Node exit process with error

Node.js JavaScript runtime :sparkles::turtle::rocket::sparkles: - node/process.md at main · nodejs/node

The process object provides information about, and control over, the current
Node.js process.

import process from 'node:process';
const process = require('node:process');

Process events

The process object is an instance of EventEmitter.

Event: 'beforeExit'

The 'beforeExit' event is emitted when Node.js empties its event loop and has
no additional work to schedule. Normally, the Node.js process will exit when
there is no work scheduled, but a listener registered on the 'beforeExit'
event can make asynchronous calls, and thereby cause the Node.js process to
continue.

The listener callback function is invoked with the value of
process.exitCode passed as the only argument.

The 'beforeExit' event is not emitted for conditions causing explicit
termination, such as calling process.exit() or uncaught exceptions.

The 'beforeExit' should not be used as an alternative to the 'exit' event
unless the intention is to schedule additional work.

import process from 'node:process';

process.on('beforeExit', (code) => {
  console.log('Process beforeExit event with code: ', code);
});

process.on('exit', (code) => {
  console.log('Process exit event with code: ', code);
});

console.log('This message is displayed first.');

// Prints:
// This message is displayed first.
// Process beforeExit event with code: 0
// Process exit event with code: 0
const process = require('node:process');

process.on('beforeExit', (code) => {
  console.log('Process beforeExit event with code: ', code);
});

process.on('exit', (code) => {
  console.log('Process exit event with code: ', code);
});

console.log('This message is displayed first.');

// Prints:
// This message is displayed first.
// Process beforeExit event with code: 0
// Process exit event with code: 0

Event: 'disconnect'

If the Node.js process is spawned with an IPC channel (see the Child Process
and Cluster documentation), the 'disconnect' event will be emitted when
the IPC channel is closed.

Event: 'exit'

  • code {integer}

The 'exit' event is emitted when the Node.js process is about to exit as a
result of either:

  • The process.exit() method being called explicitly;
  • The Node.js event loop no longer having any additional work to perform.

There is no way to prevent the exiting of the event loop at this point, and once
all 'exit' listeners have finished running the Node.js process will terminate.

The listener callback function is invoked with the exit code specified either
by the process.exitCode property, or the exitCode argument passed to the
process.exit() method.

import process from 'node:process';

process.on('exit', (code) => {
  console.log(`About to exit with code: ${code}`);
});
const process = require('node:process');

process.on('exit', (code) => {
  console.log(`About to exit with code: ${code}`);
});

Listener functions must only perform synchronous operations. The Node.js
process will exit immediately after calling the 'exit' event listeners
causing any additional work still queued in the event loop to be abandoned.
In the following example, for instance, the timeout will never occur:

import process from 'node:process';

process.on('exit', (code) => {
  setTimeout(() => {
    console.log('This will not run');
  }, 0);
});
const process = require('node:process');

process.on('exit', (code) => {
  setTimeout(() => {
    console.log('This will not run');
  }, 0);
});

Event: 'message'

  • message { Object | boolean | number | string | null } a parsed JSON object
    or a serializable primitive value.
  • sendHandle {net.Server|net.Socket} a net.Server or net.Socket
    object, or undefined.

If the Node.js process is spawned with an IPC channel (see the Child Process
and Cluster documentation), the 'message' event is emitted whenever a
message sent by a parent process using childprocess.send() is received by
the child process.

The message goes through serialization and parsing. The resulting message might
not be the same as what is originally sent.

If the serialization option was set to advanced used when spawning the
process, the message argument can contain data that JSON is not able
to represent.
See Advanced serialization for child_process for more details.

Event: 'multipleResolves'

Stability: 0 — Deprecated

  • type {string} The resolution type. One of 'resolve' or 'reject'.
  • promise {Promise} The promise that resolved or rejected more than once.
  • value {any} The value with which the promise was either resolved or
    rejected after the original resolve.

The 'multipleResolves' event is emitted whenever a Promise has been either:

  • Resolved more than once.
  • Rejected more than once.
  • Rejected after resolve.
  • Resolved after reject.

This is useful for tracking potential errors in an application while using the
Promise constructor, as multiple resolutions are silently swallowed. However,
the occurrence of this event does not necessarily indicate an error. For
example, Promise.race() can trigger a 'multipleResolves' event.

Because of the unreliability of the event in cases like the
Promise.race() example above it has been deprecated.

import process from 'node:process';

process.on('multipleResolves', (type, promise, reason) => {
  console.error(type, promise, reason);
  setImmediate(() => process.exit(1));
});

async function main() {
  try {
    return await new Promise((resolve, reject) => {
      resolve('First call');
      resolve('Swallowed resolve');
      reject(new Error('Swallowed reject'));
    });
  } catch {
    throw new Error('Failed');
  }
}

main().then(console.log);
// resolve: Promise { 'First call' } 'Swallowed resolve'
// reject: Promise { 'First call' } Error: Swallowed reject
//     at Promise (*)
//     at new Promise (<anonymous>)
//     at main (*)
// First call
const process = require('node:process');

process.on('multipleResolves', (type, promise, reason) => {
  console.error(type, promise, reason);
  setImmediate(() => process.exit(1));
});

async function main() {
  try {
    return await new Promise((resolve, reject) => {
      resolve('First call');
      resolve('Swallowed resolve');
      reject(new Error('Swallowed reject'));
    });
  } catch {
    throw new Error('Failed');
  }
}

main().then(console.log);
// resolve: Promise { 'First call' } 'Swallowed resolve'
// reject: Promise { 'First call' } Error: Swallowed reject
//     at Promise (*)
//     at new Promise (<anonymous>)
//     at main (*)
// First call

Event: 'rejectionHandled'

  • promise {Promise} The late handled promise.

The 'rejectionHandled' event is emitted whenever a Promise has been rejected
and an error handler was attached to it (using promise.catch(), for
example) later than one turn of the Node.js event loop.

The Promise object would have previously been emitted in an
'unhandledRejection' event, but during the course of processing gained a
rejection handler.

There is no notion of a top level for a Promise chain at which rejections can
always be handled. Being inherently asynchronous in nature, a Promise
rejection can be handled at a future point in time, possibly much later than
the event loop turn it takes for the 'unhandledRejection' event to be emitted.

Another way of stating this is that, unlike in synchronous code where there is
an ever-growing list of unhandled exceptions, with Promises there can be a
growing-and-shrinking list of unhandled rejections.

In synchronous code, the 'uncaughtException' event is emitted when the list of
unhandled exceptions grows.

In asynchronous code, the 'unhandledRejection' event is emitted when the list
of unhandled rejections grows, and the 'rejectionHandled' event is emitted
when the list of unhandled rejections shrinks.

import process from 'node:process';

const unhandledRejections = new Map();
process.on('unhandledRejection', (reason, promise) => {
  unhandledRejections.set(promise, reason);
});
process.on('rejectionHandled', (promise) => {
  unhandledRejections.delete(promise);
});
const process = require('node:process');

const unhandledRejections = new Map();
process.on('unhandledRejection', (reason, promise) => {
  unhandledRejections.set(promise, reason);
});
process.on('rejectionHandled', (promise) => {
  unhandledRejections.delete(promise);
});

In this example, the unhandledRejections Map will grow and shrink over time,
reflecting rejections that start unhandled and then become handled. It is
possible to record such errors in an error log, either periodically (which is
likely best for long-running application) or upon process exit (which is likely
most convenient for scripts).

Event: 'uncaughtException'

  • err {Error} The uncaught exception.
  • origin {string} Indicates if the exception originates from an unhandled
    rejection or from a synchronous error. Can either be 'uncaughtException' or
    'unhandledRejection'. The latter is used when an exception happens in a
    Promise based async context (or if a Promise is rejected) and
    --unhandled-rejections flag set to strict or throw (which is the
    default) and the rejection is not handled, or when a rejection happens during
    the command line entry point’s ES module static loading phase.

The 'uncaughtException' event is emitted when an uncaught JavaScript
exception bubbles all the way back to the event loop. By default, Node.js
handles such exceptions by printing the stack trace to stderr and exiting
with code 1, overriding any previously set process.exitCode.
Adding a handler for the 'uncaughtException' event overrides this default
behavior. Alternatively, change the process.exitCode in the
'uncaughtException' handler which will result in the process exiting with the
provided exit code. Otherwise, in the presence of such handler the process will
exit with 0.

import process from 'node:process';

process.on('uncaughtException', (err, origin) => {
  fs.writeSync(
    process.stderr.fd,
    `Caught exception: ${err}n` +
    `Exception origin: ${origin}`,
  );
});

setTimeout(() => {
  console.log('This will still run.');
}, 500);

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
console.log('This will not run.');
const process = require('node:process');

process.on('uncaughtException', (err, origin) => {
  fs.writeSync(
    process.stderr.fd,
    `Caught exception: ${err}n` +
    `Exception origin: ${origin}`,
  );
});

setTimeout(() => {
  console.log('This will still run.');
}, 500);

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
console.log('This will not run.');

It is possible to monitor 'uncaughtException' events without overriding the
default behavior to exit the process by installing a
'uncaughtExceptionMonitor' listener.

Warning: Using 'uncaughtException' correctly

'uncaughtException' is a crude mechanism for exception handling
intended to be used only as a last resort. The event should not be used as
an equivalent to On Error Resume Next. Unhandled exceptions inherently mean
that an application is in an undefined state. Attempting to resume application
code without properly recovering from the exception can cause additional
unforeseen and unpredictable issues.

Exceptions thrown from within the event handler will not be caught. Instead the
process will exit with a non-zero exit code and the stack trace will be printed.
This is to avoid infinite recursion.

Attempting to resume normally after an uncaught exception can be similar to
pulling out the power cord when upgrading a computer. Nine out of ten
times, nothing happens. But the tenth time, the system becomes corrupted.

The correct use of 'uncaughtException' is to perform synchronous cleanup
of allocated resources (e.g. file descriptors, handles, etc) before shutting
down the process. It is not safe to resume normal operation after
'uncaughtException'.

To restart a crashed application in a more reliable way, whether
'uncaughtException' is emitted or not, an external monitor should be employed
in a separate process to detect application failures and recover or restart as
needed.

Event: 'uncaughtExceptionMonitor'

  • err {Error} The uncaught exception.
  • origin {string} Indicates if the exception originates from an unhandled
    rejection or from synchronous errors. Can either be 'uncaughtException' or
    'unhandledRejection'. The latter is used when an exception happens in a
    Promise based async context (or if a Promise is rejected) and
    --unhandled-rejections flag set to strict or throw (which is the
    default) and the rejection is not handled, or when a rejection happens during
    the command line entry point’s ES module static loading phase.

The 'uncaughtExceptionMonitor' event is emitted before an
'uncaughtException' event is emitted or a hook installed via
process.setUncaughtExceptionCaptureCallback() is called.

Installing an 'uncaughtExceptionMonitor' listener does not change the behavior
once an 'uncaughtException' event is emitted. The process will
still crash if no 'uncaughtException' listener is installed.

import process from 'node:process';

process.on('uncaughtExceptionMonitor', (err, origin) => {
  MyMonitoringTool.logSync(err, origin);
});

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
// Still crashes Node.js
const process = require('node:process');

process.on('uncaughtExceptionMonitor', (err, origin) => {
  MyMonitoringTool.logSync(err, origin);
});

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
// Still crashes Node.js

Event: 'unhandledRejection'

  • reason {Error|any} The object with which the promise was rejected
    (typically an Error object).
  • promise {Promise} The rejected promise.

The 'unhandledRejection' event is emitted whenever a Promise is rejected and
no error handler is attached to the promise within a turn of the event loop.
When programming with Promises, exceptions are encapsulated as «rejected
promises». Rejections can be caught and handled using promise.catch() and
are propagated through a Promise chain. The 'unhandledRejection' event is
useful for detecting and keeping track of promises that were rejected whose
rejections have not yet been handled.

import process from 'node:process';

process.on('unhandledRejection', (reason, promise) => {
  console.log('Unhandled Rejection at:', promise, 'reason:', reason);
  // Application specific logging, throwing an error, or other logic here
});

somePromise.then((res) => {
  return reportToUser(JSON.pasre(res)); // Note the typo (`pasre`)
}); // No `.catch()` or `.then()`
const process = require('node:process');

process.on('unhandledRejection', (reason, promise) => {
  console.log('Unhandled Rejection at:', promise, 'reason:', reason);
  // Application specific logging, throwing an error, or other logic here
});

somePromise.then((res) => {
  return reportToUser(JSON.pasre(res)); // Note the typo (`pasre`)
}); // No `.catch()` or `.then()`

The following will also trigger the 'unhandledRejection' event to be
emitted:

import process from 'node:process';

function SomeResource() {
  // Initially set the loaded status to a rejected promise
  this.loaded = Promise.reject(new Error('Resource not yet loaded!'));
}

const resource = new SomeResource();
// no .catch or .then on resource.loaded for at least a turn
const process = require('node:process');

function SomeResource() {
  // Initially set the loaded status to a rejected promise
  this.loaded = Promise.reject(new Error('Resource not yet loaded!'));
}

const resource = new SomeResource();
// no .catch or .then on resource.loaded for at least a turn

In this example case, it is possible to track the rejection as a developer error
as would typically be the case for other 'unhandledRejection' events. To
address such failures, a non-operational
.catch(() => { }) handler may be attached to
resource.loaded, which would prevent the 'unhandledRejection' event from
being emitted.

Event: 'warning'

  • warning {Error} Key properties of the warning are:
    • name {string} The name of the warning. Default: 'Warning'.
    • message {string} A system-provided description of the warning.
    • stack {string} A stack trace to the location in the code where the warning
      was issued.

The 'warning' event is emitted whenever Node.js emits a process warning.

A process warning is similar to an error in that it describes exceptional
conditions that are being brought to the user’s attention. However, warnings
are not part of the normal Node.js and JavaScript error handling flow.
Node.js can emit warnings whenever it detects bad coding practices that could
lead to sub-optimal application performance, bugs, or security vulnerabilities.

import process from 'node:process';

process.on('warning', (warning) => {
  console.warn(warning.name);    // Print the warning name
  console.warn(warning.message); // Print the warning message
  console.warn(warning.stack);   // Print the stack trace
});
const process = require('node:process');

process.on('warning', (warning) => {
  console.warn(warning.name);    // Print the warning name
  console.warn(warning.message); // Print the warning message
  console.warn(warning.stack);   // Print the stack trace
});

By default, Node.js will print process warnings to stderr. The --no-warnings
command-line option can be used to suppress the default console output but the
'warning' event will still be emitted by the process object.

The following example illustrates the warning that is printed to stderr when
too many listeners have been added to an event:

$ node
> events.defaultMaxListeners = 1;
> process.on('foo', () => {});
> process.on('foo', () => {});
> (node:38638) MaxListenersExceededWarning: Possible EventEmitter memory leak
detected. 2 foo listeners added. Use emitter.setMaxListeners() to increase limit

In contrast, the following example turns off the default warning output and
adds a custom handler to the 'warning' event:

$ node --no-warnings
> const p = process.on('warning', (warning) => console.warn('Do not do that!'));
> events.defaultMaxListeners = 1;
> process.on('foo', () => {});
> process.on('foo', () => {});
> Do not do that!

The --trace-warnings command-line option can be used to have the default
console output for warnings include the full stack trace of the warning.

Launching Node.js using the --throw-deprecation command-line flag will
cause custom deprecation warnings to be thrown as exceptions.

Using the --trace-deprecation command-line flag will cause the custom
deprecation to be printed to stderr along with the stack trace.

Using the --no-deprecation command-line flag will suppress all reporting
of the custom deprecation.

The *-deprecation command-line flags only affect warnings that use the name
'DeprecationWarning'.

Event: 'worker'

  • worker {Worker} The {Worker} that was created.

The 'worker' event is emitted after a new {Worker} thread has been created.

Emitting custom warnings

See the process.emitWarning() method for issuing
custom or application-specific warnings.

Node.js warning names

There are no strict guidelines for warning types (as identified by the name
property) emitted by Node.js. New types of warnings can be added at any time.
A few of the warning types that are most common include:

  • 'DeprecationWarning' — Indicates use of a deprecated Node.js API or feature.
    Such warnings must include a 'code' property identifying the
    deprecation code.
  • 'ExperimentalWarning' — Indicates use of an experimental Node.js API or
    feature. Such features must be used with caution as they may change at any
    time and are not subject to the same strict semantic-versioning and long-term
    support policies as supported features.
  • 'MaxListenersExceededWarning' — Indicates that too many listeners for a
    given event have been registered on either an EventEmitter or EventTarget.
    This is often an indication of a memory leak.
  • 'TimeoutOverflowWarning' — Indicates that a numeric value that cannot fit
    within a 32-bit signed integer has been provided to either the setTimeout()
    or setInterval() functions.
  • 'UnsupportedWarning' — Indicates use of an unsupported option or feature
    that will be ignored rather than treated as an error. One example is use of
    the HTTP response status message when using the HTTP/2 compatibility API.

Signal events

Signal events will be emitted when the Node.js process receives a signal. Please
refer to signal(7) for a listing of standard POSIX signal names such as
'SIGINT', 'SIGHUP', etc.

Signals are not available on Worker threads.

The signal handler will receive the signal’s name ('SIGINT',
'SIGTERM', etc.) as the first argument.

The name of each event will be the uppercase common name for the signal (e.g.
'SIGINT' for SIGINT signals).

import process from 'node:process';

// Begin reading from stdin so the process does not exit.
process.stdin.resume();

process.on('SIGINT', () => {
  console.log('Received SIGINT. Press Control-D to exit.');
});

// Using a single function to handle multiple signals
function handle(signal) {
  console.log(`Received ${signal}`);
}

process.on('SIGINT', handle);
process.on('SIGTERM', handle);
const process = require('node:process');

// Begin reading from stdin so the process does not exit.
process.stdin.resume();

process.on('SIGINT', () => {
  console.log('Received SIGINT. Press Control-D to exit.');
});

// Using a single function to handle multiple signals
function handle(signal) {
  console.log(`Received ${signal}`);
}

process.on('SIGINT', handle);
process.on('SIGTERM', handle);
  • 'SIGUSR1' is reserved by Node.js to start the debugger. It’s possible to
    install a listener but doing so might interfere with the debugger.
  • 'SIGTERM' and 'SIGINT' have default handlers on non-Windows platforms that
    reset the terminal mode before exiting with code 128 + signal number. If one
    of these signals has a listener installed, its default behavior will be
    removed (Node.js will no longer exit).
  • 'SIGPIPE' is ignored by default. It can have a listener installed.
  • 'SIGHUP' is generated on Windows when the console window is closed, and on
    other platforms under various similar conditions. See signal(7). It can have a
    listener installed, however Node.js will be unconditionally terminated by
    Windows about 10 seconds later. On non-Windows platforms, the default
    behavior of SIGHUP is to terminate Node.js, but once a listener has been
    installed its default behavior will be removed.
  • 'SIGTERM' is not supported on Windows, it can be listened on.
  • 'SIGINT' from the terminal is supported on all platforms, and can usually be
    generated with Ctrl+C (though this may be configurable).
    It is not generated when terminal raw mode is enabled
    and Ctrl+C is used.
  • 'SIGBREAK' is delivered on Windows when Ctrl+Break is
    pressed. On non-Windows platforms, it can be listened on, but there is no way
    to send or generate it.
  • 'SIGWINCH' is delivered when the console has been resized. On Windows, this
    will only happen on write to the console when the cursor is being moved, or
    when a readable tty is used in raw mode.
  • 'SIGKILL' cannot have a listener installed, it will unconditionally
    terminate Node.js on all platforms.
  • 'SIGSTOP' cannot have a listener installed.
  • 'SIGBUS', 'SIGFPE', 'SIGSEGV', and 'SIGILL', when not raised
    artificially using kill(2), inherently leave the process in a state from
    which it is not safe to call JS listeners. Doing so might cause the process
    to stop responding.
  • 0 can be sent to test for the existence of a process, it has no effect if
    the process exists, but will throw an error if the process does not exist.

Windows does not support signals so has no equivalent to termination by signal,
but Node.js offers some emulation with process.kill(), and
subprocess.kill():

  • Sending SIGINT, SIGTERM, and SIGKILL will cause the unconditional
    termination of the target process, and afterwards, subprocess will report that
    the process was terminated by signal.
  • Sending signal 0 can be used as a platform independent way to test for the
    existence of a process.

process.abort()

The process.abort() method causes the Node.js process to exit immediately and
generate a core file.

This feature is not available in Worker threads.

process.allowedNodeEnvironmentFlags

  • {Set}

The process.allowedNodeEnvironmentFlags property is a special,
read-only Set of flags allowable within the NODE_OPTIONS
environment variable.

process.allowedNodeEnvironmentFlags extends Set, but overrides
Set.prototype.has to recognize several different possible flag
representations. process.allowedNodeEnvironmentFlags.has() will
return true in the following cases:

  • Flags may omit leading single (-) or double (--) dashes; e.g.,
    inspect-brk for --inspect-brk, or r for -r.
  • Flags passed through to V8 (as listed in --v8-options) may replace
    one or more non-leading dashes for an underscore, or vice-versa;
    e.g., --perf_basic_prof, --perf-basic-prof, --perf_basic-prof,
    etc.
  • Flags may contain one or more equals (=) characters; all
    characters after and including the first equals will be ignored;
    e.g., --stack-trace-limit=100.
  • Flags must be allowable within NODE_OPTIONS.

When iterating over process.allowedNodeEnvironmentFlags, flags will
appear only once; each will begin with one or more dashes. Flags
passed through to V8 will contain underscores instead of non-leading
dashes:

import { allowedNodeEnvironmentFlags } from 'node:process';

allowedNodeEnvironmentFlags.forEach((flag) => {
  // -r
  // --inspect-brk
  // --abort_on_uncaught_exception
  // ...
});
const { allowedNodeEnvironmentFlags } = require('node:process');

allowedNodeEnvironmentFlags.forEach((flag) => {
  // -r
  // --inspect-brk
  // --abort_on_uncaught_exception
  // ...
});

The methods add(), clear(), and delete() of
process.allowedNodeEnvironmentFlags do nothing, and will fail
silently.

If Node.js was compiled without NODE_OPTIONS support (shown in
process.config), process.allowedNodeEnvironmentFlags will
contain what would have been allowable.

process.arch

  • {string}

The operating system CPU architecture for which the Node.js binary was compiled.
Possible values are: 'arm', 'arm64', 'ia32', 'mips','mipsel', 'ppc',
'ppc64', 's390', 's390x', and 'x64'.

import { arch } from 'node:process';

console.log(`This processor architecture is ${arch}`);
const { arch } = require('node:process');

console.log(`This processor architecture is ${arch}`);

process.argv

  • {string[]}

The process.argv property returns an array containing the command-line
arguments passed when the Node.js process was launched. The first element will
be process.execPath. See process.argv0 if access to the original value
of argv[0] is needed. The second element will be the path to the JavaScript
file being executed. The remaining elements will be any additional command-line
arguments.

For example, assuming the following script for process-args.js:

import { argv } from 'node:process';

// print process.argv
argv.forEach((val, index) => {
  console.log(`${index}: ${val}`);
});
const { argv } = require('node:process');

// print process.argv
argv.forEach((val, index) => {
  console.log(`${index}: ${val}`);
});

Launching the Node.js process as:

$ node process-args.js one two=three four

Would generate the output:

0: /usr/local/bin/node
1: /Users/mjr/work/node/process-args.js
2: one
3: two=three
4: four

process.argv0

  • {string}

The process.argv0 property stores a read-only copy of the original value of
argv[0] passed when Node.js starts.

$ bash -c 'exec -a customArgv0 ./node'
> process.argv[0]
'/Volumes/code/external/node/out/Release/node'
> process.argv0
'customArgv0'

process.channel

  • {Object}

If the Node.js process was spawned with an IPC channel (see the
Child Process documentation), the process.channel
property is a reference to the IPC channel. If no IPC channel exists, this
property is undefined.

process.channel.ref()

This method makes the IPC channel keep the event loop of the process
running if .unref() has been called before.

Typically, this is managed through the number of 'disconnect' and 'message'
listeners on the process object. However, this method can be used to
explicitly request a specific behavior.

process.channel.unref()

This method makes the IPC channel not keep the event loop of the process
running, and lets it finish even while the channel is open.

Typically, this is managed through the number of 'disconnect' and 'message'
listeners on the process object. However, this method can be used to
explicitly request a specific behavior.

process.chdir(directory)

  • directory {string}

The process.chdir() method changes the current working directory of the
Node.js process or throws an exception if doing so fails (for instance, if
the specified directory does not exist).

import { chdir, cwd } from 'node:process';

console.log(`Starting directory: ${cwd()}`);
try {
  chdir('/tmp');
  console.log(`New directory: ${cwd()}`);
} catch (err) {
  console.error(`chdir: ${err}`);
}
const { chdir, cwd } = require('node:process');

console.log(`Starting directory: ${cwd()}`);
try {
  chdir('/tmp');
  console.log(`New directory: ${cwd()}`);
} catch (err) {
  console.error(`chdir: ${err}`);
}

This feature is not available in Worker threads.

process.config

  • {Object}

The process.config property returns a frozen Object containing the
JavaScript representation of the configure options used to compile the current
Node.js executable. This is the same as the config.gypi file that was produced
when running the ./configure script.

An example of the possible output looks like:

{
  target_defaults:
   { cflags: [],
     default_configuration: 'Release',
     defines: [],
     include_dirs: [],
     libraries: [] },
  variables:
   {
     host_arch: 'x64',
     napi_build_version: 5,
     node_install_npm: 'true',
     node_prefix: '',
     node_shared_cares: 'false',
     node_shared_http_parser: 'false',
     node_shared_libuv: 'false',
     node_shared_zlib: 'false',
     node_use_openssl: 'true',
     node_shared_openssl: 'false',
     strict_aliasing: 'true',
     target_arch: 'x64',
     v8_use_snapshot: 1
   }
}

process.connected

  • {boolean}

If the Node.js process is spawned with an IPC channel (see the Child Process
and Cluster documentation), the process.connected property will return
true so long as the IPC channel is connected and will return false after
process.disconnect() is called.

Once process.connected is false, it is no longer possible to send messages
over the IPC channel using process.send().

process.constrainedMemory()

Stability: 1 — Experimental

  • {number|undefined}

Gets the amount of memory available to the process (in bytes) based on
limits imposed by the OS. If there is no such constraint, or the constraint
is unknown, undefined is returned.

See uv_get_constrained_memory for more
information.

process.cpuUsage([previousValue])

  • previousValue {Object} A previous return value from calling
    process.cpuUsage()
  • Returns: {Object}
    • user {integer}
    • system {integer}

The process.cpuUsage() method returns the user and system CPU time usage of
the current process, in an object with properties user and system, whose
values are microsecond values (millionth of a second). These values measure time
spent in user and system code respectively, and may end up being greater than
actual elapsed time if multiple CPU cores are performing work for this process.

