Mean squared error example

The mean squared error, or MSE, is a performance metric that measures how well your model fits the target values. The mean squared error is defined as the average of all squared differences between the true and predicted values.

What is mean squared error (MSE)?

The mean squared error, or MSE, is a performance metric that indicates how well your model fits the target. The mean squared error is defined as the average of all squared differences between the true and predicted values:

$$mathrm{MSE}=frac{1}{n}sum^{n-1}_{i=0}(y_i-hat{y}_i)^2$$

Where:

  • $n$ is the number of predicted values

  • $y_i$ is the actual true value of the $i$-th data

  • $hat{y}_i$ is the predicted value of the $i$-th data

A high value of MSE means that the model is not performing well, whereas a MSE of 0 would mean that you have a perfect model that predicts the target without any error.

Simple example of computing mean squared error (MSE)

Suppose we are given the three data points (1,3), (2,2) and (3,2). To predict the y-value given the x-value, we’ve built a simple learn curve, $y=x$, as shown below:

We can see that we are off by 2 for the first data point, the prediction is perfect for the second point, and off by 1 for the last point.

To quantify how good our model is, we can compute the MSE like so:

$$begin{align*}
mathrm{MSE}&=frac{1}{3}left[(1-3)^2+(2-2)^2+(3-2)^2right]\
&=frac{1}{3}left(4+0+1right)\
&approx1.67
end{align*}$$

This means that the average squared differences between the true value and the predicted value is 1.67.

Intuition behind mean squared error (MSE)

Interpretation of MSE

MSE is defined as the average squared differences between the actual values and the predicted values. This makes the interpretation of MSE rather awkward since the unit of MSE is not the same as the unit of the y-values due to squaring the differences. Therefore, we typically interpret a high value of MSE as indicative of a poor-performing model, while a low value of MSE as indicative of a decent model.

There is another performance metric called root mean squared error (RMSE), which is simply the square root of MSE. This means that the RMSE takes on the same unit as that of the target values, which implies you can loosely interpret RMSE as the average difference between the actual and predicted values.

Why are we squaring the difference?

The reason we take the square when calculating MSE is that we care only about the magnitude of the differences between true and predicted value — we do not want the positive and negative differences cancelling each other out. For example, consider the following case:

Suppose we computed the MSE without taking the square:

$$frac{1}{3}left[(1-3)+(2-2)+(3-1)right]=0$$

You can see that the negative difference and the positive difference of the first and third data points cancel each other out, resulting in a misleading error benchmark of 0. Of course, we know that the model is far from perfect in reality. In order to avoid such problems, we square the differences.

Why don’t we just take the absolute difference instead?

You may be wondering why we don’t just take the absolute difference between the true and predicted value if all we care about is the magnitude of the differences. In fact, there is another popular metric called mean absolute error (MAE) that does just this. The advantage of absolute mean error is that the interpretation is simple — the error is just how off your predictions are from the true value on average.

The caveat, however, is that it is not easy to find minimum values of MAE, which means that it is challenging to train a model that minimises MAE. On the other hand, MSE is easily differentiable and hence easy to optimise. This is reason why MSE is preferred over MAE as the cost function of machine learning models.

Computing the mean squared error (MSE) in Python’s Scikit-learn

Let’s compute the MSE for the example above using Python’s scikit-learn library. To compute the MSE in scikit-learn, simply use the mean_squared_error method:

from sklearn.metrics import mean_squared_error

y_true = [1,2,3]

y_pred = [3,2,2]

mean_squared_error(y_true, y_pred)

1.6666666666666667

We can see that the outputted MSE is exactly the same as the value we manually calculated above.

Setting multioutput

By default, multioutput='uniform_average', which returns a the global mean squared error:

y_true = [[1,2],[3,4]]

y_pred = [[6,7],[9,8]]

mean_squared_error(y_true, y_pred)

25.5

Setting multioutput='raw_values' will return mean squared error of each column:

y_true = [[1,2],[3,4]]

y_pred = [[6,7],[9,8]]

mean_squared_error(y_true, y_pred, multioutput='raw_values')

array([30.5, 20.5])

Here, 30.5 is calculated as:

((1-6)^2 + (3-9)^2) / 2 = 30.5

From Wikipedia, the free encyclopedia

In statistics, the mean squared error (MSE)[1] or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss.[2] The fact that MSE is almost always strictly positive (and not zero) is because of randomness or because the estimator does not account for information that could produce a more accurate estimate.[3] In machine learning, specifically empirical risk minimization, MSE may refer to the empirical risk (the average loss on an observed data set), as an estimate of the true MSE (the true risk: the average loss on the actual population distribution).

The MSE is a measure of the quality of an estimator. As it is derived from the square of Euclidean distance, it is always a positive value that decreases as the error approaches zero.

The MSE is the second moment (about the origin) of the error, and thus incorporates both the variance of the estimator (how widely spread the estimates are from one data sample to another) and its bias (how far off the average estimated value is from the true value).[citation needed] For an unbiased estimator, the MSE is the variance of the estimator. Like the variance, MSE has the same units of measurement as the square of the quantity being estimated. In an analogy to standard deviation, taking the square root of MSE yields the root-mean-square error or root-mean-square deviation (RMSE or RMSD), which has the same units as the quantity being estimated; for an unbiased estimator, the RMSE is the square root of the variance, known as the standard error.

Definition and basic properties[edit]

The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled). The definition of an MSE differs according to whether one is describing a predictor or an estimator.

Predictor[edit]

If a vector of n predictions is generated from a sample of n data points on all variables, and Y is the vector of observed values of the variable being predicted, with hat{Y} being the predicted values (e.g. as from a least-squares fit), then the within-sample MSE of the predictor is computed as

{displaystyle operatorname {MSE} ={frac {1}{n}}sum _{i=1}^{n}left(Y_{i}-{hat {Y_{i}}}right)^{2}.}

In other words, the MSE is the mean {textstyle left({frac {1}{n}}sum _{i=1}^{n}right)} of the squares of the errors {textstyle left(Y_{i}-{hat {Y_{i}}}right)^{2}}. This is an easily computable quantity for a particular sample (and hence is sample-dependent).

In matrix notation,

{displaystyle operatorname {MSE} ={frac {1}{n}}sum _{i=1}^{n}(e_{i})^{2}={frac {1}{n}}mathbf {e} ^{mathsf {T}}mathbf {e} }

where e_{i} is {displaystyle (Y_{i}-{hat {Y_{i}}})} and {displaystyle mathbf {e} } is the {displaystyle ntimes 1} column vector.

The MSE can also be computed on q data points that were not used in estimating the model, either because they were held back for this purpose, or because these data have been newly obtained. Within this process, known as statistical learning, the MSE is often called the test MSE,[4] and is computed as

{displaystyle operatorname {MSE} ={frac {1}{q}}sum _{i=n+1}^{n+q}left(Y_{i}-{hat {Y_{i}}}right)^{2}.}

Estimator[edit]

The MSE of an estimator hat{theta} with respect to an unknown parameter theta is defined as[1]

{displaystyle operatorname {MSE} ({hat {theta }})=operatorname {E} _{theta }left[({hat {theta }}-theta )^{2}right].}

This definition depends on the unknown parameter, but the MSE is a priori a property of an estimator. The MSE could be a function of unknown parameters, in which case any estimator of the MSE based on estimates of these parameters would be a function of the data (and thus a random variable). If the estimator hat{theta} is derived as a sample statistic and is used to estimate some population parameter, then the expectation is with respect to the sampling distribution of the sample statistic.

The MSE can be written as the sum of the variance of the estimator and the squared bias of the estimator, providing a useful way to calculate the MSE and implying that in the case of unbiased estimators, the MSE and variance are equivalent.[5]

{displaystyle operatorname {MSE} ({hat {theta }})=operatorname {Var} _{theta }({hat {theta }})+operatorname {Bias} ({hat {theta }},theta )^{2}.}

Proof of variance and bias relationship[edit]

{displaystyle {begin{aligned}operatorname {MSE} ({hat {theta }})&=operatorname {E} _{theta }left[({hat {theta }}-theta )^{2}right]\&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]+operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]\&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}+2left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)left(operatorname {E} _{theta }[{hat {theta }}]-theta right)+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]\&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+operatorname {E} _{theta }left[2left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)left(operatorname {E} _{theta }[{hat {theta }}]-theta right)right]+operatorname {E} _{theta }left[left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}right]\&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+2left(operatorname {E} _{theta }[{hat {theta }}]-theta right)operatorname {E} _{theta }left[{hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right]+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}&&operatorname {E} _{theta }[{hat {theta }}]-theta ={text{const.}}\&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+2left(operatorname {E} _{theta }[{hat {theta }}]-theta right)left(operatorname {E} _{theta }[{hat {theta }}]-operatorname {E} _{theta }[{hat {theta }}]right)+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}&&operatorname {E} _{theta }[{hat {theta }}]={text{const.}}\&=operatorname {E} _{theta }left[left({hat {theta }}-operatorname {E} _{theta }[{hat {theta }}]right)^{2}right]+left(operatorname {E} _{theta }[{hat {theta }}]-theta right)^{2}\&=operatorname {Var} _{theta }({hat {theta }})+operatorname {Bias} _{theta }({hat {theta }},theta )^{2}end{aligned}}}

An even shorter proof can be achieved using the well-known formula that for a random variable {textstyle X}, {textstyle mathbb {E} (X^{2})=operatorname {Var} (X)+(mathbb {E} (X))^{2}}. By substituting {textstyle X} with, {textstyle {hat {theta }}-theta }, we have

{displaystyle {begin{aligned}operatorname {MSE} ({hat {theta }})&=mathbb {E} [({hat {theta }}-theta )^{2}]\&=operatorname {Var} ({hat {theta }}-theta )+(mathbb {E} [{hat {theta }}-theta ])^{2}\&=operatorname {Var} ({hat {theta }})+operatorname {Bias} ^{2}({hat {theta }})end{aligned}}}

But in real modeling case, MSE could be described as the addition of model variance, model bias, and irreducible uncertainty (see Bias–variance tradeoff). According to the relationship, the MSE of the estimators could be simply used for the efficiency comparison, which includes the information of estimator variance and bias. This is called MSE criterion.

In regression[edit]

In regression analysis, plotting is a more natural way to view the overall trend of the whole data. The mean of the distance from each point to the predicted regression model can be calculated, and shown as the mean squared error. The squaring is critical to reduce the complexity with negative signs. To minimize MSE, the model could be more accurate, which would mean the model is closer to actual data. One example of a linear regression using this method is the least squares method—which evaluates appropriateness of linear regression model to model bivariate dataset,[6] but whose limitation is related to known distribution of the data.

The term mean squared error is sometimes used to refer to the unbiased estimate of error variance: the residual sum of squares divided by the number of degrees of freedom. This definition for a known, computed quantity differs from the above definition for the computed MSE of a predictor, in that a different denominator is used. The denominator is the sample size reduced by the number of model parameters estimated from the same data, (np) for p regressors or (np−1) if an intercept is used (see errors and residuals in statistics for more details).[7] Although the MSE (as defined in this article) is not an unbiased estimator of the error variance, it is consistent, given the consistency of the predictor.

In regression analysis, «mean squared error», often referred to as mean squared prediction error or «out-of-sample mean squared error», can also refer to the mean value of the squared deviations of the predictions from the true values, over an out-of-sample test space, generated by a model estimated over a particular sample space. This also is a known, computed quantity, and it varies by sample and by out-of-sample test space.

Examples[edit]

Mean[edit]

Suppose we have a random sample of size n from a population, X_{1},dots ,X_{n}. Suppose the sample units were chosen with replacement. That is, the n units are selected one at a time, and previously selected units are still eligible for selection for all n draws. The usual estimator for the mu is the sample average

overline{X}=frac{1}{n}sum_{i=1}^n X_i

which has an expected value equal to the true mean mu (so it is unbiased) and a mean squared error of

{displaystyle operatorname {MSE} left({overline {X}}right)=operatorname {E} left[left({overline {X}}-mu right)^{2}right]=left({frac {sigma }{sqrt {n}}}right)^{2}={frac {sigma ^{2}}{n}}}

where sigma ^{2} is the population variance.

For a Gaussian distribution, this is the best unbiased estimator (i.e., one with the lowest MSE among all unbiased estimators), but not, say, for a uniform distribution.

Variance[edit]

The usual estimator for the variance is the corrected sample variance:

{displaystyle S_{n-1}^{2}={frac {1}{n-1}}sum _{i=1}^{n}left(X_{i}-{overline {X}}right)^{2}={frac {1}{n-1}}left(sum _{i=1}^{n}X_{i}^{2}-n{overline {X}}^{2}right).}

This is unbiased (its expected value is sigma ^{2}), hence also called the unbiased sample variance, and its MSE is[8]

{displaystyle operatorname {MSE} (S_{n-1}^{2})={frac {1}{n}}left(mu _{4}-{frac {n-3}{n-1}}sigma ^{4}right)={frac {1}{n}}left(gamma _{2}+{frac {2n}{n-1}}right)sigma ^{4},}

where mu _{4} is the fourth central moment of the distribution or population, and gamma_2=mu_4/sigma^4-3 is the excess kurtosis.

However, one can use other estimators for sigma ^{2} which are proportional to S^2_{n-1}, and an appropriate choice can always give a lower mean squared error. If we define

{displaystyle S_{a}^{2}={frac {n-1}{a}}S_{n-1}^{2}={frac {1}{a}}sum _{i=1}^{n}left(X_{i}-{overline {X}},right)^{2}}

then we calculate:

{displaystyle {begin{aligned}operatorname {MSE} (S_{a}^{2})&=operatorname {E} left[left({frac {n-1}{a}}S_{n-1}^{2}-sigma ^{2}right)^{2}right]\&=operatorname {E} left[{frac {(n-1)^{2}}{a^{2}}}S_{n-1}^{4}-2left({frac {n-1}{a}}S_{n-1}^{2}right)sigma ^{2}+sigma ^{4}right]\&={frac {(n-1)^{2}}{a^{2}}}operatorname {E} left[S_{n-1}^{4}right]-2left({frac {n-1}{a}}right)operatorname {E} left[S_{n-1}^{2}right]sigma ^{2}+sigma ^{4}\&={frac {(n-1)^{2}}{a^{2}}}operatorname {E} left[S_{n-1}^{4}right]-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}&&operatorname {E} left[S_{n-1}^{2}right]=sigma ^{2}\&={frac {(n-1)^{2}}{a^{2}}}left({frac {gamma _{2}}{n}}+{frac {n+1}{n-1}}right)sigma ^{4}-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}&&operatorname {E} left[S_{n-1}^{4}right]=operatorname {MSE} (S_{n-1}^{2})+sigma ^{4}\&={frac {n-1}{na^{2}}}left((n-1)gamma _{2}+n^{2}+nright)sigma ^{4}-2left({frac {n-1}{a}}right)sigma ^{4}+sigma ^{4}end{aligned}}}

This is minimized when

a=frac{(n-1)gamma_2+n^2+n}{n} = n+1+frac{n-1}{n}gamma_2.

For a Gaussian distribution, where gamma_2=0, this means that the MSE is minimized when dividing the sum by a=n+1. The minimum excess kurtosis is gamma_2=-2,[a] which is achieved by a Bernoulli distribution with p = 1/2 (a coin flip), and the MSE is minimized for {displaystyle a=n-1+{tfrac {2}{n}}.} Hence regardless of the kurtosis, we get a «better» estimate (in the sense of having a lower MSE) by scaling down the unbiased estimator a little bit; this is a simple example of a shrinkage estimator: one «shrinks» the estimator towards zero (scales down the unbiased estimator).

