score использование для оценки параметров с помощью поиска по сетке с вложенной перекрестной проверкой.
  • См. В разделе Precision-Recall пример использования precision_recall_curve для оценки качества вывода классификатора.

Рекомендации:

  • [Manning2008] г. CD Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval , 2008.
  • [Everingham2010] М. Эверингем, Л. Ван Гул, CKI Уильямс, Дж. Винн, А. Зиссерман, Задача классов визуальных объектов Pascal (VOC) , IJCV 2010.
  • [Davis2006] Дж. Дэвис, М. Гоадрич, Взаимосвязь между точным воспроизведением и кривыми ROC , ICML 2006.
  • [Flach2015] П.А. Флэч, М. Кулл, Кривые точности-отзыва-выигрыша: PR-анализ выполнен правильно , NIPS 2015.

3.3.2.9.1. Бинарная классификация

В задаче бинарной классификации термины «положительный» и «отрицательный» относятся к предсказанию классификатора, а термины «истинный» и «ложный» относятся к тому, соответствует ли этот прогноз внешнему суждению ( иногда известное как «наблюдение»). Учитывая эти определения, мы можем сформулировать следующую таблицу:

Фактический класс (наблюдение)
Прогнозируемый класс (ожидание) tp (истинно положительный результат) Правильный результат fp (ложное срабатывание) Неожиданный результат
Прогнозируемый класс (ожидание) fn (ложноотрицательный) Отсутствует результат tn (истинно отрицательное) Правильное отсутствие результата

В этом контексте мы можем определить понятия точности, отзыва и F-меры:
$$text{precision} = frac{tp}{tp + fp},$$
$$text{recall} = frac{tp}{tp + fn},$$
$$F_beta = (1 + beta^2) frac{text{precision} times text{recall}}{beta^2 text{precision} + text{recall}}.$$

Вот несколько небольших примеров бинарной классификации:

>>> from sklearn import metrics
>>> y_pred = [0, 1, 0, 0]
>>> y_true = [0, 1, 0, 1]
>>> metrics.precision_score(y_true, y_pred)
1.0
>>> metrics.recall_score(y_true, y_pred)
0.5
>>> metrics.f1_score(y_true, y_pred)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=0.5)
0.83...
>>> metrics.fbeta_score(y_true, y_pred, beta=1)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=2)
0.55...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5)
(array([0.66..., 1.        ]), array([1. , 0.5]), array([0.71..., 0.83...]), array([2, 2]))


>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, threshold = precision_recall_curve(y_true, y_scores)
>>> precision
array([0.66..., 0.5       , 1.        , 1.        ])
>>> recall
array([1. , 0.5, 0.5, 0. ])
>>> threshold
array([0.35, 0.4 , 0.8 ])
>>> average_precision_score(y_true, y_scores)
0.83...

3.3.2.9.2. Мультиклассовая и многозначная классификация

В задаче классификации по нескольким классам и меткам понятия точности, отзыва и F-меры могут применяться к каждой метке независимо. Есть несколько способов , чтобы объединить результаты по этикеткам, указанных в average аргументе к average_precision_score (MultiLabel только) f1_scorefbeta_scoreprecision_recall_fscore_supportprecision_score и recall_score функция, как описано выше . Обратите внимание, что если включены все метки, «микро» -усреднение в настройке мультикласса обеспечит точность, отзыв и $F$ все они идентичны по точности. Также обратите внимание, что «взвешенное» усреднение может дать оценку F, которая не находится между точностью и отзывом.

Чтобы сделать это более явным, рассмотрим следующие обозначения:

  • $y$ набор предсказанных ($sample$, $label$) пары
  • $hat{y}$ набор истинных ($sample$, $label$) пары
  •  $L$ набор лейблов
  • $S$ набор образцов
  • $y_s$ подмножество $y$ с образцом $s$, т.е $y_s := left{(s’, l) in y | s’ = sright}$. 
  • $y_l$ подмножество $y$ с этикеткой $l$
  • по аналогии, $hat{y}_s$ а также $hat{y}_l$ являются подмножествами $hat{y}$
  • $P(A, B) := frac{left| A cap B right|}{left|Aright|}$ для некоторых наборов $A$ и $B$
  • $R(A, B) := frac{left| A cap B right|}{left|Bright|}$ (Условные обозначения различаются в зависимости от обращения $B = emptyset$; эта реализация использует $R(A, B):=0$, и аналогичные для $P$.)
  • $$F_beta(A, B) := left(1 + beta^2right) frac{P(A, B) times R(A, B)}{beta^2 P(A, B) + R(A, B)}$$

Тогда показатели определяются как:

average Точность Отзывать F_beta
«micro» $P(y, hat{y})$ $R(y, hat{y})$ $F_beta(y, hat{y})$
«samples» $frac{1}{left|Sright|} sum_{s in S} P(y_s, hat{y}_s)$ $frac{1}{left|Sright|} sum_{s in S} R(y_s, hat{y}_s)$ $frac{1}{left|Sright|} sum_{s in S} F_beta(y_s, hat{y}_s)$
«macro» $frac{1}{left|Lright|} sum_{l in L} P(y_l, hat{y}_l)$ $frac{1}{left|Lright|} sum_{l in L} R(y_l, hat{y}_l)$ $frac{1}{left|Lright|} sum_{l in L} F_beta(y_l, hat{y}_l)$
«weighted» $frac{1}{sum_{l in L} left|hat{y}lright|} sum{l in L} left|hat{y}_lright| P(y_l, hat{y}_l)$ $frac{1}{sum_{l in L} left|hat{y}lright|} sum{l in L} left|hat{y}_lright| R(y_l, hat{y}_l)$ $frac{1}{sum_{l in L} left|hat{y}lright|} sum{l in L} left|hat{y}lright| Fbeta(y_l, hat{y}_l)$
None $langle P(y_l, hat{y}_l) | l in L rangle$ $langle R(y_l, hat{y}_l) | l in L rangle$ $langle F_beta(y_l, hat{y}_l) | l in L rangle$
>>> from sklearn import metrics
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> metrics.precision_score(y_true, y_pred, average='macro')
0.22...
>>> metrics.recall_score(y_true, y_pred, average='micro')
0.33...
>>> metrics.f1_score(y_true, y_pred, average='weighted')
0.26...
>>> metrics.fbeta_score(y_true, y_pred, average='macro', beta=0.5)
0.23...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5, average=None)
(array([0.66..., 0.        , 0.        ]), array([1., 0., 0.]), array([0.71..., 0.        , 0.        ]), array([2, 2, 2]...))

Для мультиклассовой классификации с «отрицательным классом» можно исключить некоторые метки:

>>> metrics.recall_score(y_true, y_pred, labels=[1, 2], average='micro')
... # excluding 0, no labels were correctly recalled
0.0

Точно так же метки, отсутствующие в выборке данных, могут учитываться при макро-усреднении.

>>> metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average='macro')
0.166...

3.3.2.10. Оценка коэффициента сходства Жаккара

Функция jaccard_score вычисляет среднее значение коэффициентов сходства Jaccard , также называемый индексом Jaccard, между парами множеств меток.

Коэффициент подобия Жаккара i-ые образцы, с набором меток наземной достоверности yi и прогнозируемый набор меток y^i, определяется как
$$J(y_i, hat{y}_i) = frac{|y_i cap hat{y}_i|}{|y_i cup hat{y}_i|}.$$

jaccard_score работает как precision_recall_fscore_support наивно установленная мера, применяемая изначально к бинарным целям, и расширена для применения к множественным меткам и мультиклассам за счет использования average(см. выше ).

В двоичном случае:

>>> import numpy as np
>>> from sklearn.metrics import jaccard_score
>>> y_true = np.array([[0, 1, 1],
...                    [1, 1, 0]])
>>> y_pred = np.array([[1, 1, 1],
...                    [1, 0, 0]])
>>> jaccard_score(y_true[0], y_pred[0])
0.6666...

В многопозиционном корпусе с бинарными индикаторами меток:

>>> jaccard_score(y_true, y_pred, average='samples')
0.5833...
>>> jaccard_score(y_true, y_pred, average='macro')
0.6666...
>>> jaccard_score(y_true, y_pred, average=None)
array([0.5, 0.5, 1. ])

Задачи с несколькими классами преобразуются в двоичную форму и обрабатываются как соответствующая задача с несколькими метками:

>>> y_pred = [0, 2, 1, 2]
>>> y_true = [0, 1, 2, 2]
>>> jaccard_score(y_true, y_pred, average=None)
array([1. , 0. , 0.33...])
>>> jaccard_score(y_true, y_pred, average='macro')
0.44...
>>> jaccard_score(y_true, y_pred, average='micro')
0.33...

3.3.2.11. Петля лосс

Функция hinge_loss вычисляет среднее расстояние между моделью и данными с использованием петля лосс, односторонний показателем , который учитывает только ошибки прогнозирования. (Потери на шарнирах используются в классификаторах максимальной маржи, таких как опорные векторные машины.)

Если метки закодированы с помощью +1 и -1, $y$: истинное значение, а $w$ — прогнозируемые решения на выходе decision_function, тогда потери на шарнирах определяются как:
$$L_text{Hinge}(y, w) = maxleft{1 — wy, 0right} = left|1 — wyright|_+$$

Если имеется более двух ярлыков, hinge_loss используется мультиклассовый вариант, разработанный Crammer & Singer. Вот статья, описывающая это.