The result of a previous call to process.cpuUsage() can be passed as the
argument to the function, to get a diff reading.

import { cpuUsage } from 'node:process';

const startUsage = cpuUsage();
// { user: 38579, system: 6986 }

// spin the CPU for 500 milliseconds
const now = Date.now();
while (Date.now() - now < 500);

console.log(cpuUsage(startUsage));
// { user: 514883, system: 11226 }
const { cpuUsage } = require('node:process');

const startUsage = cpuUsage();
// { user: 38579, system: 6986 }

// spin the CPU for 500 milliseconds
const now = Date.now();
while (Date.now() - now < 500);

console.log(cpuUsage(startUsage));
// { user: 514883, system: 11226 }

process.cwd()

  • Returns: {string}

The process.cwd() method returns the current working directory of the Node.js
process.

import { cwd } from 'node:process';

console.log(`Current directory: ${cwd()}`);
const { cwd } = require('node:process');

console.log(`Current directory: ${cwd()}`);

process.debugPort

  • {number}

The port used by the Node.js debugger when enabled.

import process from 'node:process';

process.debugPort = 5858;
const process = require('node:process');

process.debugPort = 5858;

process.disconnect()

If the Node.js process is spawned with an IPC channel (see the Child Process
and Cluster documentation), the process.disconnect() method will close the
IPC channel to the parent process, allowing the child process to exit gracefully
once there are no other connections keeping it alive.

The effect of calling process.disconnect() is the same as calling
ChildProcess.disconnect() from the parent process.

If the Node.js process was not spawned with an IPC channel,
process.disconnect() will be undefined.

process.dlopen(module, filename[, flags])

  • module {Object}
  • filename {string}
  • flags {os.constants.dlopen} Default: os.constants.dlopen.RTLD_LAZY

The process.dlopen() method allows dynamically loading shared objects. It is
primarily used by require() to load C++ Addons, and should not be used
directly, except in special cases. In other words, require() should be
preferred over process.dlopen() unless there are specific reasons such as
custom dlopen flags or loading from ES modules.

The flags argument is an integer that allows to specify dlopen
behavior. See the os.constants.dlopen documentation for details.

An important requirement when calling process.dlopen() is that the module
instance must be passed. Functions exported by the C++ Addon are then
accessible via module.exports.

The example below shows how to load a C++ Addon, named local.node,
that exports a foo function. All the symbols are loaded before
the call returns, by passing the RTLD_NOW constant. In this example
the constant is assumed to be available.

import { dlopen } from 'node:process';
import { constants } from 'node:os';
import { fileURLToPath } from 'node:url';

const module = { exports: {} };
dlopen(module, fileURLToPath(new URL('local.node', import.meta.url)),
       constants.dlopen.RTLD_NOW);
module.exports.foo();
const { dlopen } = require('node:process');
const { constants } = require('node:os');
const { join } = require('node:path');

const module = { exports: {} };
dlopen(module, join(__dirname, 'local.node'), constants.dlopen.RTLD_NOW);
module.exports.foo();

process.emitWarning(warning[, options])

  • warning {string|Error} The warning to emit.
  • options {Object}
    • type {string} When warning is a String, type is the name to use
      for the type of warning being emitted. Default: 'Warning'.
    • code {string} A unique identifier for the warning instance being emitted.
    • ctor {Function} When warning is a String, ctor is an optional
      function used to limit the generated stack trace. Default:
      process.emitWarning.
    • detail {string} Additional text to include with the error.

The process.emitWarning() method can be used to emit custom or application
specific process warnings. These can be listened for by adding a handler to the
'warning' event.

import { emitWarning } from 'node:process';

// Emit a warning with a code and additional detail.
emitWarning('Something happened!', {
  code: 'MY_WARNING',
  detail: 'This is some additional information',
});
// Emits:
// (node:56338) [MY_WARNING] Warning: Something happened!
// This is some additional information
const { emitWarning } = require('node:process');

// Emit a warning with a code and additional detail.
emitWarning('Something happened!', {
  code: 'MY_WARNING',
  detail: 'This is some additional information',
});
// Emits:
// (node:56338) [MY_WARNING] Warning: Something happened!
// This is some additional information

In this example, an Error object is generated internally by
process.emitWarning() and passed through to the
'warning' handler.

import process from 'node:process';

process.on('warning', (warning) => {
  console.warn(warning.name);    // 'Warning'
  console.warn(warning.message); // 'Something happened!'
  console.warn(warning.code);    // 'MY_WARNING'
  console.warn(warning.stack);   // Stack trace
  console.warn(warning.detail);  // 'This is some additional information'
});
const process = require('node:process');

process.on('warning', (warning) => {
  console.warn(warning.name);    // 'Warning'
  console.warn(warning.message); // 'Something happened!'
  console.warn(warning.code);    // 'MY_WARNING'
  console.warn(warning.stack);   // Stack trace
  console.warn(warning.detail);  // 'This is some additional information'
});

If warning is passed as an Error object, the options argument is ignored.

process.emitWarning(warning[, type[, code]][, ctor])

  • warning {string|Error} The warning to emit.
  • type {string} When warning is a String, type is the name to use
    for the type of warning being emitted. Default: 'Warning'.
  • code {string} A unique identifier for the warning instance being emitted.
  • ctor {Function} When warning is a String, ctor is an optional
    function used to limit the generated stack trace. Default:
    process.emitWarning.

The process.emitWarning() method can be used to emit custom or application
specific process warnings. These can be listened for by adding a handler to the
'warning' event.

import { emitWarning } from 'node:process';

// Emit a warning using a string.
emitWarning('Something happened!');
// Emits: (node: 56338) Warning: Something happened!
const { emitWarning } = require('node:process');

// Emit a warning using a string.
emitWarning('Something happened!');
// Emits: (node: 56338) Warning: Something happened!
import { emitWarning } from 'node:process';

// Emit a warning using a string and a type.
emitWarning('Something Happened!', 'CustomWarning');
// Emits: (node:56338) CustomWarning: Something Happened!
const { emitWarning } = require('node:process');

// Emit a warning using a string and a type.
emitWarning('Something Happened!', 'CustomWarning');
// Emits: (node:56338) CustomWarning: Something Happened!
import { emitWarning } from 'node:process';

emitWarning('Something happened!', 'CustomWarning', 'WARN001');
// Emits: (node:56338) [WARN001] CustomWarning: Something happened!
const { emitWarning } = require('node:process');

process.emitWarning('Something happened!', 'CustomWarning', 'WARN001');
// Emits: (node:56338) [WARN001] CustomWarning: Something happened!

In each of the previous examples, an Error object is generated internally by
process.emitWarning() and passed through to the 'warning'
handler.

import process from 'node:process';

process.on('warning', (warning) => {
  console.warn(warning.name);
  console.warn(warning.message);
  console.warn(warning.code);
  console.warn(warning.stack);
});
const process = require('node:process');

process.on('warning', (warning) => {
  console.warn(warning.name);
  console.warn(warning.message);
  console.warn(warning.code);
  console.warn(warning.stack);
});

If warning is passed as an Error object, it will be passed through to the
'warning' event handler unmodified (and the optional type,
code and ctor arguments will be ignored):

import { emitWarning } from 'node:process';

// Emit a warning using an Error object.
const myWarning = new Error('Something happened!');
// Use the Error name property to specify the type name
myWarning.name = 'CustomWarning';
myWarning.code = 'WARN001';

emitWarning(myWarning);
// Emits: (node:56338) [WARN001] CustomWarning: Something happened!
const { emitWarning } = require('node:process');

// Emit a warning using an Error object.
const myWarning = new Error('Something happened!');
// Use the Error name property to specify the type name
myWarning.name = 'CustomWarning';
myWarning.code = 'WARN001';

emitWarning(myWarning);
// Emits: (node:56338) [WARN001] CustomWarning: Something happened!

A TypeError is thrown if warning is anything other than a string or Error
object.

While process warnings use Error objects, the process warning
mechanism is not a replacement for normal error handling mechanisms.

The following additional handling is implemented if the warning type is
'DeprecationWarning':

  • If the --throw-deprecation command-line flag is used, the deprecation
    warning is thrown as an exception rather than being emitted as an event.
  • If the --no-deprecation command-line flag is used, the deprecation
    warning is suppressed.
  • If the --trace-deprecation command-line flag is used, the deprecation
    warning is printed to stderr along with the full stack trace.

Avoiding duplicate warnings

As a best practice, warnings should be emitted only once per process. To do
so, place the emitWarning() behind a boolean.

import { emitWarning } from 'node:process';

function emitMyWarning() {
  if (!emitMyWarning.warned) {
    emitMyWarning.warned = true;
    emitWarning('Only warn once!');
  }
}
emitMyWarning();
// Emits: (node: 56339) Warning: Only warn once!
emitMyWarning();
// Emits nothing
const { emitWarning } = require('node:process');

function emitMyWarning() {
  if (!emitMyWarning.warned) {
    emitMyWarning.warned = true;
    emitWarning('Only warn once!');
  }
}
emitMyWarning();
// Emits: (node: 56339) Warning: Only warn once!
emitMyWarning();
// Emits nothing

process.env

  • {Object}

The process.env property returns an object containing the user environment.
See environ(7).

An example of this object looks like:

{
  TERM: 'xterm-256color',
  SHELL: '/usr/local/bin/bash',
  USER: 'maciej',
  PATH: '~/.bin/:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin',
  PWD: '/Users/maciej',
  EDITOR: 'vim',
  SHLVL: '1',
  HOME: '/Users/maciej',
  LOGNAME: 'maciej',
  _: '/usr/local/bin/node'
}

It is possible to modify this object, but such modifications will not be
reflected outside the Node.js process, or (unless explicitly requested)
to other Worker threads.
In other words, the following example would not work:

$ node -e 'process.env.foo = "bar"' && echo $foo

While the following will:

import { env } from 'node:process';

env.foo = 'bar';
console.log(env.foo);
const { env } = require('node:process');

env.foo = 'bar';
console.log(env.foo);

Assigning a property on process.env will implicitly convert the value
to a string. This behavior is deprecated. Future versions of Node.js may
throw an error when the value is not a string, number, or boolean.

import { env } from 'node:process';

env.test = null;
console.log(env.test);
// => 'null'
env.test = undefined;
console.log(env.test);
// => 'undefined'
const { env } = require('node:process');

env.test = null;
console.log(env.test);
// => 'null'
env.test = undefined;
console.log(env.test);
// => 'undefined'

Use delete to delete a property from process.env.

import { env } from 'node:process';

env.TEST = 1;
delete env.TEST;
console.log(env.TEST);
// => undefined
const { env } = require('node:process');

env.TEST = 1;
delete env.TEST;
console.log(env.TEST);
// => undefined

On Windows operating systems, environment variables are case-insensitive.

import { env } from 'node:process';

env.TEST = 1;
console.log(env.test);
// => 1
const { env } = require('node:process');

env.TEST = 1;
console.log(env.test);
// => 1

Unless explicitly specified when creating a Worker instance,
each Worker thread has its own copy of process.env, based on its
parent thread’s process.env, or whatever was specified as the env option
to the Worker constructor. Changes to process.env will not be visible
across Worker threads, and only the main thread can make changes that
are visible to the operating system or to native add-ons.

process.execArgv

  • {string[]}

The process.execArgv property returns the set of Node.js-specific command-line
options passed when the Node.js process was launched. These options do not
appear in the array returned by the process.argv property, and do not
include the Node.js executable, the name of the script, or any options following
the script name. These options are useful in order to spawn child processes with
the same execution environment as the parent.

$ node --harmony script.js --version

Results in process.execArgv:

And process.argv:

['/usr/local/bin/node', 'script.js', '--version']

Refer to Worker constructor for the detailed behavior of worker
threads with this property.

process.execPath

  • {string}

The process.execPath property returns the absolute pathname of the executable
that started the Node.js process. Symbolic links, if any, are resolved.

process.exit([code])

  • code {integer|string|null|undefined} The exit code. For string type, only
    integer strings (e.g.,’1′) are allowed. Default: 0.

The process.exit() method instructs Node.js to terminate the process
synchronously with an exit status of code. If code is omitted, exit uses
either the ‘success’ code 0 or the value of process.exitCode if it has been
set. Node.js will not terminate until all the 'exit' event listeners are
called.

To exit with a ‘failure’ code:

import { exit } from 'node:process';

exit(1);
const { exit } = require('node:process');

exit(1);

The shell that executed Node.js should see the exit code as 1.

Calling process.exit() will force the process to exit as quickly as possible
even if there are still asynchronous operations pending that have not yet
completed fully, including I/O operations to process.stdout and
process.stderr.

In most situations, it is not actually necessary to call process.exit()
explicitly. The Node.js process will exit on its own if there is no additional
work pending
in the event loop. The process.exitCode property can be set to
tell the process which exit code to use when the process exits gracefully.

For instance, the following example illustrates a misuse of the
process.exit() method that could lead to data printed to stdout being
truncated and lost:

import { exit } from 'node:process';

// This is an example of what *not* to do:
if (someConditionNotMet()) {
  printUsageToStdout();
  exit(1);
}
const { exit } = require('node:process');

// This is an example of what *not* to do:
if (someConditionNotMet()) {
  printUsageToStdout();
  exit(1);
}

The reason this is problematic is because writes to process.stdout in Node.js
are sometimes asynchronous and may occur over multiple ticks of the Node.js
event loop. Calling process.exit(), however, forces the process to exit
before those additional writes to stdout can be performed.

Rather than calling process.exit() directly, the code should set the
process.exitCode and allow the process to exit naturally by avoiding
scheduling any additional work for the event loop:

import process from 'node:process';

// How to properly set the exit code while letting
// the process exit gracefully.
if (someConditionNotMet()) {
  printUsageToStdout();
  process.exitCode = 1;
}
const process = require('node:process');

// How to properly set the exit code while letting
// the process exit gracefully.
if (someConditionNotMet()) {
  printUsageToStdout();
  process.exitCode = 1;
}

If it is necessary to terminate the Node.js process due to an error condition,
throwing an uncaught error and allowing the process to terminate accordingly
is safer than calling process.exit().

In Worker threads, this function stops the current thread rather
than the current process.

process.exitCode

  • {integer|string|null|undefined} The exit code. For string type, only
    integer strings (e.g.,’1′) are allowed. Default: undefined.

A number which will be the process exit code, when the process either
exits gracefully, or is exited via process.exit() without specifying
a code.

Specifying a code to process.exit(code) will override any
previous setting of process.exitCode.

process.getActiveResourcesInfo()

Stability: 1 — Experimental

  • Returns: {string[]}

The process.getActiveResourcesInfo() method returns an array of strings
containing the types of the active resources that are currently keeping the
event loop alive.

import { getActiveResourcesInfo } from 'node:process';
import { setTimeout } from 'node:timers';

console.log('Before:', getActiveResourcesInfo());
setTimeout(() => {}, 1000);
console.log('After:', getActiveResourcesInfo());
// Prints:
//   Before: [ 'CloseReq', 'TTYWrap', 'TTYWrap', 'TTYWrap' ]
//   After: [ 'CloseReq', 'TTYWrap', 'TTYWrap', 'TTYWrap', 'Timeout' ]
const { getActiveResourcesInfo } = require('node:process');
const { setTimeout } = require('node:timers');

console.log('Before:', getActiveResourcesInfo());
setTimeout(() => {}, 1000);
console.log('After:', getActiveResourcesInfo());
// Prints:
//   Before: [ 'TTYWrap', 'TTYWrap', 'TTYWrap' ]
//   After: [ 'TTYWrap', 'TTYWrap', 'TTYWrap', 'Timeout' ]

process.getegid()

The process.getegid() method returns the numerical effective group identity
of the Node.js process. (See getegid(2).)

import process from 'node:process';

if (process.getegid) {
  console.log(`Current gid: ${process.getegid()}`);
}
const process = require('node:process');

if (process.getegid) {
  console.log(`Current gid: ${process.getegid()}`);
}

This function is only available on POSIX platforms (i.e. not Windows or
Android).

process.geteuid()

  • Returns: {Object}

The process.geteuid() method returns the numerical effective user identity of
the process. (See geteuid(2).)

import process from 'node:process';

if (process.geteuid) {
  console.log(`Current uid: ${process.geteuid()}`);
}
const process = require('node:process');

if (process.geteuid) {
  console.log(`Current uid: ${process.geteuid()}`);
}

This function is only available on POSIX platforms (i.e. not Windows or
Android).

process.getgid()

  • Returns: {Object}

The process.getgid() method returns the numerical group identity of the
process. (See getgid(2).)

import process from 'node:process';

if (process.getgid) {
  console.log(`Current gid: ${process.getgid()}`);
}
const process = require('node:process');

if (process.getgid) {
  console.log(`Current gid: ${process.getgid()}`);
}

This function is only available on POSIX platforms (i.e. not Windows or
Android).

process.getgroups()

  • Returns: {integer[]}

The process.getgroups() method returns an array with the supplementary group
IDs. POSIX leaves it unspecified if the effective group ID is included but
Node.js ensures it always is.

import process from 'node:process';

if (process.getgroups) {
  console.log(process.getgroups()); // [ 16, 21, 297 ]
}
const process = require('node:process');

if (process.getgroups) {
  console.log(process.getgroups()); // [ 16, 21, 297 ]
}

This function is only available on POSIX platforms (i.e. not Windows or
Android).

process.getuid()

  • Returns: {integer}

The process.getuid() method returns the numeric user identity of the process.
(See getuid(2).)

import process from 'node:process';

if (process.getuid) {
  console.log(`Current uid: ${process.getuid()}`);
}
const process = require('node:process');

if (process.getuid) {
  console.log(`Current uid: ${process.getuid()}`);
}

This function is only available on POSIX platforms (i.e. not Windows or
Android).

process.hasUncaughtExceptionCaptureCallback()

  • Returns: {boolean}

Indicates whether a callback has been set using
process.setUncaughtExceptionCaptureCallback().

process.hrtime([time])

Stability: 3 — Legacy. Use process.hrtime.bigint() instead.

  • time {integer[]} The result of a previous call to process.hrtime()
  • Returns: {integer[]}

This is the legacy version of process.hrtime.bigint()
before bigint was introduced in JavaScript.

The process.hrtime() method returns the current high-resolution real time
in a [seconds, nanoseconds] tuple Array, where nanoseconds is the
remaining part of the real time that can’t be represented in second precision.

time is an optional parameter that must be the result of a previous
process.hrtime() call to diff with the current time. If the parameter
passed in is not a tuple Array, a TypeError will be thrown. Passing in a
user-defined array instead of the result of a previous call to
process.hrtime() will lead to undefined behavior.

These times are relative to an arbitrary time in the
past, and not related to the time of day and therefore not subject to clock
drift. The primary use is for measuring performance between intervals:

import { hrtime } from 'node:process';

const NS_PER_SEC = 1e9;
const time = hrtime();
// [ 1800216, 25 ]

setTimeout(() => {
  const diff = hrtime(time);
  // [ 1, 552 ]

  console.log(`Benchmark took ${diff[0] * NS_PER_SEC + diff[1]} nanoseconds`);
  // Benchmark took 1000000552 nanoseconds
}, 1000);
const { hrtime } = require('node:process');

const NS_PER_SEC = 1e9;
const time = hrtime();
// [ 1800216, 25 ]

setTimeout(() => {
  const diff = hrtime(time);
  // [ 1, 552 ]

  console.log(`Benchmark took ${diff[0] * NS_PER_SEC + diff[1]} nanoseconds`);
  // Benchmark took 1000000552 nanoseconds
}, 1000);

process.hrtime.bigint()

  • Returns: {bigint}

The bigint version of the process.hrtime() method returning the
current high-resolution real time in nanoseconds as a bigint.

Unlike process.hrtime(), it does not support an additional time
argument since the difference can just be computed directly
by subtraction of the two bigints.

import { hrtime } from 'node:process';

const start = hrtime.bigint();
// 191051479007711n

setTimeout(() => {
  const end = hrtime.bigint();
  // 191052633396993n

  console.log(`Benchmark took ${end - start} nanoseconds`);
  // Benchmark took 1154389282 nanoseconds
}, 1000);
const { hrtime } = require('node:process');

const start = hrtime.bigint();
// 191051479007711n

setTimeout(() => {
  const end = hrtime.bigint();
  // 191052633396993n

  console.log(`Benchmark took ${end - start} nanoseconds`);
  // Benchmark took 1154389282 nanoseconds
}, 1000);

process.initgroups(user, extraGroup)

  • user {string|number} The user name or numeric identifier.
  • extraGroup {string|number} A group name or numeric identifier.

The process.initgroups() method reads the /etc/group file and initializes
the group access list, using all groups of which the user is a member. This is
a privileged operation that requires that the Node.js process either have root
access or the CAP_SETGID capability.

Use care when dropping privileges:

import { getgroups, initgroups, setgid } from 'node:process';

console.log(getgroups());         // [ 0 ]
initgroups('nodeuser', 1000);     // switch user
console.log(getgroups());         // [ 27, 30, 46, 1000, 0 ]
setgid(1000);                     // drop root gid
console.log(getgroups());         // [ 27, 30, 46, 1000 ]
const { getgroups, initgroups, setgid } = require('node:process');

console.log(getgroups());         // [ 0 ]
initgroups('nodeuser', 1000);     // switch user
console.log(getgroups());         // [ 27, 30, 46, 1000, 0 ]
setgid(1000);                     // drop root gid
console.log(getgroups());         // [ 27, 30, 46, 1000 ]

This function is only available on POSIX platforms (i.e. not Windows or
Android).
This feature is not available in Worker threads.

process.kill(pid[, signal])

  • pid {number} A process ID
  • signal {string|number} The signal to send, either as a string or number.
    Default: 'SIGTERM'.

The process.kill() method sends the signal to the process identified by
pid.

Signal names are strings such as 'SIGINT' or 'SIGHUP'. See Signal Events
and kill(2) for more information.

This method will throw an error if the target pid does not exist. As a special
case, a signal of 0 can be used to test for the existence of a process.
Windows platforms will throw an error if the pid is used to kill a process
group.

Even though the name of this function is process.kill(), it is really just a
signal sender, like the kill system call. The signal sent may do something
other than kill the target process.

import process, { kill } from 'node:process';

process.on('SIGHUP', () => {
  console.log('Got SIGHUP signal.');
});

setTimeout(() => {
  console.log('Exiting.');
  process.exit(0);
}, 100);

kill(process.pid, 'SIGHUP');
const process = require('node:process');

process.on('SIGHUP', () => {
  console.log('Got SIGHUP signal.');
});

setTimeout(() => {
  console.log('Exiting.');
  process.exit(0);
}, 100);

process.kill(process.pid, 'SIGHUP');

When SIGUSR1 is received by a Node.js process, Node.js will start the
debugger. See Signal Events.

process.mainModule

Stability: 0 — Deprecated: Use require.main instead.

  • {Object}

The process.mainModule property provides an alternative way of retrieving
require.main. The difference is that if the main module changes at
runtime, require.main may still refer to the original main module in
modules that were required before the change occurred. Generally, it’s
safe to assume that the two refer to the same module.

As with require.main, process.mainModule will be undefined if there
is no entry script.

process.memoryUsage()

  • Returns: {Object}
    • rss {integer}
    • heapTotal {integer}
    • heapUsed {integer}
    • external {integer}
    • arrayBuffers {integer}

Returns an object describing the memory usage of the Node.js process measured in
bytes.

import { memoryUsage } from 'node:process';

console.log(memoryUsage());
// Prints:
// {
//  rss: 4935680,
//  heapTotal: 1826816,
//  heapUsed: 650472,
//  external: 49879,
//  arrayBuffers: 9386
// }
const { memoryUsage } = require('node:process');

console.log(memoryUsage());
// Prints:
// {
//  rss: 4935680,
//  heapTotal: 1826816,
//  heapUsed: 650472,
//  external: 49879,
//  arrayBuffers: 9386
// }
  • heapTotal and heapUsed refer to V8’s memory usage.
  • external refers to the memory usage of C++ objects bound to JavaScript
    objects managed by V8.
  • rss, Resident Set Size, is the amount of space occupied in the main
    memory device (that is a subset of the total allocated memory) for the
    process, including all C++ and JavaScript objects and code.
  • arrayBuffers refers to memory allocated for ArrayBuffers and
    SharedArrayBuffers, including all Node.js Buffers.
    This is also included in the external value. When Node.js is used as an
    embedded library, this value may be 0 because allocations for ArrayBuffers
    may not be tracked in that case.

When using Worker threads, rss will be a value that is valid for the
entire process, while the other fields will only refer to the current thread.

The process.memoryUsage() method iterates over each page to gather
information about memory usage which might be slow depending on the
program memory allocations.

process.memoryUsage.rss()

  • Returns: {integer}

The process.memoryUsage.rss() method returns an integer representing the
Resident Set Size (RSS) in bytes.

The Resident Set Size, is the amount of space occupied in the main
memory device (that is a subset of the total allocated memory) for the
process, including all C++ and JavaScript objects and code.

This is the same value as the rss property provided by process.memoryUsage()
but process.memoryUsage.rss() is faster.

import { memoryUsage } from 'node:process';

console.log(memoryUsage.rss());
// 35655680
const { rss } = require('node:process');

console.log(memoryUsage.rss());
// 35655680

process.nextTick(callback[, ...args])

  • callback {Function}
  • ...args {any} Additional arguments to pass when invoking the callback

process.nextTick() adds callback to the «next tick queue». This queue is
fully drained after the current operation on the JavaScript stack runs to
completion and before the event loop is allowed to continue. It’s possible to
create an infinite loop if one were to recursively call process.nextTick().
See the Event Loop guide for more background.

import { nextTick } from 'node:process';

console.log('start');
nextTick(() => {
  console.log('nextTick callback');
});
console.log('scheduled');
// Output:
// start
// scheduled
// nextTick callback
const { nextTick } = require('node:process');

console.log('start');
nextTick(() => {
  console.log('nextTick callback');
});
console.log('scheduled');
// Output:
// start
// scheduled
// nextTick callback

This is important when developing APIs in order to give users the opportunity
to assign event handlers after an object has been constructed but before any
I/O has occurred:

import { nextTick } from 'node:process';

function MyThing(options) {
  this.setupOptions(options);

  nextTick(() => {
    this.startDoingStuff();
  });
}

const thing = new MyThing();
thing.getReadyForStuff();

// thing.startDoingStuff() gets called now, not before.
const { nextTick } = require('node:process');

function MyThing(options) {
  this.setupOptions(options);

  nextTick(() => {
    this.startDoingStuff();
  });
}

const thing = new MyThing();
thing.getReadyForStuff();

// thing.startDoingStuff() gets called now, not before.

It is very important for APIs to be either 100% synchronous or 100%
asynchronous. Consider this example:

// WARNING!  DO NOT USE!  BAD UNSAFE HAZARD!
function maybeSync(arg, cb) {
  if (arg) {
    cb();
    return;
  }

  fs.stat('file', cb);
}

This API is hazardous because in the following case:

const maybeTrue = Math.random() > 0.5;

maybeSync(maybeTrue, () => {
  foo();
});

bar();

It is not clear whether foo() or bar() will be called first.

The following approach is much better:

import { nextTick } from 'node:process';

function definitelyAsync(arg, cb) {
  if (arg) {
    nextTick(cb);
    return;
  }

  fs.stat('file', cb);
}
const { nextTick } = require('node:process');

function definitelyAsync(arg, cb) {
  if (arg) {
    nextTick(cb);
    return;
  }

  fs.stat('file', cb);
}

When to use queueMicrotask() vs. process.nextTick()

The queueMicrotask() API is an alternative to process.nextTick() that
also defers execution of a function using the same microtask queue used to
execute the then, catch, and finally handlers of resolved promises. Within
Node.js, every time the «next tick queue» is drained, the microtask queue
is drained immediately after.

import { nextTick } from 'node:process';

Promise.resolve().then(() => console.log(2));
queueMicrotask(() => console.log(3));
nextTick(() => console.log(1));
// Output:
// 1
// 2
// 3
const { nextTick } = require('node:process');

Promise.resolve().then(() => console.log(2));
queueMicrotask(() => console.log(3));
nextTick(() => console.log(1));
// Output:
// 1
// 2
// 3

For most userland use cases, the queueMicrotask() API provides a portable
and reliable mechanism for deferring execution that works across multiple
JavaScript platform environments and should be favored over process.nextTick().
In simple scenarios, queueMicrotask() can be a drop-in replacement for
process.nextTick().

console.log('start');
queueMicrotask(() => {
  console.log('microtask callback');
});
console.log('scheduled');
// Output:
// start
// scheduled
// microtask callback

One note-worthy difference between the two APIs is that process.nextTick()
allows specifying additional values that will be passed as arguments to the
deferred function when it is called. Achieving the same result with
queueMicrotask() requires using either a closure or a bound function:

function deferred(a, b) {
  console.log('microtask', a + b);
}

console.log('start');
queueMicrotask(deferred.bind(undefined, 1, 2));
console.log('scheduled');
// Output:
// start
// scheduled
// microtask 3

There are minor differences in the way errors raised from within the next tick
queue and microtask queue are handled. Errors thrown within a queued microtask
callback should be handled within the queued callback when possible. If they are
not, the process.on('uncaughtException') event handler can be used to capture
and handle the errors.