Further, while the corrected sample variance is the best unbiased estimator (minimum mean squared error among unbiased estimators) of variance for Gaussian distributions, if the distribution is not Gaussian, then even among unbiased estimators, the best unbiased estimator of the variance may not be S^2_{n-1}.

Gaussian distribution[edit]

The following table gives several estimators of the true parameters of the population, μ and σ2, for the Gaussian case.[9]

True value Estimator Mean squared error
{displaystyle theta =mu } hat{theta} = the unbiased estimator of the population mean, overline{X}=frac{1}{n}sum_{i=1}^n(X_i) operatorname{MSE}(overline{X})=operatorname{E}((overline{X}-mu)^2)=left(frac{sigma}{sqrt{n}}right)^2
{displaystyle theta =sigma ^{2}} hat{theta} = the unbiased estimator of the population variance, S^2_{n-1} = frac{1}{n-1}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n-1})=operatorname{E}((S^2_{n-1}-sigma^2)^2)=frac{2}{n - 1}sigma^4
{displaystyle theta =sigma ^{2}} hat{theta} = the biased estimator of the population variance, S^2_{n} = frac{1}{n}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n})=operatorname{E}((S^2_{n}-sigma^2)^2)=frac{2n - 1}{n^2}sigma^4
{displaystyle theta =sigma ^{2}} hat{theta} = the biased estimator of the population variance, S^2_{n+1} = frac{1}{n+1}sum_{i=1}^nleft(X_i-overline{X},right)^2 operatorname{MSE}(S^2_{n+1})=operatorname{E}((S^2_{n+1}-sigma^2)^2)=frac{2}{n + 1}sigma^4

Interpretation[edit]

An MSE of zero, meaning that the estimator hat{theta} predicts observations of the parameter theta with perfect accuracy, is ideal (but typically not possible).

Values of MSE may be used for comparative purposes. Two or more statistical models may be compared using their MSEs—as a measure of how well they explain a given set of observations: An unbiased estimator (estimated from a statistical model) with the smallest variance among all unbiased estimators is the best unbiased estimator or MVUE (Minimum-Variance Unbiased Estimator).

Both analysis of variance and linear regression techniques estimate the MSE as part of the analysis and use the estimated MSE to determine the statistical significance of the factors or predictors under study. The goal of experimental design is to construct experiments in such a way that when the observations are analyzed, the MSE is close to zero relative to the magnitude of at least one of the estimated treatment effects.

In one-way analysis of variance, MSE can be calculated by the division of the sum of squared errors and the degree of freedom. Also, the f-value is the ratio of the mean squared treatment and the MSE.

MSE is also used in several stepwise regression techniques as part of the determination as to how many predictors from a candidate set to include in a model for a given set of observations.

Applications[edit]

  • Minimizing MSE is a key criterion in selecting estimators: see minimum mean-square error. Among unbiased estimators, minimizing the MSE is equivalent to minimizing the variance, and the estimator that does this is the minimum variance unbiased estimator. However, a biased estimator may have lower MSE; see estimator bias.
  • In statistical modelling the MSE can represent the difference between the actual observations and the observation values predicted by the model. In this context, it is used to determine the extent to which the model fits the data as well as whether removing some explanatory variables is possible without significantly harming the model’s predictive ability.
  • In forecasting and prediction, the Brier score is a measure of forecast skill based on MSE.

Loss function[edit]

Squared error loss is one of the most widely used loss functions in statistics[citation needed], though its widespread use stems more from mathematical convenience than considerations of actual loss in applications. Carl Friedrich Gauss, who introduced the use of mean squared error, was aware of its arbitrariness and was in agreement with objections to it on these grounds.[3] The mathematical benefits of mean squared error are particularly evident in its use at analyzing the performance of linear regression, as it allows one to partition the variation in a dataset into variation explained by the model and variation explained by randomness.

Criticism[edit]

The use of mean squared error without question has been criticized by the decision theorist James Berger. Mean squared error is the negative of the expected value of one specific utility function, the quadratic utility function, which may not be the appropriate utility function to use under a given set of circumstances. There are, however, some scenarios where mean squared error can serve as a good approximation to a loss function occurring naturally in an application.[10]

Like variance, mean squared error has the disadvantage of heavily weighting outliers.[11] This is a result of the squaring of each term, which effectively weights large errors more heavily than small ones. This property, undesirable in many applications, has led researchers to use alternatives such as the mean absolute error, or those based on the median.

See also[edit]

  • Bias–variance tradeoff
  • Hodges’ estimator
  • James–Stein estimator
  • Mean percentage error
  • Mean square quantization error
  • Mean square weighted deviation
  • Mean squared displacement
  • Mean squared prediction error
  • Minimum mean square error
  • Minimum mean squared error estimator
  • Overfitting
  • Peak signal-to-noise ratio

Notes[edit]

  1. ^ This can be proved by Jensen’s inequality as follows. The fourth central moment is an upper bound for the square of variance, so that the least value for their ratio is one, therefore, the least value for the excess kurtosis is −2, achieved, for instance, by a Bernoulli with p=1/2.

References[edit]

  1. ^ a b «Mean Squared Error (MSE)». www.probabilitycourse.com. Retrieved 2020-09-12.
  2. ^ Bickel, Peter J.; Doksum, Kjell A. (2015). Mathematical Statistics: Basic Ideas and Selected Topics. Vol. I (Second ed.). p. 20. If we use quadratic loss, our risk function is called the mean squared error (MSE) …
  3. ^ a b Lehmann, E. L.; Casella, George (1998). Theory of Point Estimation (2nd ed.). New York: Springer. ISBN 978-0-387-98502-2. MR 1639875.
  4. ^ Gareth, James; Witten, Daniela; Hastie, Trevor; Tibshirani, Rob (2021). An Introduction to Statistical Learning: with Applications in R. Springer. ISBN 978-1071614174.
  5. ^ Wackerly, Dennis; Mendenhall, William; Scheaffer, Richard L. (2008). Mathematical Statistics with Applications (7 ed.). Belmont, CA, USA: Thomson Higher Education. ISBN 978-0-495-38508-0.
  6. ^ A modern introduction to probability and statistics : understanding why and how. Dekking, Michel, 1946-. London: Springer. 2005. ISBN 978-1-85233-896-1. OCLC 262680588.{{cite book}}: CS1 maint: others (link)
  7. ^ Steel, R.G.D, and Torrie, J. H., Principles and Procedures of Statistics with Special Reference to the Biological Sciences., McGraw Hill, 1960, page 288.
  8. ^ Mood, A.; Graybill, F.; Boes, D. (1974). Introduction to the Theory of Statistics (3rd ed.). McGraw-Hill. p. 229.
  9. ^ DeGroot, Morris H. (1980). Probability and Statistics (2nd ed.). Addison-Wesley.
  10. ^ Berger, James O. (1985). «2.4.2 Certain Standard Loss Functions». Statistical Decision Theory and Bayesian Analysis (2nd ed.). New York: Springer-Verlag. p. 60. ISBN 978-0-387-96098-2. MR 0804611.
  11. ^ Bermejo, Sergio; Cabestany, Joan (2001). «Oriented principal component analysis for large margin classifiers». Neural Networks. 14 (10): 1447–1461. doi:10.1016/S0893-6080(01)00106-X. PMID 11771723.

Среднеквадратичная ошибка (Mean Squared Error) – Среднее арифметическое (Mean) квадратов разностей между предсказанными и реальными значениями Модели (Model) Машинного обучения (ML):

MSE как среднее дистанций между предсказаниями и реальными наблюдениями

Рассчитывается с помощью формулы, которая будет пояснена в примере ниже:

$$MSE = frac{1}{n} × sum_{i=1}^n (y_i — widetilde{y}_i)^2$$
$$MSEspace{}{–}space{Среднеквадратическая}space{ошибка,}$$
$$nspace{}{–}space{количество}space{наблюдений,}$$
$$y_ispace{}{–}space{фактическая}space{координата}space{наблюдения,}$$
$$widetilde{y}_ispace{}{–}space{предсказанная}space{координата}space{наблюдения,}$$

MSE практически никогда не равен нулю, и происходит это из-за элемента случайности в данных или неучитывания Оценочной функцией (Estimator) всех факторов, которые могли бы улучшить предсказательную способность.

Пример. Исследуем линейную регрессию, изображенную на графике выше, и установим величину среднеквадратической Ошибки (Error). Фактические координаты точек-Наблюдений (Observation) выглядят следующим образом:

Мы имеем дело с Линейной регрессией (Linear Regression), потому уравнение, предсказывающее положение записей, можно представить с помощью формулы:

$$y = M * x + b$$
$$yspace{–}space{значение}space{координаты}space{оси}space{y,}$$
$$Mspace{–}space{уклон}space{прямой}$$
$$xspace{–}space{значение}space{координаты}space{оси}space{x,}$$
$$bspace{–}space{смещение}space{прямой}space{относительно}space{начала}space{координат}$$

Параметры M и b уравнения нам, к счастью, известны в данном обучающем примере, и потому уравнение выглядит следующим образом:

$$y = 0,5252 * x + 17,306$$

Зная координаты реальных записей и уравнение линейной регрессии, мы можем восстановить полные координаты предсказанных наблюдений, обозначенных серыми точками на графике выше. Простой подстановкой значения координаты x в уравнение мы рассчитаем значение координаты ỹ:

Рассчитаем квадрат разницы между Y и Ỹ:

Сумма таких квадратов равна 4 445. Осталось только разделить это число на количество наблюдений (9):

$$MSE = frac{1}{9} × 4445 = 493$$

Само по себе число в такой ситуации становится показательным, когда Дата-сайентист (Data Scientist) предпринимает попытки улучшить предсказательную способность модели и сравнивает MSE каждой итерации, выбирая такое уравнение, что сгенерирует наименьшую погрешность в предсказаниях.

MSE и Scikit-learn

Среднеквадратическую ошибку можно вычислить с помощью SkLearn. Для начала импортируем функцию:

import sklearn
from sklearn.metrics import mean_squared_error

Инициализируем крошечные списки, содержащие реальные и предсказанные координаты y:

y_true = [5, 41, 70, 77, 134, 68, 138, 101, 131]
y_pred = [23, 35, 55, 90, 93, 103, 118, 121, 129]

Инициируем функцию mean_squared_error(), которая рассчитает MSE тем же способом, что и формула выше:

mean_squared_error(y_true, y_pred)

Интересно, что конечный результат на 3 отличается от расчетов с помощью Apple Numbers:

496.0

Ноутбук, не требующий дополнительной настройки на момент написания статьи, можно скачать здесь.

Автор оригинальной статьи: @mmoshikoo

Фото: @tobyelliott

Introduction

In this post we’ll cover the Mean Squared Error (MSE), arguably one of the most popular error metrics for regression analysis. The MSE is expressed as:

MSE = frac{1}{N}sum_i^N(hat{y}_i-y_i)^2    (1)

where hat{y}_i are the model output and y_i are the true values. The summation is performed over N individual data points available in our sample.

The advantage of the MSE is that it is easily differentiated, making it ideal for optimisation analysis. In addition, we can interpret the MSE in terms of the bias and variance in the model. We can see this is the case by expressing (1) in terms of expected values, and then expanding the squared difference:

MSE = E[(hat{y}-y)^2]

   = E[hat{y}^2 + y^2 – 2hat{y}y]

We can now add positive and negative E(hat{y})^2 terms, and make use of our definitions of bias and variance:

   = E(hat{y}^2) – E(hat{y})^2 + E(hat{y})^2 + y^2 – 2yE(hat{y})

   = Var(hat{y}) + E(hat{y})^2 – 2yE(hat{y}) + y^2

   = Var(hat{y}) + E[hat{y} – y]^2

   = Var(hat{y}) + Bias^2(hat{y})

One complication of using the MSE is the fact that this error metric is expressed in termed of squared units. To express the error in terms of the units of y and hat{y}, we can compute the Root Mean Squared Error (RMSE):

RMSE = sqrt{MSE}    (2)

In addition, the MSE tends to be much more sensitive the outliers when compared to other metrics, such as the mean absolute error or making use of the median.

Python Coding Example

Here I will make use of the same example used when demonstrating the mean absolute error. First let’s import the required packages:

## imports ##
import numpy as np
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt

Notice that scikit-learn provides a function for computing the MSE. Like before, let’s create the toy data set and plot the results:

## define two arrays: x & y ##
x_true = np.linspace(0,4*np.pi,50)
y_true = np.sin(x_true) + np.random.rand(x_true.shape[0])

## plot the data ##
plt.plot(x_true,y_true)
plt.title('Sinusoidal Data with Noise')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

mean squared error

 Let’s now assume we have a model that is fitted to these data. We can make a plot of this model together with the raw data:

## plot the data & predictions ##
plt.plot(x_true,y_true)
plt.plot(x_true,y_pred)
plt.title('Sinusoidal Data with Noise + Predictions')
plt.xlabel('x')
plt.ylabel('y')
plt.legend(['y_true','y_pred'])
plt.show()

mean squared error

We can see that the model follows the general pattern in the data, however there are differences between the two. We can measure the magnitude of these differences  by computing the MSE (and RMSE):

## compute the mse ##
mse = mean_squared_error(y_true,y_pred)
print("The mean sqaured error is: {:.2f}".format(mse))
print("The root mean squared error is: {:.2f}".format(np.sqrt(mse)))

The mean sqaured error is: 0.09

The root mean squared error is: 0.30

Remember that the RMSE is in the same units as the data themselves. We can directly compare the RMSE with the MAE computed in an earlier post. The RMSE here (0.30) is slightly larger than the MAE (0.27), which is expected as the squared error is more sensitive to large differences between the model and data. 

Finally, we can plot the RMSE as vertical error bars on top of our model output:

## plot the data & predictions with the rmse ##
plt.plot(x_true,y_true)
plt.errorbar(x_true,y_pred,np.sqrt(mse))
plt.title('Sinusoidal Data with Noise + Predictions')
plt.xlabel('x')
plt.ylabel('y')
plt.legend(['y_true','y_pred'])
plt.show()

mean squared error

The error bars define the region of uncertainty for our model, and we can see that it covers the bulk of the fluctuations in the data.  As such, we can conclude that the MSE/RMSE does a good job at quantifying the error in our model output.

There are 3 different APIs for evaluating the quality of a model’s
predictions:

  • Estimator score method: Estimators have a score method providing a
    default evaluation criterion for the problem they are designed to solve.
    This is not discussed on this page, but in each estimator’s documentation.

  • Scoring parameter: Model-evaluation tools using
    cross-validation (such as
    model_selection.cross_val_score and
    model_selection.GridSearchCV) rely on an internal scoring strategy.
    This is discussed in the section The scoring parameter: defining model evaluation rules.

  • Metric functions: The sklearn.metrics module implements functions
    assessing prediction error for specific purposes. These metrics are detailed
    in sections on Classification metrics,
    Multilabel ranking metrics, Regression metrics and
    Clustering metrics.

Finally, Dummy estimators are useful to get a baseline
value of those metrics for random predictions.

3.3.1. The scoring parameter: defining model evaluation rules¶

Model selection and evaluation using tools, such as
model_selection.GridSearchCV and
model_selection.cross_val_score, take a scoring parameter that
controls what metric they apply to the estimators evaluated.