Если $y_w$ прогнозируемое решение для истинного лейбла и $y_t$ — это максимум предсказанных решений для всех других меток, где предсказанные решения выводятся функцией принятия решений, тогда потеря шарнира в нескольких классах определяется следующим образом:
$$L_text{Hinge}(y_w, y_t) = maxleft{1 + y_t — y_w, 0right}$$

Вот небольшой пример, демонстрирующий использование hinge_loss функции с классификатором svm в задаче двоичного класса:

>>> from sklearn import svm
>>> from sklearn.metrics import hinge_loss
>>> X = [[0], [1]]
>>> y = [-1, 1]
>>> est = svm.LinearSVC(random_state=0)
>>> est.fit(X, y)
LinearSVC(random_state=0)
>>> pred_decision = est.decision_function([[-2], [3], [0.5]])
>>> pred_decision
array([-2.18...,  2.36...,  0.09...])
>>> hinge_loss([-1, 1, 1], pred_decision)
0.3...

Вот пример, демонстрирующий использование hinge_loss функции с классификатором svm в мультиклассовой задаче:

>>> X = np.array([[0], [1], [2], [3]])
>>> Y = np.array([0, 1, 2, 3])
>>> labels = np.array([0, 1, 2, 3])
>>> est = svm.LinearSVC()
>>> est.fit(X, Y)
LinearSVC()
>>> pred_decision = est.decision_function([[-1], [2], [3]])
>>> y_true = [0, 2, 3]
>>> hinge_loss(y_true, pred_decision, labels)
0.56...

3.3.2.12. Лог лосс

Лог лосс, также называемые потерями логистической регрессии или кросс-энтропийными потерями, определяются на основе оценок вероятности. Он обычно используется в (полиномиальной) логистической регрессии и нейронных сетях, а также в некоторых вариантах максимизации ожидания и может использоваться для оценки выходов вероятности ( predict_proba) классификатора вместо его дискретных прогнозов.

Для двоичной классификации с истинной меткой $y in {0,1}$ и оценка вероятности $p = operatorname{Pr}(y = 1)$, логарифмическая потеря на выборку представляет собой отрицательную логарифмическую вероятность классификатора с истинной меткой:
$$L_{log}(y, p) = -log operatorname{Pr}(y|p) = -(y log (p) + (1 — y) log (1 — p))$$

Это распространяется на случай мультикласса следующим образом. Пусть истинные метки для набора выборок будут закодированы размером 1 из K как двоичная индикаторная матрица $Y$, т.е. $y_{i,k}=1$ если образец $i$ есть ярлык $k$ взят из набора $K$ этикетки. Пусть $P$ — матрица оценок вероятностей, с $p_{i,k} = operatorname{Pr}(y_{i,k} = 1)$. Тогда потеря журнала всего набора равна
$$L_{log}(Y, P) = -log operatorname{Pr}(Y|P) = — frac{1}{N} sum_{i=0}^{N-1} sum_{k=0}^{K-1} y_{i,k} log p_{i,k}$$

Чтобы увидеть, как это обобщает приведенную выше потерю двоичного журнала, обратите внимание, что в двоичном случае $p_{i,0} = 1 — p_{i,1}$ и $y_{i,0} = 1 — y_{i,1}$, поэтому разложив внутреннюю сумму на $y_{i,k} in {0,1}$ дает двоичную потерю журнала.

В log_loss функции вычисляет журнал потеря дана список меток приземной истины и матриц вероятностей, возвращенный оценщик predict_proba методом.

>>> from sklearn.metrics import log_loss
>>> y_true = [0, 0, 1, 1]
>>> y_pred = [[.9, .1], [.8, .2], [.3, .7], [.01, .99]]
>>> log_loss(y_true, y_pred)
0.1738...

Первое [.9, .1] в y_pred означает 90% вероятность того, что первая выборка будет иметь метку 0. Лог лос неотрицательны.

3.3.2.13. Коэффициент корреляции Мэтьюза

Функция matthews_corrcoef вычисляет коэффициент корреляции Матфея (MCC) для двоичных классов. Цитата из Википедии:

«Коэффициент корреляции Мэтьюза используется в машинном обучении как мера качества двоичных (двухклассных) классификаций. Он учитывает истинные и ложные положительные и отрицательные результаты и обычно рассматривается как сбалансированная мера, которую можно использовать, даже если классы очень разных размеров. MCC — это, по сути, значение коэффициента корреляции между -1 и +1. Коэффициент +1 представляет собой идеальное предсказание, 0 — среднее случайное предсказание и -1 — обратное предсказание. Статистика также известна как коэффициент фи ».

В бинарном (двухклассовом) случае $tp$, $tn$, $fp$ а также $fn$ являются соответственно количеством истинно положительных, истинно отрицательных, ложноположительных и ложноотрицательных результатов, MCC определяется как
$$MCC = frac{tp times tn — fp times fn}{sqrt{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}}.$$

В случае мультикласса коэффициент корреляции Мэтьюза может быть определен в терминах confusion_matrix C для Kклассы. Чтобы упростить определение, рассмотрим следующие промежуточные переменные:

  • $t_k=sum_{i}^{K} C_{ik}$ количество занятий k действительно произошло,
  • $p_k=sum_{i}^{K} C_{ki}$ количество занятий k был предсказан,
  • $c=sum_{k}^{K} C_{kk}$ общее количество правильно спрогнозированных образцов,
  • $s=sum_{i}^{K} sum_{j}^{K} C_{ij}$ общее количество образцов.

Тогда мультиклассовый MCC определяется как:
$$MCC = frac{ c times s — sum_{k}^{K} p_k times t_k }{sqrt{ (s^2 — sum_{k}^{K} p_k^2) times (s^2 — sum_{k}^{K} t_k^2) }}$$

Когда имеется более двух меток, значение MCC больше не будет находиться в диапазоне от -1 до +1. Вместо этого минимальное значение будет где-то между -1 и 0 в зависимости от количества и распределения наземных истинных меток. Максимальное значение всегда +1.

Вот небольшой пример, иллюстрирующий использование matthews_corrcoef функции:

>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...

3.3.2.14. Матрица путаницы с несколькими метками

Функция multilabel_confusion_matrix вычисляет класс-накрест ( по умолчанию) или samplewise (samplewise = True) MultiLabel матрицы спутанности для оценки точности классификации. Multilabel_confusion_matrix также обрабатывает данные мультикласса, как если бы они были многоклассовыми, поскольку это преобразование, обычно применяемое для оценки проблем мультикласса с метриками двоичной классификации (такими как точность, отзыв и т. д.).

При вычислении классовой матрицы путаницы с несколькими метками $C$, количество истинных негативов для класса i является $C_{i,0,0}$, ложноотрицательные $C_{i,1,0}$, истинные положительные стороны $C_{i,1,1}$ а ложные срабатывания $C_{i,0,1}$.

Вот пример, демонстрирующий использование multilabel_confusion_matrix функции с вводом многозначной индикаторной матрицы:

>>> import numpy as np
>>> from sklearn.metrics import multilabel_confusion_matrix
>>> y_true = np.array([[1, 0, 1],
...                    [0, 1, 0]])
>>> y_pred = np.array([[1, 0, 0],
...                    [0, 1, 1]])
>>> multilabel_confusion_matrix(y_true, y_pred)
array([[[1, 0],
        [0, 1]],

       [[1, 0],
        [0, 1]],

       [[0, 1],
        [1, 0]]])

Или можно построить матрицу неточностей для каждой метки образца:

>>> multilabel_confusion_matrix(y_true, y_pred, samplewise=True)
array([[[1, 0],
        [1, 1]],

       [[1, 1],
        [0, 1]]])

Вот пример, демонстрирующий использование multilabel_confusion_matrix функции с многоклассовым вводом:

>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> multilabel_confusion_matrix(y_true, y_pred,
...                             labels=["ant", "bird", "cat"])
array([[[3, 1],
        [0, 2]],

       [[5, 0],
        [1, 0]],

       [[2, 1],
        [1, 2]]])

Вот несколько примеров, демонстрирующих использование multilabel_confusion_matrix функции для расчета отзыва (или чувствительности), специфичности, количества выпадений и пропусков для каждого класса в задаче с вводом многозначной индикаторной матрицы.

Расчет отзыва (также называемого истинно положительным коэффициентом или чувствительностью) для каждого класса:

>>> y_true = np.array([[0, 0, 1],
...                    [0, 1, 0],
...                    [1, 1, 0]])
>>> y_pred = np.array([[0, 1, 0],
...                    [0, 0, 1],
...                    [1, 1, 0]])
>>> mcm = multilabel_confusion_matrix(y_true, y_pred)
>>> tn = mcm[:, 0, 0]
>>> tp = mcm[:, 1, 1]
>>> fn = mcm[:, 1, 0]
>>> fp = mcm[:, 0, 1]
>>> tp / (tp + fn)
array([1. , 0.5, 0. ])

Расчет специфичности (также называемой истинно отрицательной ставкой) для каждого класса:

>>> tn / (tn + fp)
array([1. , 0. , 0.5])

Расчет количества выпадений (также называемый частотой ложных срабатываний) для каждого класса:

>>> fp / (fp + tn)
array([0. , 1. , 0.5])

Расчет процента промахов (также называемого ложноотрицательным показателем) для каждого класса:

>>> fn / (fn + tp)
array([0. , 0.5, 1. ])

3.3.2.15. Рабочая характеристика приемника (ROC)

Функция roc_curve вычисляет рабочую характеристическую кривую приемника или кривую ROC . Цитата из Википедии:

«Рабочая характеристика приемника (ROC), или просто кривая ROC, представляет собой графический график, который иллюстрирует работу системы двоичного классификатора при изменении ее порога дискриминации. Он создается путем построения графика доли истинных положительных результатов из положительных (TPR = частота истинных положительных результатов) по сравнению с долей ложных положительных результатов из отрицательных (FPR = частота ложных положительных результатов) при различных настройках пороговых значений. TPR также известен как чувствительность, а FPR — это единица минус специфичность или истинно отрицательный показатель ».