When in doubt, unless the specific capabilities of process.nextTick() are
needed, use queueMicrotask().

process.noDeprecation

  • {boolean}

The process.noDeprecation property indicates whether the --no-deprecation
flag is set on the current Node.js process. See the documentation for
the 'warning' event and the
emitWarning() method for more information about this
flag’s behavior.

process.pid

  • {integer}

The process.pid property returns the PID of the process.

import { pid } from 'node:process';

console.log(`This process is pid ${pid}`);
const { pid } = require('node:process');

console.log(`This process is pid ${pid}`);

process.platform

  • {string}

The process.platform property returns a string identifying the operating
system platform for which the Node.js binary was compiled.

Currently possible values are:

  • 'aix'
  • 'darwin'
  • 'freebsd'
  • 'linux'
  • 'openbsd'
  • 'sunos'
  • 'win32'
import { platform } from 'node:process';

console.log(`This platform is ${platform}`);
const { platform } = require('node:process');

console.log(`This platform is ${platform}`);

The value 'android' may also be returned if the Node.js is built on the
Android operating system. However, Android support in Node.js
is experimental.

process.ppid

  • {integer}

The process.ppid property returns the PID of the parent of the
current process.

import { ppid } from 'node:process';

console.log(`The parent process is pid ${ppid}`);
const { ppid } = require('node:process');

console.log(`The parent process is pid ${ppid}`);

process.release

  • {Object}

The process.release property returns an Object containing metadata related
to the current release, including URLs for the source tarball and headers-only
tarball.

process.release contains the following properties:

  • name {string} A value that will always be 'node'.
  • sourceUrl {string} an absolute URL pointing to a .tar.gz file containing
    the source code of the current release.
  • headersUrl{string} an absolute URL pointing to a .tar.gz file containing
    only the source header files for the current release. This file is
    significantly smaller than the full source file and can be used for compiling
    Node.js native add-ons.
  • libUrl {string|undefined} an absolute URL pointing to a node.lib file
    matching the architecture and version of the current release. This file is
    used for compiling Node.js native add-ons. This property is only present on
    Windows builds of Node.js and will be missing on all other platforms.
  • lts {string|undefined} a string label identifying the LTS label for this
    release. This property only exists for LTS releases and is undefined for all
    other release types, including Current releases. Valid values include the
    LTS Release code names (including those that are no longer supported).

    • 'Fermium' for the 14.x LTS line beginning with 14.15.0.
    • 'Gallium' for the 16.x LTS line beginning with 16.13.0.
    • 'Hydrogen' for the 18.x LTS line beginning with 18.12.0.
      For other LTS Release code names, see Node.js Changelog Archive
{
  name: 'node',
  lts: 'Hydrogen',
  sourceUrl: 'https://nodejs.org/download/release/v18.12.0/node-v18.12.0.tar.gz',
  headersUrl: 'https://nodejs.org/download/release/v18.12.0/node-v18.12.0-headers.tar.gz',
  libUrl: 'https://nodejs.org/download/release/v18.12.0/win-x64/node.lib'
}

In custom builds from non-release versions of the source tree, only the
name property may be present. The additional properties should not be
relied upon to exist.

process.report

  • {Object}

process.report is an object whose methods are used to generate diagnostic
reports for the current process. Additional documentation is available in the
report documentation.

process.report.compact

  • {boolean}

Write reports in a compact format, single-line JSON, more easily consumable
by log processing systems than the default multi-line format designed for
human consumption.

import { report } from 'node:process';

console.log(`Reports are compact? ${report.compact}`);
const { report } = require('node:process');

console.log(`Reports are compact? ${report.compact}`);

process.report.directory

  • {string}

Directory where the report is written. The default value is the empty string,
indicating that reports are written to the current working directory of the
Node.js process.

import { report } from 'node:process';

console.log(`Report directory is ${report.directory}`);
const { report } = require('node:process');

console.log(`Report directory is ${report.directory}`);

process.report.filename

  • {string}

Filename where the report is written. If set to the empty string, the output
filename will be comprised of a timestamp, PID, and sequence number. The default
value is the empty string.

If the value of process.report.filename is set to 'stdout' or 'stderr',
the report is written to the stdout or stderr of the process respectively.

import { report } from 'node:process';

console.log(`Report filename is ${report.filename}`);
const { report } = require('node:process');

console.log(`Report filename is ${report.filename}`);

process.report.getReport([err])

  • err {Error} A custom error used for reporting the JavaScript stack.
  • Returns: {Object}

Returns a JavaScript Object representation of a diagnostic report for the
running process. The report’s JavaScript stack trace is taken from err, if
present.

import { report } from 'node:process';

const data = report.getReport();
console.log(data.header.nodejsVersion);

// Similar to process.report.writeReport()
import fs from 'node:fs';
fs.writeFileSync('my-report.log', util.inspect(data), 'utf8');
const { report } = require('node:process');

const data = report.getReport();
console.log(data.header.nodejsVersion);

// Similar to process.report.writeReport()
const fs = require('node:fs');
fs.writeFileSync('my-report.log', util.inspect(data), 'utf8');

Additional documentation is available in the report documentation.

process.report.reportOnFatalError

  • {boolean}

If true, a diagnostic report is generated on fatal errors, such as out of
memory errors or failed C++ assertions.

import { report } from 'node:process';

console.log(`Report on fatal error: ${report.reportOnFatalError}`);
const { report } = require('node:process');

console.log(`Report on fatal error: ${report.reportOnFatalError}`);

process.report.reportOnSignal

  • {boolean}

If true, a diagnostic report is generated when the process receives the
signal specified by process.report.signal.

import { report } from 'node:process';

console.log(`Report on signal: ${report.reportOnSignal}`);
const { report } = require('node:process');

console.log(`Report on signal: ${report.reportOnSignal}`);

process.report.reportOnUncaughtException

  • {boolean}

If true, a diagnostic report is generated on uncaught exception.

import { report } from 'node:process';

console.log(`Report on exception: ${report.reportOnUncaughtException}`);
const { report } = require('node:process');

console.log(`Report on exception: ${report.reportOnUncaughtException}`);

process.report.signal

  • {string}

The signal used to trigger the creation of a diagnostic report. Defaults to
'SIGUSR2'.

import { report } from 'node:process';

console.log(`Report signal: ${report.signal}`);
const { report } = require('node:process');

console.log(`Report signal: ${report.signal}`);

process.report.writeReport([filename][, err])

  • filename {string} Name of the file where the report is written. This
    should be a relative path, that will be appended to the directory specified in
    process.report.directory, or the current working directory of the Node.js
    process, if unspecified.

  • err {Error} A custom error used for reporting the JavaScript stack.

  • Returns: {string} Returns the filename of the generated report.

Writes a diagnostic report to a file. If filename is not provided, the default
filename includes the date, time, PID, and a sequence number. The report’s
JavaScript stack trace is taken from err, if present.

If the value of filename is set to 'stdout' or 'stderr', the report is
written to the stdout or stderr of the process respectively.

import { report } from 'node:process';

report.writeReport();
const { report } = require('node:process');

report.writeReport();

Additional documentation is available in the report documentation.

process.resourceUsage()

  • Returns: {Object} the resource usage for the current process. All of these
    values come from the uv_getrusage call which returns
    a uv_rusage_t struct.

    • userCPUTime {integer} maps to ru_utime computed in microseconds.
      It is the same value as process.cpuUsage().user.
    • systemCPUTime {integer} maps to ru_stime computed in microseconds.
      It is the same value as process.cpuUsage().system.
    • maxRSS {integer} maps to ru_maxrss which is the maximum resident set
      size used in kilobytes.
    • sharedMemorySize {integer} maps to ru_ixrss but is not supported by
      any platform.
    • unsharedDataSize {integer} maps to ru_idrss but is not supported by
      any platform.
    • unsharedStackSize {integer} maps to ru_isrss but is not supported by
      any platform.
    • minorPageFault {integer} maps to ru_minflt which is the number of
      minor page faults for the process, see
      this article for more details.
    • majorPageFault {integer} maps to ru_majflt which is the number of
      major page faults for the process, see
      this article for more details. This field is not
      supported on Windows.
    • swappedOut {integer} maps to ru_nswap but is not supported by any
      platform.
    • fsRead {integer} maps to ru_inblock which is the number of times the
      file system had to perform input.
    • fsWrite {integer} maps to ru_oublock which is the number of times the
      file system had to perform output.
    • ipcSent {integer} maps to ru_msgsnd but is not supported by any
      platform.
    • ipcReceived {integer} maps to ru_msgrcv but is not supported by any
      platform.
    • signalsCount {integer} maps to ru_nsignals but is not supported by any
      platform.
    • voluntaryContextSwitches {integer} maps to ru_nvcsw which is the
      number of times a CPU context switch resulted due to a process voluntarily
      giving up the processor before its time slice was completed (usually to
      await availability of a resource). This field is not supported on Windows.
    • involuntaryContextSwitches {integer} maps to ru_nivcsw which is the
      number of times a CPU context switch resulted due to a higher priority
      process becoming runnable or because the current process exceeded its
      time slice. This field is not supported on Windows.
import { resourceUsage } from 'node:process';

console.log(resourceUsage());
/*
  Will output:
  {
    userCPUTime: 82872,
    systemCPUTime: 4143,
    maxRSS: 33164,
    sharedMemorySize: 0,
    unsharedDataSize: 0,
    unsharedStackSize: 0,
    minorPageFault: 2469,
    majorPageFault: 0,
    swappedOut: 0,
    fsRead: 0,
    fsWrite: 8,
    ipcSent: 0,
    ipcReceived: 0,
    signalsCount: 0,
    voluntaryContextSwitches: 79,
    involuntaryContextSwitches: 1
  }
*/
const { resourceUsage } = require('node:process');

console.log(resourceUsage());
/*
  Will output:
  {
    userCPUTime: 82872,
    systemCPUTime: 4143,
    maxRSS: 33164,
    sharedMemorySize: 0,
    unsharedDataSize: 0,
    unsharedStackSize: 0,
    minorPageFault: 2469,
    majorPageFault: 0,
    swappedOut: 0,
    fsRead: 0,
    fsWrite: 8,
    ipcSent: 0,
    ipcReceived: 0,
    signalsCount: 0,
    voluntaryContextSwitches: 79,
    involuntaryContextSwitches: 1
  }
*/

process.send(message[, sendHandle[, options]][, callback])

  • message {Object}
  • sendHandle {net.Server|net.Socket}
  • options {Object} used to parameterize the sending of certain types of
    handles.options supports the following properties:

    • keepOpen {boolean} A value that can be used when passing instances of
      net.Socket. When true, the socket is kept open in the sending process.
      Default: false.
  • callback {Function}
  • Returns: {boolean}

If Node.js is spawned with an IPC channel, the process.send() method can be
used to send messages to the parent process. Messages will be received as a
'message' event on the parent’s ChildProcess object.

If Node.js was not spawned with an IPC channel, process.send will be
undefined.

The message goes through serialization and parsing. The resulting message might
not be the same as what is originally sent.

process.setegid(id)

  • id {string|number} A group name or ID

The process.setegid() method sets the effective group identity of the process.
(See setegid(2).) The id can be passed as either a numeric ID or a group
name string. If a group name is specified, this method blocks while resolving
the associated a numeric ID.

import process from 'node:process';

if (process.getegid && process.setegid) {
  console.log(`Current gid: ${process.getegid()}`);
  try {
    process.setegid(501);
    console.log(`New gid: ${process.getegid()}`);
  } catch (err) {
    console.error(`Failed to set gid: ${err}`);
  }
}
const process = require('node:process');

if (process.getegid && process.setegid) {
  console.log(`Current gid: ${process.getegid()}`);
  try {
    process.setegid(501);
    console.log(`New gid: ${process.getegid()}`);
  } catch (err) {
    console.error(`Failed to set gid: ${err}`);
  }
}

This function is only available on POSIX platforms (i.e. not Windows or
Android).
This feature is not available in Worker threads.

process.seteuid(id)

  • id {string|number} A user name or ID

The process.seteuid() method sets the effective user identity of the process.
(See seteuid(2).) The id can be passed as either a numeric ID or a username
string. If a username is specified, the method blocks while resolving the
associated numeric ID.

import process from 'node:process';

if (process.geteuid && process.seteuid) {
  console.log(`Current uid: ${process.geteuid()}`);
  try {
    process.seteuid(501);
    console.log(`New uid: ${process.geteuid()}`);
  } catch (err) {
    console.error(`Failed to set uid: ${err}`);
  }
}
const process = require('node:process');

if (process.geteuid && process.seteuid) {
  console.log(`Current uid: ${process.geteuid()}`);
  try {
    process.seteuid(501);
    console.log(`New uid: ${process.geteuid()}`);
  } catch (err) {
    console.error(`Failed to set uid: ${err}`);
  }
}

This function is only available on POSIX platforms (i.e. not Windows or
Android).
This feature is not available in Worker threads.

process.setgid(id)

  • id {string|number} The group name or ID

The process.setgid() method sets the group identity of the process. (See
setgid(2).) The id can be passed as either a numeric ID or a group name
string. If a group name is specified, this method blocks while resolving the
associated numeric ID.

import process from 'node:process';

if (process.getgid && process.setgid) {
  console.log(`Current gid: ${process.getgid()}`);
  try {
    process.setgid(501);
    console.log(`New gid: ${process.getgid()}`);
  } catch (err) {
    console.error(`Failed to set gid: ${err}`);
  }
}
const process = require('node:process');

if (process.getgid && process.setgid) {
  console.log(`Current gid: ${process.getgid()}`);
  try {
    process.setgid(501);
    console.log(`New gid: ${process.getgid()}`);
  } catch (err) {
    console.error(`Failed to set gid: ${err}`);
  }
}

This function is only available on POSIX platforms (i.e. not Windows or
Android).
This feature is not available in Worker threads.

process.setgroups(groups)

  • groups {integer[]}

The process.setgroups() method sets the supplementary group IDs for the
Node.js process. This is a privileged operation that requires the Node.js
process to have root or the CAP_SETGID capability.

The groups array can contain numeric group IDs, group names, or both.

import process from 'node:process';

if (process.getgroups && process.setgroups) {
  try {
    process.setgroups([501]);
    console.log(process.getgroups()); // new groups
  } catch (err) {
    console.error(`Failed to set groups: ${err}`);
  }
}
const process = require('node:process');

if (process.getgroups && process.setgroups) {
  try {
    process.setgroups([501]);
    console.log(process.getgroups()); // new groups
  } catch (err) {
    console.error(`Failed to set groups: ${err}`);
  }
}

This function is only available on POSIX platforms (i.e. not Windows or
Android).
This feature is not available in Worker threads.

process.setuid(id)

  • id {integer | string}

The process.setuid(id) method sets the user identity of the process. (See
setuid(2).) The id can be passed as either a numeric ID or a username string.
If a username is specified, the method blocks while resolving the associated
numeric ID.

import process from 'node:process';

if (process.getuid && process.setuid) {
  console.log(`Current uid: ${process.getuid()}`);
  try {
    process.setuid(501);
    console.log(`New uid: ${process.getuid()}`);
  } catch (err) {
    console.error(`Failed to set uid: ${err}`);
  }
}
const process = require('node:process');

if (process.getuid && process.setuid) {
  console.log(`Current uid: ${process.getuid()}`);
  try {
    process.setuid(501);
    console.log(`New uid: ${process.getuid()}`);
  } catch (err) {
    console.error(`Failed to set uid: ${err}`);
  }
}

This function is only available on POSIX platforms (i.e. not Windows or
Android).
This feature is not available in Worker threads.

process.setSourceMapsEnabled(val)

Stability: 1 — Experimental

  • val {boolean}

This function enables or disables the Source Map v3 support for
stack traces.

It provides same features as launching Node.js process with commandline options
--enable-source-maps.

Only source maps in JavaScript files that are loaded after source maps has been
enabled will be parsed and loaded.

process.setUncaughtExceptionCaptureCallback(fn)

  • fn {Function|null}

The process.setUncaughtExceptionCaptureCallback() function sets a function
that will be invoked when an uncaught exception occurs, which will receive the
exception value itself as its first argument.

If such a function is set, the 'uncaughtException' event will
not be emitted. If --abort-on-uncaught-exception was passed from the
command line or set through v8.setFlagsFromString(), the process will
not abort. Actions configured to take place on exceptions such as report
generations will be affected too

To unset the capture function,
process.setUncaughtExceptionCaptureCallback(null) may be used. Calling this
method with a non-null argument while another capture function is set will
throw an error.

Using this function is mutually exclusive with using the deprecated
domain built-in module.

process.stderr

  • {Stream}

The process.stderr property returns a stream connected to
stderr (fd 2). It is a net.Socket (which is a Duplex
stream) unless fd 2 refers to a file, in which case it is
a Writable stream.

process.stderr differs from other Node.js streams in important ways. See
note on process I/O for more information.

process.stderr.fd

  • {number}

This property refers to the value of underlying file descriptor of
process.stderr. The value is fixed at 2. In Worker threads,
this field does not exist.

process.stdin

  • {Stream}

The process.stdin property returns a stream connected to
stdin (fd 0). It is a net.Socket (which is a Duplex
stream) unless fd 0 refers to a file, in which case it is
a Readable stream.

For details of how to read from stdin see readable.read().

As a Duplex stream, process.stdin can also be used in «old» mode that
is compatible with scripts written for Node.js prior to v0.10.
For more information see Stream compatibility.

In «old» streams mode the stdin stream is paused by default, so one
must call process.stdin.resume() to read from it. Note also that calling
process.stdin.resume() itself would switch stream to «old» mode.

process.stdin.fd

  • {number}

This property refers to the value of underlying file descriptor of
process.stdin. The value is fixed at 0. In Worker threads,
this field does not exist.

process.stdout

  • {Stream}

The process.stdout property returns a stream connected to
stdout (fd 1). It is a net.Socket (which is a Duplex
stream) unless fd 1 refers to a file, in which case it is
a Writable stream.

For example, to copy process.stdin to process.stdout:

import { stdin, stdout } from 'node:process';

stdin.pipe(stdout);
const { stdin, stdout } = require('node:process');

stdin.pipe(stdout);

process.stdout differs from other Node.js streams in important ways. See
note on process I/O for more information.

process.stdout.fd

  • {number}

This property refers to the value of underlying file descriptor of
process.stdout. The value is fixed at 1. In Worker threads,
this field does not exist.

A note on process I/O

process.stdout and process.stderr differ from other Node.js streams in
important ways:

  1. They are used internally by console.log() and console.error(),
    respectively.
  2. Writes may be synchronous depending on what the stream is connected to
    and whether the system is Windows or POSIX:

    • Files: synchronous on Windows and POSIX
    • TTYs (Terminals): asynchronous on Windows, synchronous on POSIX
    • Pipes (and sockets): synchronous on Windows, asynchronous on POSIX

These behaviors are partly for historical reasons, as changing them would
create backward incompatibility, but they are also expected by some users.

Synchronous writes avoid problems such as output written with console.log() or
console.error() being unexpectedly interleaved, or not written at all if
process.exit() is called before an asynchronous write completes. See
process.exit() for more information.

Warning: Synchronous writes block the event loop until the write has
completed. This can be near instantaneous in the case of output to a file, but
under high system load, pipes that are not being read at the receiving end, or
with slow terminals or file systems, it’s possible for the event loop to be
blocked often enough and long enough to have severe negative performance
impacts. This may not be a problem when writing to an interactive terminal
session, but consider this particularly careful when doing production logging to
the process output streams.

To check if a stream is connected to a TTY context, check the isTTY
property.

For instance:

$ node -p "Boolean(process.stdin.isTTY)"
true
$ echo "foo" | node -p "Boolean(process.stdin.isTTY)"
false
$ node -p "Boolean(process.stdout.isTTY)"
true
$ node -p "Boolean(process.stdout.isTTY)" | cat
false

See the TTY documentation for more information.

process.throwDeprecation

  • {boolean}

The initial value of process.throwDeprecation indicates whether the
--throw-deprecation flag is set on the current Node.js process.
process.throwDeprecation is mutable, so whether or not deprecation
warnings result in errors may be altered at runtime. See the
documentation for the 'warning' event and the
emitWarning() method for more information.

$ node --throw-deprecation -p "process.throwDeprecation"
true
$ node -p "process.throwDeprecation"
undefined
$ node
> process.emitWarning('test', 'DeprecationWarning');
undefined
> (node:26598) DeprecationWarning: test
> process.throwDeprecation = true;
true
> process.emitWarning('test', 'DeprecationWarning');
Thrown:
[DeprecationWarning: test] { name: 'DeprecationWarning' }

process.title

  • {string}

The process.title property returns the current process title (i.e. returns
the current value of ps). Assigning a new value to process.title modifies
the current value of ps.

When a new value is assigned, different platforms will impose different maximum
length restrictions on the title. Usually such restrictions are quite limited.
For instance, on Linux and macOS, process.title is limited to the size of the
binary name plus the length of the command-line arguments because setting the
process.title overwrites the argv memory of the process. Node.js v0.8
allowed for longer process title strings by also overwriting the environ
memory but that was potentially insecure and confusing in some (rather obscure)
cases.

Assigning a value to process.title might not result in an accurate label
within process manager applications such as macOS Activity Monitor or Windows
Services Manager.

process.traceDeprecation

  • {boolean}

The process.traceDeprecation property indicates whether the
--trace-deprecation flag is set on the current Node.js process. See the
documentation for the 'warning' event and the
emitWarning() method for more information about this
flag’s behavior.

process.umask()

Stability: 0 — Deprecated. Calling process.umask() with no argument causes
the process-wide umask to be written twice. This introduces a race condition
between threads, and is a potential security vulnerability. There is no safe,
cross-platform alternative API.

process.umask() returns the Node.js process’s file mode creation mask. Child
processes inherit the mask from the parent process.

process.umask(mask)

  • mask {string|integer}

process.umask(mask) sets the Node.js process’s file mode creation mask. Child
processes inherit the mask from the parent process. Returns the previous mask.

import { umask } from 'node:process';

const newmask = 0o022;
const oldmask = umask(newmask);
console.log(
  `Changed umask from ${oldmask.toString(8)} to ${newmask.toString(8)}`,
);
const { umask } = require('node:process');

const newmask = 0o022;
const oldmask = umask(newmask);
console.log(
  `Changed umask from ${oldmask.toString(8)} to ${newmask.toString(8)}`,
);

In Worker threads, process.umask(mask) will throw an exception.

process.uptime()

  • Returns: {number}

The process.uptime() method returns the number of seconds the current Node.js
process has been running.

The return value includes fractions of a second. Use Math.floor() to get whole
seconds.

process.version

  • {string}

The process.version property contains the Node.js version string.

import { version } from 'node:process';

console.log(`Version: ${version}`);
// Version: v14.8.0
const { version } = require('node:process');

console.log(`Version: ${version}`);
// Version: v14.8.0

To get the version string without the prepended v, use
process.versions.node.

process.versions

  • {Object}

The process.versions property returns an object listing the version strings of
Node.js and its dependencies. process.versions.modules indicates the current
ABI version, which is increased whenever a C++ API changes. Node.js will refuse
to load modules that were compiled against a different module ABI version.

import { versions } from 'node:process';

console.log(versions);
const { versions } = require('node:process');

console.log(versions);

Will generate an object similar to:

{ node: '11.13.0',
  v8: '7.0.276.38-node.18',
  uv: '1.27.0',
  zlib: '1.2.11',
  brotli: '1.0.7',
  ares: '1.15.0',
  modules: '67',
  nghttp2: '1.34.0',
  napi: '4',
  llhttp: '1.1.1',
  openssl: '1.1.1b',
  cldr: '34.0',
  icu: '63.1',
  tz: '2018e',
  unicode: '11.0' }

Exit codes

Node.js will normally exit with a 0 status code when no more async
operations are pending. The following status codes are used in other
cases:

  • 1 Uncaught Fatal Exception: There was an uncaught exception,
    and it was not handled by a domain or an 'uncaughtException' event
    handler.
  • 2: Unused (reserved by Bash for builtin misuse)
  • 3 Internal JavaScript Parse Error: The JavaScript source code
    internal in the Node.js bootstrapping process caused a parse error. This
    is extremely rare, and generally can only happen during development
    of Node.js itself.
  • 4 Internal JavaScript Evaluation Failure: The JavaScript
    source code internal in the Node.js bootstrapping process failed to
    return a function value when evaluated. This is extremely rare, and
    generally can only happen during development of Node.js itself.
  • 5 Fatal Error: There was a fatal unrecoverable error in V8.
    Typically a message will be printed to stderr with the prefix FATAL ERROR.
  • 6 Non-function Internal Exception Handler: There was an
    uncaught exception, but the internal fatal exception handler
    function was somehow set to a non-function, and could not be called.
  • 7 Internal Exception Handler Run-Time Failure: There was an
    uncaught exception, and the internal fatal exception handler
    function itself threw an error while attempting to handle it. This
    can happen, for example, if an 'uncaughtException' or
    domain.on('error') handler throws an error.
  • 8: Unused. In previous versions of Node.js, exit code 8 sometimes
    indicated an uncaught exception.
  • 9 Invalid Argument: Either an unknown option was specified,
    or an option requiring a value was provided without a value.
  • 10 Internal JavaScript Run-Time Failure: The JavaScript
    source code internal in the Node.js bootstrapping process threw an error
    when the bootstrapping function was called. This is extremely rare,
    and generally can only happen during development of Node.js itself.
  • 12 Invalid Debug Argument: The --inspect and/or --inspect-brk
    options were set, but the port number chosen was invalid or unavailable.
  • 13 Unfinished Top-Level Await: await was used outside of a function
    in the top-level code, but the passed Promise never resolved.
  • 14 Snapshot Failure: Node.js was started to build a V8 startup
    snapshot and it failed because certain requirements of the state of
    the application were not met.
  • >128 Signal Exits: If Node.js receives a fatal signal such as
    SIGKILL or SIGHUP, then its exit code will be 128 plus the
    value of the signal code. This is a standard POSIX practice, since
    exit codes are defined to be 7-bit integers, and signal exits set
    the high-order bit, and then contain the value of the signal code.
    For example, signal SIGABRT has value 6, so the expected exit
    code will be 128 + 6, or 134.

The process object is a global object and can be accessed from anywhere.
It is an instance of EventEmitter.