3.3.1.1. Common cases: predefined values¶

For the most common use cases, you can designate a scorer object with the
scoring parameter; the table below shows all possible values.
All scorer objects follow the convention that higher return values are better
than lower return values
. Thus metrics which measure the distance between
the model and the data, like metrics.mean_squared_error, are
available as neg_mean_squared_error which return the negated value
of the metric.

Scoring

Function

Comment

Classification

‘accuracy’

metrics.accuracy_score

‘balanced_accuracy’

metrics.balanced_accuracy_score

‘top_k_accuracy’

metrics.top_k_accuracy_score

‘average_precision’

metrics.average_precision_score

‘neg_brier_score’

metrics.brier_score_loss

‘f1’

metrics.f1_score

for binary targets

‘f1_micro’

metrics.f1_score

micro-averaged

‘f1_macro’

metrics.f1_score

macro-averaged

‘f1_weighted’

metrics.f1_score

weighted average

‘f1_samples’

metrics.f1_score

by multilabel sample

‘neg_log_loss’

metrics.log_loss

requires predict_proba support

‘precision’ etc.

metrics.precision_score

suffixes apply as with ‘f1’

‘recall’ etc.

metrics.recall_score

suffixes apply as with ‘f1’

‘jaccard’ etc.

metrics.jaccard_score

suffixes apply as with ‘f1’

‘roc_auc’

metrics.roc_auc_score

‘roc_auc_ovr’

metrics.roc_auc_score

‘roc_auc_ovo’

metrics.roc_auc_score

‘roc_auc_ovr_weighted’

metrics.roc_auc_score

‘roc_auc_ovo_weighted’

metrics.roc_auc_score

Clustering

‘adjusted_mutual_info_score’

metrics.adjusted_mutual_info_score

‘adjusted_rand_score’

metrics.adjusted_rand_score

‘completeness_score’

metrics.completeness_score

‘fowlkes_mallows_score’

metrics.fowlkes_mallows_score

‘homogeneity_score’

metrics.homogeneity_score

‘mutual_info_score’

metrics.mutual_info_score

‘normalized_mutual_info_score’

metrics.normalized_mutual_info_score

‘rand_score’

metrics.rand_score

‘v_measure_score’

metrics.v_measure_score

Regression

‘explained_variance’

metrics.explained_variance_score

‘max_error’

metrics.max_error

‘neg_mean_absolute_error’

metrics.mean_absolute_error

‘neg_mean_squared_error’

metrics.mean_squared_error

‘neg_root_mean_squared_error’

metrics.mean_squared_error

‘neg_mean_squared_log_error’

metrics.mean_squared_log_error

‘neg_median_absolute_error’

metrics.median_absolute_error

‘r2’

metrics.r2_score

‘neg_mean_poisson_deviance’

metrics.mean_poisson_deviance

‘neg_mean_gamma_deviance’

metrics.mean_gamma_deviance

‘neg_mean_absolute_percentage_error’

metrics.mean_absolute_percentage_error

‘d2_absolute_error_score’

metrics.d2_absolute_error_score

‘d2_pinball_score’

metrics.d2_pinball_score

‘d2_tweedie_score’

metrics.d2_tweedie_score

Usage examples:

>>> from sklearn import svm, datasets
>>> from sklearn.model_selection import cross_val_score
>>> X, y = datasets.load_iris(return_X_y=True)
>>> clf = svm.SVC(random_state=0)
>>> cross_val_score(clf, X, y, cv=5, scoring='recall_macro')
array([0.96..., 0.96..., 0.96..., 0.93..., 1.        ])
>>> model = svm.SVC()
>>> cross_val_score(model, X, y, cv=5, scoring='wrong_choice')
Traceback (most recent call last):
ValueError: 'wrong_choice' is not a valid scoring value. Use
sklearn.metrics.get_scorer_names() to get valid options.

Note

The values listed by the ValueError exception correspond to the
functions measuring prediction accuracy described in the following
sections. You can retrieve the names of all available scorers by calling
get_scorer_names.

3.3.1.2. Defining your scoring strategy from metric functions¶

The module sklearn.metrics also exposes a set of simple functions
measuring a prediction error given ground truth and prediction:

  • functions ending with _score return a value to
    maximize, the higher the better.

  • functions ending with _error or _loss return a
    value to minimize, the lower the better. When converting
    into a scorer object using make_scorer, set
    the greater_is_better parameter to False (True by default; see the
    parameter description below).

Metrics available for various machine learning tasks are detailed in sections
below.

Many metrics are not given names to be used as scoring values,
sometimes because they require additional parameters, such as
fbeta_score. In such cases, you need to generate an appropriate
scoring object. The simplest way to generate a callable object for scoring
is by using make_scorer. That function converts metrics
into callables that can be used for model evaluation.

One typical use case is to wrap an existing metric function from the library
with non-default values for its parameters, such as the beta parameter for
the fbeta_score function:

>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]},
...                     scoring=ftwo_scorer, cv=5)

The second use case is to build a completely custom scorer object
from a simple python function using make_scorer, which can
take several parameters:

  • the python function you want to use (my_custom_loss_func
    in the example below)

  • whether the python function returns a score (greater_is_better=True,
    the default) or a loss (greater_is_better=False). If a loss, the output
    of the python function is negated by the scorer object, conforming to
    the cross validation convention that scorers return higher values for better models.

  • for classification metrics only: whether the python function you provided requires continuous decision
    certainties (needs_threshold=True). The default value is
    False.

  • any additional parameters, such as beta or labels in f1_score.

Here is an example of building custom scorers, and of using the
greater_is_better parameter:

>>> import numpy as np
>>> def my_custom_loss_func(y_true, y_pred):
...     diff = np.abs(y_true - y_pred).max()
...     return np.log1p(diff)
...
>>> # score will negate the return value of my_custom_loss_func,
>>> # which will be np.log(2), 0.693, given the values for X
>>> # and y defined below.
>>> score = make_scorer(my_custom_loss_func, greater_is_better=False)
>>> X = [[1], [1]]
>>> y = [0, 1]
>>> from sklearn.dummy import DummyClassifier
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf = clf.fit(X, y)
>>> my_custom_loss_func(y, clf.predict(X))
0.69...
>>> score(clf, X, y)
-0.69...

3.3.1.3. Implementing your own scoring object¶

You can generate even more flexible model scorers by constructing your own
scoring object from scratch, without using the make_scorer factory.
For a callable to be a scorer, it needs to meet the protocol specified by
the following two rules:

  • It can be called with parameters (estimator, X, y), where estimator
    is the model that should be evaluated, X is validation data, and y is
    the ground truth target for X (in the supervised case) or None (in the
    unsupervised case).

  • It returns a floating point number that quantifies the
    estimator prediction quality on X, with reference to y.
    Again, by convention higher numbers are better, so if your scorer
    returns loss, that value should be negated.

Note

Using custom scorers in functions where n_jobs > 1

While defining the custom scoring function alongside the calling function
should work out of the box with the default joblib backend (loky),
importing it from another module will be a more robust approach and work
independently of the joblib backend.

For example, to use n_jobs greater than 1 in the example below,
custom_scoring_function function is saved in a user-created module
(custom_scorer_module.py) and imported:

>>> from custom_scorer_module import custom_scoring_function 
>>> cross_val_score(model,
...  X_train,
...  y_train,
...  scoring=make_scorer(custom_scoring_function, greater_is_better=False),
...  cv=5,
...  n_jobs=-1) 

3.3.1.4. Using multiple metric evaluation¶

Scikit-learn also permits evaluation of multiple metrics in GridSearchCV,
RandomizedSearchCV and cross_validate.

There are three ways to specify multiple scoring metrics for the scoring
parameter:

  • As an iterable of string metrics::
    >>> scoring = ['accuracy', 'precision']
    
  • As a dict mapping the scorer name to the scoring function::
    >>> from sklearn.metrics import accuracy_score
    >>> from sklearn.metrics import make_scorer
    >>> scoring = {'accuracy': make_scorer(accuracy_score),
    ...            'prec': 'precision'}
    

    Note that the dict values can either be scorer functions or one of the
    predefined metric strings.

  • As a callable that returns a dictionary of scores:

    >>> from sklearn.model_selection import cross_validate
    >>> from sklearn.metrics import confusion_matrix
    >>> # A sample toy binary classification dataset
    >>> X, y = datasets.make_classification(n_classes=2, random_state=0)
    >>> svm = LinearSVC(random_state=0)
    >>> def confusion_matrix_scorer(clf, X, y):
    ...      y_pred = clf.predict(X)
    ...      cm = confusion_matrix(y, y_pred)
    ...      return {'tn': cm[0, 0], 'fp': cm[0, 1],
    ...              'fn': cm[1, 0], 'tp': cm[1, 1]}
    >>> cv_results = cross_validate(svm, X, y, cv=5,
    ...                             scoring=confusion_matrix_scorer)
    >>> # Getting the test set true positive scores
    >>> print(cv_results['test_tp'])
    [10  9  8  7  8]
    >>> # Getting the test set false negative scores
    >>> print(cv_results['test_fn'])
    [0 1 2 3 2]
    

3.3.2. Classification metrics¶

The sklearn.metrics module implements several loss, score, and utility
functions to measure classification performance.
Some metrics might require probability estimates of the positive class,
confidence values, or binary decisions values.
Most implementations allow each sample to provide a weighted contribution
to the overall score, through the sample_weight parameter.

Some of these are restricted to the binary classification case:

precision_recall_curve(y_true, probas_pred, *)

Compute precision-recall pairs for different probability thresholds.

roc_curve(y_true, y_score, *[, pos_label, …])

Compute Receiver operating characteristic (ROC).

class_likelihood_ratios(y_true, y_pred, *[, …])

Compute binary classification positive and negative likelihood ratios.

det_curve(y_true, y_score[, pos_label, …])

Compute error rates for different probability thresholds.

Others also work in the multiclass case:

balanced_accuracy_score(y_true, y_pred, *[, …])

Compute the balanced accuracy.

cohen_kappa_score(y1, y2, *[, labels, …])

Compute Cohen’s kappa: a statistic that measures inter-annotator agreement.

confusion_matrix(y_true, y_pred, *[, …])

Compute confusion matrix to evaluate the accuracy of a classification.

hinge_loss(y_true, pred_decision, *[, …])

Average hinge loss (non-regularized).

matthews_corrcoef(y_true, y_pred, *[, …])

Compute the Matthews correlation coefficient (MCC).

roc_auc_score(y_true, y_score, *[, average, …])

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

top_k_accuracy_score(y_true, y_score, *[, …])

Top-k Accuracy classification score.

Some also work in the multilabel case:

accuracy_score(y_true, y_pred, *[, …])

Accuracy classification score.

classification_report(y_true, y_pred, *[, …])

Build a text report showing the main classification metrics.

f1_score(y_true, y_pred, *[, labels, …])

Compute the F1 score, also known as balanced F-score or F-measure.

fbeta_score(y_true, y_pred, *, beta[, …])

Compute the F-beta score.

hamming_loss(y_true, y_pred, *[, sample_weight])

Compute the average Hamming loss.

jaccard_score(y_true, y_pred, *[, labels, …])

Jaccard similarity coefficient score.

log_loss(y_true, y_pred, *[, eps, …])

Log loss, aka logistic loss or cross-entropy loss.

multilabel_confusion_matrix(y_true, y_pred, *)

Compute a confusion matrix for each class or sample.

precision_recall_fscore_support(y_true, …)

Compute precision, recall, F-measure and support for each class.

precision_score(y_true, y_pred, *[, labels, …])

Compute the precision.

recall_score(y_true, y_pred, *[, labels, …])

Compute the recall.

roc_auc_score(y_true, y_score, *[, average, …])

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

zero_one_loss(y_true, y_pred, *[, …])

Zero-one classification loss.

And some work with binary and multilabel (but not multiclass) problems:

In the following sub-sections, we will describe each of those functions,
preceded by some notes on common API and metric definition.

3.3.2.1. From binary to multiclass and multilabel¶

Some metrics are essentially defined for binary classification tasks (e.g.
f1_score, roc_auc_score). In these cases, by default
only the positive label is evaluated, assuming by default that the positive
class is labelled 1 (though this may be configurable through the
pos_label parameter).

In extending a binary metric to multiclass or multilabel problems, the data
is treated as a collection of binary problems, one for each class.
There are then a number of ways to average binary metric calculations across
the set of classes, each of which may be useful in some scenario.
Where available, you should select among these using the average parameter.

  • "macro" simply calculates the mean of the binary metrics,
    giving equal weight to each class. In problems where infrequent classes
    are nonetheless important, macro-averaging may be a means of highlighting
    their performance. On the other hand, the assumption that all classes are
    equally important is often untrue, such that macro-averaging will
    over-emphasize the typically low performance on an infrequent class.

  • "weighted" accounts for class imbalance by computing the average of
    binary metrics in which each class’s score is weighted by its presence in the
    true data sample.

  • "micro" gives each sample-class pair an equal contribution to the overall
    metric (except as a result of sample-weight). Rather than summing the
    metric per class, this sums the dividends and divisors that make up the
    per-class metrics to calculate an overall quotient.
    Micro-averaging may be preferred in multilabel settings, including
    multiclass classification where a majority class is to be ignored.

  • "samples" applies only to multilabel problems. It does not calculate a
    per-class measure, instead calculating the metric over the true and predicted
    classes for each sample in the evaluation data, and returning their
    (sample_weight-weighted) average.

  • Selecting average=None will return an array with the score for each
    class.

While multiclass data is provided to the metric, like binary targets, as an
array of class labels, multilabel data is specified as an indicator matrix,
in which cell [i, j] has value 1 if sample i has label j and value
0 otherwise.

3.3.2.2. Accuracy score¶

The accuracy_score function computes the
accuracy, either the fraction
(default) or the count (normalize=False) of correct predictions.

In multilabel classification, the function returns the subset accuracy. If
the entire set of predicted labels for a sample strictly match with the true
set of labels, then the subset accuracy is 1.0; otherwise it is 0.0.

If (hat{y}_i) is the predicted value of
the (i)-th sample and (y_i) is the corresponding true value,
then the fraction of correct predictions over (n_text{samples}) is
defined as

[texttt{accuracy}(y, hat{y}) = frac{1}{n_text{samples}} sum_{i=0}^{n_text{samples}-1} 1(hat{y}_i = y_i)]

where (1(x)) is the indicator function.

>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2

In the multilabel case with binary label indicators:

>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

3.3.2.3. Top-k accuracy score¶

The top_k_accuracy_score function is a generalization of
accuracy_score. The difference is that a prediction is considered
correct as long as the true label is associated with one of the k highest
predicted scores. accuracy_score is the special case of k = 1.

The function covers the binary and multiclass classification cases but not the
multilabel case.

If (hat{f}_{i,j}) is the predicted class for the (i)-th sample
corresponding to the (j)-th largest predicted score and (y_i) is the
corresponding true value, then the fraction of correct predictions over
(n_text{samples}) is defined as

[texttt{top-k accuracy}(y, hat{f}) = frac{1}{n_text{samples}} sum_{i=0}^{n_text{samples}-1} sum_{j=1}^{k} 1(hat{f}_{i,j} = y_i)]

where (k) is the number of guesses allowed and (1(x)) is the
indicator function.