Для этой функции требуется истинное двоичное значение и целевые баллы, которые могут быть либо оценками вероятности положительного класса, либо значениями достоверности, либо двоичными решениями. Вот небольшой пример использования roc_curve функции:

>>> import numpy as np
>>> from sklearn.metrics import roc_curve
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = roc_curve(y, scores, pos_label=2)
>>> fpr
array([0. , 0. , 0.5, 0.5, 1. ])
>>> tpr
array([0. , 0.5, 0.5, 1. , 1. ])
>>> thresholds
array([1.8 , 0.8 , 0.4 , 0.35, 0.1 ])

На этом рисунке показан пример такой кривой ROC:

Функция roc_auc_score вычисляет площадь под операционной приемника характеристика (ROC) кривой, которая также обозначается через ППК или AUROC. При вычислении площади под кривой roc информация о кривой суммируется в одном номере. Для получения дополнительной информации см. Статью в Википедии о AUC.

По сравнению с такими показателями, как точность подмножества, потеря Хэмминга или оценка F1, ROC не требует оптимизации порога для каждой метки.

3.3.2.15.1. Двоичный регистр

В двоичном случае вы можете либо предоставить оценки вероятности, используя classifier.predict_proba() метод, либо значения решения без пороговых значений, заданные classifier.decision_function() методом. В случае предоставления оценок вероятности следует указать вероятность класса с «большей меткой». «Большая метка» соответствует classifier.classes_[1] и, следовательно classifier.predict_proba(X) [:, 1]. Следовательно, параметр y_score имеет размер (n_samples,).

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.metrics import roc_auc_score
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear").fit(X, y)
>>> clf.classes_
array([0, 1])

Мы можем использовать оценки вероятностей, соответствующие clf.classes_[1].

>>> y_score = clf.predict_proba(X)[:, 1]
>>> roc_auc_score(y, y_score)
0.99...

В противном случае мы можем использовать значения решения без порога.

>>> roc_auc_score(y, clf.decision_function(X))
0.99...

3.3.2.15.2. Мультиклассовый кейс

Функция roc_auc_score также может быть использована в нескольких классах классификации . В настоящее время поддерживаются две стратегии усреднения: алгоритм «один против одного» вычисляет среднее попарных оценок AUC ROC, а алгоритм «один против остальных» вычисляет среднее значение оценок ROC AUC для каждого класса по сравнению со всеми другими классами. В обоих случаях предсказанные метки предоставляются в виде массива со значениями от 0 до n_classes, а оценки соответствуют оценкам вероятности того, что выборка принадлежит определенному классу. Алгоритмы OvO и OvR поддерживают равномерное взвешивание ( average='macro') и по распространенности ( average='weighted').

Алгоритм «один против одного» : вычисляет средний AUC всех возможных попарных комбинаций классов. [HT2001] определяет метрику AUC мультикласса, взвешенную равномерно:
$$frac{1}{c(c-1)}sum_{j=1}^{c}sum_{k > j}^c (text{AUC}(j | k) + text{AUC}(k | j))$$

где $c$ количество классов и $text{AUC}(j | k)$ AUC с классом $j$ как положительный класс и класс $k$ как отрицательный класс. В общем, $text{AUC}(j | k) neq text{AUC}(k | j))$ в случае мультикласса. Этот алгоритм используется, установив аргумент ключевого слова , multiclass чтобы 'ovo' и average в 'macro'.

[HT2001] мультиклассируют AUC метрика может быть расширена , чтобы быть взвешены по распространенности:
$$frac{1}{c(c-1)}sum_{j=1}^{c}sum_{k > j}^c p(j cup k)( text{AUC}(j | k) + text{AUC}(k | j))$$

где cколичество классов. Этот алгоритм используется, установив аргумент ключевого слова , multiclass чтобы 'ovo' и average в 'weighted'. В 'weighted' опции возвращает распространенность усредненные , как описано в [FC2009] .

Алгоритм «один против остальных» : вычисляет AUC каждого класса относительно остальных [PD2000] . Алгоритм функционально такой же, как и в случае с несколькими этикетками. Чтобы включить этот алгоритм, установите для аргумента ключевого слова multiclass значение 'ovr'. Как и OvO, OvR поддерживает два типа усреднения: 'macro' [F2006] и 'weighted' [F2001] .

В приложениях , где высокий процент ложных срабатываний не терпимый параметр max_fpr из roc_auc_score может быть использовано , чтобы суммировать кривую ROC до заданного предела.

3.3.2.15.3. Кейс с несколькими метками

В классификации несколько меток, функция roc_auc_score распространяются путем усреднения меток , как выше . В этом случае вы должны указать y_score форму . Таким образом, при использовании оценок вероятности необходимо выбрать вероятность класса с большей меткой для каждого выхода.(n_samples, n_classes)

>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.multioutput import MultiOutputClassifier
>>> X, y = make_multilabel_classification(random_state=0)
>>> inner_clf = LogisticRegression(solver="liblinear", random_state=0)
>>> clf = MultiOutputClassifier(inner_clf).fit(X, y)
>>> y_score = np.transpose([y_pred[:, 1] for y_pred in clf.predict_proba(X)])
>>> roc_auc_score(y, y_score, average=None)
array([0.82..., 0.86..., 0.94..., 0.85... , 0.94...])

И значения решений не требуют такой обработки.

>>> from sklearn.linear_model import RidgeClassifierCV
>>> clf = RidgeClassifierCV().fit(X, y)
>>> y_score = clf.decision_function(X)
>>> roc_auc_score(y, y_score, average=None)
array([0.81..., 0.84... , 0.93..., 0.87..., 0.94...])

Примеры:

  • См. В разделе « Рабочие характеристики приемника» (ROC) пример использования ROC для оценки качества выходных данных классификатора.
  • См. В разделе « Рабочие характеристики приемника» (ROC) с перекрестной проверкой пример использования ROC для оценки качества выходных данных классификатора с помощью перекрестной проверки.
  • См. В разделе Моделирование распределения видов пример использования ROC для моделирования распределения видов.
  • HT2001 ( 1 , 2 ) Рука, DJ и Тилль, RJ, (2001). Простое обобщение области под кривой ROC для задач классификации нескольких классов. Машинное обучение, 45 (2), стр. 171-186.
  • FC2009 Ферри, Сезар и Эрнандес-Оралло, Хосе и Модройу, Р. (2009). Экспериментальное сравнение показателей эффективности для классификации.  Письма о распознавании образов. 30. 27-38.
  • PD2000 Провост Ф., Домингос П. (2000). Хорошо обученные ПЭТ: Улучшение деревьев оценки вероятностей (Раздел 6.2), Рабочий документ CeDER № IS-00-04, Школа бизнеса Стерна, Нью-Йоркский университет.
  • F2006 Фосетт, Т., 2006. Введение в анализ ROC.  Письма о распознавании образов, 27 (8), стр. 861-874.
  • F2001Фосетт, Т., 2001. Использование наборов правил для максимизации производительности ROC в интеллектуальном анализе данных, 2001. Труды Международной конференции IEEE, стр. 131-138.

3.3.2.16. Компромисс при обнаружении ошибок (DET)

Функция det_curve вычисляет кривую компенсации ошибок обнаружения (DET) [WikipediaDET2017] . Цитата из Википедии:

«График компромисса ошибок обнаружения (DET) — это графическая диаграмма частоты ошибок для систем двоичной классификации, отображающая частоту ложных отклонений по сравнению с частотой ложных приемов. Оси x и y масштабируются нелинейно по их стандартным нормальным отклонениям (или просто с помощью логарифмического преобразования), в результате получаются более линейные кривые компромисса, чем кривые ROC, и большая часть области изображения используется для выделения важных различий в критический рабочий регион ».

Кривые DET представляют собой вариацию кривых рабочих характеристик приемника (ROC), где ложная отрицательная скорость нанесена на ось y вместо истинной положительной скорости. Кривые DET обычно строятся в масштабе нормального отклонения путем преобразования $phi^{-1}$ (с участием $phi$ — кумулятивная функция распределения). Полученные кривые производительности явно визуализируют компромисс типов ошибок для заданных алгоритмов классификации. См. [Martin1997], где приведены примеры и мотивация.

На этом рисунке сравниваются кривые ROC и DET двух примеров классификаторов для одной и той же задачи классификации:

Характеристики:

  • Кривые DET образуют линейную кривую по шкале нормального отклонения, если оценки обнаружения нормально (или близки к нормальному) распределены. В [Navratil2007] было показано, что обратное не обязательно верно, и даже более общие распределения могут давать линейные кривые DET.
  • При обычном преобразовании масштаба с отклонением точки распределяются таким образом, что занимает сравнительно большее пространство графика. Следовательно, кривые с аналогичными характеристиками классификации легче различить на графике DET.
  • С ложноотрицательной скоростью, «обратной» истинной положительной скорости, точкой совершенства для кривых DET является начало координат (в отличие от верхнего левого угла для кривых ROC).

Приложения и ограничения:

Кривые DET интуитивно понятны для чтения и, следовательно, позволяют быстро визуально оценить работу классификатора. Кроме того, кривые DET можно использовать для анализа пороговых значений и выбора рабочей точки. Это особенно полезно, если требуется сравнение типов ошибок.

С другой стороны, кривые DET не представляют свою метрику в виде единого числа. Поэтому для автоматической оценки или сравнения с другими задачами классификации лучше подходят такие показатели, как производная площадь под кривой ROC.

Примеры:

  • См. Кривую компенсации ошибок обнаружения (DET) для примера сравнения кривых рабочих характеристик приемника (ROC) и кривых компенсации ошибок обнаружения (DET).