Exit Codes

Node will normally exit with a 0 status code when no more async
operations are pending. The following status codes are used in other
cases:

  • 1 Uncaught Fatal Exception — There was an uncaught exception,
    and it was not handled by a domain or an uncaughtException event
    handler.
  • 2 — Unused (reserved by Bash for builtin misuse)
  • 3 Internal JavaScript Parse Error — The JavaScript source code
    internal in Node’s bootstrapping process caused a parse error. This
    is extremely rare, and generally can only happen during development
    of Node itself.
  • 4 Internal JavaScript Evaluation Failure — The JavaScript
    source code internal in Node’s bootstrapping process failed to
    return a function value when evaluated. This is extremely rare, and
    generally can only happen during development of Node itself.
  • 5 Fatal Error — There was a fatal unrecoverable error in V8.
    Typically a message will be printed to stderr with the prefix FATAL
    ERROR
    .
  • 6 Non-function Internal Exception Handler — There was an
    uncaught exception, but the internal fatal exception handler
    function was somehow set to a non-function, and could not be called.
  • 7 Internal Exception Handler Run-Time Failure — There was an
    uncaught exception, and the internal fatal exception handler
    function itself threw an error while attempting to handle it. This
    can happen, for example, if a process.on('uncaughtException') or
    domain.on('error') handler throws an error.
  • 8 — Unused. In previous versions of Node, exit code 8 sometimes
    indicated an uncaught exception.
  • 9Invalid Argument — Either an unknown option was specified,
    or an option requiring a value was provided without a value.
  • 10 Internal JavaScript Run-Time Failure — The JavaScript
    source code internal in Node’s bootstrapping process threw an error
    when the bootstrapping function was called. This is extremely rare,
    and generally can only happen during development of Node itself.
  • 12 Invalid Debug Argument — The --debug and/or --debug-brk
    options were set, but an invalid port number was chosen.
  • >128 Signal Exits — If Node receives a fatal signal such as
    SIGKILL or SIGHUP, then its exit code will be 128 plus the
    value of the signal code. This is a standard Unix practice, since
    exit codes are defined to be 7-bit integers, and signal exits set
    the high-order bit, and then contain the value of the signal code.

Event: ‘exit’

Emitted when the process is about to exit. There is no way to prevent the
exiting of the event loop at this point, and once all exit listeners have
finished running the process will exit. Therefore you must only perform
synchronous operations in this handler. This is a good hook to perform
checks on the module’s state (like for unit tests). The callback takes one
argument, the code the process is exiting with.

Example of listening for exit:

process.on('exit', function(code) {
  // do *NOT* do this
  setTimeout(function() {
    console.log('This will not run');
  }, 0);
  console.log('About to exit with code:', code);
});

Event: ‘beforeExit’

This event is emitted when node empties it’s event loop and has nothing else to
schedule. Normally, node exits when there is no work scheduled, but a listener
for ‘beforeExit’ can make asynchronous calls, and cause node to continue.

‘beforeExit’ is not emitted for conditions causing explicit termination, such as
process.exit() or uncaught exceptions, and should not be used as an
alternative to the ‘exit’ event unless the intention is to schedule more work.

Event: ‘uncaughtException’

Emitted when an exception bubbles all the way back to the event loop. If a
listener is added for this exception, the default action (which is to print
a stack trace and exit) will not occur.

Example of listening for uncaughtException:

process.on('uncaughtException', function(err) {
  console.log('Caught exception: ' + err);
});

setTimeout(function() {
  console.log('This will still run.');
}, 500);

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
console.log('This will not run.');

Note that uncaughtException is a very crude mechanism for exception
handling.

Don’t use it, use domains instead. If you do use it, restart
your application after every unhandled exception!

Do not use it as the node.js equivalent of On Error Resume Next. An
unhandled exception means your application — and by extension node.js itself —
is in an undefined state. Blindly resuming means anything could happen.

Think of resuming as pulling the power cord when you are upgrading your system.
Nine out of ten times nothing happens — but the 10th time, your system is bust.

You have been warned.

Signal Events

Emitted when the processes receives a signal. See sigaction(2) for a list of
standard POSIX signal names such as SIGINT, SIGHUP, etc.

Example of listening for SIGINT:

// Start reading from stdin so we don't exit.
process.stdin.resume();

process.on('SIGINT', function() {
  console.log('Got SIGINT.  Press Control-D to exit.');
});

An easy way to send the SIGINT signal is with Control-C in most terminal
programs.

Note:

  • SIGUSR1 is reserved by node.js to start the debugger. It’s possible to
    install a listener but that won’t stop the debugger from starting.
  • SIGTERM and SIGINT have default handlers on non-Windows platforms that resets
    the terminal mode before exiting with code 128 + signal number. If one of
    these signals has a listener installed, its default behaviour will be removed
    (node will no longer exit).
  • SIGPIPE is ignored by default, it can have a listener installed.
  • SIGHUP is generated on Windows when the console window is closed, and on other
    platforms under various similar conditions, see signal(7). It can have a
    listener installed, however node will be unconditionally terminated by Windows
    about 10 seconds later. On non-Windows platforms, the default behaviour of
    SIGHUP is to terminate node, but once a listener has been installed its
    default behaviour will be removed.
  • SIGTERM is not supported on Windows, it can be listened on.
  • SIGINT from the terminal is supported on all platforms, and can usually be
    generated with CTRL+C (though this may be configurable). It is not generated
    when terminal raw mode is enabled.
  • SIGBREAK is delivered on Windows when CTRL+BREAK is pressed, on non-Windows
    platforms it can be listened on, but there is no way to send or generate it.
  • SIGWINCH is delivered when the console has been resized. On Windows, this will
    only happen on write to the console when the cursor is being moved, or when a
    readable tty is used in raw mode.
  • SIGKILL cannot have a listener installed, it will unconditionally terminate
    node on all platforms.
  • SIGSTOP cannot have a listener installed.

Note that Windows does not support sending Signals, but node offers some
emulation with process.kill(), and child_process.kill():
— Sending signal 0 can be used to search for the existence of a process
— Sending SIGINT, SIGTERM, and SIGKILL cause the unconditional exit of the
target process.

process.stdout

A Writable Stream to stdout (on fd 1).

Example: the definition of console.log

console.log = function(d) {
  process.stdout.write(d + 'n');
};

process.stderr and process.stdout are unlike other streams in Node in
that they cannot be closed (end() will throw), they never emit the finish
event and that writes are usually blocking.

  • They are blocking in the case that they refer to regular files or TTY file
    descriptors.
  • In the case they refer to pipes:
  • They are blocking in Linux/Unix.
  • They are non-blocking like other streams in Windows.

To check if Node is being run in a TTY context, read the isTTY property
on process.stderr, process.stdout, or process.stdin:

$ node -p "Boolean(process.stdin.isTTY)"
true
$ echo "foo" | node -p "Boolean(process.stdin.isTTY)"
false

$ node -p "Boolean(process.stdout.isTTY)"
true
$ node -p "Boolean(process.stdout.isTTY)" | cat
false

See the tty docs for more information.

process.stderr

A writable stream to stderr (on fd 2).

process.stderr and process.stdout are unlike other streams in Node in
that they cannot be closed (end() will throw), they never emit the finish
event and that writes are usually blocking.

  • They are blocking in the case that they refer to regular files or TTY file
    descriptors.
  • In the case they refer to pipes:
  • They are blocking in Linux/Unix.
  • They are non-blocking like other streams in Windows.

process.stdin

A Readable Stream for stdin (on fd 0).

Example of opening standard input and listening for both events:

process.stdin.setEncoding('utf8');

process.stdin.on('readable', function() {
  var chunk = process.stdin.read();
  if (chunk !== null) {
    process.stdout.write('data: ' + chunk);
  }
});

process.stdin.on('end', function() {
  process.stdout.write('end');
});

As a Stream, process.stdin can also be used in «old» mode that is compatible
with scripts written for node prior v0.10.
For more information see
Stream compatibility.

In «old» Streams mode the stdin stream is paused by default, so one
must call process.stdin.resume() to read from it. Note also that calling
process.stdin.resume() itself would switch stream to «old» mode.

If you are starting a new project you should prefer a more recent «new» Streams
mode over «old» one.

process.argv

An array containing the command line arguments. The first element will be
‘node’, the second element will be the name of the JavaScript file. The
next elements will be any additional command line arguments.

// print process.argv
process.argv.forEach(function(val, index, array) {
  console.log(index + ': ' + val);
});

This will generate:

$ node process-2.js one two=three four
0: node
1: /Users/mjr/work/node/process-2.js
2: one
3: two=three
4: four

process.execPath

This is the absolute pathname of the executable that started the process.

Example:

/usr/local/bin/node

process.execArgv

This is the set of node-specific command line options from the
executable that started the process. These options do not show up in
process.argv, and do not include the node executable, the name of
the script, or any options following the script name. These options
are useful in order to spawn child processes with the same execution
environment as the parent.

Example:

$ node --harmony script.js --version

results in process.execArgv:

['--harmony']

and process.argv:

['/usr/local/bin/node', 'script.js', '--version']

process.abort()

This causes node to emit an abort. This will cause node to exit and
generate a core file.

process.chdir(directory)

Changes the current working directory of the process or throws an exception if that fails.

console.log('Starting directory: ' + process.cwd());
try {
  process.chdir('/tmp');
  console.log('New directory: ' + process.cwd());
}
catch (err) {
  console.log('chdir: ' + err);
}

process.cwd()

Returns the current working directory of the process.

console.log('Current directory: ' + process.cwd());

process.env

An object containing the user environment. See environ(7).

An example of this object looks like:

{ TERM: 'xterm-256color',
  SHELL: '/usr/local/bin/bash',
  USER: 'maciej',
  PATH: '~/.bin/:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin',
  PWD: '/Users/maciej',
  EDITOR: 'vim',
  SHLVL: '1',
  HOME: '/Users/maciej',
  LOGNAME: 'maciej',
  _: '/usr/local/bin/node' }

You can write to this object, but changes won’t be reflected outside of your
process. That means that the following won’t work:

node -e 'process.env.foo = "bar"' && echo $foo

But this will:

process.env.foo = 'bar';
console.log(process.env.foo);

process.exit([code])

Ends the process with the specified code. If omitted, exit uses the
‘success’ code 0.

To exit with a ‘failure’ code:

process.exit(1);

The shell that executed node should see the exit code as 1.

process.exitCode

A number which will be the process exit code, when the process either
exits gracefully, or is exited via process.exit() without specifying
a code.

Specifying a code to process.exit(code) will override any previous
setting of process.exitCode.

process.getgid()

Note: this function is only available on POSIX platforms (i.e. not Windows,
Android)

Gets the group identity of the process. (See getgid(2).)
This is the numerical group id, not the group name.

if (process.getgid) {
  console.log('Current gid: ' + process.getgid());
}

process.setgid(id)

Note: this function is only available on POSIX platforms (i.e. not Windows,
Android)

Sets the group identity of the process. (See setgid(2).) This accepts either
a numerical ID or a groupname string. If a groupname is specified, this method
blocks while resolving it to a numerical ID.

if (process.getgid && process.setgid) {
  console.log('Current gid: ' + process.getgid());
  try {
    process.setgid(501);
    console.log('New gid: ' + process.getgid());
  }
  catch (err) {
    console.log('Failed to set gid: ' + err);
  }
}

process.getuid()

Note: this function is only available on POSIX platforms (i.e. not Windows,
Android)

Gets the user identity of the process. (See getuid(2).)
This is the numerical userid, not the username.

if (process.getuid) {
  console.log('Current uid: ' + process.getuid());
}

process.setuid(id)

Note: this function is only available on POSIX platforms (i.e. not Windows,
Android)

Sets the user identity of the process. (See setuid(2).) This accepts either
a numerical ID or a username string. If a username is specified, this method
blocks while resolving it to a numerical ID.

if (process.getuid && process.setuid) {
  console.log('Current uid: ' + process.getuid());
  try {
    process.setuid(501);
    console.log('New uid: ' + process.getuid());
  }
  catch (err) {
    console.log('Failed to set uid: ' + err);
  }
}

process.getgroups()

Note: this function is only available on POSIX platforms (i.e. not Windows,
Android)

Returns an array with the supplementary group IDs. POSIX leaves it unspecified
if the effective group ID is included but node.js ensures it always is.

process.setgroups(groups)

Note: this function is only available on POSIX platforms (i.e. not Windows,
Android)

Sets the supplementary group IDs. This is a privileged operation, meaning you
need to be root or have the CAP_SETGID capability.

The list can contain group IDs, group names or both.

Note: this function is only available on POSIX platforms (i.e. not Windows,
Android)

Reads /etc/group and initializes the group access list, using all groups of
which the user is a member. This is a privileged operation, meaning you need
to be root or have the CAP_SETGID capability.

user is a user name or user ID. extra_group is a group name or group ID.

Some care needs to be taken when dropping privileges. Example:

console.log(process.getgroups());         // [ 0 ]
process.initgroups('bnoordhuis', 1000);   // switch user
console.log(process.getgroups());         // [ 27, 30, 46, 1000, 0 ]
process.setgid(1000);                     // drop root gid
console.log(process.getgroups());         // [ 27, 30, 46, 1000 ]

process.version

A compiled-in property that exposes NODE_VERSION.

console.log('Version: ' + process.version);

process.versions

A property exposing version strings of node and its dependencies.

console.log(process.versions);

Will print something like:

{ http_parser: '1.0',
  node: '0.10.4',
  v8: '3.14.5.8',
  ares: '1.9.0-DEV',
  uv: '0.10.3',
  zlib: '1.2.3',
  modules: '11',
  openssl: '1.0.1e' }

process.config

An Object containing the JavaScript representation of the configure options
that were used to compile the current node executable. This is the same as
the «config.gypi» file that was produced when running the ./configure script.

An example of the possible output looks like:

{ target_defaults:
   { cflags: [],
     default_configuration: 'Release',
     defines: [],
     include_dirs: [],
     libraries: [] },
  variables:
   { host_arch: 'x64',
     node_install_npm: 'true',
     node_prefix: '',
     node_shared_cares: 'false',
     node_shared_http_parser: 'false',
     node_shared_libuv: 'false',
     node_shared_v8: 'false',
     node_shared_zlib: 'false',
     node_use_dtrace: 'false',
     node_use_openssl: 'true',
     node_shared_openssl: 'false',
     strict_aliasing: 'true',
     target_arch: 'x64',
     v8_use_snapshot: 'true' } }

process.kill(pid[, signal])

Send a signal to a process. pid is the process id and signal is the
string describing the signal to send. Signal names are strings like
‘SIGINT’ or ‘SIGHUP’. If omitted, the signal will be ‘SIGTERM’.
See Signal Events and kill(2) for more information.

Will throw an error if target does not exist, and as a special case, a signal of
0 can be used to test for the existence of a process.

Note that just because the name of this function is process.kill, it is
really just a signal sender, like the kill system call. The signal sent
may do something other than kill the target process.

Example of sending a signal to yourself:

process.on('SIGHUP', function() {
  console.log('Got SIGHUP signal.');
});

setTimeout(function() {
  console.log('Exiting.');
  process.exit(0);
}, 100);

process.kill(process.pid, 'SIGHUP');

Note: When SIGUSR1 is received by Node.js it starts the debugger, see
Signal Events.

process.pid

The PID of the process.

console.log('This process is pid ' + process.pid);

process.title

Getter/setter to set what is displayed in ‘ps’.

When used as a setter, the maximum length is platform-specific and probably
short.

On Linux and OS X, it’s limited to the size of the binary name plus the
length of the command line arguments because it overwrites the argv memory.

v0.8 allowed for longer process title strings by also overwriting the environ
memory but that was potentially insecure/confusing in some (rather obscure)
cases.

process.arch

What processor architecture you’re running on: 'arm', 'ia32', or 'x64'.

console.log('This processor architecture is ' + process.arch);

process.platform

What platform you’re running on:
'darwin', 'freebsd', 'linux', 'sunos' or 'win32'

console.log('This platform is ' + process.platform);

process.memoryUsage()

Returns an object describing the memory usage of the Node process
measured in bytes.

var util = require('util');

console.log(util.inspect(process.memoryUsage()));

This will generate:

{ rss: 4935680,
  heapTotal: 1826816,
  heapUsed: 650472 }

heapTotal and heapUsed refer to V8’s memory usage.

process.nextTick(callback)

  • callback {Function}

Once the current event loop turn runs to completion, call the callback
function.

This is not a simple alias to setTimeout(fn, 0), it’s much more
efficient. It runs before any additional I/O events (including
timers) fire in subsequent ticks of the event loop.

console.log('start');
process.nextTick(function() {
  console.log('nextTick callback');
});
console.log('scheduled');
// Output:
// start
// scheduled
// nextTick callback

This is important in developing APIs where you want to give the user the
chance to assign event handlers after an object has been constructed,
but before any I/O has occurred.

function MyThing(options) {
  this.setupOptions(options);

  process.nextTick(function() {
    this.startDoingStuff();
  }.bind(this));
}

var thing = new MyThing();
thing.getReadyForStuff();

// thing.startDoingStuff() gets called now, not before.

It is very important for APIs to be either 100% synchronous or 100%
asynchronous. Consider this example:

// WARNING!  DO NOT USE!  BAD UNSAFE HAZARD!
function maybeSync(arg, cb) {
  if (arg) {
    cb();
    return;
  }

  fs.stat('file', cb);
}

This API is hazardous. If you do this:

maybeSync(true, function() {
  foo();
});
bar();

then it’s not clear whether foo() or bar() will be called first.

This approach is much better:

function definitelyAsync(arg, cb) {
  if (arg) {
    process.nextTick(cb);
    return;
  }

  fs.stat('file', cb);
}

Note: the nextTick queue is completely drained on each pass of the
event loop before additional I/O is processed. As a result,
recursively setting nextTick callbacks will block any I/O from
happening, just like a while(true); loop.

process.umask([mask])

Sets or reads the process’s file mode creation mask. Child processes inherit
the mask from the parent process. Returns the old mask if mask argument is
given, otherwise returns the current mask.

var oldmask, newmask = 0022;

oldmask = process.umask(newmask);
console.log('Changed umask from: ' + oldmask.toString(8) +
            ' to ' + newmask.toString(8));

process.uptime()

Number of seconds Node has been running.

process.hrtime()

Returns the current high-resolution real time in a [seconds, nanoseconds]
tuple Array. It is relative to an arbitrary time in the past. It is not
related to the time of day and therefore not subject to clock drift. The
primary use is for measuring performance between intervals.

You may pass in the result of a previous call to process.hrtime() to get
a diff reading, useful for benchmarks and measuring intervals:

var time = process.hrtime();
// [ 1800216, 25 ]

setTimeout(function() {
  var diff = process.hrtime(time);
  // [ 1, 552 ]

  console.log('benchmark took %d nanoseconds', diff[0] * 1e9 + diff[1]);
  // benchmark took 1000000527 nanoseconds
}, 1000);

process.mainModule

Alternate way to retrieve
require.main.
The difference is that if the main module changes at runtime, require.main
might still refer to the original main module in modules that were required
before the change occurred. Generally it’s safe to assume that the two refer
to the same module.

As with require.main, it will be undefined if there was no entry script.

Содержание

  1. Node.js v19.4.0 documentation
  2. Process #
  3. Process events #
  4. Event: ‘beforeExit’ #
  5. Event: ‘disconnect’ #
  6. Event: ‘exit’ #
  7. Event: ‘message’ #
  8. Event: ‘multipleResolves’ #
  9. Event: ‘rejectionHandled’ #
  10. Event: ‘uncaughtException’ #
  11. Event: ‘uncaughtExceptionMonitor’ #
  12. Event: ‘unhandledRejection’ #
  13. Event: ‘warning’ #
  14. Event: ‘worker’ #
  15. Signal events #
  16. process.abort() #
  17. process.allowedNodeEnvironmentFlags #
  18. process.arch #
  19. process.argv #
  20. process.argv0 #
  21. process.channel #
  22. process.channel.ref() #
  23. process.channel.unref() #
  24. process.chdir(directory) #
  25. process.config #
  26. process.connected #
  27. process.cpuUsage([previousValue]) #
  28. process.cwd() #
  29. process.debugPort #
  30. process.disconnect() #
  31. process.dlopen(module, filename[, flags]) #
  32. process.emitWarning(warning[, options]) #
  33. process.emitWarning(warning[, type[, code]][, ctor]) #
  34. Avoiding duplicate warnings #
  35. process.env #
  36. process.execArgv #
  37. process.execPath #
  38. process.exit([code]) #
  39. process.exitCode #
  40. process.getActiveResourcesInfo() #
  41. process.getegid() #
  42. process.geteuid() #
  43. process.getgid() #
  44. process.getgroups() #
  45. process.getuid() #
  46. process.hasUncaughtExceptionCaptureCallback() #
  47. process.hrtime([time]) #
  48. process.hrtime.bigint() #
  49. process.initgroups(user, extraGroup) #
  50. process.kill(pid[, signal]) #
  51. process.mainModule #
  52. process.memoryUsage() #
  53. process.memoryUsage.rss() #
  54. process.nextTick(callback[, . args]) #
  55. When to use queueMicrotask() vs. process.nextTick() #
  56. process.noDeprecation #
  57. process.pid #
  58. process.platform #
  59. process.ppid #
  60. process.release #
  61. process.report #
  62. process.report.compact #
  63. process.report.directory #
  64. process.report.filename #
  65. process.report.getReport([err]) #
  66. process.report.reportOnFatalError #
  67. process.report.reportOnSignal #
  68. process.report.reportOnUncaughtException #
  69. process.report.signal #
  70. process.report.writeReport([filename][, err]) #
  71. process.resourceUsage() #
  72. process.send(message[, sendHandle[, options]][, callback]) #
  73. process.setegid(id) #
  74. process.seteuid(id) #
  75. process.setgid(id) #
  76. process.setgroups(groups) #
  77. process.setuid(id) #
  78. process.setSourceMapsEnabled(val) #
  79. process.setUncaughtExceptionCaptureCallback(fn) #
  80. process.stderr #
  81. process.stderr.fd #
  82. process.stdin #
  83. process.stdin.fd #
  84. process.stdout #
  85. process.stdout.fd #
  86. A note on process I/O #

Node.js v19.4.0 documentation

Process #

Source Code: lib/process.js

The process object provides information about, and control over, the current Node.js process.

Process events #

The process object is an instance of EventEmitter .

Event: ‘beforeExit’ #

The ‘beforeExit’ event is emitted when Node.js empties its event loop and has no additional work to schedule. Normally, the Node.js process will exit when there is no work scheduled, but a listener registered on the ‘beforeExit’ event can make asynchronous calls, and thereby cause the Node.js process to continue.

The listener callback function is invoked with the value of process.exitCode passed as the only argument.

The ‘beforeExit’ event is not emitted for conditions causing explicit termination, such as calling process.exit() or uncaught exceptions.

The ‘beforeExit’ should not be used as an alternative to the ‘exit’ event unless the intention is to schedule additional work.

Event: ‘disconnect’ #

If the Node.js process is spawned with an IPC channel (see the Child Process and Cluster documentation), the ‘disconnect’ event will be emitted when the IPC channel is closed.

Event: ‘exit’ #

The ‘exit’ event is emitted when the Node.js process is about to exit as a result of either:

  • The process.exit() method being called explicitly;
  • The Node.js event loop no longer having any additional work to perform.

There is no way to prevent the exiting of the event loop at this point, and once all ‘exit’ listeners have finished running the Node.js process will terminate.

The listener callback function is invoked with the exit code specified either by the process.exitCode property, or the exitCode argument passed to the process.exit() method.

Listener functions must only perform synchronous operations. The Node.js process will exit immediately after calling the ‘exit’ event listeners causing any additional work still queued in the event loop to be abandoned. In the following example, for instance, the timeout will never occur:

Event: ‘message’ #

  • message | | | | a parsed JSON object or a serializable primitive value.
  • sendHandle | a net.Server or net.Socket object, or undefined.

If the Node.js process is spawned with an IPC channel (see the Child Process and Cluster documentation), the ‘message’ event is emitted whenever a message sent by a parent process using childprocess.send() is received by the child process.

The message goes through serialization and parsing. The resulting message might not be the same as what is originally sent.

If the serialization option was set to advanced used when spawning the process, the message argument can contain data that JSON is not able to represent. See Advanced serialization for child_process for more details.

Event: ‘multipleResolves’ #

  • type The resolution type. One of ‘resolve’ or ‘reject’ .
  • promise

The ‘multipleResolves’ event is emitted whenever a Promise has been either:

  • Resolved more than once.
  • Rejected more than once.
  • Rejected after resolve.
  • Resolved after reject.

This is useful for tracking potential errors in an application while using the Promise constructor, as multiple resolutions are silently swallowed. However, the occurrence of this event does not necessarily indicate an error. For example, Promise.race() can trigger a ‘multipleResolves’ event.

Because of the unreliability of the event in cases like the Promise.race() example above it has been deprecated.

Event: ‘rejectionHandled’ #

The late handled promise.

The ‘rejectionHandled’ event is emitted whenever a Promise has been rejected and an error handler was attached to it (using promise.catch() , for example) later than one turn of the Node.js event loop.

The Promise object would have previously been emitted in an ‘unhandledRejection’ event, but during the course of processing gained a rejection handler.

There is no notion of a top level for a Promise chain at which rejections can always be handled. Being inherently asynchronous in nature, a Promise rejection can be handled at a future point in time, possibly much later than the event loop turn it takes for the ‘unhandledRejection’ event to be emitted.

Another way of stating this is that, unlike in synchronous code where there is an ever-growing list of unhandled exceptions, with Promises there can be a growing-and-shrinking list of unhandled rejections.

In synchronous code, the ‘uncaughtException’ event is emitted when the list of unhandled exceptions grows.

In asynchronous code, the ‘unhandledRejection’ event is emitted when the list of unhandled rejections grows, and the ‘rejectionHandled’ event is emitted when the list of unhandled rejections shrinks.

In this example, the unhandledRejections Map will grow and shrink over time, reflecting rejections that start unhandled and then become handled. It is possible to record such errors in an error log, either periodically (which is likely best for long-running application) or upon process exit (which is likely most convenient for scripts).

Event: ‘uncaughtException’ #

History

Added the origin argument.

  • err The uncaught exception.
  • origin Indicates if the exception originates from an unhandled rejection or from a synchronous error. Can either be ‘uncaughtException’ or ‘unhandledRejection’ . The latter is used when an exception happens in a Promise based async context (or if a Promise is rejected) and —unhandled-rejections flag set to strict or throw (which is the default) and the rejection is not handled, or when a rejection happens during the command line entry point’s ES module static loading phase.

The ‘uncaughtException’ event is emitted when an uncaught JavaScript exception bubbles all the way back to the event loop. By default, Node.js handles such exceptions by printing the stack trace to stderr and exiting with code 1, overriding any previously set process.exitCode . Adding a handler for the ‘uncaughtException’ event overrides this default behavior. Alternatively, change the process.exitCode in the ‘uncaughtException’ handler which will result in the process exiting with the provided exit code. Otherwise, in the presence of such handler the process will exit with 0.

It is possible to monitor ‘uncaughtException’ events without overriding the default behavior to exit the process by installing a ‘uncaughtExceptionMonitor’ listener.

Warning: Using ‘uncaughtException’ correctly #

‘uncaughtException’ is a crude mechanism for exception handling intended to be used only as a last resort. The event should not be used as an equivalent to On Error Resume Next . Unhandled exceptions inherently mean that an application is in an undefined state. Attempting to resume application code without properly recovering from the exception can cause additional unforeseen and unpredictable issues.

Exceptions thrown from within the event handler will not be caught. Instead the process will exit with a non-zero exit code and the stack trace will be printed. This is to avoid infinite recursion.