>>> import numpy as np
>>> from sklearn.metrics import top_k_accuracy_score
>>> y_true = np.array([0, 1, 2, 2])
>>> y_score = np.array([[0.5, 0.2, 0.2],
...                     [0.3, 0.4, 0.2],
...                     [0.2, 0.4, 0.3],
...                     [0.7, 0.2, 0.1]])
>>> top_k_accuracy_score(y_true, y_score, k=2)
0.75
>>> # Not normalizing gives the number of "correctly" classified samples
>>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)
3

3.3.2.4. Balanced accuracy score¶

The balanced_accuracy_score function computes the balanced accuracy, which avoids inflated
performance estimates on imbalanced datasets. It is the macro-average of recall
scores per class or, equivalently, raw accuracy where each sample is weighted
according to the inverse prevalence of its true class.
Thus for balanced datasets, the score is equal to accuracy.

In the binary case, balanced accuracy is equal to the arithmetic mean of
sensitivity
(true positive rate) and specificity (true negative
rate), or the area under the ROC curve with binary predictions rather than
scores:

[texttt{balanced-accuracy} = frac{1}{2}left( frac{TP}{TP + FN} + frac{TN}{TN + FP}right )]

If the classifier performs equally well on either class, this term reduces to
the conventional accuracy (i.e., the number of correct predictions divided by
the total number of predictions).

In contrast, if the conventional accuracy is above chance only because the
classifier takes advantage of an imbalanced test set, then the balanced
accuracy, as appropriate, will drop to (frac{1}{n_classes}).

The score ranges from 0 to 1, or when adjusted=True is used, it rescaled to
the range (frac{1}{1 — n_classes}) to 1, inclusive, with
performance at random scoring 0.

If (y_i) is the true value of the (i)-th sample, and (w_i)
is the corresponding sample weight, then we adjust the sample weight to:

[hat{w}_i = frac{w_i}{sum_j{1(y_j = y_i) w_j}}]

where (1(x)) is the indicator function.
Given predicted (hat{y}_i) for sample (i), balanced accuracy is
defined as:

[texttt{balanced-accuracy}(y, hat{y}, w) = frac{1}{sum{hat{w}_i}} sum_i 1(hat{y}_i = y_i) hat{w}_i]

With adjusted=True, balanced accuracy reports the relative increase from
(texttt{balanced-accuracy}(y, mathbf{0}, w) =
frac{1}{n_classes})
. In the binary case, this is also known as
*Youden’s J statistic*,
or informedness.

Note

The multiclass definition here seems the most reasonable extension of the
metric used in binary classification, though there is no certain consensus
in the literature:

  • Our definition: [Mosley2013], [Kelleher2015] and [Guyon2015], where
    [Guyon2015] adopt the adjusted version to ensure that random predictions
    have a score of (0) and perfect predictions have a score of (1)..

  • Class balanced accuracy as described in [Mosley2013]: the minimum between the precision
    and the recall for each class is computed. Those values are then averaged over the total
    number of classes to get the balanced accuracy.

  • Balanced Accuracy as described in [Urbanowicz2015]: the average of sensitivity and specificity
    is computed for each class and then averaged over total number of classes.

3.3.2.5. Cohen’s kappa¶

The function cohen_kappa_score computes Cohen’s kappa statistic.
This measure is intended to compare labelings by different human annotators,
not a classifier versus a ground truth.

The kappa score (see docstring) is a number between -1 and 1.
Scores above .8 are generally considered good agreement;
zero or lower means no agreement (practically random labels).

Kappa scores can be computed for binary or multiclass problems,
but not for multilabel problems (except by manually computing a per-label score)
and not for more than two annotators.

>>> from sklearn.metrics import cohen_kappa_score
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> cohen_kappa_score(y_true, y_pred)
0.4285714285714286

3.3.2.6. Confusion matrix¶

The confusion_matrix function evaluates
classification accuracy by computing the confusion matrix with each row corresponding
to the true class (Wikipedia and other references may use different convention
for axes).

By definition, entry (i, j) in a confusion matrix is
the number of observations actually in group (i), but
predicted to be in group (j). Here is an example:

>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
       [0, 0, 1],
       [1, 0, 2]])

ConfusionMatrixDisplay can be used to visually represent a confusion
matrix as shown in the
Confusion matrix
example, which creates the following figure:

../_images/sphx_glr_plot_confusion_matrix_001.png

The parameter normalize allows to report ratios instead of counts. The
confusion matrix can be normalized in 3 different ways: 'pred', 'true',
and 'all' which will divide the counts by the sum of each columns, rows, or
the entire matrix, respectively.

>>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
>>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
>>> confusion_matrix(y_true, y_pred, normalize='all')
array([[0.25 , 0.125],
       [0.25 , 0.375]])

For binary problems, we can get counts of true negatives, false positives,
false negatives and true positives as follows:

>>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
>>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
>>> tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
>>> tn, fp, fn, tp
(2, 1, 2, 3)

3.3.2.7. Classification report¶

The classification_report function builds a text report showing the
main classification metrics. Here is a small example with custom target_names
and inferred labels:

>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 0]
>>> y_pred = [0, 0, 2, 1, 0]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
              precision    recall  f1-score   support

     class 0       0.67      1.00      0.80         2
     class 1       0.00      0.00      0.00         1
     class 2       1.00      0.50      0.67         2

    accuracy                           0.60         5
   macro avg       0.56      0.50      0.49         5
weighted avg       0.67      0.60      0.59         5

3.3.2.8. Hamming loss¶

The hamming_loss computes the average Hamming loss or Hamming
distance between two sets
of samples.

If (hat{y}_{i,j}) is the predicted value for the (j)-th label of a
given sample (i), (y_{i,j}) is the corresponding true value,
(n_text{samples}) is the number of samples and (n_text{labels})
is the number of labels, then the Hamming loss (L_{Hamming}) is defined
as:

[L_{Hamming}(y, hat{y}) = frac{1}{n_text{samples} * n_text{labels}} sum_{i=0}^{n_text{samples}-1} sum_{j=0}^{n_text{labels} — 1} 1(hat{y}_{i,j} not= y_{i,j})]

where (1(x)) is the indicator function.

The equation above does not hold true in the case of multiclass classification.
Please refer to the note below for more information.

>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25

In the multilabel case with binary label indicators:

>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75

Note

In multiclass classification, the Hamming loss corresponds to the Hamming
distance between y_true and y_pred which is similar to the
Zero one loss function. However, while zero-one loss penalizes
prediction sets that do not strictly match true sets, the Hamming loss
penalizes individual labels. Thus the Hamming loss, upper bounded by the zero-one
loss, is always between zero and one, inclusive; and predicting a proper subset
or superset of the true labels will give a Hamming loss between
zero and one, exclusive.

3.3.2.9. Precision, recall and F-measures¶

Intuitively, precision is the ability
of the classifier not to label as positive a sample that is negative, and
recall is the
ability of the classifier to find all the positive samples.

The F-measure
((F_beta) and (F_1) measures) can be interpreted as a weighted
harmonic mean of the precision and recall. A
(F_beta) measure reaches its best value at 1 and its worst score at 0.
With (beta = 1), (F_beta) and
(F_1) are equivalent, and the recall and the precision are equally important.

The precision_recall_curve computes a precision-recall curve
from the ground truth label and a score given by the classifier
by varying a decision threshold.

The average_precision_score function computes the
average precision
(AP) from prediction scores. The value is between 0 and 1 and higher is better.
AP is defined as

[text{AP} = sum_n (R_n — R_{n-1}) P_n]

where (P_n) and (R_n) are the precision and recall at the
nth threshold. With random predictions, the AP is the fraction of positive
samples.

References [Manning2008] and [Everingham2010] present alternative variants of
AP that interpolate the precision-recall curve. Currently,
average_precision_score does not implement any interpolated variant.
References [Davis2006] and [Flach2015] describe why a linear interpolation of
points on the precision-recall curve provides an overly-optimistic measure of
classifier performance. This linear interpolation is used when computing area
under the curve with the trapezoidal rule in auc.

Several functions allow you to analyze the precision, recall and F-measures
score:

average_precision_score(y_true, y_score, *)

Compute average precision (AP) from prediction scores.

f1_score(y_true, y_pred, *[, labels, …])

Compute the F1 score, also known as balanced F-score or F-measure.

fbeta_score(y_true, y_pred, *, beta[, …])

Compute the F-beta score.

precision_recall_curve(y_true, probas_pred, *)

Compute precision-recall pairs for different probability thresholds.

precision_recall_fscore_support(y_true, …)

Compute precision, recall, F-measure and support for each class.

precision_score(y_true, y_pred, *[, labels, …])

Compute the precision.

recall_score(y_true, y_pred, *[, labels, …])

Compute the recall.

Note that the precision_recall_curve function is restricted to the
binary case. The average_precision_score function works only in
binary classification and multilabel indicator format.
The PredictionRecallDisplay.from_estimator and
PredictionRecallDisplay.from_predictions functions will plot the
precision-recall curve as follows.

../_images/sphx_glr_plot_precision_recall_001.png

3.3.2.9.1. Binary classification¶

In a binary classification task, the terms ‘’positive’’ and ‘’negative’’ refer
to the classifier’s prediction, and the terms ‘’true’’ and ‘’false’’ refer to
whether that prediction corresponds to the external judgment (sometimes known
as the ‘’observation’’). Given these definitions, we can formulate the
following table:

Actual class (observation)

Predicted class
(expectation)

tp (true positive)
Correct result

fp (false positive)
Unexpected result

fn (false negative)
Missing result

tn (true negative)
Correct absence of result

In this context, we can define the notions of precision, recall and F-measure:

[text{precision} = frac{tp}{tp + fp},]

[text{recall} = frac{tp}{tp + fn},]

[F_beta = (1 + beta^2) frac{text{precision} times text{recall}}{beta^2 text{precision} + text{recall}}.]

Sometimes recall is also called ‘’sensitivity’’.

Here are some small examples in binary classification:

>>> from sklearn import metrics
>>> y_pred = [0, 1, 0, 0]
>>> y_true = [0, 1, 0, 1]
>>> metrics.precision_score(y_true, y_pred)
1.0
>>> metrics.recall_score(y_true, y_pred)
0.5
>>> metrics.f1_score(y_true, y_pred)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=0.5)
0.83...
>>> metrics.fbeta_score(y_true, y_pred, beta=1)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=2)
0.55...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5)
(array([0.66..., 1.        ]), array([1. , 0.5]), array([0.71..., 0.83...]), array([2, 2]))


>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, threshold = precision_recall_curve(y_true, y_scores)
>>> precision
array([0.5       , 0.66..., 0.5       , 1.        , 1.        ])
>>> recall
array([1. , 1. , 0.5, 0.5, 0. ])
>>> threshold
array([0.1 , 0.35, 0.4 , 0.8 ])
>>> average_precision_score(y_true, y_scores)
0.83...

3.3.2.9.2. Multiclass and multilabel classification¶

In a multiclass and multilabel classification task, the notions of precision,
recall, and F-measures can be applied to each label independently.
There are a few ways to combine results across labels,
specified by the average argument to the
average_precision_score (multilabel only), f1_score,
fbeta_score, precision_recall_fscore_support,
precision_score and recall_score functions, as described
above. Note that if all labels are included, “micro”-averaging
in a multiclass setting will produce precision, recall and (F)
that are all identical to accuracy. Also note that “weighted” averaging may
produce an F-score that is not between precision and recall.

To make this more explicit, consider the following notation:

  • (y) the set of true ((sample, label)) pairs

  • (hat{y}) the set of predicted ((sample, label)) pairs

  • (L) the set of labels

  • (S) the set of samples

  • (y_s) the subset of (y) with sample (s),
    i.e. (y_s := left{(s’, l) in y | s’ = sright})

  • (y_l) the subset of (y) with label (l)

  • similarly, (hat{y}_s) and (hat{y}_l) are subsets of
    (hat{y})

  • (P(A, B) := frac{left| A cap B right|}{left|Bright|}) for some
    sets (A) and (B)

  • (R(A, B) := frac{left| A cap B right|}{left|Aright|})
    (Conventions vary on handling (A = emptyset); this implementation uses
    (R(A, B):=0), and similar for (P).)

  • (F_beta(A, B) := left(1 + beta^2right) frac{P(A, B) times R(A, B)}{beta^2 P(A, B) + R(A, B)})

Then the metrics are defined as:

average

Precision

Recall

F_beta

"micro"

(P(y, hat{y}))

(R(y, hat{y}))

(F_beta(y, hat{y}))

"samples"

(frac{1}{left|Sright|} sum_{s in S} P(y_s, hat{y}_s))

(frac{1}{left|Sright|} sum_{s in S} R(y_s, hat{y}_s))

(frac{1}{left|Sright|} sum_{s in S} F_beta(y_s, hat{y}_s))

"macro"

(frac{1}{left|Lright|} sum_{l in L} P(y_l, hat{y}_l))

(frac{1}{left|Lright|} sum_{l in L} R(y_l, hat{y}_l))

(frac{1}{left|Lright|} sum_{l in L} F_beta(y_l, hat{y}_l))

"weighted"

(frac{1}{sum_{l in L} left|y_lright|} sum_{l in L} left|y_lright| P(y_l, hat{y}_l))

(frac{1}{sum_{l in L} left|y_lright|} sum_{l in L} left|y_lright| R(y_l, hat{y}_l))

(frac{1}{sum_{l in L} left|y_lright|} sum_{l in L} left|y_lright| F_beta(y_l, hat{y}_l))

None

(langle P(y_l, hat{y}_l) | l in L rangle)

(langle R(y_l, hat{y}_l) | l in L rangle)

(langle F_beta(y_l, hat{y}_l) | l in L rangle)

>>> from sklearn import metrics
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> metrics.precision_score(y_true, y_pred, average='macro')
0.22...
>>> metrics.recall_score(y_true, y_pred, average='micro')
0.33...
>>> metrics.f1_score(y_true, y_pred, average='weighted')
0.26...
>>> metrics.fbeta_score(y_true, y_pred, average='macro', beta=0.5)
0.23...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5, average=None)
(array([0.66..., 0.        , 0.        ]), array([1., 0., 0.]), array([0.71..., 0.        , 0.        ]), array([2, 2, 2]...))

For multiclass classification with a “negative class”, it is possible to exclude some labels:

>>> metrics.recall_score(y_true, y_pred, labels=[1, 2], average='micro')
... # excluding 0, no labels were correctly recalled
0.0

Similarly, labels not present in the data sample may be accounted for in macro-averaging.

>>> metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average='macro')
0.166...

3.3.2.10. Jaccard similarity coefficient score¶

The jaccard_score function computes the average of Jaccard similarity
coefficients, also called the
Jaccard index, between pairs of label sets.

The Jaccard similarity coefficient with a ground truth label set (y) and
predicted label set (hat{y}), is defined as

[J(y, hat{y}) = frac{|y cap hat{y}|}{|y cup hat{y}|}.]

The jaccard_score (like precision_recall_fscore_support) applies
natively to binary targets. By computing it set-wise it can be extended to apply
to multilabel and multiclass through the use of average (see
above).

In the binary case:

>>> import numpy as np
>>> from sklearn.metrics import jaccard_score
>>> y_true = np.array([[0, 1, 1],
...                    [1, 1, 0]])
>>> y_pred = np.array([[1, 1, 1],
...                    [1, 0, 0]])
>>> jaccard_score(y_true[0], y_pred[0])
0.6666...