Рекомендации:

  • ВикипедияDET2017 Авторы Википедии. Компромисс ошибки обнаружения. Википедия, свободная энциклопедия. 4 сентября 2017 г., 23:33 UTC. Доступно по адресу: https://en.wikipedia.org/w/index.php?title=Detection_error_tradeoff&oldid=798982054 . По состоянию на 19 февраля 2018 г.
  • Мартин 1997 А. Мартин, Дж. Доддингтон, Т. Камм, М. Ордовски и М. Пшибоцки, Кривая DET в оценке эффективности задач обнаружения , NIST 1997.
  • Навратил2007 Дж. Наврактил и Д. Клусачек, « О линейных DET », 2007 г. Международная конференция IEEE по акустике, обработке речи и сигналов — ICASSP ’07, Гонолулу, Гавайи, 2007 г., стр. IV-229-IV-232.

3.3.2.17. Нулевой проигрыш

Функция zero_one_loss вычисляет сумму или среднее значение потери 0-1 классификации ($L_{0−1}$) над $n_{samples}$. По умолчанию функция нормализуется по выборке. Чтобы получить сумму $L_{0−1}$, установите normalize значение False.

В классификации по zero_one_loss нескольким меткам подмножество оценивается как единое целое, если его метки строго соответствуют прогнозам, и как ноль, если есть какие-либо ошибки. По умолчанию функция возвращает процент неправильно спрогнозированных подмножеств. Чтобы вместо этого получить количество таких подмножеств, установите normalize значение False

Если $hat{y}_i$ прогнозируемое значение $i$-й образец и $y_i$ — соответствующее истинное значение, тогда потеря 0-1 $L_{0−1}$ определяется как:
$$L_{0-1}(y_i, hat{y}_i) = 1(hat{y}_i not= y_i)$$

где $1(x)$- индикаторная функция.

>>> from sklearn.metrics import zero_one_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize=False)
1

В случае с несколькими метками с двоичными индикаторами меток, где первый набор меток [0,1] содержит ошибку:

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)),  normalize=False)
1

Пример:

  • См. В разделе « Рекурсивное исключение функции с перекрестной проверкой» пример использования нулевой потери для выполнения рекурсивного исключения функции с перекрестной проверкой.

3.3.2.18. Потеря очков по Брайеру

Функция brier_score_loss вычисляет оценку Шиповник для бинарных классов [Brier1950] . Цитата из Википедии:

«Оценка Бриера — это правильная функция оценки, которая измеряет точность вероятностных прогнозов. Это применимо к задачам, в которых прогнозы должны назначать вероятности набору взаимоисключающих дискретных результатов ».

Эта функция возвращает среднеквадратичную ошибку фактического результата. y∈{0,1} и прогнозируемая оценка вероятности $p=Pr⁡(y=1)$ ( pred_proba ) как выведено :
$$BS = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}} — 1}(y_i — p_i)^2$$

Потеря по шкале Бриера также составляет от 0 до 1, и чем ниже значение (средняя квадратичная разница меньше), тем точнее прогноз.

Вот небольшой пример использования этой функции:

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss
>>> y_true = np.array([0, 1, 1, 0])
>>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])
>>> y_prob = np.array([0.1, 0.9, 0.8, 0.4])
>>> y_pred = np.array([0, 1, 1, 0])
>>> brier_score_loss(y_true, y_prob)
0.055
>>> brier_score_loss(y_true, 1 - y_prob, pos_label=0)
0.055
>>> brier_score_loss(y_true_categorical, y_prob, pos_label="ham")
0.055
>>> brier_score_loss(y_true, y_prob > 0.5)
0.0

Балл Бриера можно использовать для оценки того, насколько хорошо откалиброван классификатор. Однако меньшая потеря по шкале Бриера не всегда означает лучшую калибровку. Это связано с тем, что по аналогии с разложением среднеквадратичной ошибки на дисперсию смещения потеря оценки по Бриеру может быть разложена как сумма потерь калибровки и потерь при уточнении [Bella2012]. Потеря калибровки определяется как среднеквадратическое отклонение от эмпирических вероятностей, полученных из наклона ROC-сегментов. Потери при переработке можно определить как ожидаемые оптимальные потери, измеренные по площади под кривой оптимальных затрат. Потери при уточнении могут изменяться независимо от потерь при калибровке, таким образом, более низкие потери по шкале Бриера не обязательно означают более качественную калибровку модели. «Только когда потеря точности остается неизменной, более низкая потеря по шкале Бриера всегда означает лучшую калибровку» [Bella2012] , [Flach2008] .

Пример:

  • См. Раздел « Калибровка вероятности классификаторов», где приведен пример использования потерь по шкале Бриера для выполнения калибровки вероятности классификаторов.

Рекомендации:

  • Brier1950 Дж. Брайер, Проверка прогнозов, выраженных в терминах вероятности , Ежемесячный обзор погоды 78.1 (1950)
  • Bella2012 ( 1 , 2 ) Белла, Ферри, Эрнандес-Оралло и Рамирес-Кинтана «Калибровка моделей машинного обучения» в Хосров-Пур, М. «Машинное обучение: концепции, методологии, инструменты и приложения». Херши, Пенсильвания: Справочник по информационным наукам (2012).
  • Flach2008 Флак, Питер и Эдсон Мацубара. «О классификации, ранжировании и оценке вероятности».  Дагштульский семинар. Schloss Dagstuhl-Leibniz-Zentrum от Informatik (2008).

3.3.3. Метрики ранжирования с несколькими ярлыками

В многоэлементном обучении с каждой выборкой может быть связано любое количество меток истинности. Цель состоит в том, чтобы дать высокие оценки и более высокий рейтинг наземным лейблам.

3.3.3.1. Ошибка покрытия

Функция coverage_error вычисляет среднее число меток , которые должны быть включены в окончательном предсказании таким образом, что все истинные метки предсказанные. Это полезно, если вы хотите знать, сколько меток с наивысшими баллами вам нужно предсказать в среднем, не пропуская ни одной истинной. Таким образом, наилучшее значение этого показателя — среднее количество истинных ярлыков.

Примечание

Оценка нашей реализации на 1 больше, чем оценка, приведенная в Tsoumakas et al., 2010. Это расширяет ее для обработки вырожденного случая, когда экземпляр имеет 0 истинных меток.

Формально, учитывая двоичную индикаторную матрицу наземных меток истинности $y in left{0, 1right}^{n_text{samples} times n_text{labels}}$ и оценка, связанная с каждой меткой $hat{f} in mathbb{R}^{n_text{samples} times n_text{labels}}$ покрытие определяется как
$$coverage(y, hat{f}) = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}} — 1} max_{j:y_{ij} = 1} text{rank}_{ij}$$

с участием $text{rank}{ij} = left|left{k: hat{f}{ik} geq hat{f}_{ij} right}right|$. Учитывая определение ранга, связи y_scores разрываются путем присвоения максимального ранга, который был бы присвоен всем связанным значениям.

Вот небольшой пример использования этой функции:

>>> import numpy as np
>>> from sklearn.metrics import coverage_error
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> coverage_error(y_true, y_score)
2.5

3.3.3.2. Средняя точность ранжирования метки

В label_ranking_average_precision_score функции реализует маркировать ранжирование средней точности (LRAP). Этот показатель связан с average_precision_score функцией, но основан на понятии ранжирования меток, а не на точности и отзыве.

Средняя точность ранжирования меток (LRAP) усредняет по выборкам ответ на следующий вопрос: для каждой основной метки истинности какая доля меток с более высоким рейтингом была истинной? Этот показатель эффективности будет выше, если вы сможете лучше ранжировать метки, связанные с каждым образцом. Полученная оценка всегда строго больше 0, а наилучшее значение равно 1. Если имеется ровно одна релевантная метка для каждой выборки, средняя точность ранжирования меток эквивалентна среднему обратному рангу .

Формально, учитывая двоичную индикаторную матрицу наземных меток истинности $y in left{0, 1right}^{n_text{samples} times n_text{labels}}$ и оценка, связанная с каждой меткой $hat{f} in mathbb{R}^{n_text{samples} times n_text{labels}}$, средняя точность определяется как
$$LRAP(y, hat{f}) = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}} — 1} frac{1}{||y_i||0} sum{j:y_{ij} = 1} frac{|mathcal{L}{ij}|}{text{rank}{ij}}$$

где $mathcal{L}{ij} = left{k: y{ik} = 1, hat{f}{ik} geq hat{f}{ij} right}$, $text{rank}{ij} = left|left{k: hat{f}{ik} geq hat{f}_{ij} right}right|$, |cdot| вычисляет мощность набора (т. е. количество элементов в наборе), и $||cdot||_0$ это $ell_0$ «Norm» (который вычисляет количество ненулевых элементов в векторе).

Вот небольшой пример использования этой функции:

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score)
0.416...

3.3.3.3. Потеря рейтинга

Функция label_ranking_loss вычисляет ранжирование потери , которые в среднем более образцы числа пар меток, которые неправильно упорядочены, т.е. истинные метки имеют более низкую оценку , чем ложные метки, взвешенную по обратной величине числа упорядоченных пар ложных и истинных меток. Наименьшая возможная потеря рейтинга равна нулю.

Формально, учитывая двоичную индикаторную матрицу наземных меток истинности $y in left{0, 1right}^{n_text{samples} times n_text{labels}}$ и оценка, связанная с каждой меткой $hat{f} in mathbb{R}^{n_text{samples} times n_text{labels}}$ потеря ранжирования определяется как
$$ranking_loss(y, hat{f}) = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}} — 1} frac{1}{||y_i||0(ntext{labels} — ||y_i||0)} left|left{(k, l): hat{f}{ik} leq hat{f}{il}, y{ik} = 1, y_{il} = 0 right}right|$$

где $|cdot|$ вычисляет мощность набора (т. е. количество элементов в наборе) и $||cdot||_0$ это $ell_0$ «Norm» (который вычисляет количество ненулевых элементов в векторе).