Attempting to resume normally after an uncaught exception can be similar to pulling out the power cord when upgrading a computer. Nine out of ten times, nothing happens. But the tenth time, the system becomes corrupted.

The correct use of ‘uncaughtException’ is to perform synchronous cleanup of allocated resources (e.g. file descriptors, handles, etc) before shutting down the process. It is not safe to resume normal operation after ‘uncaughtException’ .

To restart a crashed application in a more reliable way, whether ‘uncaughtException’ is emitted or not, an external monitor should be employed in a separate process to detect application failures and recover or restart as needed.

Event: ‘uncaughtExceptionMonitor’ #

  • err The uncaught exception.
  • origin Indicates if the exception originates from an unhandled rejection or from synchronous errors. Can either be ‘uncaughtException’ or ‘unhandledRejection’ . The latter is used when an exception happens in a Promise based async context (or if a Promise is rejected) and —unhandled-rejections flag set to strict or throw (which is the default) and the rejection is not handled, or when a rejection happens during the command line entry point’s ES module static loading phase.

The ‘uncaughtExceptionMonitor’ event is emitted before an ‘uncaughtException’ event is emitted or a hook installed via process.setUncaughtExceptionCaptureCallback() is called.

Installing an ‘uncaughtExceptionMonitor’ listener does not change the behavior once an ‘uncaughtException’ event is emitted. The process will still crash if no ‘uncaughtException’ listener is installed.

Event: ‘unhandledRejection’ #

History

Version Changes
v12.0.0, v10.17.0

Not handling Promise rejections is deprecated.

Unhandled Promise rejections will now emit a process warning.

The rejected promise.

The ‘unhandledRejection’ event is emitted whenever a Promise is rejected and no error handler is attached to the promise within a turn of the event loop. When programming with Promises, exceptions are encapsulated as «rejected promises». Rejections can be caught and handled using promise.catch() and are propagated through a Promise chain. The ‘unhandledRejection’ event is useful for detecting and keeping track of promises that were rejected whose rejections have not yet been handled.

The following will also trigger the ‘unhandledRejection’ event to be emitted:

In this example case, it is possible to track the rejection as a developer error as would typically be the case for other ‘unhandledRejection’ events. To address such failures, a non-operational .catch(() => < >) handler may be attached to resource.loaded , which would prevent the ‘unhandledRejection’ event from being emitted.

Event: ‘warning’ #

  • warning Key properties of the warning are:
    • name The name of the warning. Default: ‘Warning’ .
    • message A system-provided description of the warning.
    • stack A stack trace to the location in the code where the warning was issued.

The ‘warning’ event is emitted whenever Node.js emits a process warning.

A process warning is similar to an error in that it describes exceptional conditions that are being brought to the user’s attention. However, warnings are not part of the normal Node.js and JavaScript error handling flow. Node.js can emit warnings whenever it detects bad coding practices that could lead to sub-optimal application performance, bugs, or security vulnerabilities.

By default, Node.js will print process warnings to stderr . The —no-warnings command-line option can be used to suppress the default console output but the ‘warning’ event will still be emitted by the process object.

The following example illustrates the warning that is printed to stderr when too many listeners have been added to an event:

In contrast, the following example turns off the default warning output and adds a custom handler to the ‘warning’ event:

The —trace-warnings command-line option can be used to have the default console output for warnings include the full stack trace of the warning.

Launching Node.js using the —throw-deprecation command-line flag will cause custom deprecation warnings to be thrown as exceptions.

Using the —trace-deprecation command-line flag will cause the custom deprecation to be printed to stderr along with the stack trace.

Using the —no-deprecation command-line flag will suppress all reporting of the custom deprecation.

The *-deprecation command-line flags only affect warnings that use the name ‘DeprecationWarning’ .

Event: ‘worker’ #

The ‘worker’ event is emitted after a new thread has been created.

Emitting custom warnings #

See the process.emitWarning() method for issuing custom or application-specific warnings.

Node.js warning names #

There are no strict guidelines for warning types (as identified by the name property) emitted by Node.js. New types of warnings can be added at any time. A few of the warning types that are most common include:

  • ‘DeprecationWarning’ — Indicates use of a deprecated Node.js API or feature. Such warnings must include a ‘code’ property identifying the deprecation code.
  • ‘ExperimentalWarning’ — Indicates use of an experimental Node.js API or feature. Such features must be used with caution as they may change at any time and are not subject to the same strict semantic-versioning and long-term support policies as supported features.
  • ‘MaxListenersExceededWarning’ — Indicates that too many listeners for a given event have been registered on either an EventEmitter or EventTarget . This is often an indication of a memory leak.
  • ‘TimeoutOverflowWarning’ — Indicates that a numeric value that cannot fit within a 32-bit signed integer has been provided to either the setTimeout() or setInterval() functions.
  • ‘UnsupportedWarning’ — Indicates use of an unsupported option or feature that will be ignored rather than treated as an error. One example is use of the HTTP response status message when using the HTTP/2 compatibility API.

Signal events #

Signal events will be emitted when the Node.js process receives a signal. Please refer to signal(7) for a listing of standard POSIX signal names such as ‘SIGINT’ , ‘SIGHUP’ , etc.

Signals are not available on Worker threads.

The signal handler will receive the signal’s name ( ‘SIGINT’ , ‘SIGTERM’ , etc.) as the first argument.

The name of each event will be the uppercase common name for the signal (e.g. ‘SIGINT’ for SIGINT signals).

  • ‘SIGUSR1’ is reserved by Node.js to start the debugger. It’s possible to install a listener but doing so might interfere with the debugger.
  • ‘SIGTERM’ and ‘SIGINT’ have default handlers on non-Windows platforms that reset the terminal mode before exiting with code 128 + signal number . If one of these signals has a listener installed, its default behavior will be removed (Node.js will no longer exit).
  • ‘SIGPIPE’ is ignored by default. It can have a listener installed.
  • ‘SIGHUP’ is generated on Windows when the console window is closed, and on other platforms under various similar conditions. See signal(7) . It can have a listener installed, however Node.js will be unconditionally terminated by Windows about 10 seconds later. On non-Windows platforms, the default behavior of SIGHUP is to terminate Node.js, but once a listener has been installed its default behavior will be removed.
  • ‘SIGTERM’ is not supported on Windows, it can be listened on.
  • ‘SIGINT’ from the terminal is supported on all platforms, and can usually be generated with Ctrl + C (though this may be configurable). It is not generated when terminal raw mode is enabled and Ctrl + C is used.
  • ‘SIGBREAK’ is delivered on Windows when Ctrl + Break is pressed. On non-Windows platforms, it can be listened on, but there is no way to send or generate it.
  • ‘SIGWINCH’ is delivered when the console has been resized. On Windows, this will only happen on write to the console when the cursor is being moved, or when a readable tty is used in raw mode.
  • ‘SIGKILL’ cannot have a listener installed, it will unconditionally terminate Node.js on all platforms.
  • ‘SIGSTOP’ cannot have a listener installed.
  • ‘SIGBUS’ , ‘SIGFPE’ , ‘SIGSEGV’ , and ‘SIGILL’ , when not raised artificially using kill(2) , inherently leave the process in a state from which it is not safe to call JS listeners. Doing so might cause the process to stop responding.
  • 0 can be sent to test for the existence of a process, it has no effect if the process exists, but will throw an error if the process does not exist.

Windows does not support signals so has no equivalent to termination by signal, but Node.js offers some emulation with process.kill() , and subprocess.kill() :

  • Sending SIGINT , SIGTERM , and SIGKILL will cause the unconditional termination of the target process, and afterwards, subprocess will report that the process was terminated by signal.
  • Sending signal 0 can be used as a platform independent way to test for the existence of a process.

process.abort() #

The process.abort() method causes the Node.js process to exit immediately and generate a core file.

This feature is not available in Worker threads.

process.allowedNodeEnvironmentFlags #

The process.allowedNodeEnvironmentFlags property is a special, read-only Set of flags allowable within the NODE_OPTIONS environment variable.

process.allowedNodeEnvironmentFlags extends Set , but overrides Set.prototype.has to recognize several different possible flag representations. process.allowedNodeEnvironmentFlags.has() will return true in the following cases:

  • Flags may omit leading single ( — ) or double ( — ) dashes; e.g., inspect-brk for —inspect-brk , or r for -r .
  • Flags passed through to V8 (as listed in —v8-options ) may replace one or more non-leading dashes for an underscore, or vice-versa; e.g., —perf_basic_prof , —perf-basic-prof , —perf_basic-prof , etc.
  • Flags may contain one or more equals ( = ) characters; all characters after and including the first equals will be ignored; e.g., —stack-trace-limit=100 .
  • Flags must be allowable within NODE_OPTIONS .

When iterating over process.allowedNodeEnvironmentFlags , flags will appear only once; each will begin with one or more dashes. Flags passed through to V8 will contain underscores instead of non-leading dashes:

The methods add() , clear() , and delete() of process.allowedNodeEnvironmentFlags do nothing, and will fail silently.

If Node.js was compiled without NODE_OPTIONS support (shown in process.config ), process.allowedNodeEnvironmentFlags will contain what would have been allowable.

process.arch #

The operating system CPU architecture for which the Node.js binary was compiled. Possible values are: ‘arm’ , ‘arm64’ , ‘ia32’ , ‘mips’ , ‘mipsel’ , ‘ppc’ , ‘ppc64’ , ‘s390’ , ‘s390x’ , and ‘x64’ .

process.argv #

The process.argv property returns an array containing the command-line arguments passed when the Node.js process was launched. The first element will be process.execPath . See process.argv0 if access to the original value of argv[0] is needed. The second element will be the path to the JavaScript file being executed. The remaining elements will be any additional command-line arguments.

For example, assuming the following script for process-args.js :

Launching the Node.js process as:

Would generate the output:

process.argv0 #

The process.argv0 property stores a read-only copy of the original value of argv[0] passed when Node.js starts.

process.channel #

History

Version Changes
v7.0.0

The object no longer accidentally exposes native C++ bindings.

If the Node.js process was spawned with an IPC channel (see the Child Process documentation), the process.channel property is a reference to the IPC channel. If no IPC channel exists, this property is undefined .

process.channel.ref() #

This method makes the IPC channel keep the event loop of the process running if .unref() has been called before.

Typically, this is managed through the number of ‘disconnect’ and ‘message’ listeners on the process object. However, this method can be used to explicitly request a specific behavior.

process.channel.unref() #

This method makes the IPC channel not keep the event loop of the process running, and lets it finish even while the channel is open.

Typically, this is managed through the number of ‘disconnect’ and ‘message’ listeners on the process object. However, this method can be used to explicitly request a specific behavior.

process.chdir(directory) #

The process.chdir() method changes the current working directory of the Node.js process or throws an exception if doing so fails (for instance, if the specified directory does not exist).

This feature is not available in Worker threads.

process.config #

History

Version Changes
v14.0.0

The process.config object is now frozen.

Modifying process.config has been deprecated.

The process.config property returns a frozen Object containing the JavaScript representation of the configure options used to compile the current Node.js executable. This is the same as the config.gypi file that was produced when running the ./configure script.

An example of the possible output looks like:

process.connected #

If the Node.js process is spawned with an IPC channel (see the Child Process and Cluster documentation), the process.connected property will return true so long as the IPC channel is connected and will return false after process.disconnect() is called.

Once process.connected is false , it is no longer possible to send messages over the IPC channel using process.send() .

process.cpuUsage([previousValue]) #

  • previousValue A previous return value from calling process.cpuUsage()
  • Returns:
    • user
    • system

The process.cpuUsage() method returns the user and system CPU time usage of the current process, in an object with properties user and system , whose values are microsecond values (millionth of a second). These values measure time spent in user and system code respectively, and may end up being greater than actual elapsed time if multiple CPU cores are performing work for this process.

The result of a previous call to process.cpuUsage() can be passed as the argument to the function, to get a diff reading.

process.cwd() #

The process.cwd() method returns the current working directory of the Node.js process.

process.debugPort #

The port used by the Node.js debugger when enabled.

process.disconnect() #

If the Node.js process is spawned with an IPC channel (see the Child Process and Cluster documentation), the process.disconnect() method will close the IPC channel to the parent process, allowing the child process to exit gracefully once there are no other connections keeping it alive.

The effect of calling process.disconnect() is the same as calling ChildProcess.disconnect() from the parent process.

If the Node.js process was not spawned with an IPC channel, process.disconnect() will be undefined .

process.dlopen(module, filename[, flags]) #

History

Version Changes
v19.0.0

Added support for the flags argument.

  • module
  • filename
  • flags Default: os.constants.dlopen.RTLD_LAZY

The process.dlopen() method allows dynamically loading shared objects. It is primarily used by require() to load C++ Addons, and should not be used directly, except in special cases. In other words, require() should be preferred over process.dlopen() unless there are specific reasons such as custom dlopen flags or loading from ES modules.

The flags argument is an integer that allows to specify dlopen behavior. See the os.constants.dlopen documentation for details.

An important requirement when calling process.dlopen() is that the module instance must be passed. Functions exported by the C++ Addon are then accessible via module.exports .

The example below shows how to load a C++ Addon, named local.node , that exports a foo function. All the symbols are loaded before the call returns, by passing the RTLD_NOW constant. In this example the constant is assumed to be available.

process.emitWarning(warning[, options]) #

  • warning | The warning to emit.
  • options
    • type When warning is a String , type is the name to use for the type of warning being emitted. Default: ‘Warning’ .
    • code A unique identifier for the warning instance being emitted.
    • ctor When warning is a String , ctor is an optional function used to limit the generated stack trace. Default: process.emitWarning .
    • detail Additional text to include with the error.

The process.emitWarning() method can be used to emit custom or application specific process warnings. These can be listened for by adding a handler to the ‘warning’ event.

In this example, an Error object is generated internally by process.emitWarning() and passed through to the ‘warning’ handler.

If warning is passed as an Error object, the options argument is ignored.

process.emitWarning(warning[, type[, code]][, ctor]) #

  • warning | The warning to emit.
  • type When warning is a String , type is the name to use for the type of warning being emitted. Default: ‘Warning’ .
  • code A unique identifier for the warning instance being emitted.
  • ctor When warning is a String , ctor is an optional function used to limit the generated stack trace. Default: process.emitWarning .

The process.emitWarning() method can be used to emit custom or application specific process warnings. These can be listened for by adding a handler to the ‘warning’ event.

In each of the previous examples, an Error object is generated internally by process.emitWarning() and passed through to the ‘warning’ handler.

If warning is passed as an Error object, it will be passed through to the ‘warning’ event handler unmodified (and the optional type , code and ctor arguments will be ignored):

A TypeError is thrown if warning is anything other than a string or Error object.

While process warnings use Error objects, the process warning mechanism is not a replacement for normal error handling mechanisms.

The following additional handling is implemented if the warning type is ‘DeprecationWarning’ :

  • If the —throw-deprecation command-line flag is used, the deprecation warning is thrown as an exception rather than being emitted as an event.
  • If the —no-deprecation command-line flag is used, the deprecation warning is suppressed.
  • If the —trace-deprecation command-line flag is used, the deprecation warning is printed to stderr along with the full stack trace.

Avoiding duplicate warnings #

As a best practice, warnings should be emitted only once per process. To do so, place the emitWarning() behind a boolean.

process.env #

History

Version Changes
v9.0.0

Worker threads will now use a copy of the parent thread’s process.env by default, configurable through the env option of the Worker constructor.

Implicit conversion of variable value to string is deprecated.

The process.env property returns an object containing the user environment. See environ(7) .

An example of this object looks like:

It is possible to modify this object, but such modifications will not be reflected outside the Node.js process, or (unless explicitly requested) to other Worker threads. In other words, the following example would not work:

While the following will:

Assigning a property on process.env will implicitly convert the value to a string. This behavior is deprecated. Future versions of Node.js may throw an error when the value is not a string, number, or boolean.

Use delete to delete a property from process.env .

On Windows operating systems, environment variables are case-insensitive.

Unless explicitly specified when creating a Worker instance, each Worker thread has its own copy of process.env , based on its parent thread’s process.env , or whatever was specified as the env option to the Worker constructor. Changes to process.env will not be visible across Worker threads, and only the main thread can make changes that are visible to the operating system or to native add-ons.

process.execArgv #

The process.execArgv property returns the set of Node.js-specific command-line options passed when the Node.js process was launched. These options do not appear in the array returned by the process.argv property, and do not include the Node.js executable, the name of the script, or any options following the script name. These options are useful in order to spawn child processes with the same execution environment as the parent.

Results in process.execArgv :

Refer to Worker constructor for the detailed behavior of worker threads with this property.

process.execPath #

The process.execPath property returns the absolute pathname of the executable that started the Node.js process. Symbolic links, if any, are resolved.

process.exit([code]) #

  • code The exit code. Default: 0 .

The process.exit() method instructs Node.js to terminate the process synchronously with an exit status of code . If code is omitted, exit uses either the ‘success’ code 0 or the value of process.exitCode if it has been set. Node.js will not terminate until all the ‘exit’ event listeners are called.

To exit with a ‘failure’ code:

The shell that executed Node.js should see the exit code as 1 .

Calling process.exit() will force the process to exit as quickly as possible even if there are still asynchronous operations pending that have not yet completed fully, including I/O operations to process.stdout and process.stderr .

In most situations, it is not actually necessary to call process.exit() explicitly. The Node.js process will exit on its own if there is no additional work pending in the event loop. The process.exitCode property can be set to tell the process which exit code to use when the process exits gracefully.

For instance, the following example illustrates a misuse of the process.exit() method that could lead to data printed to stdout being truncated and lost:

The reason this is problematic is because writes to process.stdout in Node.js are sometimes asynchronous and may occur over multiple ticks of the Node.js event loop. Calling process.exit() , however, forces the process to exit before those additional writes to stdout can be performed.

Rather than calling process.exit() directly, the code should set the process.exitCode and allow the process to exit naturally by avoiding scheduling any additional work for the event loop:

If it is necessary to terminate the Node.js process due to an error condition, throwing an uncaught error and allowing the process to terminate accordingly is safer than calling process.exit() .

In Worker threads, this function stops the current thread rather than the current process.

process.exitCode #

A number which will be the process exit code, when the process either exits gracefully, or is exited via process.exit() without specifying a code.

Specifying a code to process.exit(code) will override any previous setting of process.exitCode .

process.getActiveResourcesInfo() #

The process.getActiveResourcesInfo() method returns an array of strings containing the types of the active resources that are currently keeping the event loop alive.

process.getegid() #

The process.getegid() method returns the numerical effective group identity of the Node.js process. (See getegid(2) .)

This function is only available on POSIX platforms (i.e. not Windows or Android).

process.geteuid() #

The process.geteuid() method returns the numerical effective user identity of the process. (See geteuid(2) .)

This function is only available on POSIX platforms (i.e. not Windows or Android).

process.getgid() #

The process.getgid() method returns the numerical group identity of the process. (See getgid(2) .)

This function is only available on POSIX platforms (i.e. not Windows or Android).

process.getgroups() #

The process.getgroups() method returns an array with the supplementary group IDs. POSIX leaves it unspecified if the effective group ID is included but Node.js ensures it always is.

This function is only available on POSIX platforms (i.e. not Windows or Android).

process.getuid() #

The process.getuid() method returns the numeric user identity of the process. (See getuid(2) .)

This function is only available on POSIX platforms (i.e. not Windows or Android).

process.hasUncaughtExceptionCaptureCallback() #

Indicates whether a callback has been set using process.setUncaughtExceptionCaptureCallback() .

process.hrtime([time]) #

  • time The result of a previous call to process.hrtime()
  • Returns:

This is the legacy version of process.hrtime.bigint() before bigint was introduced in JavaScript.

The process.hrtime() method returns the current high-resolution real time in a [seconds, nanoseconds] tuple Array , where nanoseconds is the remaining part of the real time that can’t be represented in second precision.

time is an optional parameter that must be the result of a previous process.hrtime() call to diff with the current time. If the parameter passed in is not a tuple Array , a TypeError will be thrown. Passing in a user-defined array instead of the result of a previous call to process.hrtime() will lead to undefined behavior.

These times are relative to an arbitrary time in the past, and not related to the time of day and therefore not subject to clock drift. The primary use is for measuring performance between intervals:

process.hrtime.bigint() #

The bigint version of the process.hrtime() method returning the current high-resolution real time in nanoseconds as a bigint .

Unlike process.hrtime() , it does not support an additional time argument since the difference can just be computed directly by subtraction of the two bigint s.

  • user | The user name or numeric identifier.
  • extraGroup | A group name or numeric identifier.

The process.initgroups() method reads the /etc/group file and initializes the group access list, using all groups of which the user is a member. This is a privileged operation that requires that the Node.js process either have root access or the CAP_SETGID capability.

Use care when dropping privileges:

This function is only available on POSIX platforms (i.e. not Windows or Android). This feature is not available in Worker threads.

process.kill(pid[, signal]) #

  • pid A process ID
  • signal | The signal to send, either as a string or number. Default: ‘SIGTERM’ .

The process.kill() method sends the signal to the process identified by pid .

Signal names are strings such as ‘SIGINT’ or ‘SIGHUP’ . See Signal Events and kill(2) for more information.

This method will throw an error if the target pid does not exist. As a special case, a signal of 0 can be used to test for the existence of a process. Windows platforms will throw an error if the pid is used to kill a process group.

Even though the name of this function is process.kill() , it is really just a signal sender, like the kill system call. The signal sent may do something other than kill the target process.

When SIGUSR1 is received by a Node.js process, Node.js will start the debugger. See Signal Events.

process.mainModule #

The process.mainModule property provides an alternative way of retrieving require.main . The difference is that if the main module changes at runtime, require.main may still refer to the original main module in modules that were required before the change occurred. Generally, it’s safe to assume that the two refer to the same module.

As with require.main , process.mainModule will be undefined if there is no entry script.

process.memoryUsage() #

History

Version Changes
v11.14.0

Added arrayBuffers to the returned object.

Added external to the returned object.

  • Returns:
    • rss
    • heapTotal
    • heapUsed
    • external
    • arrayBuffers

Returns an object describing the memory usage of the Node.js process measured in bytes.

  • heapTotal and heapUsed refer to V8’s memory usage.
  • external refers to the memory usage of C++ objects bound to JavaScript objects managed by V8.
  • rss , Resident Set Size, is the amount of space occupied in the main memory device (that is a subset of the total allocated memory) for the process, including all C++ and JavaScript objects and code.
  • arrayBuffers refers to memory allocated for ArrayBuffer s and SharedArrayBuffer s, including all Node.js Buffer s. This is also included in the external value. When Node.js is used as an embedded library, this value may be 0 because allocations for ArrayBuffer s may not be tracked in that case.

When using Worker threads, rss will be a value that is valid for the entire process, while the other fields will only refer to the current thread.

The process.memoryUsage() method iterates over each page to gather information about memory usage which might be slow depending on the program memory allocations.

The process.memoryUsage.rss() method returns an integer representing the Resident Set Size (RSS) in bytes.

The Resident Set Size, is the amount of space occupied in the main memory device (that is a subset of the total allocated memory) for the process, including all C++ and JavaScript objects and code.

This is the same value as the rss property provided by process.memoryUsage() but process.memoryUsage.rss() is faster.

process.nextTick(callback[, . args]) #

History

Version Changes
v13.9.0, v12.17.0

Passing an invalid callback to the callback argument now throws ERR_INVALID_ARG_TYPE instead of ERR_INVALID_CALLBACK .

Additional arguments after callback are now supported.

process.nextTick() adds callback to the «next tick queue». This queue is fully drained after the current operation on the JavaScript stack runs to completion and before the event loop is allowed to continue. It’s possible to create an infinite loop if one were to recursively call process.nextTick() . See the Event Loop guide for more background.

This is important when developing APIs in order to give users the opportunity to assign event handlers after an object has been constructed but before any I/O has occurred:

It is very important for APIs to be either 100% synchronous or 100% asynchronous. Consider this example:

This API is hazardous because in the following case:

It is not clear whether foo() or bar() will be called first.

The following approach is much better:

When to use queueMicrotask() vs. process.nextTick() #

The queueMicrotask() API is an alternative to process.nextTick() that also defers execution of a function using the same microtask queue used to execute the then, catch, and finally handlers of resolved promises. Within Node.js, every time the «next tick queue» is drained, the microtask queue is drained immediately after.

For most userland use cases, the queueMicrotask() API provides a portable and reliable mechanism for deferring execution that works across multiple JavaScript platform environments and should be favored over process.nextTick() . In simple scenarios, queueMicrotask() can be a drop-in replacement for process.nextTick() .

One note-worthy difference between the two APIs is that process.nextTick() allows specifying additional values that will be passed as arguments to the deferred function when it is called. Achieving the same result with queueMicrotask() requires using either a closure or a bound function:

There are minor differences in the way errors raised from within the next tick queue and microtask queue are handled. Errors thrown within a queued microtask callback should be handled within the queued callback when possible. If they are not, the process.on(‘uncaughtException’) event handler can be used to capture and handle the errors.

When in doubt, unless the specific capabilities of process.nextTick() are needed, use queueMicrotask() .

process.noDeprecation #

The process.noDeprecation property indicates whether the —no-deprecation flag is set on the current Node.js process. See the documentation for the ‘warning’ event and the emitWarning() method for more information about this flag’s behavior.

process.pid #

The process.pid property returns the PID of the process.

process.platform #

The process.platform property returns a string identifying the operating system platform for which the Node.js binary was compiled.

Currently possible values are:

The value ‘android’ may also be returned if the Node.js is built on the Android operating system. However, Android support in Node.js is experimental.

process.ppid #

The process.ppid property returns the PID of the parent of the current process.

process.release #

History

Version Changes
v18.0.0

The lts property is now supported.

The process.release property returns an Object containing metadata related to the current release, including URLs for the source tarball and headers-only tarball.

process.release contains the following properties:

  • name A value that will always be ‘node’ .
  • sourceUrl an absolute URL pointing to a .tar.gz file containing the source code of the current release.
  • headersUrl an absolute URL pointing to a .tar.gz file containing only the source header files for the current release. This file is significantly smaller than the full source file and can be used for compiling Node.js native add-ons.
  • libUrl | an absolute URL pointing to a node.lib file matching the architecture and version of the current release. This file is used for compiling Node.js native add-ons. This property is only present on Windows builds of Node.js and will be missing on all other platforms.
  • lts | a string label identifying the LTS label for this release. This property only exists for LTS releases and is undefined for all other release types, including Current releases. Valid values include the LTS Release code names (including those that are no longer supported).
    • ‘Fermium’ for the 14.x LTS line beginning with 14.15.0.
    • ‘Gallium’ for the 16.x LTS line beginning with 16.13.0.
    • ‘Hydrogen’ for the 18.x LTS line beginning with 18.12.0. For other LTS Release code names, see Node.js Changelog Archive

In custom builds from non-release versions of the source tree, only the name property may be present. The additional properties should not be relied upon to exist.

process.report #

History

Version Changes
v4.2.0

This API is no longer experimental.

process.report is an object whose methods are used to generate diagnostic reports for the current process. Additional documentation is available in the report documentation.

process.report.compact #

Write reports in a compact format, single-line JSON, more easily consumable by log processing systems than the default multi-line format designed for human consumption.

process.report.directory #

History

Version Changes
v13.12.0, v12.17.0

This API is no longer experimental.

Added in: v11.12.0

Directory where the report is written. The default value is the empty string, indicating that reports are written to the current working directory of the Node.js process.

process.report.filename #

History

Version Changes
v13.12.0, v12.17.0

This API is no longer experimental.