In the 2D comparison case (e.g. image similarity):

>>> jaccard_score(y_true, y_pred, average="micro")
0.6

In the multilabel case with binary label indicators:

>>> jaccard_score(y_true, y_pred, average='samples')
0.5833...
>>> jaccard_score(y_true, y_pred, average='macro')
0.6666...
>>> jaccard_score(y_true, y_pred, average=None)
array([0.5, 0.5, 1. ])

Multiclass problems are binarized and treated like the corresponding
multilabel problem:

>>> y_pred = [0, 2, 1, 2]
>>> y_true = [0, 1, 2, 2]
>>> jaccard_score(y_true, y_pred, average=None)
array([1. , 0. , 0.33...])
>>> jaccard_score(y_true, y_pred, average='macro')
0.44...
>>> jaccard_score(y_true, y_pred, average='micro')
0.33...

3.3.2.11. Hinge loss¶

The hinge_loss function computes the average distance between
the model and the data using
hinge loss, a one-sided metric
that considers only prediction errors. (Hinge
loss is used in maximal margin classifiers such as support vector machines.)

If the true label (y_i) of a binary classification task is encoded as
(y_i=left{-1, +1right}) for every sample (i); and (w_i)
is the corresponding predicted decision (an array of shape (n_samples,) as
output by the decision_function method), then the hinge loss is defined as:

[L_text{Hinge}(y, w) = frac{1}{n_text{samples}} sum_{i=0}^{n_text{samples}-1} maxleft{1 — w_i y_i, 0right}]

If there are more than two labels, hinge_loss uses a multiclass variant
due to Crammer & Singer.
Here is
the paper describing it.

In this case the predicted decision is an array of shape (n_samples,
n_labels). If (w_{i, y_i}) is the predicted decision for the true label
(y_i) of the (i)-th sample; and
(hat{w}_{i, y_i} = maxleft{w_{i, y_j}~|~y_j ne y_i right})
is the maximum of the
predicted decisions for all the other labels, then the multi-class hinge loss
is defined by:

[L_text{Hinge}(y, w) = frac{1}{n_text{samples}}
sum_{i=0}^{n_text{samples}-1} maxleft{1 + hat{w}_{i, y_i}
— w_{i, y_i}, 0right}]

Here is a small example demonstrating the use of the hinge_loss function
with a svm classifier in a binary class problem:

>>> from sklearn import svm
>>> from sklearn.metrics import hinge_loss
>>> X = [[0], [1]]
>>> y = [-1, 1]
>>> est = svm.LinearSVC(random_state=0)
>>> est.fit(X, y)
LinearSVC(random_state=0)
>>> pred_decision = est.decision_function([[-2], [3], [0.5]])
>>> pred_decision
array([-2.18...,  2.36...,  0.09...])
>>> hinge_loss([-1, 1, 1], pred_decision)
0.3...

Here is an example demonstrating the use of the hinge_loss function
with a svm classifier in a multiclass problem:

>>> X = np.array([[0], [1], [2], [3]])
>>> Y = np.array([0, 1, 2, 3])
>>> labels = np.array([0, 1, 2, 3])
>>> est = svm.LinearSVC()
>>> est.fit(X, Y)
LinearSVC()
>>> pred_decision = est.decision_function([[-1], [2], [3]])
>>> y_true = [0, 2, 3]
>>> hinge_loss(y_true, pred_decision, labels=labels)
0.56...

3.3.2.12. Log loss¶

Log loss, also called logistic regression loss or
cross-entropy loss, is defined on probability estimates. It is
commonly used in (multinomial) logistic regression and neural networks, as well
as in some variants of expectation-maximization, and can be used to evaluate the
probability outputs (predict_proba) of a classifier instead of its
discrete predictions.

For binary classification with a true label (y in {0,1})
and a probability estimate (p = operatorname{Pr}(y = 1)),
the log loss per sample is the negative log-likelihood
of the classifier given the true label:

[L_{log}(y, p) = -log operatorname{Pr}(y|p) = -(y log (p) + (1 — y) log (1 — p))]

This extends to the multiclass case as follows.
Let the true labels for a set of samples
be encoded as a 1-of-K binary indicator matrix (Y),
i.e., (y_{i,k} = 1) if sample (i) has label (k)
taken from a set of (K) labels.
Let (P) be a matrix of probability estimates,
with (p_{i,k} = operatorname{Pr}(y_{i,k} = 1)).
Then the log loss of the whole set is

[L_{log}(Y, P) = -log operatorname{Pr}(Y|P) = — frac{1}{N} sum_{i=0}^{N-1} sum_{k=0}^{K-1} y_{i,k} log p_{i,k}]

To see how this generalizes the binary log loss given above,
note that in the binary case,
(p_{i,0} = 1 — p_{i,1}) and (y_{i,0} = 1 — y_{i,1}),
so expanding the inner sum over (y_{i,k} in {0,1})
gives the binary log loss.

The log_loss function computes log loss given a list of ground-truth
labels and a probability matrix, as returned by an estimator’s predict_proba
method.

>>> from sklearn.metrics import log_loss
>>> y_true = [0, 0, 1, 1]
>>> y_pred = [[.9, .1], [.8, .2], [.3, .7], [.01, .99]]
>>> log_loss(y_true, y_pred)
0.1738...

The first [.9, .1] in y_pred denotes 90% probability that the first
sample has label 0. The log loss is non-negative.

3.3.2.13. Matthews correlation coefficient¶

The matthews_corrcoef function computes the
Matthew’s correlation coefficient (MCC)
for binary classes. Quoting Wikipedia:

“The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary (two-class) classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are
of very different sizes. The MCC is in essence a correlation coefficient
value between -1 and +1. A coefficient of +1 represents a perfect
prediction, 0 an average random prediction and -1 an inverse prediction.
The statistic is also known as the phi coefficient.”

In the binary (two-class) case, (tp), (tn), (fp) and
(fn) are respectively the number of true positives, true negatives, false
positives and false negatives, the MCC is defined as

[MCC = frac{tp times tn — fp times fn}{sqrt{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}}.]

In the multiclass case, the Matthews correlation coefficient can be defined in terms of a
confusion_matrix (C) for (K) classes. To simplify the
definition consider the following intermediate variables:

  • (t_k=sum_{i}^{K} C_{ik}) the number of times class (k) truly occurred,

  • (p_k=sum_{i}^{K} C_{ki}) the number of times class (k) was predicted,

  • (c=sum_{k}^{K} C_{kk}) the total number of samples correctly predicted,

  • (s=sum_{i}^{K} sum_{j}^{K} C_{ij}) the total number of samples.

Then the multiclass MCC is defined as:

[MCC = frac{
c times s — sum_{k}^{K} p_k times t_k
}{sqrt{
(s^2 — sum_{k}^{K} p_k^2) times
(s^2 — sum_{k}^{K} t_k^2)
}}]

When there are more than two labels, the value of the MCC will no longer range
between -1 and +1. Instead the minimum value will be somewhere between -1 and 0
depending on the number and distribution of ground true labels. The maximum
value is always +1.

Here is a small example illustrating the usage of the matthews_corrcoef
function:

>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...

3.3.2.14. Multi-label confusion matrix¶

The multilabel_confusion_matrix function computes class-wise (default)
or sample-wise (samplewise=True) multilabel confusion matrix to evaluate
the accuracy of a classification. multilabel_confusion_matrix also treats
multiclass data as if it were multilabel, as this is a transformation commonly
applied to evaluate multiclass problems with binary classification metrics
(such as precision, recall, etc.).

When calculating class-wise multilabel confusion matrix (C), the
count of true negatives for class (i) is (C_{i,0,0}), false
negatives is (C_{i,1,0}), true positives is (C_{i,1,1})
and false positives is (C_{i,0,1}).

Here is an example demonstrating the use of the
multilabel_confusion_matrix function with
multilabel indicator matrix input:

>>> import numpy as np
>>> from sklearn.metrics import multilabel_confusion_matrix
>>> y_true = np.array([[1, 0, 1],
...                    [0, 1, 0]])
>>> y_pred = np.array([[1, 0, 0],
...                    [0, 1, 1]])
>>> multilabel_confusion_matrix(y_true, y_pred)
array([[[1, 0],
        [0, 1]],

       [[1, 0],
        [0, 1]],

       [[0, 1],
        [1, 0]]])

Or a confusion matrix can be constructed for each sample’s labels:

>>> multilabel_confusion_matrix(y_true, y_pred, samplewise=True)
array([[[1, 0],
        [1, 1]],

       [[1, 1],
        [0, 1]]])

Here is an example demonstrating the use of the
multilabel_confusion_matrix function with
multiclass input:

>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> multilabel_confusion_matrix(y_true, y_pred,
...                             labels=["ant", "bird", "cat"])
array([[[3, 1],
        [0, 2]],

       [[5, 0],
        [1, 0]],

       [[2, 1],
        [1, 2]]])

Here are some examples demonstrating the use of the
multilabel_confusion_matrix function to calculate recall
(or sensitivity), specificity, fall out and miss rate for each class in a
problem with multilabel indicator matrix input.

Calculating
recall
(also called the true positive rate or the sensitivity) for each class:

>>> y_true = np.array([[0, 0, 1],
...                    [0, 1, 0],
...                    [1, 1, 0]])
>>> y_pred = np.array([[0, 1, 0],
...                    [0, 0, 1],
...                    [1, 1, 0]])
>>> mcm = multilabel_confusion_matrix(y_true, y_pred)
>>> tn = mcm[:, 0, 0]
>>> tp = mcm[:, 1, 1]
>>> fn = mcm[:, 1, 0]
>>> fp = mcm[:, 0, 1]
>>> tp / (tp + fn)
array([1. , 0.5, 0. ])

Calculating
specificity
(also called the true negative rate) for each class:

>>> tn / (tn + fp)
array([1. , 0. , 0.5])

Calculating fall out
(also called the false positive rate) for each class:

>>> fp / (fp + tn)
array([0. , 1. , 0.5])

Calculating miss rate
(also called the false negative rate) for each class:

>>> fn / (fn + tp)
array([0. , 0.5, 1. ])

3.3.2.15. Receiver operating characteristic (ROC)¶

The function roc_curve computes the
receiver operating characteristic curve, or ROC curve.
Quoting Wikipedia :

“A receiver operating characteristic (ROC), or simply ROC curve, is a
graphical plot which illustrates the performance of a binary classifier
system as its discrimination threshold is varied. It is created by plotting
the fraction of true positives out of the positives (TPR = true positive
rate) vs. the fraction of false positives out of the negatives (FPR = false
positive rate), at various threshold settings. TPR is also known as
sensitivity, and FPR is one minus the specificity or true negative rate.”

This function requires the true binary value and the target scores, which can
either be probability estimates of the positive class, confidence values, or
binary decisions. Here is a small example of how to use the roc_curve
function:

>>> import numpy as np
>>> from sklearn.metrics import roc_curve
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = roc_curve(y, scores, pos_label=2)
>>> fpr
array([0. , 0. , 0.5, 0.5, 1. ])
>>> tpr
array([0. , 0.5, 0.5, 1. , 1. ])
>>> thresholds
array([1.8 , 0.8 , 0.4 , 0.35, 0.1 ])

Compared to metrics such as the subset accuracy, the Hamming loss, or the
F1 score, ROC doesn’t require optimizing a threshold for each label.

The roc_auc_score function, denoted by ROC-AUC or AUROC, computes the
area under the ROC curve. By doing so, the curve information is summarized in
one number.

The following figure shows the ROC curve and ROC-AUC score for a classifier
aimed to distinguish the virginica flower from the rest of the species in the
Iris plants dataset:

../_images/sphx_glr_plot_roc_001.png

For more information see the Wikipedia article on AUC.

3.3.2.15.1. Binary case¶

In the binary case, you can either provide the probability estimates, using
the classifier.predict_proba() method, or the non-thresholded decision values
given by the classifier.decision_function() method. In the case of providing
the probability estimates, the probability of the class with the
“greater label” should be provided. The “greater label” corresponds to
classifier.classes_[1] and thus classifier.predict_proba(X)[:, 1].
Therefore, the y_score parameter is of size (n_samples,).

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.metrics import roc_auc_score
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear").fit(X, y)
>>> clf.classes_
array([0, 1])

We can use the probability estimates corresponding to clf.classes_[1].

>>> y_score = clf.predict_proba(X)[:, 1]
>>> roc_auc_score(y, y_score)
0.99...

Otherwise, we can use the non-thresholded decision values

>>> roc_auc_score(y, clf.decision_function(X))
0.99...

3.3.2.15.2. Multi-class case¶

The roc_auc_score function can also be used in multi-class
classification
. Two averaging strategies are currently supported: the
one-vs-one algorithm computes the average of the pairwise ROC AUC scores, and
the one-vs-rest algorithm computes the average of the ROC AUC scores for each
class against all other classes. In both cases, the predicted labels are
provided in an array with values from 0 to n_classes, and the scores
correspond to the probability estimates that a sample belongs to a particular
class. The OvO and OvR algorithms support weighting uniformly
(average='macro') and by prevalence (average='weighted').

One-vs-one Algorithm: Computes the average AUC of all possible pairwise
combinations of classes. [HT2001] defines a multiclass AUC metric weighted
uniformly:

[frac{1}{c(c-1)}sum_{j=1}^{c}sum_{k > j}^c (text{AUC}(j | k) +
text{AUC}(k | j))]

where (c) is the number of classes and (text{AUC}(j | k)) is the
AUC with class (j) as the positive class and class (k) as the
negative class. In general,
(text{AUC}(j | k) neq text{AUC}(k | j))) in the multiclass
case. This algorithm is used by setting the keyword argument multiclass
to 'ovo' and average to 'macro'.

The [HT2001] multiclass AUC metric can be extended to be weighted by the
prevalence:

[frac{1}{c(c-1)}sum_{j=1}^{c}sum_{k > j}^c p(j cup k)(
text{AUC}(j | k) + text{AUC}(k | j))]

where (c) is the number of classes. This algorithm is used by setting
the keyword argument multiclass to 'ovo' and average to
'weighted'. The 'weighted' option returns a prevalence-weighted average
as described in [FC2009].

One-vs-rest Algorithm: Computes the AUC of each class against the rest
[PD2000]. The algorithm is functionally the same as the multilabel case. To
enable this algorithm set the keyword argument multiclass to 'ovr'.
Additionally to 'macro' [F2006] and 'weighted' [F2001] averaging, OvR
supports 'micro' averaging.

In applications where a high false positive rate is not tolerable the parameter
max_fpr of roc_auc_score can be used to summarize the ROC curve up
to the given limit.

The following figure shows the micro-averaged ROC curve and its corresponding
ROC-AUC score for a classifier aimed to distinguish the the different species in
the Iris plants dataset:

../_images/sphx_glr_plot_roc_002.png

3.3.2.15.3. Multi-label case¶

In multi-label classification, the roc_auc_score function is
extended by averaging over the labels as above. In this case,
you should provide a y_score of shape (n_samples, n_classes). Thus, when
using the probability estimates, one needs to select the probability of the
class with the greater label for each output.

>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.multioutput import MultiOutputClassifier
>>> X, y = make_multilabel_classification(random_state=0)
>>> inner_clf = LogisticRegression(solver="liblinear", random_state=0)
>>> clf = MultiOutputClassifier(inner_clf).fit(X, y)
>>> y_score = np.transpose([y_pred[:, 1] for y_pred in clf.predict_proba(X)])
>>> roc_auc_score(y, y_score, average=None)
array([0.82..., 0.86..., 0.94..., 0.85... , 0.94...])

And the decision values do not require such processing.