Вот небольшой пример использования этой функции:

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_loss
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_loss(y_true, y_score)
0.75...
>>> # With the following prediction, we have perfect and minimal loss
>>> y_score = np.array([[1.0, 0.1, 0.2], [0.1, 0.2, 0.9]])
>>> label_ranking_loss(y_true, y_score)
0.0

Рекомендации:

  • Цумакас, Г., Катакис, И., и Влахавас, И. (2010). Майнинг данных с несколькими метками. В справочнике по интеллектуальному анализу данных и открытию знаний (стр. 667-685). Springer США.

3.3.3.4. Нормализованная дисконтированная совокупная прибыль

Дисконтированный совокупный выигрыш (DCG) и Нормализованный дисконтированный совокупный выигрыш (NDCG) — это показатели ранжирования, реализованные в dcg_score и ndcg_score; они сравнивают предсказанный порядок с оценками достоверности, такими как релевантность ответов на запрос.

Со страницы Википедии о дисконтированной совокупной прибыли:

«Дисконтированная совокупная прибыль (DCG) — это показатель качества ранжирования. При поиске информации он часто используется для измерения эффективности алгоритмов поисковой системы или связанных приложений. Используя шкалу градуированной релевантности документов в наборе результатов поисковой системы, DCG измеряет полезность или выгоду документа на основе его позиции в списке результатов. Прирост накапливается сверху вниз в списке результатов, причем прирост каждого результата дисконтируется на более низких уровнях »

DCG упорядочивает истинные цели (например, релевантность ответов на запросы) в предсказанном порядке, затем умножает их на логарифмическое убывание и суммирует результат. Сумма может быть усечена после первогоKрезультатов, и в этом случае мы называем это DCG @ K. NDCG или NDCG @ $K$ — это DCG, деленная на DCG, полученную с помощью точного прогноза, так что оно всегда находится между 0 и 1. Обычно NDCG предпочтительнее DCG.

По сравнению с потерей ранжирования, NDCG может принимать во внимание оценки релевантности, а не ранжирование на основе фактов. Таким образом, если основополагающая информация состоит только из упорядочивания, предпочтение следует отдавать потере ранжирования; если основополагающая информация состоит из фактических оценок полезности (например, 0 для нерелевантного, 1 для релевантного, 2 для очень актуального), можно использовать NDCG.

Для одного образца, учитывая вектор непрерывных значений истинности для каждой цели $y in R^M$, где $M$ это количество выходов, а прогноз $hat{y}$, что индуцирует функцию ранжирования $f$, оценка DCG составляет
$$sum_{r=1}^{min(K, M)}frac{y_{f(r)}}{log(1 + r)}$$

а оценка NDCG — это оценка DCG, деленная на оценку DCG, полученную для $y$.

Рекомендации:

  • Запись в Википедии о дисконтированной совокупной прибыли
  • Джарвелин, К., и Кекалайнен, Дж. (2002). Оценка IR методов на основе накопленного коэффициента усиления. Транзакции ACM в информационных системах (TOIS), 20 (4), 422-446.
  • Ван, Ю., Ван, Л., Ли, Ю., Хе, Д., Чен, В., и Лю, Т. Ю. (2013, май). Теоретический анализ показателей рейтинга NDCG. В материалах 26-й ежегодной конференции по теории обучения (COLT 2013)
  • МакШерри Ф. и Наджорк М. (2008, март). Эффективность вычислений при поиске информации измеряется эффективно при наличии связанных оценок. В Европейской конференции по поиску информации (стр. 414-421). Шпрингер, Берлин, Гейдельберг.

3.3.4. Метрики регрессии

В sklearn.metrics модуле реализованы несколько функций потерь, оценки и полезности для измерения эффективности регрессии. Некоторые из них были расширены , чтобы обработать случай multioutput: mean_squared_error, mean_absolute_error, explained_variance_score и r2_score

У этих функций есть multioutput аргумент ключевого слова, который определяет способ усреднения результатов или проигрышей для каждой отдельной цели. По умолчанию используется значение 'uniform_average', которое определяет равномерно взвешенное среднее значение по выходным данным. Если передается ndarrayформа shape (n_outputs,), то ее записи интерпретируются как веса, и возвращается соответствующее средневзвешенное значение. Если multioutputесть 'raw_values'указан, то все неизменные индивидуальные баллы или потери будут возвращены в массиве формы (n_outputs,).

r2_score и  explained_variance_score принять дополнительное значение 'variance_weighted' для multioutput параметра. Эта опция приводит к взвешиванию каждой индивидуальной оценки по дисперсии соответствующей целевой переменной. Этот параметр определяет количественно зафиксированную немасштабированную дисперсию на глобальном уровне. Если целевые переменные имеют разную шкалу, то этот балл придает большее значение хорошему объяснению переменных с более высокой дисперсией. multioutput='variance_weighted' — значение по умолчанию r2_score для обратной совместимости. В будущем это будет изменено на uniform_average.

3.3.4.1. Оценка объясненной дисперсии

explained_variance_score вычисляет объясненной дисперсии регрессии балл.

Если $hat{y}$ — расчетный целевой объем производства, y соответствующий (правильный) целевой результат, и $Var$- Дисперсия , квадрат стандартного отклонения, то объясненная дисперсия оценивается следующим образом:
$$explained_{}variance(y, hat{y}) = 1 — frac{Var{ y — hat{y}}}{Var{y}}$$

Наилучшая возможная оценка — 1.0, более низкие значения — хуже.

Вот небольшой пример использования explained_variance_score функции:

>>> from sklearn.metrics import explained_variance_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> explained_variance_score(y_true, y_pred)
0.957...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='raw_values')
array([0.967..., 1.        ])
>>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.990...

3.3.4.2. Максимальная ошибка

Функция max_error вычисляет максимальную остаточную ошибку , показатель , который фиксирует худшую ошибку случае между предсказанным значением и истинным значением. В идеально подобранной модели регрессии с одним выходом он max_error будет находиться 0 в обучающем наборе, и хотя это маловероятно в реальном мире, этот показатель показывает степень ошибки, которую имела модель при подборе.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец, и $y_i$ — соответствующее истинное значение, тогда максимальная ошибка определяется как
$$text{Max Error}(y, hat{y}) = max(| y_i — hat{y}_i |)$$

Вот небольшой пример использования функции max_error:

>>> from sklearn.metrics import max_error
>>> y_true = [3, 2, 7, 1]
>>> y_pred = [9, 2, 7, 1]
>>> max_error(y_true, y_pred)
6

max_error не поддерживает multioutput.

3.3.4.3. Средняя абсолютная ошибка

Функция mean_absolute_error вычисляет среднюю абсолютную погрешность , риск метрики , соответствующей ожидаемого значение абсолютной потери или ошибок $l1$-нормальная потеря.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец, и $y_i$ — соответствующее истинное значение, тогда средняя абсолютная ошибка (MAE), оцененная за $n_{samples}$ определяется как
$$text{MAE}(y, hat{y}) = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}}-1} left| y_i — hat{y}_i right|.$$

Вот небольшой пример использования функции mean_absolute_error:

>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...

3.3.4.4. Среднеквадратичная ошибка

Функция mean_squared_error вычисляет среднюю квадратическую ошибку , риск метрики , соответствующую ожидаемое значение квадрата (квадратичной) ошибки или потерю.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец, и $y_i$ — соответствующее истинное значение, тогда среднеквадратичная ошибка (MSE), оцененная на $n_{samples}$ определяется как
$$text{MSE}(y, hat{y}) = frac{1}{n_text{samples}} sum_{i=0}^{n_text{samples} — 1} (y_i — hat{y}_i)^2.$$

Вот небольшой пример использования функции mean_squared_error:

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.7083...

Примеры:

  • См. В разделе Регрессия повышения градиента пример использования среднеквадратичной ошибки для оценки регрессии повышения градиента.

3.3.4.5. Среднеквадратичная логарифмическая ошибка

Функция mean_squared_log_error вычисляет риск метрики , соответствующий ожидаемому значению квадрата логарифмической (квадратичной) ошибки или потери.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец, и $y_i$ — соответствующее истинное значение, тогда среднеквадратичная логарифмическая ошибка (MSLE), оцененная на $n_{samples}$ определяется как
$$text{MSLE}(y, hat{y}) = frac{1}{n_text{samples}} sum_{i=0}^{n_text{samples} — 1} (log_e (1 + y_i) — log_e (1 + hat{y}_i) )^2.$$

Где $log_e (x)$ означает натуральный логарифм $x$. Эту метрику лучше всего использовать, когда цели имеют экспоненциальный рост, например, численность населения, средние продажи товара в течение нескольких лет и т. Д. Обратите внимание, что эта метрика штрафует за заниженную оценку больше, чем за завышенную оценку.

Вот небольшой пример использования функции mean_squared_log_error:

>>> from sklearn.metrics import mean_squared_log_error
>>> y_true = [3, 5, 2.5, 7]
>>> y_pred = [2.5, 5, 4, 8]
>>> mean_squared_log_error(y_true, y_pred)
0.039...
>>> y_true = [[0.5, 1], [1, 2], [7, 6]]
>>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]]
>>> mean_squared_log_error(y_true, y_pred)
0.044...

3.3.4.6. Средняя абсолютная ошибка в процентах

mean_absolute_percentage_error (MAPE), также известный как среднее абсолютное отклонение в процентах (МАПД), является метрикой для оценки проблем регрессии. Идея этой метрики — быть чувствительной к относительным ошибкам. Например, он не изменяется глобальным масштабированием целевой переменной.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец и $y_i$ — соответствующее истинное значение, тогда средняя абсолютная процентная ошибка (MAPE), оцененная за $n_{samples}$ определяется как
$$text{MAPE}(y, hat{y}) = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}}-1} frac{{}left| y_i — hat{y}_i right|}{max(epsilon, left| y_i right|)}$$

где $epsilon$ — произвольное маленькое, но строго положительное число, чтобы избежать неопределенных результатов, когда y равно нулю.