Added in: v11.12.0

Filename where the report is written. If set to the empty string, the output filename will be comprised of a timestamp, PID, and sequence number. The default value is the empty string.

If the value of process.report.filename is set to ‘stdout’ or ‘stderr’ , the report is written to the stdout or stderr of the process respectively.

process.report.getReport([err]) #

History

Version Changes
v13.12.0, v12.17.0

This API is no longer experimental.

  • err A custom error used for reporting the JavaScript stack.
  • Returns:

Returns a JavaScript Object representation of a diagnostic report for the running process. The report’s JavaScript stack trace is taken from err , if present.

Additional documentation is available in the report documentation.

process.report.reportOnFatalError #

History

Version Changes
v13.12.0, v12.17.0

This API is no longer experimental.

Added in: v11.12.0

If true , a diagnostic report is generated on fatal errors, such as out of memory errors or failed C++ assertions.

process.report.reportOnSignal #

History

Version Changes
v15.0.0, v14.17.0

This API is no longer experimental.

Added in: v11.12.0

If true , a diagnostic report is generated when the process receives the signal specified by process.report.signal .

process.report.reportOnUncaughtException #

History

Version Changes
v13.12.0, v12.17.0

This API is no longer experimental.

Added in: v11.12.0

If true , a diagnostic report is generated on uncaught exception.

process.report.signal #

History

Version Changes
v13.12.0, v12.17.0

This API is no longer experimental.

Added in: v11.12.0

The signal used to trigger the creation of a diagnostic report. Defaults to ‘SIGUSR2’ .

process.report.writeReport([filename][, err]) #

History

Version Changes
v13.12.0, v12.17.0

This API is no longer experimental.

filename Name of the file where the report is written. This should be a relative path, that will be appended to the directory specified in process.report.directory , or the current working directory of the Node.js process, if unspecified.

err A custom error used for reporting the JavaScript stack.

Returns: Returns the filename of the generated report.

Writes a diagnostic report to a file. If filename is not provided, the default filename includes the date, time, PID, and a sequence number. The report’s JavaScript stack trace is taken from err , if present.

If the value of filename is set to ‘stdout’ or ‘stderr’ , the report is written to the stdout or stderr of the process respectively.

Additional documentation is available in the report documentation.

process.resourceUsage() #

  • Returns: the resource usage for the current process. All of these values come from the uv_getrusage call which returns a uv_rusage_t struct.
    • userCPUTime maps to ru_utime computed in microseconds. It is the same value as process.cpuUsage().user .
    • systemCPUTime maps to ru_stime computed in microseconds. It is the same value as process.cpuUsage().system .
    • maxRSS maps to ru_maxrss which is the maximum resident set size used in kilobytes.
    • sharedMemorySize maps to ru_ixrss but is not supported by any platform.
    • unsharedDataSize maps to ru_idrss but is not supported by any platform.
    • unsharedStackSize maps to ru_isrss but is not supported by any platform.
    • minorPageFault maps to ru_minflt which is the number of minor page faults for the process, see this article for more details.
    • majorPageFault maps to ru_majflt which is the number of major page faults for the process, see this article for more details. This field is not supported on Windows.
    • swappedOut maps to ru_nswap but is not supported by any platform.
    • fsRead maps to ru_inblock which is the number of times the file system had to perform input.
    • fsWrite maps to ru_oublock which is the number of times the file system had to perform output.
    • ipcSent maps to ru_msgsnd but is not supported by any platform.
    • ipcReceived maps to ru_msgrcv but is not supported by any platform.
    • signalsCount maps to ru_nsignals but is not supported by any platform.
    • voluntaryContextSwitches maps to ru_nvcsw which is the number of times a CPU context switch resulted due to a process voluntarily giving up the processor before its time slice was completed (usually to await availability of a resource). This field is not supported on Windows.
    • involuntaryContextSwitches maps to ru_nivcsw which is the number of times a CPU context switch resulted due to a higher priority process becoming runnable or because the current process exceeded its time slice. This field is not supported on Windows.

process.send(message[, sendHandle[, options]][, callback]) #

  • message
  • sendHandle |
  • options used to parameterize the sending of certain types of handles. options supports the following properties:
    • keepOpen A value that can be used when passing instances of net.Socket . When true , the socket is kept open in the sending process. Default: false .
  • callback
  • Returns:

If Node.js is spawned with an IPC channel, the process.send() method can be used to send messages to the parent process. Messages will be received as a ‘message’ event on the parent’s ChildProcess object.

If Node.js was not spawned with an IPC channel, process.send will be undefined .

The message goes through serialization and parsing. The resulting message might not be the same as what is originally sent.

process.setegid(id) #

The process.setegid() method sets the effective group identity of the process. (See setegid(2) .) The id can be passed as either a numeric ID or a group name string. If a group name is specified, this method blocks while resolving the associated a numeric ID.

This function is only available on POSIX platforms (i.e. not Windows or Android). This feature is not available in Worker threads.

process.seteuid(id) #

The process.seteuid() method sets the effective user identity of the process. (See seteuid(2) .) The id can be passed as either a numeric ID or a username string. If a username is specified, the method blocks while resolving the associated numeric ID.

This function is only available on POSIX platforms (i.e. not Windows or Android). This feature is not available in Worker threads.

process.setgid(id) #

The process.setgid() method sets the group identity of the process. (See setgid(2) .) The id can be passed as either a numeric ID or a group name string. If a group name is specified, this method blocks while resolving the associated numeric ID.

This function is only available on POSIX platforms (i.e. not Windows or Android). This feature is not available in Worker threads.

process.setgroups(groups) #

The process.setgroups() method sets the supplementary group IDs for the Node.js process. This is a privileged operation that requires the Node.js process to have root or the CAP_SETGID capability.

The groups array can contain numeric group IDs, group names, or both.

This function is only available on POSIX platforms (i.e. not Windows or Android). This feature is not available in Worker threads.

process.setuid(id) #

The process.setuid(id) method sets the user identity of the process. (See setuid(2) .) The id can be passed as either a numeric ID or a username string. If a username is specified, the method blocks while resolving the associated numeric ID.

This function is only available on POSIX platforms (i.e. not Windows or Android). This feature is not available in Worker threads.

process.setSourceMapsEnabled(val) #

This function enables or disables the Source Map v3 support for stack traces.

It provides same features as launching Node.js process with commandline options —enable-source-maps .

Only source maps in JavaScript files that are loaded after source maps has been enabled will be parsed and loaded.

process.setUncaughtExceptionCaptureCallback(fn) #

The process.setUncaughtExceptionCaptureCallback() function sets a function that will be invoked when an uncaught exception occurs, which will receive the exception value itself as its first argument.

If such a function is set, the ‘uncaughtException’ event will not be emitted. If —abort-on-uncaught-exception was passed from the command line or set through v8.setFlagsFromString() , the process will not abort. Actions configured to take place on exceptions such as report generations will be affected too

To unset the capture function, process.setUncaughtExceptionCaptureCallback(null) may be used. Calling this method with a non- null argument while another capture function is set will throw an error.

Using this function is mutually exclusive with using the deprecated domain built-in module.

process.stderr #

The process.stderr property returns a stream connected to stderr (fd 2 ). It is a net.Socket (which is a Duplex stream) unless fd 2 refers to a file, in which case it is a Writable stream.

process.stderr differs from other Node.js streams in important ways. See note on process I/O for more information.

process.stderr.fd #

This property refers to the value of underlying file descriptor of process.stderr . The value is fixed at 2 . In Worker threads, this field does not exist.

process.stdin #

The process.stdin property returns a stream connected to stdin (fd 0 ). It is a net.Socket (which is a Duplex stream) unless fd 0 refers to a file, in which case it is a Readable stream.

For details of how to read from stdin see readable.read() .

As a Duplex stream, process.stdin can also be used in «old» mode that is compatible with scripts written for Node.js prior to v0.10. For more information see Stream compatibility.

In «old» streams mode the stdin stream is paused by default, so one must call process.stdin.resume() to read from it. Note also that calling process.stdin.resume() itself would switch stream to «old» mode.

process.stdin.fd #

This property refers to the value of underlying file descriptor of process.stdin . The value is fixed at 0 . In Worker threads, this field does not exist.

process.stdout #

The process.stdout property returns a stream connected to stdout (fd 1 ). It is a net.Socket (which is a Duplex stream) unless fd 1 refers to a file, in which case it is a Writable stream.

For example, to copy process.stdin to process.stdout :

process.stdout differs from other Node.js streams in important ways. See note on process I/O for more information.

process.stdout.fd #

This property refers to the value of underlying file descriptor of process.stdout . The value is fixed at 1 . In Worker threads, this field does not exist.

A note on process I/O #

process.stdout and process.stderr differ from other Node.js streams in important ways:

  1. They are used internally by console.log() and console.error() , respectively.
  2. Writes may be synchronous depending on what the stream is connected to and whether the system is Windows or POSIX:
    • Files: synchronous on Windows and POSIX
    • TTYs (Terminals): asynchronous on Windows, synchronous on POSIX
    • Pipes (and sockets): synchronous on Windows, asynchronous on POSIX

These behaviors are partly for historical reasons, as changing them would create backward incompatibility, but they are also expected by some users.

Synchronous writes avoid problems such as output written with console.log() or console.error() being unexpectedly interleaved, or not written at all if process.exit() is called before an asynchronous write completes. See process.exit() for more information.

Warning: Synchronous writes block the event loop until the write has completed. This can be near instantaneous in the case of output to a file, but under high system load, pipes that are not being read at the receiving end, or with slow terminals or file systems, it’s possible for the event loop to be blocked often enough and long enough to have severe negative performance impacts. This may not be a problem when writing to an interactive terminal session, but consider this particularly careful when doing production logging to the process output streams.

To check if a stream is connected to a TTY context, check the isTTY property.

See the TTY documentation for more information.

Источник

Adblock
detector

Version Changes
v13.12.0, v12.17.0

В process Объект предоставляет информацию о текущем процессе Node.js. и контролирует его. Хотя он доступен как глобальный, рекомендуется явно получить к нему доступ через require или import:

import process from 'process';
const process = require('process');

События процесса¶

В process объект является экземпляром EventEmitter.

Событие: 'beforeExit'

В 'beforeExit' Событие генерируется, когда Node.js очищает свой цикл событий и не имеет дополнительной работы для планирования. Обычно процесс Node.js завершается, когда нет запланированной работы, но слушатель зарегистрирован на 'beforeExit' может выполнять асинхронные вызовы и тем самым вызывать продолжение процесса Node.js.

Функция обратного вызова слушателя вызывается со значением process.exitCode передается как единственный аргумент.

В 'beforeExit' событие нет испускается для условий, вызывающих явное завершение, таких как вызов process.exit() или неперехваченные исключения.

В 'beforeExit' должен нет использоваться как альтернатива 'exit' событие, если не планируется запланировать дополнительную работу.

import process from 'process';

process.on('beforeExit', (code) => {
  console.log('Process beforeExit event with code: ', code);
});

process.on('exit', (code) => {
  console.log('Process exit event with code: ', code);
});

console.log('This message is displayed first.');

// Prints:
// This message is displayed first.
// Process beforeExit event with code: 0
// Process exit event with code: 0
const process = require('process');

process.on('beforeExit', (code) => {
  console.log('Process beforeExit event with code: ', code);
});

process.on('exit', (code) => {
  console.log('Process exit event with code: ', code);
});

console.log('This message is displayed first.');

// Prints:
// This message is displayed first.
// Process beforeExit event with code: 0
// Process exit event with code: 0

Событие: 'disconnect'

Если процесс Node.js порождается с каналом IPC (см. Дочерний процесс а также Кластер документация), 'disconnect' событие будет сгенерировано, когда канал IPC будет закрыт.

Событие: 'exit'

  • code {целое число}

В 'exit' Событие генерируется, когда процесс Node.js собирается завершить работу в результате:

  • В process.exit() явно вызываемый метод;
  • Цикл событий Node.js больше не требует дополнительной работы.

Невозможно предотвратить выход из цикла событий на этом этапе, и однажды все 'exit' слушатели завершили работу, процесс Node.js завершится.

Функция обратного вызова слушателя вызывается с кодом выхода, указанным либо в process.exitCode собственность, или exitCode аргумент передан в process.exit() метод.

import process from 'process';

process.on('exit', (code) => {
  console.log(`About to exit with code: ${code}`);
});
const process = require('process');

process.on('exit', (code) => {
  console.log(`About to exit with code: ${code}`);
});

Функции слушателя должен только выполнять синхронный операции. Процесс Node.js завершится сразу после вызова 'exit' прослушиватели событий, вызывающие любую дополнительную работу, все еще стоящую в очереди в цикле событий, должны быть отменены. В следующем примере, например, тайм-аут никогда не наступит:

import process from 'process';

process.on('exit', (code) => {
  setTimeout(() => {
    console.log('This will not run');
  }, 0);
});
const process = require('process');

process.on('exit', (code) => {
  setTimeout(() => {
    console.log('This will not run');
  }, 0);
});

Событие: 'message'

  • message {Объект | логическое | номер | строка | null} проанализированный объект JSON или сериализуемое примитивное значение.
  • sendHandle {net.Server | net.Socket} а net.Server или net.Socket объект или неопределенный.

Если процесс Node.js порождается с каналом IPC (см. Дочерний процесс а также Кластер документация), 'message' событие генерируется всякий раз, когда сообщение отправляется родительским процессом с использованием childprocess.send() получает дочерний процесс.

Сообщение проходит сериализацию и синтаксический анализ. Полученное сообщение может отличаться от исходного.

Если serialization опция была установлена на advanced используется при порождении процесса, message Аргумент может содержать данные, которые JSON не может представить. Видеть Расширенная сериализация для child_process Больше подробностей.

Событие: 'multipleResolves'

  • type {строка} Тип разрешения. Один из 'resolve' или 'reject'.
  • promise {Обещание} Обещание, которое выполнялось или отклонялось более одного раза.
  • value {any} Значение, с которым обещание было разрешено или отклонено после исходного разрешения.

В 'multipleResolves' событие генерируется всякий раз, когда Promise был либо:

  • Решалось не раз.
  • Отклонено более одного раза.
  • Отклонено после разрешения.
  • Решено после отклонения.

Это полезно для отслеживания потенциальных ошибок в приложении при использовании Promise конструктор, так как несколько разрешений незаметно проглатываются. Однако возникновение этого события не обязательно указывает на ошибку. Например, Promise.race() может вызвать 'multipleResolves' событие.

import process from 'process';

process.on('multipleResolves', (type, promise, reason) => {
  console.error(type, promise, reason);
  setImmediate(() => process.exit(1));
});

async function main() {
  try {
    return await new Promise((resolve, reject) => {
      resolve('First call');
      resolve('Swallowed resolve');
      reject(new Error('Swallowed reject'));
    });
  } catch {
    throw new Error('Failed');
  }
}

main().then(console.log);
// resolve: Promise { 'First call' } 'Swallowed resolve'
// reject: Promise { 'First call' } Error: Swallowed reject
//     at Promise (*)
//     at new Promise (<anonymous>)
//     at main (*)
// First call
const process = require('process');

process.on('multipleResolves', (type, promise, reason) => {
  console.error(type, promise, reason);
  setImmediate(() => process.exit(1));
});

async function main() {
  try {
    return await new Promise((resolve, reject) => {
      resolve('First call');
      resolve('Swallowed resolve');
      reject(new Error('Swallowed reject'));
    });
  } catch {
    throw new Error('Failed');
  }
}

main().then(console.log);
// resolve: Promise { 'First call' } 'Swallowed resolve'
// reject: Promise { 'First call' } Error: Swallowed reject
//     at Promise (*)
//     at new Promise (<anonymous>)
//     at main (*)
// First call

Событие: 'rejectionHandled'

  • promise {Обещание} Обещание, выполненное с опозданием.

В 'rejectionHandled' событие генерируется всякий раз, когда Promise был отклонен, и к нему был прикреплен обработчик ошибок (с использованием promise.catch(), например) позже, чем за один ход цикла обработки событий Node.js.

В Promise объект ранее был бы испущен в 'unhandledRejection' событие, но в процессе обработки получил обработчик отклонения.

Нет понятия верхнего уровня для Promise цепочка, в которой всегда можно обработать отказ. По своей природе асинхронный Promise отклонение может быть обработано в будущем, возможно, намного позже, чем цикл обработки событий, необходимый для 'unhandledRejection' событие, которое будет выпущено.

Другой способ заявить об этом состоит в том, что, в отличие от синхронного кода, где есть постоянно растущий список необработанных исключений, с Promises может быть увеличивающийся и сокращающийся список необработанных отклонений.

В синхронном коде 'uncaughtException' Событие генерируется при увеличении списка необработанных исключений.

В асинхронном коде 'unhandledRejection' событие генерируется, когда список необработанных отклонений растет, а 'rejectionHandled' Событие генерируется, когда список необработанных отказов сокращается.

import process from 'process';

const unhandledRejections = new Map();
process.on('unhandledRejection', (reason, promise) => {
  unhandledRejections.set(promise, reason);
});
process.on('rejectionHandled', (promise) => {
  unhandledRejections.delete(promise);
});
const process = require('process');

const unhandledRejections = new Map();
process.on('unhandledRejection', (reason, promise) => {
  unhandledRejections.set(promise, reason);
});
process.on('rejectionHandled', (promise) => {
  unhandledRejections.delete(promise);
});

В этом примере unhandledRejections Map будет расти и уменьшаться со временем, отражая отказы, которые сначала не обрабатываются, а затем обрабатываются. Такие ошибки можно записывать в журнал ошибок либо периодически (что, вероятно, лучше всего для долго работающего приложения), либо при выходе из процесса (что, вероятно, наиболее удобно для сценариев).

Событие: 'uncaughtException'

  • err {Error} Неперехваченное исключение.
  • origin {строка} Указывает, возникло ли исключение из-за необработанного отклонения или из-за синхронной ошибки. Либо может быть 'uncaughtException' или 'unhandledRejection'. Последний используется только вместе с --unhandled-rejections установлен флаг strict или throw и необработанный отказ.

В 'uncaughtException' Событие генерируется, когда неперехваченное исключение JavaScript возвращается обратно в цикл обработки событий. По умолчанию Node.js обрабатывает такие исключения, выводя трассировку стека в stderr и выход с кодом 1, отменяя любой ранее установленный process.exitCode. Добавление обработчика для 'uncaughtException' событие отменяет это поведение по умолчанию. Или измените process.exitCode в 'uncaughtException' обработчик, который приведет к завершению процесса с предоставленным кодом выхода. В противном случае при наличии такого обработчика процесс завершится с 0.

import process from 'process';

process.on('uncaughtException', (err, origin) => {
  fs.writeSync(
    process.stderr.fd,
    `Caught exception: ${err}n` +
      `Exception origin: ${origin}`
  );
});

setTimeout(() => {
  console.log('This will still run.');
}, 500);

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
console.log('This will not run.');
const process = require('process');

process.on('uncaughtException', (err, origin) => {
  fs.writeSync(
    process.stderr.fd,
    `Caught exception: ${err}n` +
      `Exception origin: ${origin}`
  );
});

setTimeout(() => {
  console.log('This will still run.');
}, 500);

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
console.log('This will not run.');

Есть возможность контролировать 'uncaughtException' события без отмены поведения по умолчанию, чтобы выйти из процесса, установив 'uncaughtExceptionMonitor' слушатель.

Предупреждение: использование 'uncaughtException' правильно¶

'uncaughtException' это грубый механизм обработки исключений, предназначенный для использования только в крайнем случае. Событие не должна использоваться как эквивалент On Error Resume Next. Необработанные исключения по сути означают, что приложение находится в неопределенном состоянии. Попытка возобновить код приложения без надлежащего восстановления после исключения может вызвать дополнительные непредвиденные и непредсказуемые проблемы.

Исключения, созданные из обработчика событий, не будут перехвачены. Вместо этого процесс завершится с ненулевым кодом выхода, и будет напечатана трассировка стека. Это сделано для того, чтобы избежать бесконечной рекурсии.

Попытка возобновить работу в обычном режиме после неперехваченного исключения может быть аналогична выдергиванию шнура питания при обновлении компьютера. В девяти случаях из десяти ничего не происходит. Но в десятый раз система оказывается поврежденной.

Правильное использование 'uncaughtException' заключается в выполнении синхронной очистки выделенных ресурсов (например, дескрипторов файлов, дескрипторов и т. д.) перед завершением процесса. Возобновление нормальной работы после 'uncaughtException'.

Чтобы перезапустить аварийное приложение более надежным способом, независимо от того, 'uncaughtException' испускается или нет, внешний монитор должен использоваться в отдельном процессе для обнаружения сбоев приложения и восстановления или перезапуска по мере необходимости.

Событие: 'uncaughtExceptionMonitor'

  • err {Error} Неперехваченное исключение.
  • origin {строка} Указывает, возникло ли исключение из-за необработанного отклонения или из синхронных ошибок. Либо может быть 'uncaughtException' или 'unhandledRejection'. Последний используется только вместе с --unhandled-rejections установлен флаг strict или throw и необработанный отказ.

В 'uncaughtExceptionMonitor' событие генерируется перед 'uncaughtException' генерируется событие или устанавливается ловушка через process.setUncaughtExceptionCaptureCallback() называется.

Установка 'uncaughtExceptionMonitor' слушатель не меняет поведение после того, как 'uncaughtException' событие испускается. Если нет, процесс все равно выйдет из строя. 'uncaughtException' слушатель установлен.

import process from 'process';

process.on('uncaughtExceptionMonitor', (err, origin) => {
  MyMonitoringTool.logSync(err, origin);
});

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
// Still crashes Node.js
const process = require('process');

process.on('uncaughtExceptionMonitor', (err, origin) => {
  MyMonitoringTool.logSync(err, origin);
});

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
// Still crashes Node.js

Событие: 'unhandledRejection'

  • reason {Error | any} Объект, с которым было отклонено обещание (обычно Error объект).
  • promise {Обещание} Отклоненное обещание.

В 'unhandledRejection' событие генерируется всякий раз, когда Promise отклоняется, и к обещанию не прикрепляется обработчик ошибок в ходе цикла обработки событий. При программировании с помощью обещаний исключения инкапсулируются как «отклоненные обещания». Отказ может быть обнаружен и обработан с помощью promise.catch() и распространяются через Promise цепь. В 'unhandledRejection' Событие полезно для обнаружения и отслеживания отклоненных обещаний, которые еще не были обработаны.

import process from 'process';

process.on('unhandledRejection', (reason, promise) => {
  console.log(
    'Unhandled Rejection at:',
    promise,
    'reason:',
    reason
  );
  // Application specific logging, throwing an error, or other logic here
});

somePromise.then((res) => {
  return reportToUser(JSON.pasre(res)); // Note the typo (`pasre`)
}); // No `.catch()` or `.then()`
const process = require('process');

process.on('unhandledRejection', (reason, promise) => {
  console.log(
    'Unhandled Rejection at:',
    promise,
    'reason:',
    reason
  );
  // Application specific logging, throwing an error, or other logic here
});

somePromise.then((res) => {
  return reportToUser(JSON.pasre(res)); // Note the typo (`pasre`)
}); // No `.catch()` or `.then()`

Следующее также вызовет 'unhandledRejection' событие, которое будет создано:

import process from 'process';

function SomeResource() {
  // Initially set the loaded status to a rejected promise
  this.loaded = Promise.reject(
    new Error('Resource not yet loaded!')
  );
}

const resource = new SomeResource();
// no .catch or .then on resource.loaded for at least a turn
const process = require('process');

function SomeResource() {
  // Initially set the loaded status to a rejected promise
  this.loaded = Promise.reject(
    new Error('Resource not yet loaded!')
  );
}

const resource = new SomeResource();
// no .catch or .then on resource.loaded for at least a turn

В этом примере можно отследить отклонение как ошибку разработчика, как это обычно бывает для других 'unhandledRejection' События. Для устранения таких сбоев в нерабочем .catch(() => { }) обработчик может быть прикреплен к resource.loaded, что предотвратило бы 'unhandledRejection' событие от испускания.

Событие: 'warning'

  • warning {Error} Ключевые свойства предупреждения:
  • name {строка} Название предупреждения. Дефолт: 'Warning'.
  • message {строка} Системное описание предупреждения.
  • stack {строка} Трассировка стека до места в коде, где было выдано предупреждение.

В 'warning' Событие генерируется всякий раз, когда Node.js выдает предупреждение процесса.

Предупреждение процесса похоже на ошибку в том, что оно описывает исключительные условия, которые доводятся до сведения пользователя. Однако предупреждения не являются частью обычного потока обработки ошибок Node.js и JavaScript. Node.js может выдавать предупреждения всякий раз, когда обнаруживает неправильные методы кодирования, которые могут привести к неоптимальной производительности приложения, ошибкам или уязвимостям безопасности.

import process from 'process';

process.on('warning', (warning) => {
  console.warn(warning.name); // Print the warning name
  console.warn(warning.message); // Print the warning message
  console.warn(warning.stack); // Print the stack trace
});
const process = require('process');

process.on('warning', (warning) => {
  console.warn(warning.name); // Print the warning name
  console.warn(warning.message); // Print the warning message
  console.warn(warning.stack); // Print the stack trace
});

По умолчанию Node.js выводит предупреждения о процессе на stderr. В --no-warnings параметр командной строки может использоваться для подавления вывода консоли по умолчанию, но 'warning' событие по-прежнему будет генерироваться process объект.

В следующем примере показано предупреждение, которое выводится на stderr когда к событию добавлено слишком много слушателей:

$ node
> events.defaultMaxListeners = 1;
> process.on('foo', () => {});
> process.on('foo', () => {});
> (node:38638) MaxListenersExceededWarning: Possible EventEmitter memory leak
detected. 2 foo listeners added. Use emitter.setMaxListeners() to increase limit

В отличие от этого, в следующем примере отключается вывод предупреждений по умолчанию и добавляется пользовательский обработчик в 'warning' событие:

$ node --no-warnings
> const p = process.on('warning', (warning) => console.warn('Do not do that!'));
> events.defaultMaxListeners = 1;
> process.on('foo', () => {});
> process.on('foo', () => {});
> Do not do that!

В --trace-warnings Параметр командной строки может использоваться, чтобы вывод в консоль по умолчанию для предупреждений включал полную трассировку стека предупреждения.

Запуск Node.js с помощью --throw-deprecation Флаг командной строки приведет к тому, что пользовательские предупреждения об устаревании будут выдаваться как исключения.

С помощью --trace-deprecation флаг командной строки приведет к тому, что пользовательское устаревание будет напечатано на stderr вместе с трассировкой стека.

С помощью --no-deprecation Флаг командной строки подавит все сообщения о пользовательском устаревании.

В *-deprecation флаги командной строки влияют только на предупреждения, использующие имя 'DeprecationWarning'.

Событие: 'worker'

  • worker {Worker} Созданный {Worker}.

В 'worker' событие генерируется после создания нового потока {Worker}.

Выдача настраиваемых предупреждений¶

Увидеть process.emitWarning() метод выдачи настраиваемых предупреждений или предупреждений для конкретных приложений.