>>> from sklearn.linear_model import RidgeClassifierCV
>>> clf = RidgeClassifierCV().fit(X, y)
>>> y_score = clf.decision_function(X)
>>> roc_auc_score(y, y_score, average=None)
array([0.81..., 0.84... , 0.93..., 0.87..., 0.94...])

3.3.2.16. Detection error tradeoff (DET)¶

The function det_curve computes the
detection error tradeoff curve (DET) curve [WikipediaDET2017].
Quoting Wikipedia:

“A detection error tradeoff (DET) graph is a graphical plot of error rates
for binary classification systems, plotting false reject rate vs. false
accept rate. The x- and y-axes are scaled non-linearly by their standard
normal deviates (or just by logarithmic transformation), yielding tradeoff
curves that are more linear than ROC curves, and use most of the image area
to highlight the differences of importance in the critical operating region.”

DET curves are a variation of receiver operating characteristic (ROC) curves
where False Negative Rate is plotted on the y-axis instead of True Positive
Rate.
DET curves are commonly plotted in normal deviate scale by transformation with
(phi^{-1}) (with (phi) being the cumulative distribution
function).
The resulting performance curves explicitly visualize the tradeoff of error
types for given classification algorithms.
See [Martin1997] for examples and further motivation.

This figure compares the ROC and DET curves of two example classifiers on the
same classification task:

../_images/sphx_glr_plot_det_001.png

Properties:

  • DET curves form a linear curve in normal deviate scale if the detection
    scores are normally (or close-to normally) distributed.
    It was shown by [Navratil2007] that the reverse is not necessarily true and
    even more general distributions are able to produce linear DET curves.

  • The normal deviate scale transformation spreads out the points such that a
    comparatively larger space of plot is occupied.
    Therefore curves with similar classification performance might be easier to
    distinguish on a DET plot.

  • With False Negative Rate being “inverse” to True Positive Rate the point
    of perfection for DET curves is the origin (in contrast to the top left
    corner for ROC curves).

Applications and limitations:

DET curves are intuitive to read and hence allow quick visual assessment of a
classifier’s performance.
Additionally DET curves can be consulted for threshold analysis and operating
point selection.
This is particularly helpful if a comparison of error types is required.

On the other hand DET curves do not provide their metric as a single number.
Therefore for either automated evaluation or comparison to other
classification tasks metrics like the derived area under ROC curve might be
better suited.

3.3.2.17. Zero one loss¶

The zero_one_loss function computes the sum or the average of the 0-1
classification loss ((L_{0-1})) over (n_{text{samples}}). By
default, the function normalizes over the sample. To get the sum of the
(L_{0-1}), set normalize to False.

In multilabel classification, the zero_one_loss scores a subset as
one if its labels strictly match the predictions, and as a zero if there
are any errors. By default, the function returns the percentage of imperfectly
predicted subsets. To get the count of such subsets instead, set
normalize to False

If (hat{y}_i) is the predicted value of
the (i)-th sample and (y_i) is the corresponding true value,
then the 0-1 loss (L_{0-1}) is defined as:

[L_{0-1}(y, hat{y}) = frac{1}{n_text{samples}} sum_{i=0}^{n_text{samples}-1} 1(hat{y}_i not= y_i)]

where (1(x)) is the indicator function. The zero one
loss can also be computed as (zero-one loss = 1 — accuracy).

>>> from sklearn.metrics import zero_one_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize=False)
1

In the multilabel case with binary label indicators, where the first label
set [0,1] has an error:

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)),  normalize=False)
1

3.3.2.18. Brier score loss¶

The brier_score_loss function computes the
Brier score
for binary classes [Brier1950]. Quoting Wikipedia:

“The Brier score is a proper score function that measures the accuracy of
probabilistic predictions. It is applicable to tasks in which predictions
must assign probabilities to a set of mutually exclusive discrete outcomes.”

This function returns the mean squared error of the actual outcome
(y in {0,1}) and the predicted probability estimate
(p = operatorname{Pr}(y = 1)) (predict_proba) as outputted by:

[BS = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}} — 1}(y_i — p_i)^2]

The Brier score loss is also between 0 to 1 and the lower the value (the mean
square difference is smaller), the more accurate the prediction is.

Here is a small example of usage of this function:

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss
>>> y_true = np.array([0, 1, 1, 0])
>>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])
>>> y_prob = np.array([0.1, 0.9, 0.8, 0.4])
>>> y_pred = np.array([0, 1, 1, 0])
>>> brier_score_loss(y_true, y_prob)
0.055
>>> brier_score_loss(y_true, 1 - y_prob, pos_label=0)
0.055
>>> brier_score_loss(y_true_categorical, y_prob, pos_label="ham")
0.055
>>> brier_score_loss(y_true, y_prob > 0.5)
0.0

The Brier score can be used to assess how well a classifier is calibrated.
However, a lower Brier score loss does not always mean a better calibration.
This is because, by analogy with the bias-variance decomposition of the mean
squared error, the Brier score loss can be decomposed as the sum of calibration
loss and refinement loss [Bella2012]. Calibration loss is defined as the mean
squared deviation from empirical probabilities derived from the slope of ROC
segments. Refinement loss can be defined as the expected optimal loss as
measured by the area under the optimal cost curve. Refinement loss can change
independently from calibration loss, thus a lower Brier score loss does not
necessarily mean a better calibrated model. “Only when refinement loss remains
the same does a lower Brier score loss always mean better calibration”
[Bella2012], [Flach2008].

3.3.2.19. Class likelihood ratios¶

The class_likelihood_ratios function computes the positive and negative
likelihood ratios
(LR_pm) for binary classes, which can be interpreted as the ratio of
post-test to pre-test odds as explained below. As a consequence, this metric is
invariant w.r.t. the class prevalence (the number of samples in the positive
class divided by the total number of samples) and can be extrapolated between
populations regardless of any possible class imbalance.

The (LR_pm) metrics are therefore very useful in settings where the data
available to learn and evaluate a classifier is a study population with nearly
balanced classes, such as a case-control study, while the target application,
i.e. the general population, has very low prevalence.

The positive likelihood ratio (LR_+) is the probability of a classifier to
correctly predict that a sample belongs to the positive class divided by the
probability of predicting the positive class for a sample belonging to the
negative class:

[LR_+ = frac{text{PR}(P+|T+)}{text{PR}(P+|T-)}.]

The notation here refers to predicted ((P)) or true ((T)) label and
the sign (+) and (-) refer to the positive and negative class,
respectively, e.g. (P+) stands for “predicted positive”.

Analogously, the negative likelihood ratio (LR_-) is the probability of a
sample of the positive class being classified as belonging to the negative class
divided by the probability of a sample of the negative class being correctly
classified:

[LR_- = frac{text{PR}(P-|T+)}{text{PR}(P-|T-)}.]

For classifiers above chance (LR_+) above 1 higher is better, while
(LR_-) ranges from 0 to 1 and lower is better.
Values of (LR_pmapprox 1) correspond to chance level.

Notice that probabilities differ from counts, for instance
(operatorname{PR}(P+|T+)) is not equal to the number of true positive
counts tp (see the wikipedia page for
the actual formulas).

Interpretation across varying prevalence:

Both class likelihood ratios are interpretable in terms of an odds ratio
(pre-test and post-tests):

[text{post-test odds} = text{Likelihood ratio} times text{pre-test odds}.]

Odds are in general related to probabilities via

[text{odds} = frac{text{probability}}{1 — text{probability}},]

or equivalently

[text{probability} = frac{text{odds}}{1 + text{odds}}.]

On a given population, the pre-test probability is given by the prevalence. By
converting odds to probabilities, the likelihood ratios can be translated into a
probability of truly belonging to either class before and after a classifier
prediction:

[text{post-test odds} = text{Likelihood ratio} times
frac{text{pre-test probability}}{1 — text{pre-test probability}},]

[text{post-test probability} = frac{text{post-test odds}}{1 + text{post-test odds}}.]

Mathematical divergences:

The positive likelihood ratio is undefined when (fp = 0), which can be
interpreted as the classifier perfectly identifying positive cases. If (fp
= 0)
and additionally (tp = 0), this leads to a zero/zero division. This
happens, for instance, when using a DummyClassifier that always predicts the
negative class and therefore the interpretation as a perfect classifier is lost.

The negative likelihood ratio is undefined when (tn = 0). Such divergence
is invalid, as (LR_- > 1) would indicate an increase in the odds of a
sample belonging to the positive class after being classified as negative, as if
the act of classifying caused the positive condition. This includes the case of
a DummyClassifier that always predicts the positive class (i.e. when
(tn=fn=0)).

Both class likelihood ratios are undefined when (tp=fn=0), which means
that no samples of the positive class were present in the testing set. This can
also happen when cross-validating highly imbalanced data.

In all the previous cases the class_likelihood_ratios function raises by
default an appropriate warning message and returns nan to avoid pollution when
averaging over cross-validation folds.

For a worked-out demonstration of the class_likelihood_ratios function,
see the example below.

3.3.3. Multilabel ranking metrics¶

In multilabel learning, each sample can have any number of ground truth labels
associated with it. The goal is to give high scores and better rank to
the ground truth labels.

3.3.3.1. Coverage error¶

The coverage_error function computes the average number of labels that
have to be included in the final prediction such that all true labels
are predicted. This is useful if you want to know how many top-scored-labels
you have to predict in average without missing any true one. The best value
of this metrics is thus the average number of true labels.

Note

Our implementation’s score is 1 greater than the one given in Tsoumakas
et al., 2010. This extends it to handle the degenerate case in which an
instance has 0 true labels.

Formally, given a binary indicator matrix of the ground truth labels
(y in left{0, 1right}^{n_text{samples} times n_text{labels}}) and the
score associated with each label
(hat{f} in mathbb{R}^{n_text{samples} times n_text{labels}}),
the coverage is defined as

[coverage(y, hat{f}) = frac{1}{n_{text{samples}}}
sum_{i=0}^{n_{text{samples}} — 1} max_{j:y_{ij} = 1} text{rank}_{ij}]

with (text{rank}_{ij} = left|left{k: hat{f}_{ik} geq hat{f}_{ij} right}right|).
Given the rank definition, ties in y_scores are broken by giving the
maximal rank that would have been assigned to all tied values.

Here is a small example of usage of this function:

>>> import numpy as np
>>> from sklearn.metrics import coverage_error
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> coverage_error(y_true, y_score)
2.5

3.3.3.2. Label ranking average precision¶

The label_ranking_average_precision_score function
implements label ranking average precision (LRAP). This metric is linked to
the average_precision_score function, but is based on the notion of
label ranking instead of precision and recall.

Label ranking average precision (LRAP) averages over the samples the answer to
the following question: for each ground truth label, what fraction of
higher-ranked labels were true labels? This performance measure will be higher
if you are able to give better rank to the labels associated with each sample.
The obtained score is always strictly greater than 0, and the best value is 1.
If there is exactly one relevant label per sample, label ranking average
precision is equivalent to the mean
reciprocal rank.

Formally, given a binary indicator matrix of the ground truth labels
(y in left{0, 1right}^{n_text{samples} times n_text{labels}})
and the score associated with each label
(hat{f} in mathbb{R}^{n_text{samples} times n_text{labels}}),
the average precision is defined as

[LRAP(y, hat{f}) = frac{1}{n_{text{samples}}}
sum_{i=0}^{n_{text{samples}} — 1} frac{1}{||y_i||_0}
sum_{j:y_{ij} = 1} frac{|mathcal{L}_{ij}|}{text{rank}_{ij}}]

where
(mathcal{L}_{ij} = left{k: y_{ik} = 1, hat{f}_{ik} geq hat{f}_{ij} right}),
(text{rank}_{ij} = left|left{k: hat{f}_{ik} geq hat{f}_{ij} right}right|),
(|cdot|) computes the cardinality of the set (i.e., the number of
elements in the set), and (||cdot||_0) is the (ell_0) “norm”
(which computes the number of nonzero elements in a vector).

Here is a small example of usage of this function:

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score)
0.416...

3.3.3.3. Ranking loss¶

The label_ranking_loss function computes the ranking loss which
averages over the samples the number of label pairs that are incorrectly
ordered, i.e. true labels have a lower score than false labels, weighted by
the inverse of the number of ordered pairs of false and true labels.
The lowest achievable ranking loss is zero.

Formally, given a binary indicator matrix of the ground truth labels
(y in left{0, 1right}^{n_text{samples} times n_text{labels}}) and the
score associated with each label
(hat{f} in mathbb{R}^{n_text{samples} times n_text{labels}}),
the ranking loss is defined as

[ranking_loss(y, hat{f}) = frac{1}{n_{text{samples}}}
sum_{i=0}^{n_{text{samples}} — 1} frac{1}{||y_i||_0(n_text{labels} — ||y_i||_0)}
left|left{(k, l): hat{f}_{ik} leq hat{f}_{il}, y_{ik} = 1, y_{il} = 0 right}right|]

where (|cdot|) computes the cardinality of the set (i.e., the number of
elements in the set) and (||cdot||_0) is the (ell_0) “norm”
(which computes the number of nonzero elements in a vector).

Here is a small example of usage of this function:

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_loss
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_loss(y_true, y_score)
0.75...
>>> # With the following prediction, we have perfect and minimal loss
>>> y_score = np.array([[1.0, 0.1, 0.2], [0.1, 0.2, 0.9]])
>>> label_ranking_loss(y_true, y_score)
0.0

3.3.3.4. Normalized Discounted Cumulative Gain¶

Discounted Cumulative Gain (DCG) and Normalized Discounted Cumulative Gain
(NDCG) are ranking metrics implemented in dcg_score
and ndcg_score ; they compare a predicted order to
ground-truth scores, such as the relevance of answers to a query.

From the Wikipedia page for Discounted Cumulative Gain:

“Discounted cumulative gain (DCG) is a measure of ranking quality. In
information retrieval, it is often used to measure effectiveness of web search
engine algorithms or related applications. Using a graded relevance scale of
documents in a search-engine result set, DCG measures the usefulness, or gain,
of a document based on its position in the result list. The gain is accumulated
from the top of the result list to the bottom, with the gain of each result
discounted at lower ranks”

DCG orders the true targets (e.g. relevance of query answers) in the predicted
order, then multiplies them by a logarithmic decay and sums the result. The sum
can be truncated after the first (K) results, in which case we call it
DCG@K.
NDCG, or NDCG@K is DCG divided by the DCG obtained by a perfect prediction, so
that it is always between 0 and 1. Usually, NDCG is preferred to DCG.

Compared with the ranking loss, NDCG can take into account relevance scores,
rather than a ground-truth ranking. So if the ground-truth consists only of an
ordering, the ranking loss should be preferred; if the ground-truth consists of
actual usefulness scores (e.g. 0 for irrelevant, 1 for relevant, 2 for very
relevant), NDCG can be used.

For one sample, given the vector of continuous ground-truth values for each
target (y in mathbb{R}^{M}), where (M) is the number of outputs, and
the prediction (hat{y}), which induces the ranking function (f), the
DCG score is

[sum_{r=1}^{min(K, M)}frac{y_{f(r)}}{log(1 + r)}]

and the NDCG score is the DCG score divided by the DCG score obtained for
(y).

3.3.4. Regression metrics¶

The sklearn.metrics module implements several loss, score, and utility
functions to measure regression performance. Some of those have been enhanced
to handle the multioutput case: mean_squared_error,
mean_absolute_error, r2_score,
explained_variance_score, mean_pinball_loss, d2_pinball_score
and d2_absolute_error_score.