В функции mean_absolute_percentage_error опоры multioutput.

Вот небольшой пример использования функции mean_absolute_percentage_error:

>>> from sklearn.metrics import mean_absolute_percentage_error
>>> y_true = [1, 10, 1e6]
>>> y_pred = [0.9, 15, 1.2e6]
>>> mean_absolute_percentage_error(y_true, y_pred)
0.2666...

В приведенном выше примере, если бы мы использовали mean_absolute_error, он бы проигнорировал небольшие значения магнитуды и только отразил бы ошибку в предсказании максимального значения магнитуды. Но эта проблема решена в случае MAPE, потому что он вычисляет относительную процентную ошибку по отношению к фактическому выходу.

3.3.4.7. Средняя абсолютная ошибка

Это median_absolute_error особенно интересно, потому что оно устойчиво к выбросам. Убыток рассчитывается путем взятия медианы всех абсолютных различий между целью и прогнозом.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец и $y_i$ — соответствующее истинное значение, тогда средняя абсолютная ошибка (MedAE), оцененная на $n_{samples}$ определяется как
$$text{MedAE}(y, hat{y}) = text{median}(mid y_1 — hat{y}_1 mid, ldots, mid y_n — hat{y}_n mid).$$

median_absolute_error Не поддерживает multioutput.

Вот небольшой пример использования функции median_absolute_error:

>>> from sklearn.metrics import median_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> median_absolute_error(y_true, y_pred)
0.5

3.3.4.8. R² балл, коэффициент детерминации

Функция r2_score вычисляет коэффициент детерминации , как правило , обозначенный как R².

Он представляет собой долю дисперсии (y), которая была объяснена независимыми переменными в модели. Он обеспечивает показатель степени соответствия и, следовательно, меру того, насколько хорошо невидимые выборки могут быть предсказаны моделью через долю объясненной дисперсии.

Поскольку такая дисперсия зависит от набора данных, R² не может быть значимо сопоставимым для разных наборов данных. Наилучшая возможная оценка — 1,0, и она может быть отрицательной (потому что модель может быть произвольно хуже). Постоянная модель, которая всегда предсказывает ожидаемое значение y, игнорируя входные характеристики, получит оценку R² 0,0.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец и $y_i$ соответствующее истинное значение для общего n образцов, расчетный R² определяется как:
$$R^2(y, hat{y}) = 1 — frac{sum_{i=1}^{n} (y_i — hat{y}i)^2}{sum{i=1}^{n} (y_i — bar{y})^2}$$

где $bar{y} = frac{1}{n} sum_{i=1}^{n} y_i$ и $sum_{i=1}^{n} (y_i — hat{y}i)^2 = sum{i=1}^{n} epsilon_i^2$.

Обратите внимание, что r2_score вычисляется нескорректированное R² без поправки на смещение выборочной дисперсии y.

Вот небольшой пример использования функции r2_score:

>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')
0.938...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='uniform_average')
0.936...
>>> r2_score(y_true, y_pred, multioutput='raw_values')
array([0.965..., 0.908...])
>>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.925...

Пример:

  • См. В разделе « Лассо и эластичная сеть для разреженных сигналов» приведен пример использования показателя R² для оценки лассо и эластичной сети для разреженных сигналов.

3.3.4.9. Средние отклонения Пуассона, Гаммы и Твиди

Функция mean_tweedie_deviance вычисляет среднюю ошибку Deviance Tweedie с powerпараметром ($p$). Это показатель, который выявляет прогнозируемые ожидаемые значения целей регрессии.

Существуют следующие особые случаи:

  • когда power=0 это эквивалентно mean_squared_error.
  • когда power=1 это эквивалентно mean_poisson_deviance.
  • когда power=2 это эквивалентно mean_gamma_deviance.

Если $hat{y}_i$ прогнозируемое значение $i$-й образец и $y_i$ — соответствующее истинное значение, тогда средняя ошибка отклонения Твиди (D) для мощности $p$, оценивается более $n_{samples}$ определяется как

Отклонение от твиди — однородная функция степени 2-power. Таким образом, гамма-распределение power=2 означает, что одновременно масштабируется y_true и y_pred не влияет на отклонение. Для распределения Пуассона power=1 отклонение масштабируется линейно, а для нормального распределения ( power=0) — квадратично. В общем, чем выше, powerтем меньше веса придается крайним отклонениям между истинными и прогнозируемыми целевыми значениями.

Например, давайте сравним два прогноза 1.0 и 100, которые оба составляют 50% от их соответствующего истинного значения.

Среднеквадратичная ошибка ( power=0) очень чувствительна к разнице прогнозов второй точки:

>>> from sklearn.metrics import mean_tweedie_deviance
>>> mean_tweedie_deviance([1.0], [1.5], power=0)
0.25
>>> mean_tweedie_deviance([100.], [150.], power=0)
2500.0

Если увеличить powerдо 1:

>>> mean_tweedie_deviance([1.0], [1.5], power=1)
0.18...
>>> mean_tweedie_deviance([100.], [150.], power=1)
18.9...

разница в ошибках уменьшается. Наконец, установив power=2:

>>> mean_tweedie_deviance([1.0], [1.5], power=2)
0.14...
>>> mean_tweedie_deviance([100.], [150.], power=2)
0.14...

мы получим идентичные ошибки. Таким образом, отклонение when power=2чувствительно только к относительным ошибкам.

3.3.5. Метрики кластеризации

В модуле sklearn.metrics реализованы несколько функций потерь, оценки и полезности. Для получения дополнительной информации см. Раздел « Оценка производительности кластеризации » для кластеризации экземпляров и « Оценка бикластеризации» для бикластеризации.

3.3.6. Фиктивные оценки

При обучении с учителем простая проверка работоспособности состоит из сравнения своей оценки с простыми практическими правилами. DummyClassifier реализует несколько таких простых стратегий классификации:

  • stratified генерирует случайные прогнозы, соблюдая распределение классов обучающего набора.
  • most_frequent всегда предсказывает наиболее частую метку в обучающем наборе.
  • prior всегда предсказывает класс, который максимизирует предыдущий класс (как most_frequent) и predict_proba возвращает предыдущий класс.
  • uniform генерирует предсказания равномерно в случайном порядке.
  • constant всегда предсказывает постоянную метку, предоставленную пользователем. Основная мотивация этого метода — оценка F1, когда положительный класс находится в меньшинстве.

Обратите внимание, что со всеми этими стратегиями predict метод полностью игнорирует входные данные!

Для иллюстрации DummyClassifier сначала создадим несбалансированный набор данных:

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_iris(return_X_y=True)
>>> y[y != 1] = -1
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

Далее сравним точность SVC и most_frequent:

>>> from sklearn.dummy import DummyClassifier
>>> from sklearn.svm import SVC
>>> clf = SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.63...
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf.fit(X_train, y_train)
DummyClassifier(random_state=0, strategy='most_frequent')
>>> clf.score(X_test, y_test)
0.57...

Мы видим, что SVC это не намного лучше, чем фиктивный классификатор. Теперь давайте изменим ядро:

>>> clf = SVC(kernel='rbf', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.94...

Мы видим, что точность увеличена почти до 100%. Для лучшей оценки точности рекомендуется стратегия перекрестной проверки, если она не требует слишком больших затрат на ЦП. Для получения дополнительной информации см. Раздел « Перекрестная проверка: оценка производительности оценщика ». Более того, если вы хотите оптимизировать пространство параметров, настоятельно рекомендуется использовать соответствующую методологию; подробности см. в разделе « Настройка гиперпараметров оценщика ».

В более общем плане, когда точность классификатора слишком близка к случайной, это, вероятно, означает, что что-то пошло не так: функции бесполезны, гиперпараметр настроен неправильно, классификатор страдает от дисбаланса классов и т. Д.

DummyRegressor также реализует четыре простых правила регрессии:

  • mean всегда предсказывает среднее значение тренировочных целей.
  • median всегда предсказывает медианное значение тренировочных целей.
  • quantile всегда предсказывает предоставленный пользователем квантиль учебных целей.
  • constant всегда предсказывает постоянное значение, предоставляемое пользователем.

Во всех этих стратегиях predict метод полностью игнорирует входные данные.

В машинном обучении различают оценки качества для задачи классификации и регрессии. Причем оценка задачи классификации часто значительно сложнее, чем оценка регрессии.

Содержание

  • 1 Оценки качества классификации
    • 1.1 Матрица ошибок (англ. Сonfusion matrix)
    • 1.2 Аккуратность (англ. Accuracy)
    • 1.3 Точность (англ. Precision)
    • 1.4 Полнота (англ. Recall)
    • 1.5 F-мера (англ. F-score)
    • 1.6 ROC-кривая
    • 1.7 Precison-recall кривая
  • 2 Оценки качества регрессии
    • 2.1 Средняя квадратичная ошибка (англ. Mean Squared Error, MSE)
    • 2.2 Cредняя абсолютная ошибка (англ. Mean Absolute Error, MAE)
    • 2.3 Коэффициент детерминации
    • 2.4 Средняя абсолютная процентная ошибка (англ. Mean Absolute Percentage Error, MAPE)
    • 2.5 Корень из средней квадратичной ошибки (англ. Root Mean Squared Error, RMSE)
    • 2.6 Cимметричная MAPE (англ. Symmetric MAPE, SMAPE)
    • 2.7 Средняя абсолютная масштабированная ошибка (англ. Mean absolute scaled error, MASE)
  • 3 Кросс-валидация
  • 4 Примечания
  • 5 См. также
  • 6 Источники информации

Оценки качества классификации

Матрица ошибок (англ. Сonfusion matrix)

Перед переходом к самим метрикам необходимо ввести важную концепцию для описания этих метрик в терминах ошибок классификации — confusion matrix (матрица ошибок).
Допустим, что у нас есть два класса и алгоритм, предсказывающий принадлежность каждого объекта одному из классов.
Рассмотрим пример. Пусть банк использует систему классификации заёмщиков на кредитоспособных и некредитоспособных. При этом первым кредит выдаётся, а вторые получат отказ. Таким образом, обнаружение некредитоспособного заёмщика () можно рассматривать как «сигнал тревоги», сообщающий о возможных рисках.