Имена предупреждений Node.js¶

Нет никаких строгих правил для типов предупреждений (как указано в name property), создаваемый Node.js. Новые типы предупреждений могут быть добавлены в любое время. Вот некоторые из наиболее распространенных типов предупреждений:

  • 'DeprecationWarning' — Указывает на использование устаревшего API или функции Node.js. Такие предупреждения должны включать 'code' свойство, определяющее код устаревания.
  • 'ExperimentalWarning' — Указывает на использование экспериментального API или функции Node.js. Такие функции следует использовать с осторожностью, поскольку они могут измениться в любое время и не подпадают под те же строгие политики семантического управления версиями и долгосрочной поддержки, что и поддерживаемые функции.
  • 'MaxListenersExceededWarning' — Указывает, что слишком много слушателей для данного события было зарегистрировано на каком-либо EventEmitter или EventTarget. Часто это указывает на утечку памяти.
  • 'TimeoutOverflowWarning' — Указывает, что числовое значение, которое не может поместиться в 32-разрядное целое число со знаком, было предоставлено либо setTimeout() или setInterval() функции.
  • 'UnsupportedWarning' — Указывает на использование неподдерживаемой опции или функции, которая будет проигнорирована, а не обработана как ошибка. Одним из примеров является использование сообщения о статусе ответа HTTP при использовании API совместимости HTTP / 2.

Сигнальные события¶

События сигнала будут отправлены, когда процесс Node.js получит сигнал. Пожалуйста, обратитесь к signal (7) для получения списка стандартных имен сигналов POSIX, таких как 'SIGINT', 'SIGHUP', так далее.

Сигналы недоступны на Worker потоки.

Обработчик сигнала получит имя сигнала ('SIGINT', 'SIGTERM'и т. д.) в качестве первого аргумента.

Имя каждого события будет общим именем сигнала в верхнем регистре (например, 'SIGINT' для SIGINT сигналы).

import process from 'process';

// Begin reading from stdin so the process does not exit.
process.stdin.resume();

process.on('SIGINT', () => {
  console.log('Received SIGINT. Press Control-D to exit.');
});

// Using a single function to handle multiple signals
function handle(signal) {
  console.log(`Received ${signal}`);
}

process.on('SIGINT', handle);
process.on('SIGTERM', handle);
const process = require('process');

// Begin reading from stdin so the process does not exit.
process.stdin.resume();

process.on('SIGINT', () => {
  console.log('Received SIGINT. Press Control-D to exit.');
});

// Using a single function to handle multiple signals
function handle(signal) {
  console.log(`Received ${signal}`);
}

process.on('SIGINT', handle);
process.on('SIGTERM', handle);
  • 'SIGUSR1' зарезервирован Node.js для запуска отладчик. Можно установить прослушиватель, но это может помешать работе отладчика.
  • 'SIGTERM' а также 'SIGINT' иметь обработчики по умолчанию на платформах, отличных от Windows, которые сбрасывают режим терминала перед выходом с кодом 128 + signal number. Если для одного из этих сигналов установлен прослушиватель, его поведение по умолчанию будет удалено (Node.js больше не будет выходить).
  • 'SIGPIPE' по умолчанию игнорируется. Он может иметь установленный слушатель.
  • 'SIGHUP' генерируется в Windows, когда окно консоли закрыто, и на других платформах при различных аналогичных условиях. См. Сигнал (7). У него может быть установлен прослушиватель, однако Node.js будет безоговорочно завершен Windows примерно через 10 секунд. На платформах, отличных от Windows, поведение по умолчанию SIGHUP — завершить работу Node.js, но после установки слушателя его поведение по умолчанию будет удалено.
  • 'SIGTERM' не поддерживается в Windows, его можно прослушивать.
  • 'SIGINT' из терминала поддерживается на всех платформах и обычно может быть сгенерирован с помощью Ctrl+C (хотя это можно настроить). Он не генерируется, когда необработанный режим терминала включен и Ctrl+C используется.
  • 'SIGBREAK' поставляется в Windows, когда Ctrl+Перерыв нажата. На платформах, отличных от Windows, его можно прослушивать, но нет возможности отправить или сгенерировать его.
  • 'SIGWINCH' доставляется после изменения размера консоли. В Windows это произойдет только при записи в консоль, когда курсор перемещается, или когда читаемый tty используется в необработанном режиме.
  • 'SIGKILL' не может быть установлен слушатель, он безоговорочно завершит работу Node.js на всех платформах.
  • 'SIGSTOP' не может быть установлен слушатель.
  • 'SIGBUS', 'SIGFPE', 'SIGSEGV' а также 'SIGILL', когда не вызывается искусственно с помощью kill (2), по сути, оставляет процесс в состоянии, из которого небезопасно вызывать слушателей JS. Это может привести к тому, что процесс перестанет отвечать.
  • 0 могут быть отправлены для проверки существования процесса, это не имеет никакого эффекта, если процесс существует, но выдаст ошибку, если процесс не существует.

Windows не поддерживает сигналы, поэтому не имеет эквивалента прерыванию по сигналу, но Node.js предлагает некоторую эмуляцию с process.kill(), а также subprocess.kill():

  • Отправка SIGINT, SIGTERM, а также SIGKILL вызовет безусловное завершение целевого процесса, после чего подпроцесс сообщит, что процесс был завершен сигналом.
  • Отправка сигнала 0 может использоваться как независимый от платформы способ проверки существования процесса.

process.abort()

В process.abort() приводит к немедленному завершению процесса Node.js и генерации основного файла.

Эта функция недоступна в Worker потоки.

process.allowedNodeEnvironmentFlags

  • {Установленный}

В process.allowedNodeEnvironmentFlags свойство является специальным, доступным только для чтения Set флагов, допустимых в пределах NODE_OPTIONS переменная окружения.

process.allowedNodeEnvironmentFlags расширяет Set, но отменяет Set.prototype.has распознавать несколько различных возможных представлений флагов. process.allowedNodeEnvironmentFlags.has() вернусь true в следующих случаях:

  • Флаги могут опускать ведущий одинарный (-) или двойной (--) тире; например., inspect-brk для --inspect-brk, или r для -r.
  • Флаги переданы в V8 (как указано в --v8-options) может заменить один или несколько не ведущий дефисы для подчеркивания или наоборот; например., --perf_basic_prof, --perf-basic-prof, --perf_basic-prof, так далее.
  • Флаги могут содержать одно или несколько равных (=) символы; все символы после первого равенства включительно будут проигнорированы; например., --stack-trace-limit=100.
  • Флаги должен быть допустимым в NODE_OPTIONS.

При повторении process.allowedNodeEnvironmentFlags, флаги появятся только однажды; каждый будет начинаться с одного или нескольких тире. Флаги, передаваемые в V8, будут содержать символы подчеркивания вместо дефисов в начале:

import { allowedNodeEnvironmentFlags } from 'process';

allowedNodeEnvironmentFlags.forEach((flag) => {
  // -r
  // --inspect-brk
  // --abort_on_uncaught_exception
  // ...
});
const { allowedNodeEnvironmentFlags } = require('process');

allowedNodeEnvironmentFlags.forEach((flag) => {
  // -r
  // --inspect-brk
  // --abort_on_uncaught_exception
  // ...
});

Методы add(), clear(), а также delete() из process.allowedNodeEnvironmentFlags ничего не делать и тихо потерпит неудачу.

Если Node.js был скомпилирован без NODE_OPTIONS поддержка (показано в process.config), process.allowedNodeEnvironmentFlags будет содержать то, что имел бы было допустимо.

process.arch

  • {нить}

Архитектура ЦП операционной системы, для которой был скомпилирован двоичный файл Node.js. Возможные значения: 'arm', 'arm64', 'ia32', 'mips','mipsel', 'ppc', 'ppc64', 's390', 's390x', 'x32', а также 'x64'.

import { arch } from 'process';

console.log(`This processor architecture is ${arch}`);
const { arch } = require('process');

console.log(
  `This processor architecture is ${process.arch}`
);

process.argv

  • {нить[]}

В process.argv Свойство возвращает массив, содержащий аргументы командной строки, переданные при запуске процесса Node.js. Первый элемент будет process.execPath. Видеть process.argv0 если доступ к исходному значению argv[0] необходим. Второй элемент — это путь к исполняемому файлу JavaScript. Остальные элементы будут любыми дополнительными аргументами командной строки.

Например, если следующий сценарий для process-args.js:

import { argv } from 'process';

// print process.argv
argv.forEach((val, index) => {
  console.log(`${index}: ${val}`);
});
const { argv } = require('process');

// print process.argv
argv.forEach((val, index) => {
  console.log(`${index}: ${val}`);
});

Запуск процесса Node.js как:

$ node process-args.js one two=three four

Сгенерирует вывод:

0: /usr/local/bin/node
1: /Users/mjr/work/node/process-args.js
2: one
3: two=three
4: four

process.argv0

  • {нить}

В process.argv0 свойство хранит доступную только для чтения копию исходного значения argv[0] передается при запуске Node.js.

$ bash -c 'exec -a customArgv0 ./node'
> process.argv[0]
'/Volumes/code/external/node/out/Release/node'
> process.argv0
'customArgv0'

process.channel

  • {Объект}

Если процесс Node.js был порожден с каналом IPC (см. Дочерний процесс документация), process.channel свойство — это ссылка на канал IPC. Если канал IPC не существует, это свойство undefined.

process.channel.ref()

Этот метод заставляет канал IPC поддерживать цикл обработки событий запущенного процесса, если .unref() был вызван раньше.

Обычно это достигается за счет количества 'disconnect' а также 'message' слушатели на process объект. Однако этот метод можно использовать для явного запроса определенного поведения.

process.channel.unref()

Этот метод заставляет канал IPC не поддерживать цикл обработки событий процесса и позволяет ему завершиться, даже когда канал открыт.

Обычно это достигается за счет количества 'disconnect' а также 'message' слушатели на process объект. Однако этот метод можно использовать для явного запроса определенного поведения.

process.chdir(directory)

  • directory {нить}

В process.chdir() изменяет текущий рабочий каталог процесса Node.js или выдает исключение, если это не удается (например, если указанный directory не существует).

import { chdir, cwd } from 'process';

console.log(`Starting directory: ${cwd()}`);
try {
  chdir('/tmp');
  console.log(`New directory: ${cwd()}`);
} catch (err) {
  console.error(`chdir: ${err}`);
}
const { chdir, cwd } = require('process');

console.log(`Starting directory: ${cwd()}`);
try {
  chdir('/tmp');
  console.log(`New directory: ${cwd()}`);
} catch (err) {
  console.error(`chdir: ${err}`);
}

Эта функция недоступна в Worker потоки.

process.config

  • {Объект}

В process.config свойство возвращает Object содержащий представление JavaScript параметров конфигурации, используемых для компиляции текущего исполняемого файла Node.js. Это то же самое, что и config.gypi файл, созданный при запуске ./configure сценарий.

Пример возможного вывода выглядит так:

{
  target_defaults:
   { cflags: [],
     default_configuration: 'Release',
     defines: [],
     include_dirs: [],
     libraries: [] },
  variables:
   {
     host_arch: 'x64',
     napi_build_version: 5,
     node_install_npm: 'true',
     node_prefix: '',
     node_shared_cares: 'false',
     node_shared_http_parser: 'false',
     node_shared_libuv: 'false',
     node_shared_zlib: 'false',
     node_use_dtrace: 'false',
     node_use_openssl: 'true',
     node_shared_openssl: 'false',
     strict_aliasing: 'true',
     target_arch: 'x64',
     v8_use_snapshot: 1
   }
}

В process.config собственность нет только для чтения, и в экосистеме есть существующие модули, которые, как известно, расширяют, изменяют или полностью заменяют значение process.config.

Изменение process.config свойство или любое дочернее свойство process.config объект устарел. В process.config в будущем выпуске будет доступен только для чтения.

process.connected

  • {логический}

Если процесс Node.js порождается с каналом IPC (см. Дочерний процесс а также Кластер документация), process.connected собственность вернется true пока канал IPC подключен и вернется false после process.disconnect() называется.

Один раз process.connected является false, больше невозможно отправлять сообщения по каналу IPC, используя process.send().

process.cpuUsage([previousValue])

  • previousValue {Object} Предыдущее значение, возвращаемое при вызове process.cpuUsage()
  • Возвращает: {Object}
  • user {целое число}
  • system {целое число}

В process.cpuUsage() метод возвращает пользовательское и системное использование процессорного времени текущего процесса в объекте со свойствами user а также system, значения которых представляют собой микросекундные значения (миллионные доли секунды). Эти значения измеряют время, затраченное на пользовательский и системный код соответственно, и могут оказаться больше фактического затраченного времени, если несколько ядер ЦП выполняют работу для этого процесса.

Результат предыдущего вызова process.cpuUsage() может быть передан в качестве аргумента функции, чтобы получить показание разницы.

import { cpuUsage } from 'process';

const startUsage = cpuUsage();
// { user: 38579, system: 6986 }

// spin the CPU for 500 milliseconds
const now = Date.now();
while (Date.now() - now < 500);

console.log(cpuUsage(startUsage));
// { user: 514883, system: 11226 }
const { cpuUsage } = require('process');

const startUsage = cpuUsage();
// { user: 38579, system: 6986 }

// spin the CPU for 500 milliseconds
const now = Date.now();
while (Date.now() - now < 500);

console.log(cpuUsage(startUsage));
// { user: 514883, system: 11226 }

process.cwd()

  • Возвращает: {строка}

В process.cwd() метод возвращает текущий рабочий каталог процесса Node.js.

import { cwd } from 'process';

console.log(`Current directory: ${cwd()}`);
const { cwd } = require('process');

console.log(`Current directory: ${cwd()}`);

process.debugPort

  • {количество}

Порт, используемый отладчиком Node.js, когда он включен.

import process from 'process';

process.debugPort = 5858;
const process = require('process');

process.debugPort = 5858;

process.disconnect()

Если процесс Node.js порождается с каналом IPC (см. Дочерний процесс а также Кластер документация), process.disconnect() Метод закроет канал IPC для родительского процесса, позволяя дочернему процессу корректно завершиться, если нет других соединений, поддерживающих его работу.

Эффект звонка process.disconnect() это то же самое, что и звонок ChildProcess.disconnect() из родительского процесса.

Если процесс Node.js не был создан с каналом IPC, process.disconnect() будет undefined.

process.dlopen(module, filename[, flags])

  • module {Объект}
  • filename {нить}
  • flags {os.constants.dlopen} Дефолт: os.constants.dlopen.RTLD_LAZY

В process.dlopen() Метод позволяет динамически загружать общие объекты. Он в основном используется require() для загрузки надстроек C ++ и не должны использоваться напрямую, за исключением особых случаев. Другими словами, require() следует предпочесть process.dlopen() если нет особых причин, таких как настраиваемые флаги dlopen или загрузка из модулей ES.

В flags Аргумент — это целое число, которое позволяет указать поведение dlopen. Увидеть os.constants.dlopen документация для деталей.

Важное требование при звонке process.dlopen() это то module экземпляр должен быть передан. Функции, экспортируемые C ++ Addon, затем доступны через module.exports.

В приведенном ниже примере показано, как загрузить аддон C ++ с именем local.node, который экспортирует foo функция. Все символы загружаются перед возвратом вызова путем передачи RTLD_NOW постоянный. В этом примере предполагается, что постоянная доступна.

import { dlopen } from 'process';
import { constants } from 'os';
import { fileURLToPath } from 'url';

const module = { exports: {} };
dlopen(
  module,
  fileURLToPath(new URL('local.node', import.meta.url)),
  constants.dlopen.RTLD_NOW
);
module.exports.foo();
const { dlopen } = require('process');
const { constants } = require('os');
const { join } = require('path');

const module = { exports: {} };
dlopen(
  module,
  join(__dirname, 'local.node'),
  constants.dlopen.RTLD_NOW
);
module.exports.foo();

process.emitWarning(warning[, options])

  • warning {строка | Ошибка} Предупреждение, которое нужно выдать.
  • options {Объект}
  • type {строка} Когда warning это String, type это имя, которое нужно использовать для тип предупреждения. Дефолт: 'Warning'.
  • code {строка} Уникальный идентификатор отправляемого экземпляра предупреждения.
  • ctor {Функция} Когда warning это String, ctor — необязательная функция, используемая для ограничения сгенерированной трассировки стека. Дефолт: process.emitWarning.
  • detail {строка} Дополнительный текст, включаемый в сообщение об ошибке.

В process.emitWarning() может использоваться для выдачи настраиваемых предупреждений процесса или предупреждений для конкретного приложения. Их можно прослушать, добавив обработчик к 'warning' событие.

import { emitWarning } from 'process';

// Emit a warning with a code and additional detail.
emitWarning('Something happened!', {
  code: 'MY_WARNING',
  detail: 'This is some additional information',
});
// Emits:
// (node:56338) [MY_WARNING] Warning: Something happened!
// This is some additional information
const { emitWarning } = require('process');

// Emit a warning with a code and additional detail.
emitWarning('Something happened!', {
  code: 'MY_WARNING',
  detail: 'This is some additional information',
});
// Emits:
// (node:56338) [MY_WARNING] Warning: Something happened!
// This is some additional information

В этом примере Error объект создается внутри process.emitWarning() и прошел в 'warning' обработчик.

import process from 'process';

process.on('warning', (warning) => {
  console.warn(warning.name); // 'Warning'
  console.warn(warning.message); // 'Something happened!'
  console.warn(warning.code); // 'MY_WARNING'
  console.warn(warning.stack); // Stack trace
  console.warn(warning.detail); // 'This is some additional information'
});
const process = require('process');

process.on('warning', (warning) => {
  console.warn(warning.name); // 'Warning'
  console.warn(warning.message); // 'Something happened!'
  console.warn(warning.code); // 'MY_WARNING'
  console.warn(warning.stack); // Stack trace
  console.warn(warning.detail); // 'This is some additional information'
});

Если warning передается как Error объект, options аргумент игнорируется.

process.emitWarning(warning[, type[, code]][, ctor])

  • warning {строка | Ошибка} Предупреждение, которое нужно выдать.
  • type {строка} Когда warning это String, type это имя, которое нужно использовать для тип предупреждения. Дефолт: 'Warning'.
  • code {строка} Уникальный идентификатор отправляемого экземпляра предупреждения.
  • ctor {Функция} Когда warning это String, ctor — необязательная функция, используемая для ограничения сгенерированной трассировки стека. Дефолт: process.emitWarning.

В process.emitWarning() может использоваться для выдачи настраиваемых предупреждений процесса или предупреждений для конкретного приложения. Их можно прослушать, добавив обработчик к 'warning' событие.

import { emitWarning } from 'process';

// Emit a warning using a string.
emitWarning('Something happened!');
// Emits: (node: 56338) Warning: Something happened!
const { emitWarning } = require('process');

// Emit a warning using a string.
emitWarning('Something happened!');
// Emits: (node: 56338) Warning: Something happened!
import { emitWarning } from 'process';

// Emit a warning using a string and a type.
emitWarning('Something Happened!', 'CustomWarning');
// Emits: (node:56338) CustomWarning: Something Happened!
const { emitWarning } = require('process');

// Emit a warning using a string and a type.
emitWarning('Something Happened!', 'CustomWarning');
// Emits: (node:56338) CustomWarning: Something Happened!
import { emitWarning } from 'process';

emitWarning(
  'Something happened!',
  'CustomWarning',
  'WARN001'
);
// Emits: (node:56338) [WARN001] CustomWarning: Something happened!
const { emitWarning } = require('process');

process.emitWarning(
  'Something happened!',
  'CustomWarning',
  'WARN001'
);
// Emits: (node:56338) [WARN001] CustomWarning: Something happened!

В каждом из предыдущих примеров Error объект создается внутри process.emitWarning() и прошел в 'warning' обработчик.

import process from 'process';

process.on('warning', (warning) => {
  console.warn(warning.name);
  console.warn(warning.message);
  console.warn(warning.code);
  console.warn(warning.stack);
});
const process = require('process');

process.on('warning', (warning) => {
  console.warn(warning.name);
  console.warn(warning.message);
  console.warn(warning.code);
  console.warn(warning.stack);
});

Если warning передается как Error объект, он будет передан в 'warning' обработчик событий без изменений (и необязательный type, code а также ctor аргументы будут проигнорированы):

import { emitWarning } from 'process';

// Emit a warning using an Error object.
const myWarning = new Error('Something happened!');
// Use the Error name property to specify the type name
myWarning.name = 'CustomWarning';
myWarning.code = 'WARN001';

emitWarning(myWarning);
// Emits: (node:56338) [WARN001] CustomWarning: Something happened!
const { emitWarning } = require('process');

// Emit a warning using an Error object.
const myWarning = new Error('Something happened!');
// Use the Error name property to specify the type name
myWarning.name = 'CustomWarning';
myWarning.code = 'WARN001';

emitWarning(myWarning);
// Emits: (node:56338) [WARN001] CustomWarning: Something happened!

А TypeError бросается, если warning это что-нибудь кроме строки или Error объект.

В то время как предупреждения процесса используют Error объектов, механизм предупреждения процесса нет замена обычных механизмов обработки ошибок.

Следующая дополнительная обработка реализуется, если предупреждение type является 'DeprecationWarning':

  • Если --throw-deprecation Если используется флаг командной строки, предупреждение об устаревании выдается как исключение, а не как событие.
  • Если --no-deprecation используется флаг командной строки, предупреждение об устаревании подавляется.
  • Если --trace-deprecation используется флаг командной строки, предупреждение об устаревании выводится на stderr вместе с полной трассировкой стека.

Избегайте повторяющихся предупреждений¶

Рекомендуется выдавать предупреждения только один раз для каждого процесса. Для этого рекомендуется разместить emitWarning() за простым логическим флагом, как показано в примере ниже:

import { emitWarning } from 'process';

function emitMyWarning() {
  if (!emitMyWarning.warned) {
    emitMyWarning.warned = true;
    emitWarning('Only warn once!');
  }
}
emitMyWarning();
// Emits: (node: 56339) Warning: Only warn once!
emitMyWarning();
// Emits nothing
const { emitWarning } = require('process');

function emitMyWarning() {
  if (!emitMyWarning.warned) {
    emitMyWarning.warned = true;
    emitWarning('Only warn once!');
  }
}
emitMyWarning();
// Emits: (node: 56339) Warning: Only warn once!
emitMyWarning();
// Emits nothing

process.env

  • {Объект}

В process.env свойство возвращает объект, содержащий пользовательскую среду. Смотрите среду (7).

Пример этого объекта выглядит так:

{
  TERM: 'xterm-256color',
  SHELL: '/usr/local/bin/bash',
  USER: 'maciej',
  PATH: '~/.bin/:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin',
  PWD: '/Users/maciej',
  EDITOR: 'vim',
  SHLVL: '1',
  HOME: '/Users/maciej',
  LOGNAME: 'maciej',
  _: '/usr/local/bin/node'
}

Этот объект можно изменить, но такие изменения не будут отражены вне процесса Node.js или (если явно не запрошено) на другие Worker потоки. Другими словами, следующий пример не будет работать:

$ node -e 'process.env.foo = "bar"' && echo $foo

Пока будет следующее:

import { env } from 'process';

env.foo = 'bar';
console.log(env.foo);
const { env } = require('process');

env.foo = 'bar';
console.log(env.foo);

Назначение собственности на process.env неявно преобразует значение в строку. Такое поведение устарело. В будущих версиях Node.js может возникнуть ошибка, если значение не является строкой, числом или логическим значением.

import { env } from 'process';

env.test = null;
console.log(env.test);
// => 'null'
env.test = undefined;
console.log(env.test);
// => 'undefined'
const { env } = require('process');

env.test = null;
console.log(env.test);
// => 'null'
env.test = undefined;
console.log(env.test);
// => 'undefined'

Использовать delete удалить собственность из process.env.

import { env } from 'process';

env.TEST = 1;
delete env.TEST;
console.log(env.TEST);
// => undefined
const { env } = require('process');

env.TEST = 1;
delete env.TEST;
console.log(env.TEST);
// => undefined

В операционных системах Windows переменные среды нечувствительны к регистру.

import { env } from 'process';

env.TEST = 1;
console.log(env.test);
// => 1
const { env } = require('process');

env.TEST = 1;
console.log(env.test);
// => 1

Если явно не указано при создании Worker например, каждый Worker поток имеет свою собственную копию process.envна основе родительского потока process.env, или что-то еще, что было указано как env вариант для Worker конструктор. Изменения к process.env не будет видно через Worker потоков, и только основной поток может вносить изменения, которые видны операционной системе или собственным надстройкам.

process.execArgv

  • {нить[]}

В process.execArgv Свойство возвращает набор специфичных для Node.js параметров командной строки, переданных при запуске процесса Node.js. Эти параметры не отображаются в массиве, возвращаемом process.argv и не включайте исполняемый файл Node.js, имя сценария или любые параметры, следующие за именем сценария. Эти параметры полезны для создания дочерних процессов с той же средой выполнения, что и родительский.

$ node --harmony script.js --version

Результаты в process.execArgv:

А также process.argv:

['/usr/local/bin/node', 'script.js', '--version'];

Ссылаться на Worker конструктор для подробного описания поведения рабочих потоков с этим свойством.

process.execPath

  • {нить}

В process.execPath Свойство возвращает абсолютный путь к исполняемому файлу, запустившему процесс Node.js. Символические ссылки, если они есть, разрешаются.

process.exit([code])

  • code {integer} Код выхода. Дефолт: 0.

В process.exit() инструктирует Node.js завершить процесс синхронно со статусом выхода code. Если code опущен, для выхода используется либо код успеха 0 или ценность process.exitCode если он был установлен. Node.js не прекратит работу, пока все 'exit' вызываются слушатели событий.

Чтобы выйти с кодом ошибки:

import { exit } from 'process';

exit(1);
const { exit } = require('process');

exit(1);

Оболочка, выполнившая Node.js, должна видеть код выхода как 1.

Вызов process.exit() заставит процесс завершиться как можно быстрее, даже если есть еще ожидающие асинхронные операции, которые еще не завершены полностью, включая операции ввода-вывода для process.stdout а также process.stderr.

В большинстве случаев звонить process.exit() явно. Процесс Node.js завершится сам по себе если нет ожидающих дополнительных работ в цикле событий. В process.exitCode Свойство может быть установлено, чтобы сообщить процессу, какой код выхода использовать, когда процесс завершается корректно.

Например, следующий пример иллюстрирует злоупотребление принадлежащий process.exit() метод, который может привести к усечению и потере данных, выводимых на стандартный вывод:

import { exit } from 'process';

// This is an example of what *not* to do:
if (someConditionNotMet()) {
  printUsageToStdout();
  exit(1);
}
const { exit } = require('process');

// This is an example of what *not* to do:
if (someConditionNotMet()) {
  printUsageToStdout();
  exit(1);
}

Причина, по которой это проблематично, заключается в том, что запись в process.stdout в Node.js иногда асинхронный и может произойти за несколько тиков цикла событий Node.js. Вызов process.exit(), однако, принудительно завершает процесс до эти дополнительные записи в stdout может быть выполнено.

Вместо того, чтобы звонить process.exit() напрямую, код должен установить process.exitCode и позволить процессу завершиться естественным образом, избегая планирования какой-либо дополнительной работы для цикла событий:

import process from 'process';

// How to properly set the exit code while letting
// the process exit gracefully.
if (someConditionNotMet()) {
  printUsageToStdout();
  process.exitCode = 1;
}
const process = require('process');

// How to properly set the exit code while letting
// the process exit gracefully.
if (someConditionNotMet()) {
  printUsageToStdout();
  process.exitCode = 1;
}

Если необходимо завершить процесс Node.js из-за состояния ошибки, бросается непойманный ошибка и разрешение процесса завершиться соответствующим образом безопаснее, чем вызов process.exit().

В Worker потоков, эта функция останавливает текущий поток, а не текущий процесс.

process.exitCode

  • {целое число}

Число, которое будет кодом выхода процесса, когда процесс завершается корректно или завершается через process.exit() без указания кода.