These functions have a multioutput keyword argument which specifies the
way the scores or losses for each individual target should be averaged. The
default is 'uniform_average', which specifies a uniformly weighted mean
over outputs. If an ndarray of shape (n_outputs,) is passed, then its
entries are interpreted as weights and an according weighted average is
returned. If multioutput is 'raw_values', then all unaltered
individual scores or losses will be returned in an array of shape
(n_outputs,).

The r2_score and explained_variance_score accept an additional
value 'variance_weighted' for the multioutput parameter. This option
leads to a weighting of each individual score by the variance of the
corresponding target variable. This setting quantifies the globally captured
unscaled variance. If the target variables are of different scale, then this
score puts more importance on explaining the higher variance variables.
multioutput='variance_weighted' is the default value for r2_score
for backward compatibility. This will be changed to uniform_average in the
future.

3.3.4.1. R² score, the coefficient of determination¶

The r2_score function computes the coefficient of
determination,
usually denoted as (R^2).

It represents the proportion of variance (of y) that has been explained by the
independent variables in the model. It provides an indication of goodness of
fit and therefore a measure of how well unseen samples are likely to be
predicted by the model, through the proportion of explained variance.

As such variance is dataset dependent, (R^2) may not be meaningfully comparable
across different datasets. Best possible score is 1.0 and it can be negative
(because the model can be arbitrarily worse). A constant model that always
predicts the expected (average) value of y, disregarding the input features,
would get an (R^2) score of 0.0.

Note: when the prediction residuals have zero mean, the (R^2) score and
the Explained variance score are identical.

If (hat{y}_i) is the predicted value of the (i)-th sample
and (y_i) is the corresponding true value for total (n) samples,
the estimated (R^2) is defined as:

[R^2(y, hat{y}) = 1 — frac{sum_{i=1}^{n} (y_i — hat{y}_i)^2}{sum_{i=1}^{n} (y_i — bar{y})^2}]

where (bar{y} = frac{1}{n} sum_{i=1}^{n} y_i) and (sum_{i=1}^{n} (y_i — hat{y}_i)^2 = sum_{i=1}^{n} epsilon_i^2).

Note that r2_score calculates unadjusted (R^2) without correcting for
bias in sample variance of y.

In the particular case where the true target is constant, the (R^2) score is
not finite: it is either NaN (perfect predictions) or -Inf (imperfect
predictions). Such non-finite scores may prevent correct model optimization
such as grid-search cross-validation to be performed correctly. For this reason
the default behaviour of r2_score is to replace them with 1.0 (perfect
predictions) or 0.0 (imperfect predictions). If force_finite
is set to False, this score falls back on the original (R^2) definition.

Here is a small example of usage of the r2_score function:

>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')
0.938...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='uniform_average')
0.936...
>>> r2_score(y_true, y_pred, multioutput='raw_values')
array([0.965..., 0.908...])
>>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.925...
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2]
>>> r2_score(y_true, y_pred)
1.0
>>> r2_score(y_true, y_pred, force_finite=False)
nan
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2 + 1e-8]
>>> r2_score(y_true, y_pred)
0.0
>>> r2_score(y_true, y_pred, force_finite=False)
-inf

3.3.4.2. Mean absolute error¶

The mean_absolute_error function computes mean absolute
error, a risk
metric corresponding to the expected value of the absolute error loss or
(l1)-norm loss.

If (hat{y}_i) is the predicted value of the (i)-th sample,
and (y_i) is the corresponding true value, then the mean absolute error
(MAE) estimated over (n_{text{samples}}) is defined as

[text{MAE}(y, hat{y}) = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}}-1} left| y_i — hat{y}_i right|.]

Here is a small example of usage of the mean_absolute_error function:

>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...

3.3.4.3. Mean squared error¶

The mean_squared_error function computes mean square
error, a risk
metric corresponding to the expected value of the squared (quadratic) error or
loss.

If (hat{y}_i) is the predicted value of the (i)-th sample,
and (y_i) is the corresponding true value, then the mean squared error
(MSE) estimated over (n_{text{samples}}) is defined as

[text{MSE}(y, hat{y}) = frac{1}{n_text{samples}} sum_{i=0}^{n_text{samples} — 1} (y_i — hat{y}_i)^2.]

Here is a small example of usage of the mean_squared_error
function:

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.7083...

3.3.4.4. Mean squared logarithmic error¶

The mean_squared_log_error function computes a risk metric
corresponding to the expected value of the squared logarithmic (quadratic)
error or loss.

If (hat{y}_i) is the predicted value of the (i)-th sample,
and (y_i) is the corresponding true value, then the mean squared
logarithmic error (MSLE) estimated over (n_{text{samples}}) is
defined as

[text{MSLE}(y, hat{y}) = frac{1}{n_text{samples}} sum_{i=0}^{n_text{samples} — 1} (log_e (1 + y_i) — log_e (1 + hat{y}_i) )^2.]

Where (log_e (x)) means the natural logarithm of (x). This metric
is best to use when targets having exponential growth, such as population
counts, average sales of a commodity over a span of years etc. Note that this
metric penalizes an under-predicted estimate greater than an over-predicted
estimate.

Here is a small example of usage of the mean_squared_log_error
function:

>>> from sklearn.metrics import mean_squared_log_error
>>> y_true = [3, 5, 2.5, 7]
>>> y_pred = [2.5, 5, 4, 8]
>>> mean_squared_log_error(y_true, y_pred)
0.039...
>>> y_true = [[0.5, 1], [1, 2], [7, 6]]
>>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]]
>>> mean_squared_log_error(y_true, y_pred)
0.044...

3.3.4.5. Mean absolute percentage error¶

The mean_absolute_percentage_error (MAPE), also known as mean absolute
percentage deviation (MAPD), is an evaluation metric for regression problems.
The idea of this metric is to be sensitive to relative errors. It is for example
not changed by a global scaling of the target variable.

If (hat{y}_i) is the predicted value of the (i)-th sample
and (y_i) is the corresponding true value, then the mean absolute percentage
error (MAPE) estimated over (n_{text{samples}}) is defined as

[text{MAPE}(y, hat{y}) = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}}-1} frac{{}left| y_i — hat{y}_i right|}{max(epsilon, left| y_i right|)}]

where (epsilon) is an arbitrary small yet strictly positive number to
avoid undefined results when y is zero.

The mean_absolute_percentage_error function supports multioutput.

Here is a small example of usage of the mean_absolute_percentage_error
function:

>>> from sklearn.metrics import mean_absolute_percentage_error
>>> y_true = [1, 10, 1e6]
>>> y_pred = [0.9, 15, 1.2e6]
>>> mean_absolute_percentage_error(y_true, y_pred)
0.2666...

In above example, if we had used mean_absolute_error, it would have ignored
the small magnitude values and only reflected the error in prediction of highest
magnitude value. But that problem is resolved in case of MAPE because it calculates
relative percentage error with respect to actual output.

3.3.4.6. Median absolute error¶

The median_absolute_error is particularly interesting because it is
robust to outliers. The loss is calculated by taking the median of all absolute
differences between the target and the prediction.

If (hat{y}_i) is the predicted value of the (i)-th sample
and (y_i) is the corresponding true value, then the median absolute error
(MedAE) estimated over (n_{text{samples}}) is defined as

[text{MedAE}(y, hat{y}) = text{median}(mid y_1 — hat{y}_1 mid, ldots, mid y_n — hat{y}_n mid).]

The median_absolute_error does not support multioutput.

Here is a small example of usage of the median_absolute_error
function:

>>> from sklearn.metrics import median_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> median_absolute_error(y_true, y_pred)
0.5

3.3.4.7. Max error¶

The max_error function computes the maximum residual error , a metric
that captures the worst case error between the predicted value and
the true value. In a perfectly fitted single output regression
model, max_error would be 0 on the training set and though this
would be highly unlikely in the real world, this metric shows the
extent of error that the model had when it was fitted.

If (hat{y}_i) is the predicted value of the (i)-th sample,
and (y_i) is the corresponding true value, then the max error is
defined as

[text{Max Error}(y, hat{y}) = max(| y_i — hat{y}_i |)]

Here is a small example of usage of the max_error function:

>>> from sklearn.metrics import max_error
>>> y_true = [3, 2, 7, 1]
>>> y_pred = [9, 2, 7, 1]
>>> max_error(y_true, y_pred)
6

The max_error does not support multioutput.

3.3.4.8. Explained variance score¶

The explained_variance_score computes the explained variance
regression score.

If (hat{y}) is the estimated target output, (y) the corresponding
(correct) target output, and (Var) is Variance, the square of the standard deviation,
then the explained variance is estimated as follow:

[explained_{}variance(y, hat{y}) = 1 — frac{Var{ y — hat{y}}}{Var{y}}]

The best possible score is 1.0, lower values are worse.

In the particular case where the true target is constant, the Explained
Variance score is not finite: it is either NaN (perfect predictions) or
-Inf (imperfect predictions). Such non-finite scores may prevent correct
model optimization such as grid-search cross-validation to be performed
correctly. For this reason the default behaviour of
explained_variance_score is to replace them with 1.0 (perfect
predictions) or 0.0 (imperfect predictions). You can set the force_finite
parameter to False to prevent this fix from happening and fallback on the
original Explained Variance score.

Here is a small example of usage of the explained_variance_score
function:

>>> from sklearn.metrics import explained_variance_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> explained_variance_score(y_true, y_pred)
0.957...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='raw_values')
array([0.967..., 1.        ])
>>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.990...
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2]
>>> explained_variance_score(y_true, y_pred)
1.0
>>> explained_variance_score(y_true, y_pred, force_finite=False)
nan
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2 + 1e-8]
>>> explained_variance_score(y_true, y_pred)
0.0
>>> explained_variance_score(y_true, y_pred, force_finite=False)
-inf

3.3.4.9. Mean Poisson, Gamma, and Tweedie deviances¶

The mean_tweedie_deviance function computes the mean Tweedie
deviance error
with a power parameter ((p)). This is a metric that elicits
predicted expectation values of regression targets.

Following special cases exist,

  • when power=0 it is equivalent to mean_squared_error.

  • when power=1 it is equivalent to mean_poisson_deviance.

  • when power=2 it is equivalent to mean_gamma_deviance.

If (hat{y}_i) is the predicted value of the (i)-th sample,
and (y_i) is the corresponding true value, then the mean Tweedie
deviance error (D) for power (p), estimated over (n_{text{samples}})
is defined as

[begin{split}text{D}(y, hat{y}) = frac{1}{n_text{samples}}
sum_{i=0}^{n_text{samples} — 1}
begin{cases}
(y_i-hat{y}_i)^2, & text{for }p=0text{ (Normal)}\
2(y_i log(y_i/hat{y}_i) + hat{y}_i — y_i), & text{for }p=1text{ (Poisson)}\
2(log(hat{y}_i/y_i) + y_i/hat{y}_i — 1), & text{for }p=2text{ (Gamma)}\
2left(frac{max(y_i,0)^{2-p}}{(1-p)(2-p)}-
frac{y_i,hat{y}_i^{1-p}}{1-p}+frac{hat{y}_i^{2-p}}{2-p}right),
& text{otherwise}
end{cases}end{split}]

Tweedie deviance is a homogeneous function of degree 2-power.
Thus, Gamma distribution with power=2 means that simultaneously scaling
y_true and y_pred has no effect on the deviance. For Poisson
distribution power=1 the deviance scales linearly, and for Normal
distribution (power=0), quadratically. In general, the higher
power the less weight is given to extreme deviations between true
and predicted targets.

For instance, let’s compare the two predictions 1.5 and 150 that are both
50% larger than their corresponding true value.

The mean squared error (power=0) is very sensitive to the
prediction difference of the second point,:

>>> from sklearn.metrics import mean_tweedie_deviance
>>> mean_tweedie_deviance([1.0], [1.5], power=0)
0.25
>>> mean_tweedie_deviance([100.], [150.], power=0)
2500.0

If we increase power to 1,:

>>> mean_tweedie_deviance([1.0], [1.5], power=1)
0.18...
>>> mean_tweedie_deviance([100.], [150.], power=1)
18.9...

the difference in errors decreases. Finally, by setting, power=2:

>>> mean_tweedie_deviance([1.0], [1.5], power=2)
0.14...
>>> mean_tweedie_deviance([100.], [150.], power=2)
0.14...

we would get identical errors. The deviance when power=2 is thus only
sensitive to relative errors.

3.3.4.10. Pinball loss¶

The mean_pinball_loss function is used to evaluate the predictive
performance of quantile regression models.

[text{pinball}(y, hat{y}) = frac{1}{n_{text{samples}}} sum_{i=0}^{n_{text{samples}}-1} alpha max(y_i — hat{y}_i, 0) + (1 — alpha) max(hat{y}_i — y_i, 0)]

The value of pinball loss is equivalent to half of mean_absolute_error when the quantile
parameter alpha is set to 0.5.

Here is a small example of usage of the mean_pinball_loss function:

>>> from sklearn.metrics import mean_pinball_loss
>>> y_true = [1, 2, 3]
>>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.1)
0.03...
>>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.1)
0.3...
>>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.9)
0.3...
>>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.9)
0.03...
>>> mean_pinball_loss(y_true, y_true, alpha=0.1)
0.0
>>> mean_pinball_loss(y_true, y_true, alpha=0.9)
0.0

It is possible to build a scorer object with a specific choice of alpha:

>>> from sklearn.metrics import make_scorer
>>> mean_pinball_loss_95p = make_scorer(mean_pinball_loss, alpha=0.95)

Such a scorer can be used to evaluate the generalization performance of a
quantile regressor via cross-validation:

>>> from sklearn.datasets import make_regression
>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.ensemble import GradientBoostingRegressor
>>>
>>> X, y = make_regression(n_samples=100, random_state=0)
>>> estimator = GradientBoostingRegressor(
...     loss="quantile",
...     alpha=0.95,
...     random_state=0,
... )
>>> cross_val_score(estimator, X, y, cv=5, scoring=mean_pinball_loss_95p)
array([13.6..., 9.7..., 23.3..., 9.5..., 10.4...])

It is also possible to build scorer objects for hyper-parameter tuning. The
sign of the loss must be switched to ensure that greater means better as
explained in the example linked below.

3.3.4.11. D² score¶

The D² score computes the fraction of deviance explained.
It is a generalization of R², where the squared error is generalized and replaced
by a deviance of choice (text{dev}(y, hat{y}))
(e.g., Tweedie, pinball or mean absolute error). D² is a form of a skill score.
It is calculated as

[D^2(y, hat{y}) = 1 — frac{text{dev}(y, hat{y})}{text{dev}(y, y_{text{null}})} ,.]

Where (y_{text{null}}) is the optimal prediction of an intercept-only model
(e.g., the mean of y_true for the Tweedie case, the median for absolute
error and the alpha-quantile for pinball loss).

Like R², the best possible score is 1.0 and it can be negative (because the
model can be arbitrarily worse). A constant model that always predicts
(y_{text{null}}), disregarding the input features, would get a D² score
of 0.0.

3.3.4.11.1. D² Tweedie score¶

The d2_tweedie_score function implements the special case of D²
where (text{dev}(y, hat{y})) is the Tweedie deviance, see Mean Poisson, Gamma, and Tweedie deviances.
It is also known as D² Tweedie and is related to McFadden’s likelihood ratio index.