Любой реальный классификатор совершает ошибки. В нашем случае таких ошибок может быть две:

  • Кредитоспособный заёмщик распознается моделью как некредитоспособный и ему отказывается в кредите. Данный случай можно трактовать как «ложную тревогу».
  • Некредитоспособный заёмщик распознаётся как кредитоспособный и ему ошибочно выдаётся кредит. Данный случай можно рассматривать как «пропуск цели».

Несложно увидеть, что эти ошибки неравноценны по связанным с ними проблемам. В случае «ложной тревоги» потери банка составят только проценты по невыданному кредиту (только упущенная выгода). В случае «пропуска цели» можно потерять всю сумму выданного кредита. Поэтому системе важнее не допустить «пропуск цели», чем «ложную тревогу».

Поскольку с точки зрения логики задачи нам важнее правильно распознать некредитоспособного заёмщика с меткой , чем ошибиться в распознавании кредитоспособного, будем называть соответствующий исход классификации положительным (заёмщик некредитоспособен), а противоположный — отрицательным (заемщик кредитоспособен ). Тогда возможны следующие исходы классификации:

  • Некредитоспособный заёмщик классифицирован как некредитоспособный, т.е. положительный класс распознан как положительный. Наблюдения, для которых это имеет место называются истинно-положительными (True PositiveTP).
  • Кредитоспособный заёмщик классифицирован как кредитоспособный, т.е. отрицательный класс распознан как отрицательный. Наблюдения, которых это имеет место, называются истинно отрицательными (True NegativeTN).
  • Кредитоспособный заёмщик классифицирован как некредитоспособный, т.е. имела место ошибка, в результате которой отрицательный класс был распознан как положительный. Наблюдения, для которых был получен такой исход классификации, называются ложно-положительными (False PositiveFP), а ошибка классификации называется ошибкой I рода.
  • Некредитоспособный заёмщик распознан как кредитоспособный, т.е. имела место ошибка, в результате которой положительный класс был распознан как отрицательный. Наблюдения, для которых был получен такой исход классификации, называются ложно-отрицательными (False NegativeFN), а ошибка классификации называется ошибкой II рода.

Таким образом, ошибка I рода, или ложно-положительный исход классификации, имеет место, когда отрицательное наблюдение распознано моделью как положительное. Ошибкой II рода, или ложно-отрицательным исходом классификации, называют случай, когда положительное наблюдение распознано как отрицательное. Поясним это с помощью матрицы ошибок классификации:

Истинно-положительный (True Positive — TP) Ложно-положительный (False Positive — FP)
Ложно-отрицательный (False Negative — FN) Истинно-отрицательный (True Negative — TN)

Здесь — это ответ алгоритма на объекте, а — истинная метка класса на этом объекте.
Таким образом, ошибки классификации бывают двух видов: False Negative (FN) и False Positive (FP).
P означает что классификатор определяет класс объекта как положительный (N — отрицательный). T значит что класс предсказан правильно (соответственно F — неправильно). Каждая строка в матрице ошибок представляет спрогнозированный класс, а каждый столбец — фактический класс.

 # код для матрицы ошибок
 # Пример классификатора, способного проводить различие между всего лишь двумя
 # классами, "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.metrics import confusion_matrix
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (англ. Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 # Для расчета матрицы ошибок сначала понадобится иметь набор прогнозов, чтобы их можно было сравнивать с фактическими целями
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 print(confusion_matrix(y_train_5, y_train_pred))
 # array([[53892, 687],
 #        [ 1891, 3530]])

Безупречный классификатор имел бы только истинно-поло­жительные и истинно отрицательные классификации, так что его матрица ошибок содержала бы ненулевые значения только на своей главной диа­гонали (от левого верхнего до правого нижнего угла):

 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.metrics import confusion_matrix
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 y_train_perfect_predictions = y_train_5 # притворись, что мы достигли совершенства
 print(confusion_matrix(y_train_5, y_train_perfect_predictions))
 # array([[54579, 0],
 #        [ 0, 5421]])

Аккуратность (англ. Accuracy)

Интуитивно понятной, очевидной и почти неиспользуемой метрикой является accuracy — доля правильных ответов алгоритма:

Эта метрика бесполезна в задачах с неравными классами, что как вариант можно исправить с помощью алгоритмов сэмплирования и это легко показать на примере.

Допустим, мы хотим оценить работу спам-фильтра почты. У нас есть 100 не-спам писем, 90 из которых наш классификатор определил верно (True Negative = 90, False Positive = 10), и 10 спам-писем, 5 из которых классификатор также определил верно (True Positive = 5, False Negative = 5).
Тогда accuracy:

Однако если мы просто будем предсказывать все письма как не-спам, то получим более высокую аккуратность:

При этом, наша модель совершенно не обладает никакой предсказательной силой, так как изначально мы хотели определять письма со спамом. Преодолеть это нам поможет переход с общей для всех классов метрики к отдельным показателям качества классов.

 # код для для подсчета аккуратности:
 # Пример классификатора, способного проводить различие между всего лишь двумя
 # классами, "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.metrics import accuracy_score
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 # print(confusion_matrix(y_train_5, y_train_pred))
 # array([[53892, 687]
 #        [ 1891, 3530]])
 print(accuracy_score(y_train_5, y_train_pred)) # == (53892 + 3530) / (53892 + 3530  + 1891 +687)
 
 # 0.9570333333333333

Точность (англ. Precision)

Точностью (precision) называется доля правильных ответов модели в пределах класса — это доля объектов действительно принадлежащих данному классу относительно всех объектов которые система отнесла к этому классу.

Именно введение precision не позволяет нам записывать все объекты в один класс, так как в этом случае мы получаем рост уровня False Positive.

Полнота (англ. Recall)

Полнота — это доля истинно положительных классификаций. Полнота показывает, какую долю объектов, реально относящихся к положительному классу, мы предсказали верно.

Полнота (recall) демонстрирует способность алгоритма обнаруживать данный класс вообще.

Имея матрицу ошибок, очень просто можно вычислить точность и полноту для каждого класса. Точность (precision) равняется отношению соответствующего диагонального элемента матрицы и суммы всей строки класса. Полнота (recall) — отношению диагонального элемента матрицы и суммы всего столбца класса. Формально:

Результирующая точность классификатора рассчитывается как арифметическое среднее его точности по всем классам. То же самое с полнотой. Технически этот подход называется macro-averaging.

 # код для для подсчета точности и полноты:
 # Пример классификатора, способного проводить различие между всего лишь двумя
 # классами, "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.metrics import precision_score, recall_score
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 # print(confusion_matrix(y_train_5, y_train_pred))
 # array([[53892, 687]
 #        [ 1891, 3530]])
 print(precision_score(y_train_5, y_train_pred)) # == 3530 / (3530 + 687)
 print(recall_score(y_train_5, y_train_pred)) # == 3530 / (3530 + 1891)
   
 # 0.8370879772350012
 # 0.6511713705958311

F-мера (англ. F-score)

Precision и recall не зависят, в отличие от accuracy, от соотношения классов и потому применимы в условиях несбалансированных выборок.
Часто в реальной практике стоит задача найти оптимальный (для заказчика) баланс между этими двумя метриками. Понятно что чем выше точность и полнота, тем лучше. Но в реальной жизни максимальная точность и полнота не достижимы одновременно и приходится искать некий баланс. Поэтому, хотелось бы иметь некую метрику которая объединяла бы в себе информацию о точности и полноте нашего алгоритма. В этом случае нам будет проще принимать решение о том какую реализацию запускать в производство (у кого больше тот и круче). Именно такой метрикой является F-мера.

F-мера представляет собой гармоническое среднее между точностью и полнотой. Она стремится к нулю, если точность или полнота стремится к нулю.

Данная формула придает одинаковый вес точности и полноте, поэтому F-мера будет падать одинаково при уменьшении и точности и полноты. Возможно рассчитать F-меру придав различный вес точности и полноте, если вы осознанно отдаете приоритет одной из этих метрик при разработке алгоритма:

где принимает значения в диапазоне если вы хотите отдать приоритет точности, а при приоритет отдается полноте. При формула сводится к предыдущей и вы получаете сбалансированную F-меру (также ее называют ).

  • Рис.1 Сбалансированная F-мера,

  • Рис.2 F-мера c приоритетом точности,

  • Рис.3 F-мера c приоритетом полноты,

F-мера достигает максимума при максимальной полноте и точности, и близка к нулю, если один из аргументов близок к нулю.

F-мера является хорошим кандидатом на формальную метрику оценки качества классификатора. Она сводит к одному числу две других основополагающих метрики: точность и полноту. Имея «F-меру» гораздо проще ответить на вопрос: «поменялся алгоритм в лучшую сторону или нет?»

 # код для подсчета метрики F-mera:
 # Пример классификатора, способного проводить различие между всего лишь двумя
 # классами, "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.linear_model import SGDClassifier
 from sklearn.metrics import f1_score
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распознавать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 print(f1_score(y_train_5, y_train_pred))
 
 # 0.7325171197343846

ROC-кривая

Кривая рабочих характеристик (англ. Receiver Operating Characteristics curve).
Используется для анализа поведения классификаторов при различных пороговых значениях.
Позволяет рассмотреть все пороговые значения для данного классификатора.
Показывает долю ложно положительных примеров (англ. false positive rate, FPR) в сравнении с долей истинно положительных примеров (англ. true positive rate, TPR).