The argument power defines the Tweedie power as for
mean_tweedie_deviance. Note that for power=0,
d2_tweedie_score equals r2_score (for single targets).

A scorer object with a specific choice of power can be built by:

>>> from sklearn.metrics import d2_tweedie_score, make_scorer
>>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, power=1.5)

3.3.4.11.2. D² pinball score¶

The d2_pinball_score function implements the special case
of D² with the pinball loss, see Pinball loss, i.e.:

[text{dev}(y, hat{y}) = text{pinball}(y, hat{y}).]

The argument alpha defines the slope of the pinball loss as for
mean_pinball_loss (Pinball loss). It determines the
quantile level alpha for which the pinball loss and also D²
are optimal. Note that for alpha=0.5 (the default) d2_pinball_score
equals d2_absolute_error_score.

A scorer object with a specific choice of alpha can be built by:

>>> from sklearn.metrics import d2_pinball_score, make_scorer
>>> d2_pinball_score_08 = make_scorer(d2_pinball_score, alpha=0.8)

3.3.4.11.3. D² absolute error score¶

The d2_absolute_error_score function implements the special case of
the Mean absolute error:

[text{dev}(y, hat{y}) = text{MAE}(y, hat{y}).]

Here are some usage examples of the d2_absolute_error_score function:

>>> from sklearn.metrics import d2_absolute_error_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> d2_absolute_error_score(y_true, y_pred)
0.764...
>>> y_true = [1, 2, 3]
>>> y_pred = [1, 2, 3]
>>> d2_absolute_error_score(y_true, y_pred)
1.0
>>> y_true = [1, 2, 3]
>>> y_pred = [2, 2, 2]
>>> d2_absolute_error_score(y_true, y_pred)
0.0

3.3.4.12. Visual evaluation of regression models¶

Among methods to assess the quality of regression models, scikit-learn provides
the PredictionErrorDisplay class. It allows to
visually inspect the prediction errors of a model in two different manners.

../_images/sphx_glr_plot_cv_predict_001.png

The plot on the left shows the actual values vs predicted values. For a
noise-free regression task aiming to predict the (conditional) expectation of
y, a perfect regression model would display data points on the diagonal
defined by predicted equal to actual values. The further away from this optimal
line, the larger the error of the model. In a more realistic setting with
irreducible noise, that is, when not all the variations of y can be explained
by features in X, then the best model would lead to a cloud of points densely
arranged around the diagonal.

Note that the above only holds when the predicted values is the expected value
of y given X. This is typically the case for regression models that
minimize the mean squared error objective function or more generally the
mean Tweedie deviance for any value of its
“power” parameter.

When plotting the predictions of an estimator that predicts a quantile
of y given X, e.g. QuantileRegressor
or any other model minimizing the pinball loss, a
fraction of the points are either expected to lie above or below the diagonal
depending on the estimated quantile level.

All in all, while intuitive to read, this plot does not really inform us on
what to do to obtain a better model.

The right-hand side plot shows the residuals (i.e. the difference between the
actual and the predicted values) vs. the predicted values.

This plot makes it easier to visualize if the residuals follow and
homoscedastic or heteroschedastic
distribution.

In particular, if the true distribution of y|X is Poisson or Gamma
distributed, it is expected that the variance of the residuals of the optimal
model would grow with the predicted value of E[y|X] (either linearly for
Poisson or quadratically for Gamma).

When fitting a linear least squares regression model (see
LinearRegression and
Ridge), we can use this plot to check
if some of the model assumptions
are met, in particular that the residuals should be uncorrelated, their
expected value should be null and that their variance should be constant
(homoschedasticity).

If this is not the case, and in particular if the residuals plot show some
banana-shaped structure, this is a hint that the model is likely mis-specified
and that non-linear feature engineering or switching to a non-linear regression
model might be useful.

Refer to the example below to see a model evaluation that makes use of this
display.

3.3.5. Clustering metrics¶

The sklearn.metrics module implements several loss, score, and utility
functions. For more information see the Clustering performance evaluation
section for instance clustering, and Biclustering evaluation for
biclustering.

3.3.6. Dummy estimators¶

When doing supervised learning, a simple sanity check consists of comparing
one’s estimator against simple rules of thumb. DummyClassifier
implements several such simple strategies for classification:

  • stratified generates random predictions by respecting the training
    set class distribution.

  • most_frequent always predicts the most frequent label in the training set.

  • prior always predicts the class that maximizes the class prior
    (like most_frequent) and predict_proba returns the class prior.

  • uniform generates predictions uniformly at random.

  • constant always predicts a constant label that is provided by the user.

    A major motivation of this method is F1-scoring, when the positive class
    is in the minority.

Note that with all these strategies, the predict method completely ignores
the input data!

To illustrate DummyClassifier, first let’s create an imbalanced
dataset:

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_iris(return_X_y=True)
>>> y[y != 1] = -1
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

Next, let’s compare the accuracy of SVC and most_frequent:

>>> from sklearn.dummy import DummyClassifier
>>> from sklearn.svm import SVC
>>> clf = SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.63...
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf.fit(X_train, y_train)
DummyClassifier(random_state=0, strategy='most_frequent')
>>> clf.score(X_test, y_test)
0.57...

We see that SVC doesn’t do much better than a dummy classifier. Now, let’s
change the kernel:

>>> clf = SVC(kernel='rbf', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.94...

We see that the accuracy was boosted to almost 100%. A cross validation
strategy is recommended for a better estimate of the accuracy, if it
is not too CPU costly. For more information see the Cross-validation: evaluating estimator performance
section. Moreover if you want to optimize over the parameter space, it is highly
recommended to use an appropriate methodology; see the Tuning the hyper-parameters of an estimator
section for details.

More generally, when the accuracy of a classifier is too close to random, it
probably means that something went wrong: features are not helpful, a
hyperparameter is not correctly tuned, the classifier is suffering from class
imbalance, etc…

DummyRegressor also implements four simple rules of thumb for regression:

  • mean always predicts the mean of the training targets.

  • median always predicts the median of the training targets.

  • quantile always predicts a user provided quantile of the training targets.

  • constant always predicts a constant value that is provided by the user.

In all these strategies, the predict method completely ignores
the input data.

Table of contents

      • What is Mean Squared Error?
      • MSE as Model Evaluation Measure
      • Conclusion
  • What is Mean Squared Error?
  • MSE as Model Evaluation Measure
  • Conclusion

What is Mean Squared Error?

In Statistics, Mean Squared Error (MSE) is defined as Mean or Average of the square of the difference between actual and estimated values.

Contributed by: Swati Deval

To understand it better, let us take an example of actual demand and forecasted demand for a brand of ice creams in a shop in a year. Before we move into the example,

Month Actual Demand Forecasted Demand Error Squared Error
1 42 44 -2 4
2 45 46 -1 1
3 49 48 1 1
4 55 50 5 25
5 57 55 2 4
6 60 60 0 0
7 62 64 -2 4
8 58 60 -2 4
9 54 53 1 1
10 50 48 2 4
11 44 42 2 4
12 40 38 2 4
Sum       56

MSE= 56/12 = 4.6667

From the above example, we can observe the following.

  1. As forecasted values can be less than or more than actual values, a simple sum of difference can be zero. This can lead to a false interpretation that forecast is accurate
  2. As we take a square, all errors are positive, and mean is positive indicating there is some difference in estimates and actual. Lower mean indicates forecast is closer to actual.
  3. All errors in the above example are in the range of 0 to 2 except 1, which is 5. As we square it, the difference between this and other squares increases. And this single high value leads to higher mean. So MSE is influenced by large deviators or outliers.

As this can indicate how close a forecast or estimate is to the actual value, this can be used as a measure to evaluate models in Data Science.

MSE as Model Evaluation Measure

In the Supervised Learning method, the data set contains dependent or target variables along with independent variables. We build models using independent variables and predict dependent or target variables. If the dependent variable is numeric, regression models are used to predict it. In this case, MSE can be used to evaluate models.

In Linear regression, we find lines that best describe given data points. Many lines can describe given data points, but which line describes it best can be found using MSE.

For a given dataset, no data points are constant, say N.  Let SSE1, SSE2, … SSEn denotes Sum of squared error. So MSE for each line will be SSE1/N, SSE2/N, … , SSEn/N

Hence the least sum of squared error is also for the line having minimum MSE. So many best-fit algorithms use the least sum of squared error methods to find a regression line.

MSE unit order is higher than the error unit as the error is squared. To get the same unit order, many times the square root of MSE is taken. It is called the Root Mean Squared Error (RMSE).

RMSE = SQRT(MSE)

This is also used as a measure for model evaluation. There are other measures like MAE, R2 used for regression model evaluation. Let us see how these compare with MSE or RMSE

Mean Absolute Error (MAE) is the sum of the absolute difference between actual and predicted values.

R2 or R Squared is a coefficient of determination. It is the total variance explained by model/total variance.

MSE / RSME MAE R2
Based on square of error Based on absolute value of error Based on correlation between actual and predicted value
Value lies between 0 to ∞ Value lies between 0 to ∞ Value lies between 0 and 1
Sensitive to outliers, punishes larger error more Treat larger and small errors equally. Not sensitive to outliers Not sensitive to outliers
Small value indicates better model Small value indicates better model Value near 1 indicates better model

RSME is always greater than or equal to MAE (RSME >= MAE). The greater difference between them indicates greater variance in individual errors in the sample.

Both R & Python have functions which give these values for a regression model. Which measure to choose depends on the data set and the problem being addressed. If we want to treat all errors equally,  MAE is a better measure. If we want to give more weight-age to large errors, MSE/RMSE is better.

Conclusion

MSE is used to check how close estimates or forecasts are to actual values. Lower the MSE, the closer is forecast to actual. This is used as a model evaluation measure for regression models and the lower value indicates a better fit.

Great Learning also offers a PG Program in Artificial Intelligence and Machine Learning in collaboration with UT Austin. Take up the PGP AIML and learn with the help of online mentorship sessions and gain access to career assistance, interview preparation, and job fairs. Get world-class training by industry leaders.

The mean squared error is a common way to measure the prediction accuracy of a model. In this tutorial, you’ll learn how to calculate the mean squared error in Python. You’ll start off by learning what the mean squared error represents. Then you’ll learn how to do this using Scikit-Learn (sklean), Numpy, as well as from scratch.

What is the Mean Squared Error

The mean squared error measures the average of the squares of the errors. What this means, is that it returns the average of the sums of the square of each difference between the estimated value and the true value.

The MSE is always positive, though it can be 0 if the predictions are completely accurate. It incorporates the variance of the estimator (how widely spread the estimates are) and its bias (how different the estimated values are from their true values).

The formula looks like below:

{displaystyle operatorname {MSE} ={frac {1}{n}}sum _{i=1}^{n}(Y_{i}-{hat {Y_{i}}})^{2}.}
The formula for the mean squared error (MSE)

Now that you have an understanding of how to calculate the MSE, let’s take a look at how it can be calculated using Python.

Interpreting the Mean Squared Error

The mean squared error is always 0 or positive. When a MSE is larger, this is an indication that the linear regression model doesn’t accurately predict the model.

An important piece to note is that the MSE is sensitive to outliers. This is because it calculates the average of every data point’s error. Because of this, a larger error on outliers will amplify the MSE.

There is no “target” value for the MSE. The MSE can, however, be a good indicator of how well a model fits your data. It can also give you an indicator of choosing one model over another.

Loading a Sample Pandas DataFrame

Let’s start off by loading a sample Pandas DataFrame. If you want to follow along with this tutorial line-by-line, simply copy the code below and paste it into your favorite code editor.

# Importing a sample Pandas DataFrame
import pandas as pd

df = pd.DataFrame.from_dict({
    'x': [1,2,3,4,5,6,7,8,9,10], 
    'y': [1,2,2,4,4,5,6,7,9,10]})

print(df.head())
#    x  y
# 0  1  1
# 1  2  2
# 2  3  2
# 3  4  4
# 4  5  4

You can see that the editor has loaded a DataFrame containing values for variables x and y. We can plot this data out, including the line of best fit using Seaborn’s .regplot() function:

# Plotting a line of best fit
import seaborn as sns
import matplotlib.pyplot as plt
sns.regplot(data=df, x='x', y='y', ci=None)
plt.ylim(bottom=0)
plt.xlim(left=0)
plt.show()

This returns the following visualization:

Plotting a line of best fit to help visualize mean squared error in Python

Plotting a line of best fit to help visualize mean squared error in Python

The mean squared error calculates the average of the sum of the squared differences between a data point and the line of best fit. By virtue of this, the lower a mean sqared error, the more better the line represents the relationship.

We can calculate this line of best using Scikit-Learn. You can learn about this in this in-depth tutorial on linear regression in sklearn. The code below predicts values for each x value using the linear model:

# Calculating prediction y values in sklearn
from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(df[['x']], df['y'])
y_2 = model.predict(df[['x']])
df['y_predicted'] = y_2
print(df.head())

# Returns:
#    x  y  y_predicted
# 0  1  1     0.581818
# 1  2  2     1.563636
# 2  3  2     2.545455
# 3  4  4     3.527273
# 4  5  4     4.509091

Calculating the Mean Squared Error with Scikit-Learn

The simplest way to calculate a mean squared error is to use Scikit-Learn (sklearn). The metrics module comes with a function, mean_squared_error() which allows you to pass in true and predicted values.

Let’s see how to calculate the MSE with sklearn:

# Calculating the MSE with sklearn
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(df['y'], df['y_predicted'])
print(mse)

# Returns: 0.24727272727272714

This approach works very well when you’re already importing Scikit-Learn. That said, the function works easily on a Pandas DataFrame, as shown above.

In the next section, you’ll learn how to calculate the MSE with Numpy using a custom function.

Calculating the Mean Squared Error from Scratch using Numpy

Numpy itself doesn’t come with a function to calculate the mean squared error, but you can easily define a custom function to do this. We can make use of the subtract() function to subtract arrays element-wise.

# Definiting a custom function to calculate the MSE
import numpy as np

def mse(actual, predicted):
    actual = np.array(actual)
    predicted = np.array(predicted)
    differences = np.subtract(actual, predicted)
    squared_differences = np.square(differences)
    return squared_differences.mean()

print(mse(df['y'], df['y_predicted']))

# Returns: 0.24727272727272714

The code above is a bit verbose, but it shows how the function operates. We can cut down the code significantly, as shown below:

# A shorter version of the code above
import numpy as np

def mse(actual, predicted):
    return np.square(np.subtract(np.array(actual), np.array(predicted))).mean()

print(mse(df['y'], df['y_predicted']))

# Returns: 0.24727272727272714

Conclusion

In this tutorial, you learned what the mean squared error is and how it can be calculated using Python. First, you learned how to use Scikit-Learn’s mean_squared_error() function and then you built a custom function using Numpy.

The MSE is an important metric to use in evaluating the performance of your machine learning models. While Scikit-Learn abstracts the way in which the metric is calculated, understanding how it can be implemented from scratch can be a helpful tool.

Additional Resources

To learn more about related topics, check out the tutorials below:

  • Pandas Variance: Calculating Variance of a Pandas Dataframe Column
  • Calculate the Pearson Correlation Coefficient in Python
  • How to Calculate a Z-Score in Python (4 Ways)
  • Official Documentation from Scikit-Learn

Понравилась статья? Поделить с друзьями:
  • Mean square error image
  • Mean square error formula
  • Mean square error calculation
  • Mean relative error
  • Medal of honor spearhead error