ROC 2.png

Доля FPR — это пропорция отрицательных образцов, которые были некорректно классифицированы как положительные.

,

где TNR — доля истинно отрицательных классификаций (англ. Тrие Negative Rate), пред­ставляющая собой пропорцию отрицательных образцов, которые были кор­ректно классифицированы как отрицательные.

Доля TNR также называется специфичностью (англ. specificity). Следовательно, ROC-кривая изображает чувствительность (англ. seпsitivity), т.е. полноту, в срав­нении с разностью 1 — specificity.

Прямая линия по диагонали представляет ROC-кривую чисто случайного классификатора. Хороший классификатор держится от указанной линии настолько далеко, насколько это
возможно (стремясь к левому верхнему углу).

Один из способов сравнения классификаторов предусматривает измере­ние площади под кривой (англ. Area Under the Curve — AUC). Безупречный клас­сификатор будет иметь площадь под ROC-кривой (ROC-AUC), равную 1, тогда как чисто случайный классификатор — площадь 0.5.

 # Код отрисовки ROC-кривой
 # На примере классификатора, способного проводить различие между всего лишь двумя классами
 # "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 from sklearn.metrics import roc_curve
 import matplotlib.pyplot as plt
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5)  # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3, method="decision_function")
 fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)
 def plot_roc_curve(fpr, tpr, label=None):
     plt.plot(fpr, tpr, linewidth=2, label=label)
     plt.plot([0, 1], [0, 1], 'k--') # dashed diagonal
     plt.xlabel('False Positive Rate, FPR (1 - specificity)')
     plt.ylabel('True Positive Rate, TPR (Recall)')
     plt.title('ROC curve')
     plt.savefig("ROC.png")
 plot_roc_curve(fpr, tpr)
 plt.show()

Precison-recall кривая

Чувствительность к соотношению классов.
Рассмотрим задачу выделения математических статей из множества научных статей. Допустим, что всего имеется 1.000.100 статей, из которых лишь 100 относятся к математике. Если нам удастся построить алгоритм , идеально решающий задачу, то его TPR будет равен единице, а FPR — нулю. Рассмотрим теперь плохой алгоритм, дающий положительный ответ на 95 математических и 50.000 нематематических статьях. Такой алгоритм совершенно бесполезен, но при этом имеет TPR = 0.95 и FPR = 0.05, что крайне близко к показателям идеального алгоритма.
Таким образом, если положительный класс существенно меньше по размеру, то AUC-ROC может давать неадекватную оценку качества работы алгоритма, поскольку измеряет долю неверно принятых объектов относительно общего числа отрицательных. Так, алгоритм , помещающий 100 релевантных документов на позиции с 50.001-й по 50.101-ю, будет иметь AUC-ROC 0.95.

Precison-recall (PR) кривая. Избавиться от указанной проблемы с несбалансированными классами можно, перейдя от ROC-кривой к PR-кривой. Она определяется аналогично ROC-кривой, только по осям откладываются не FPR и TPR, а полнота (по оси абсцисс) и точность (по оси ординат). Критерием качества семейства алгоритмов выступает площадь под PR-кривой (англ. Area Under the Curve — AUC-PR)

PR curve.png

 # Код отрисовки Precison-recall кривой
 # На примере классификатора, способного проводить различие между всего лишь двумя классами
 # "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 from sklearn.metrics import precision_recall_curve
 import matplotlib.pyplot as plt
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3, method="decision_function")
 precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)
 def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
     plt.plot(recalls, precisions, linewidth=2)
     plt.xlabel('Recall')
     plt.ylabel('Precision')
     plt.title('Precision-Recall curve')
     plt.savefig("Precision_Recall_curve.png")
 plot_precision_recall_vs_threshold(precisions, recalls, thresholds)
 plt.show()

Оценки качества регрессии

Наиболее типичными мерами качества в задачах регрессии являются

Средняя квадратичная ошибка (англ. Mean Squared Error, MSE)

MSE применяется в ситуациях, когда нам надо подчеркнуть большие ошибки и выбрать модель, которая дает меньше больших ошибок прогноза. Грубые ошибки становятся заметнее за счет того, что ошибку прогноза мы возводим в квадрат. И модель, которая дает нам меньшее значение среднеквадратической ошибки, можно сказать, что что у этой модели меньше грубых ошибок.

и

Cредняя абсолютная ошибка (англ. Mean Absolute Error, MAE)

Среднеквадратичный функционал сильнее штрафует за большие отклонения по сравнению со среднеабсолютным, и поэтому более чувствителен к выбросам. При использовании любого из этих двух функционалов может быть полезно проанализировать, какие объекты вносят наибольший вклад в общую ошибку — не исключено, что на этих объектах была допущена ошибка при вычислении признаков или целевой величины.

Среднеквадратичная ошибка подходит для сравнения двух моделей или для контроля качества во время обучения, но не позволяет сделать выводов о том, на сколько хорошо данная модель решает задачу. Например, MSE = 10 является очень плохим показателем, если целевая переменная принимает значения от 0 до 1, и очень хорошим, если целевая переменная лежит в интервале (10000, 100000). В таких ситуациях вместо среднеквадратичной ошибки полезно использовать коэффициент детерминации —

Коэффициент детерминации

Коэффициент детерминации измеряет долю дисперсии, объясненную моделью, в общей дисперсии целевой переменной. Фактически, данная мера качества — это нормированная среднеквадратичная ошибка. Если она близка к единице, то модель хорошо объясняет данные, если же она близка к нулю, то прогнозы сопоставимы по качеству с константным предсказанием.

Средняя абсолютная процентная ошибка (англ. Mean Absolute Percentage Error, MAPE)

Это коэффициент, не имеющий размерности, с очень простой интерпретацией. Его можно измерять в долях или процентах. Если у вас получилось, например, что MAPE=11.4%, то это говорит о том, что ошибка составила 11,4% от фактических значений.
Основная проблема данной ошибки — нестабильность.

Корень из средней квадратичной ошибки (англ. Root Mean Squared Error, RMSE)

Примерно такая же проблема, как и в MAPE: так как каждое отклонение возводится в квадрат, любое небольшое отклонение может значительно повлиять на показатель ошибки. Стоит отметить, что существует также ошибка MSE, из которой RMSE как раз и получается путем извлечения корня.

Cимметричная MAPE (англ. Symmetric MAPE, SMAPE)

Средняя абсолютная масштабированная ошибка (англ. Mean absolute scaled error, MASE)

MASE является очень хорошим вариантом для расчета точности, так как сама ошибка не зависит от масштабов данных и является симметричной: то есть положительные и отрицательные отклонения от факта рассматриваются в равной степени.
Обратите внимание, что в MASE мы имеем дело с двумя суммами: та, что в числителе, соответствует тестовой выборке, та, что в знаменателе — обучающей. Вторая фактически представляет собой среднюю абсолютную ошибку прогноза. Она же соответствует среднему абсолютному отклонению ряда в первых разностях. Эта величина, по сути, показывает, насколько обучающая выборка предсказуема. Она может быть равна нулю только в том случае, когда все значения в обучающей выборке равны друг другу, что соответствует отсутствию каких-либо изменений в ряде данных, ситуации на практике почти невозможной. Кроме того, если ряд имеет тенденцию к росту либо снижению, его первые разности будут колебаться около некоторого фиксированного уровня. В результате этого по разным рядам с разной структурой, знаменатели будут более-менее сопоставимыми. Всё это, конечно же, является очевидными плюсами MASE, так как позволяет складывать разные значения по разным рядам и получать несмещённые оценки.

Недостаток MASE в том, что её тяжело интерпретировать. Например, MASE=1.21 ни о чём, по сути, не говорит. Это просто означает, что ошибка прогноза оказалась в 1.21 раза выше среднего абсолютного отклонения ряда в первых разностях, и ничего более.

Кросс-валидация

Хороший способ оценки модели предусматривает применение кросс-валидации (cкользящего контроля или перекрестной проверки).

В этом случае фиксируется некоторое множество разбиений исходной выборки на две подвыборки: обучающую и контрольную. Для каждого разбиения выполняется настройка алгоритма по обучающей подвыборке, затем оценивается его средняя ошибка на объектах контрольной подвыборки. Оценкой скользящего контроля называется средняя по всем разбиениям величина ошибки на контрольных подвыборках.

Примечания

  1. [1] Лекция «Оценивание качества» на www.coursera.org
  2. [2] Лекция на www.stepik.org о кросвалидации
  3. [3] Лекция на www.stepik.org о метриках качества, Precison и Recall
  4. [4] Лекция на www.stepik.org о метриках качества, F-мера
  5. [5] Лекция на www.stepik.org о метриках качества, примеры

См. также

  • Оценка качества в задаче кластеризации
  • Кросс-валидация

Источники информации

  1. [6] Соколов Е.А. Лекция линейная регрессия
  2. [7] — Дьяконов А. Функции ошибки / функционалы качества
  3. [8] — Оценка качества прогнозных моделей
  4. [9] — HeinzBr Ошибка прогнозирования: виды, формулы, примеры
  5. [10] — egor_labintcev Метрики в задачах машинного обучения
  6. [11] — grossu Методы оценки качества прогноза
  7. [12] — К.В.Воронцов, Классификация
  8. [13] — К.В.Воронцов, Скользящий контроль

Понравилась статья? Поделить с друзьями:
  • Mean absolute error формула
  • Mean absolute error википедия
  • Mean absolute error tensorflow
  • Mean absolute error python это
  • Mean absolute error meaning