Указание кода для process.exit(code) отменяет любую предыдущую настройку process.exitCode.

process.getegid()

В process.getegid() метод возвращает числовую эффективную групповую идентификацию процесса Node.js. (См. Getegid (2).)

import process from 'process';

if (process.getegid) {
  console.log(`Current gid: ${process.getegid()}`);
}
const process = require('process');

if (process.getegid) {
  console.log(`Current gid: ${process.getegid()}`);
}

Эта функция доступна только на платформах POSIX (то есть не в Windows или Android).

process.geteuid()

  • Возвращает: {Object}

В process.geteuid() Метод возвращает числовой идентификатор эффективного пользователя процесса. (См. Geteuid (2).)

import process from 'process';

if (process.geteuid) {
  console.log(`Current uid: ${process.geteuid()}`);
}
const process = require('process');

if (process.geteuid) {
  console.log(`Current uid: ${process.geteuid()}`);
}

Эта функция доступна только на платформах POSIX (то есть не в Windows или Android).

process.getgid()

  • Возвращает: {Object}

В process.getgid() Метод возвращает числовую групповую идентификацию процесса. (См. Getgid (2).)

import process from 'process';

if (process.getgid) {
  console.log(`Current gid: ${process.getgid()}`);
}
const process = require('process');

if (process.getgid) {
  console.log(`Current gid: ${process.getgid()}`);
}

Эта функция доступна только на платформах POSIX (то есть не в Windows или Android).

process.getgroups()

  • Возвращает: {integer []}

В process.getgroups() Метод возвращает массив с дополнительными идентификаторами групп. POSIX оставляет его неопределенным, если включен эффективный идентификатор группы, но Node.js гарантирует, что это всегда будет.

import process from 'process';

if (process.getgroups) {
  console.log(process.getgroups()); // [ 16, 21, 297 ]
}
const process = require('process');

if (process.getgroups) {
  console.log(process.getgroups()); // [ 16, 21, 297 ]
}

Эта функция доступна только на платформах POSIX (то есть не в Windows или Android).

process.getuid()

  • Возвращает: {целое число}

В process.getuid() Метод возвращает числовой идентификатор пользователя процесса. (См. Getuid (2).)

import process from 'process';

if (process.getuid) {
  console.log(`Current uid: ${process.getuid()}`);
}
const process = require('process');

if (process.getuid) {
  console.log(`Current uid: ${process.getuid()}`);
}

Эта функция доступна только на платформах POSIX (то есть не в Windows или Android).

process.hasUncaughtExceptionCaptureCallback()

  • Возвращает: {логическое}

Указывает, был ли установлен обратный вызов с помощью process.setUncaughtExceptionCaptureCallback().

process.hrtime([time])

Стабильность: 3 — Наследие. Использовать process.hrtime.bigint() вместо.

  • time {integer []} Результат предыдущего вызова process.hrtime()
  • Возвращает: {integer []}

Это устаревшая версия process.hrtime.bigint() до bigint был введен в JavaScript.

В process.hrtime() метод возвращает текущее реальное время с высоким разрешением в [seconds, nanoseconds] кортеж Array, куда nanoseconds — это оставшаяся часть реального времени, которая не может быть представлена со второй точностью.

time — необязательный параметр, который должен быть результатом предыдущего process.hrtime() вызовите разницу с текущим временем. Если переданный параметр не кортеж Array, а TypeError будет брошен. Передача определенного пользователем массива вместо результата предыдущего вызова process.hrtime() приведет к неопределенному поведению.

Эти времена относятся к произвольному времени в прошлом и не связаны со временем дня и, следовательно, не подвержены дрейфу часов. Основное использование — измерение производительности между интервалами:

import { hrtime } from 'process';

const NS_PER_SEC = 1e9;
const time = hrtime();
// [ 1800216, 25 ]

setTimeout(() => {
  const diff = hrtime(time);
  // [ 1, 552 ]

  console.log(
    `Benchmark took ${
      diff[0] * NS_PER_SEC + diff[1]
    } nanoseconds`
  );
  // Benchmark took 1000000552 nanoseconds
}, 1000);
const { hrtime } = require('process');

const NS_PER_SEC = 1e9;
const time = hrtime();
// [ 1800216, 25 ]

setTimeout(() => {
  const diff = hrtime(time);
  // [ 1, 552 ]

  console.log(
    `Benchmark took ${
      diff[0] * NS_PER_SEC + diff[1]
    } nanoseconds`
  );
  // Benchmark took 1000000552 nanoseconds
}, 1000);

process.hrtime.bigint()

  • Возврат: {bigint}

В bigint версия process.hrtime() метод, возвращающий текущее реальное время с высоким разрешением в наносекундах как bigint.

В отличие от process.hrtime(), он не поддерживает дополнительные time аргумент, так как разницу можно просто вычислить непосредственно вычитанием двух bigintс.

import { hrtime } from 'process';

const start = hrtime.bigint();
// 191051479007711n

setTimeout(() => {
  const end = hrtime.bigint();
  // 191052633396993n

  console.log(`Benchmark took ${end - start} nanoseconds`);
  // Benchmark took 1154389282 nanoseconds
}, 1000);
const { hrtime } = require('process');

const start = hrtime.bigint();
// 191051479007711n

setTimeout(() => {
  const end = hrtime.bigint();
  // 191052633396993n

  console.log(`Benchmark took ${end - start} nanoseconds`);
  // Benchmark took 1154389282 nanoseconds
}, 1000);
  • user {строка | число} Имя пользователя или числовой идентификатор.
  • extraGroup {строка | число} Имя группы или числовой идентификатор.

В process.initgroups() метод читает /etc/group файл и инициализирует список доступа группы, используя все группы, членом которых является пользователь. Это привилегированная операция, требующая, чтобы процесс Node.js имел root доступ или CAP_SETGID возможность.

Будьте осторожны при отказе от привилегий:

import { getgroups, initgroups, setgid } from 'process';

console.log(getgroups()); // [ 0 ]
initgroups('nodeuser', 1000); // switch user
console.log(getgroups()); // [ 27, 30, 46, 1000, 0 ]
setgid(1000); // drop root gid
console.log(getgroups()); // [ 27, 30, 46, 1000 ]
const {
  getgroups,
  initgroups,
  setgid,
} = require('process');

console.log(getgroups()); // [ 0 ]
initgroups('nodeuser', 1000); // switch user
console.log(getgroups()); // [ 27, 30, 46, 1000, 0 ]
setgid(1000); // drop root gid
console.log(getgroups()); // [ 27, 30, 46, 1000 ]

Эта функция доступна только на платформах POSIX (то есть не в Windows или Android). Эта функция недоступна в Worker потоки.

process.kill(pid[, signal])

  • pid {number} идентификатор процесса
  • signal {строка | число} Сигнал для отправки в виде строки или числа. Дефолт: 'SIGTERM'.

В process.kill() метод отправляет signal к процессу, определенному pid.

Имена сигналов представляют собой строки, такие как 'SIGINT' или 'SIGHUP'. Видеть Сигнальные события и kill (2) для получения дополнительной информации.

Этот метод выдаст ошибку, если цель pid не существует. В частном случае сигнал 0 может использоваться для проверки существования процесса. Платформы Windows выдадут ошибку, если pid используется для уничтожения группы процессов.

Хотя имя этой функции process.kill(), на самом деле это просто отправитель сигнала, как и kill системный вызов. Отправленный сигнал может делать что-то другое, кроме уничтожения целевого процесса.

import process, { kill } from 'process';

process.on('SIGHUP', () => {
  console.log('Got SIGHUP signal.');
});

setTimeout(() => {
  console.log('Exiting.');
  process.exit(0);
}, 100);

kill(process.pid, 'SIGHUP');
const process = require('process');

process.on('SIGHUP', () => {
  console.log('Got SIGHUP signal.');
});

setTimeout(() => {
  console.log('Exiting.');
  process.exit(0);
}, 100);

process.kill(process.pid, 'SIGHUP');

Когда SIGUSR1 получен процессом Node.js, Node.js запустит отладчик. Видеть Сигнальные события.

process.mainModule

Стабильность: 0 — Не рекомендуется: использовать require.main вместо.

  • {Объект}

В process.mainModule свойство предоставляет альтернативный способ получения require.main. Разница в том, что если основной модуль изменяется во время выполнения, require.main может по-прежнему относиться к исходному основному модулю в модулях, которые требовались до того, как произошло изменение. Как правило, можно с уверенностью предположить, что они относятся к одному и тому же модулю.

Как и в случае с require.main, process.mainModule будет undefined если нет скрипта входа.

process.memoryUsage()

  • Возвращает: {Object}
  • rss {целое число}
  • heapTotal {целое число}
  • heapUsed {целое число}
  • external {целое число}
  • arrayBuffers {целое число}

Возвращает объект, описывающий использование памяти процессом Node.js, измеренное в байтах.

import { memoryUsage } from 'process';

console.log(memoryUsage());
// Prints:
// {
//  rss: 4935680,
//  heapTotal: 1826816,
//  heapUsed: 650472,
//  external: 49879,
//  arrayBuffers: 9386
// }
const { memoryUsage } = require('process');

console.log(memoryUsage());
// Prints:
// {
//  rss: 4935680,
//  heapTotal: 1826816,
//  heapUsed: 650472,
//  external: 49879,
//  arrayBuffers: 9386
// }
  • heapTotal а также heapUsed обратитесь к использованию памяти V8.
  • external относится к использованию памяти объектами C ++, привязанными к объектам JavaScript, управляемым V8.
  • rssРазмер резидентного набора — это объем пространства, занимаемого в устройстве основной памяти (то есть подмножеством общей выделенной памяти) для процесса, включая все объекты и код C ++ и JavaScript.
  • arrayBuffers относится к памяти, выделенной для ArrayBufferпесок SharedArrayBuffers, включая все Node.js Bufferс. Это также включено в external ценить. Когда Node.js используется как встроенная библиотека, это значение может быть 0 потому что ассигнования на ArrayBuffers может не отслеживаться в этом случае.

Когда используешь Worker потоки, rss будет значением, действительным для всего процесса, в то время как другие поля будут относиться только к текущему потоку.

В process.memoryUsage() метод выполняет итерацию по каждой странице для сбора информации об использовании памяти, которая может быть медленной в зависимости от распределения памяти программы.

  • Возвращает: {целое число}

В process.memoryUsage.rss() возвращает целое число, представляющее размер резидентного набора (RSS) в байтах.

Размер резидентного набора — это объем пространства, занимаемого в устройстве основной памяти (то есть подмножеством общей выделенной памяти) для процесса, включая все объекты и код C ++ и JavaScript.

Это то же значение, что и rss собственность предоставлена process.memoryUsage() но process.memoryUsage.rss() быстрее.

import { memoryUsage } from 'process';

console.log(memoryUsage.rss());
// 35655680
const { rss } = require('process');

console.log(memoryUsage.rss());
// 35655680

process.nextTick(callback[, ...args])

  • callback {Функция}
  • ...args {any} Дополнительные аргументы, передаваемые при вызове callback

process.nextTick() добавляет callback в «очередь следующего тика». Эта очередь полностью опустошается после того, как текущая операция в стеке JavaScript завершится до завершения и до того, как цикл обработки событий будет разрешен для продолжения. Можно создать бесконечный цикл, если рекурсивно вызвать process.nextTick(). Увидеть Цикл событий руководство для получения дополнительной информации.

import { nextTick } from 'process';

console.log('start');
nextTick(() => {
  console.log('nextTick callback');
});
console.log('scheduled');
// Output:
// start
// scheduled
// nextTick callback
const { nextTick } = require('process');

console.log('start');
nextTick(() => {
  console.log('nextTick callback');
});
console.log('scheduled');
// Output:
// start
// scheduled
// nextTick callback

Это важно при разработке API, чтобы дать пользователям возможность назначать обработчики событий. после объект был построен, но до того, как произошел какой-либо ввод-вывод:

import { nextTick } from 'process';

function MyThing(options) {
  this.setupOptions(options);

  nextTick(() => {
    this.startDoingStuff();
  });
}

const thing = new MyThing();
thing.getReadyForStuff();

// thing.startDoingStuff() gets called now, not before.
const { nextTick } = require('process');

function MyThing(options) {
  this.setupOptions(options);

  nextTick(() => {
    this.startDoingStuff();
  });
}

const thing = new MyThing();
thing.getReadyForStuff();

// thing.startDoingStuff() gets called now, not before.

Очень важно, чтобы API были на 100% синхронными или на 100% асинхронными. Рассмотрим этот пример:

// WARNING!  DO NOT USE!  BAD UNSAFE HAZARD!
function maybeSync(arg, cb) {
  if (arg) {
    cb();
    return;
  }

  fs.stat('file', cb);
}

Этот API опасен, потому что в следующем случае:

const maybeTrue = Math.random() > 0.5;

maybeSync(maybeTrue, () => {
  foo();
});

bar();

Неясно, действительно ли foo() или bar() будет называться первым.

Намного лучше следующий подход:

import { nextTick } from 'process';

function definitelyAsync(arg, cb) {
  if (arg) {
    nextTick(cb);
    return;
  }

  fs.stat('file', cb);
}
const { nextTick } = require('process');

function definitelyAsync(arg, cb) {
  if (arg) {
    nextTick(cb);
    return;
  }

  fs.stat('file', cb);
}

Когда использовать queueMicrotask() против. process.nextTick()

В queueMicrotask() API — альтернатива process.nextTick() который также откладывает выполнение функции с использованием той же очереди микрозадач, которая использовалась для выполнения обработчиков then, catch и finally разрешенных обещаний. В Node.js каждый раз, когда опорожняется «очередь следующих тиков», сразу же после этого опорожняется очередь микрозадач.

import { nextTick } from 'process';

Promise.resolve().then(() => console.log(2));
queueMicrotask(() => console.log(3));
nextTick(() => console.log(1));
// Output:
// 1
// 2
// 3
const { nextTick } = require('process');

Promise.resolve().then(() => console.log(2));
queueMicrotask(() => console.log(3));
nextTick(() => console.log(1));
// Output:
// 1
// 2
// 3

Для самый сценарии использования пользовательской среды, queueMicrotask() API предоставляет переносимый и надежный механизм для отсрочки выполнения, который работает в нескольких средах платформы JavaScript и заслуживает предпочтения перед process.nextTick(). В простых сценариях queueMicrotask() может быть прямой заменой для process.nextTick().

console.log('start');
queueMicrotask(() => {
  console.log('microtask callback');
});
console.log('scheduled');
// Output:
// start
// scheduled
// microtask callback

Одно заслуживающее внимания различие между двумя API заключается в том, что process.nextTick() позволяет указать дополнительные значения, которые будут переданы в качестве аргументов отложенной функции при ее вызове. Достижение того же результата с queueMicrotask() требует использования либо замыкания, либо связанной функции:

function deferred(a, b) {
  console.log('microtask', a + b);
}

console.log('start');
queueMicrotask(deferred.bind(undefined, 1, 2));
console.log('scheduled');
// Output:
// start
// scheduled
// microtask 3

Существуют незначительные различия в способах обработки ошибок, возникающих в очереди следующих тиков и очереди микрозадач. Ошибки, возникающие при обратном вызове микрозадач в очереди, должны обрабатываться в обратном вызове в очереди, когда это возможно. Если это не так, process.on('uncaughtException') обработчик событий может использоваться для захвата и обработки ошибок.

Если есть сомнения, если только конкретные возможности process.nextTick() необходимы, используйте queueMicrotask().

process.noDeprecation

  • {логический}

В process.noDeprecation свойство указывает, --no-deprecation установлен флаг для текущего процесса Node.js. См. Документацию по 'warning' событие и emitWarning() метод для получения дополнительной информации о поведении этого флага.

process.pid

  • {целое число}

В process.pid свойство возвращает PID процесса.

import { pid } from 'process';

console.log(`This process is pid ${pid}`);
const { pid } = require('process');

console.log(`This process is pid ${pid}`);

process.platform

  • {нить}

В process.platform Свойство возвращает строку, определяющую платформу операционной системы, на которой выполняется процесс Node.js.

В настоящее время возможные значения:

  • 'aix'
  • 'darwin'
  • 'freebsd'
  • 'linux'
  • 'openbsd'
  • 'sunos'
  • 'win32'
import { platform } from 'process';

console.log(`This platform is ${platform}`);
const { platform } = require('process');

console.log(`This platform is ${platform}`);

Значение 'android' также может быть возвращено, если Node.js создан в операционной системе Android. Однако поддержка Android в Node.js экспериментальный.

process.ppid

  • {целое число}

В process.ppid свойство возвращает PID родителя текущего процесса.

import { ppid } from 'process';

console.log(`The parent process is pid ${ppid}`);
const { ppid } = require('process');

console.log(`The parent process is pid ${ppid}`);

process.release

  • {Объект}

В process.release свойство возвращает Object содержащие метаданные, относящиеся к текущему выпуску, включая URL-адреса исходного архива и архива только для заголовков.

process.release содержит следующие свойства:

  • name {строка} Значение, которое всегда будет 'node'.
  • sourceUrl {string} абсолютный URL, указывающий на .tar.gz файл, содержащий исходный код текущего выпуска.
  • headersUrl абсолютный URL, указывающий на .tar.gz файл, содержащий только исходные файлы заголовков для текущего выпуска. Этот файл значительно меньше, чем полный исходный файл, и его можно использовать для компиляции собственных надстроек Node.js.
  • libUrl {string} абсолютный URL, указывающий на node.lib файл, соответствующий архитектуре и версии текущего выпуска. Этот файл используется для компиляции собственных надстроек Node.js. Это свойство присутствует только в сборках Windows для Node.js и будет отсутствовать на всех других платформах.
  • lts {строка} строковая метка, определяющая LTS лейбл для этого выпуска. Это свойство существует только для выпусков LTS и undefined для всех остальных типов выпусков, включая Текущий выпускает. Допустимые значения включают кодовые имена LTS Release (включая те, которые больше не поддерживаются).
  • 'Dubnium' для строки 10.x LTS, начинающейся с 10.13.0.
  • 'Erbium' для строки 12.x LTS, начинающейся с 12.13.0. Для других кодовых названий LTS Release см. Архив изменений Node.js
{
  name: 'node',
  lts: 'Erbium',
  sourceUrl: 'https://nodejs.org/download/release/v12.18.1/node-v12.18.1.tar.gz',
  headersUrl: 'https://nodejs.org/download/release/v12.18.1/node-v12.18.1-headers.tar.gz',
  libUrl: 'https://nodejs.org/download/release/v12.18.1/win-x64/node.lib'
}

В пользовательских сборках из невыполненных версий дерева исходных текстов только name собственность может присутствовать. Не следует полагаться на существование дополнительных свойств.

process.report

  • {Объект}

process.report — объект, методы которого используются для создания диагностических отчетов для текущего процесса. Дополнительная документация доступна в отчетная документация.

process.report.compact

  • {логический}

Пишите отчеты в компактном формате, однострочном JSON, который легче использовать для систем обработки журналов, чем многострочный формат по умолчанию, предназначенный для использования людьми.

import { report } from 'process';

console.log(`Reports are compact? ${report.compact}`);
const { report } = require('process');

console.log(`Reports are compact? ${report.compact}`);

process.report.directory

  • {нить}

Справочник, в котором написан отчет. Значение по умолчанию — пустая строка, указывающая, что отчеты записываются в текущий рабочий каталог процесса Node.js.

import { report } from 'process';

console.log(`Report directory is ${report.directory}`);
const { report } = require('process');

console.log(`Report directory is ${report.directory}`);

process.report.filename

  • {нить}

Имя файла, в котором написан отчет. Если установлена пустая строка, имя выходного файла будет состоять из отметки времени, PID и порядкового номера. Значение по умолчанию — пустая строка.

import { report } from 'process';

console.log(`Report filename is ${report.filename}`);
const { report } = require('process');

console.log(`Report filename is ${report.filename}`);

process.report.getReport([err])

  • err {Error} Пользовательская ошибка, используемая для сообщения о стеке JavaScript.
  • Возвращает: {Object}

Возвращает представление объекта JavaScript диагностического отчета для запущенного процесса. Трассировка стека JavaScript отчета взята из err, если представить.

import { report } from 'process';

const data = report.getReport();
console.log(data.header.nodejsVersion);

// Similar to process.report.writeReport()
import fs from 'fs';
fs.writeFileSync(
  'my-report.log',
  util.inspect(data),
  'utf8'
);
const { report } = require('process');

const data = report.getReport();
console.log(data.header.nodejsVersion);

// Similar to process.report.writeReport()
const fs = require('fs');
fs.writeFileSync(
  'my-report.log',
  util.inspect(data),
  'utf8'
);

Дополнительная документация доступна в отчетная документация.

process.report.reportOnFatalError

  • {логический}

Если true, диагностический отчет создается о фатальных ошибках, таких как ошибки нехватки памяти или неудачные утверждения C ++.

import { report } from 'process';

console.log(
  `Report on fatal error: ${report.reportOnFatalError}`
);
const { report } = require('process');

console.log(
  `Report on fatal error: ${report.reportOnFatalError}`
);

process.report.reportOnSignal

  • {логический}

Если true, диагностический отчет создается, когда процесс получает сигнал, указанный process.report.signal.

import { report } from 'process';

console.log(`Report on signal: ${report.reportOnSignal}`);
const { report } = require('process');

console.log(`Report on signal: ${report.reportOnSignal}`);

process.report.reportOnUncaughtException

  • {логический}

Если true, при неперехваченном исключении создается диагностический отчет.

import { report } from 'process';

console.log(
  `Report on exception: ${report.reportOnUncaughtException}`
);
const { report } = require('process');

console.log(
  `Report on exception: ${report.reportOnUncaughtException}`
);

process.report.signal

  • {нить}

Сигнал, используемый для запуска создания диагностического отчета. По умолчанию 'SIGUSR2'.

import { report } from 'process';

console.log(`Report signal: ${report.signal}`);
const { report } = require('process');

console.log(`Report signal: ${report.signal}`);

process.report.writeReport([filename][, err])

  • filename {строка} Имя файла, в котором написан отчет. Это должен быть относительный путь, который будет добавлен к каталогу, указанному в process.report.directoryили текущий рабочий каталог процесса Node.js, если он не указан.

  • err {Error} Пользовательская ошибка, используемая для сообщения о стеке JavaScript.

  • Returns: {string} Возвращает имя файла созданного отчета.

Записывает диагностический отчет в файл. Если filename не предоставляется, имя файла по умолчанию включает дату, время, PID и порядковый номер. Трассировка стека JavaScript отчета взята из err, если представить.

import { report } from 'process';

report.writeReport();
const { report } = require('process');

report.writeReport();

Дополнительная документация доступна в отчетная документация.

process.resourceUsage()

  • Возвращает: {Object} использование ресурсов для текущего процесса. Все эти ценности исходят из uv_getrusage вызов, который возвращает uv_rusage_t структура.
  • userCPUTime {integer} сопоставляется с ru_utime вычисляется в микросекундах. Это то же значение, что и process.cpuUsage().user.
  • systemCPUTime {integer} сопоставляется с ru_stime вычисляется в микросекундах. Это то же значение, что и process.cpuUsage().system.
  • maxRSS {integer} сопоставляется с ru_maxrss который является максимальным размером резидентного набора в килобайтах.
  • sharedMemorySize {integer} сопоставляется с ru_ixrss но не поддерживается ни одной платформой.
  • unsharedDataSize {integer} сопоставляется с ru_idrss но не поддерживается ни одной платформой.
  • unsharedStackSize {integer} сопоставляется с ru_isrss но не поддерживается ни одной платформой.
  • minorPageFault {integer} сопоставляется с ru_minflt что является количеством незначительных ошибок страницы для процесса, см. эта статья для более подробной информации.
  • majorPageFault {integer} сопоставляется с ru_majflt количество основных ошибок страниц для процесса, см. эта статья для более подробной информации. Это поле не поддерживается в Windows.
  • swappedOut {integer} сопоставляется с ru_nswap но не поддерживается ни одной платформой.
  • fsRead {integer} сопоставляется с ru_inblock это количество раз, когда файловая система должна была выполнить ввод.
  • fsWrite {integer} сопоставляется с ru_oublock это количество раз, когда файловая система должна была выполнить вывод.
  • ipcSent {integer} сопоставляется с ru_msgsnd но не поддерживается ни одной платформой.
  • ipcReceived {integer} сопоставляется с ru_msgrcv но не поддерживается ни одной платформой.
  • signalsCount {integer} сопоставляется с ru_nsignals но не поддерживается ни одной платформой.
  • voluntaryContextSwitches {integer} сопоставляется с ru_nvcsw это количество раз, когда переключение контекста ЦП происходило из-за того, что процесс добровольно отказался от процессора до того, как его временной отрезок был завершен (обычно для ожидания доступности ресурса). Это поле не поддерживается в Windows.
  • involuntaryContextSwitches {integer} сопоставляется с ru_nivcsw это количество раз, когда переключение контекста ЦП приводило к тому, что процесс с более высоким приоритетом становился работоспособным или потому, что текущий процесс превысил свой временной интервал. Это поле не поддерживается в Windows.
import { resourceUsage } from 'process';

console.log(resourceUsage());
/*
  Will output:
  {
    userCPUTime: 82872,
    systemCPUTime: 4143,
    maxRSS: 33164,
    sharedMemorySize: 0,
    unsharedDataSize: 0,
    unsharedStackSize: 0,
    minorPageFault: 2469,
    majorPageFault: 0,
    swappedOut: 0,
    fsRead: 0,
    fsWrite: 8,
    ipcSent: 0,
    ipcReceived: 0,
    signalsCount: 0,
    voluntaryContextSwitches: 79,
    involuntaryContextSwitches: 1
  }
*/
const { resourceUsage } = require('process');

console.log(resourceUsage());
/*
  Will output:
  {
    userCPUTime: 82872,
    systemCPUTime: 4143,
    maxRSS: 33164,
    sharedMemorySize: 0,
    unsharedDataSize: 0,
    unsharedStackSize: 0,
    minorPageFault: 2469,
    majorPageFault: 0,
    swappedOut: 0,
    fsRead: 0,
    fsWrite: 8,
    ipcSent: 0,
    ipcReceived: 0,
    signalsCount: 0,
    voluntaryContextSwitches: 79,
    involuntaryContextSwitches: 1
  }
*/

process.send(message[, sendHandle[, options]][, callback])

  • message {Объект}
  • sendHandle {net.Server | net.Socket}
  • options {Object} используется для параметризации отправки определенных типов дескрипторов.options поддерживает следующие свойства:
  • keepOpen {boolean} Значение, которое можно использовать при передаче экземпляров net.Socket. Когда true, сокет остается открытым в процессе отправки. Дефолт: false.
  • callback {Функция}
  • Возвращает: {логическое}

Если Node.js создается с каналом IPC, process.send() может использоваться для отправки сообщений родительскому процессу. Сообщения будут приходить в виде 'message' событие на родительском ChildProcess объект.

Если Node.js не был создан с каналом IPC, process.send будет undefined.

Сообщение проходит сериализацию и синтаксический анализ. Полученное сообщение может отличаться от исходного.

process.setegid(id)

  • id {string | number} Имя или идентификатор группы

В process.setegid() Метод устанавливает эффективную групповую идентичность процесса. (См. Setegid (2).) id может быть передан как числовой идентификатор или как строка имени группы. Если указано имя группы, этот метод блокируется при разрешении связанного числового идентификатора.

import process from 'process';

if (process.getegid && process.setegid) {
  console.log(`Current gid: ${process.getegid()}`);
  try {
    process.setegid(501);
    console.log(`New gid: ${process.getegid()}`);
  } catch (err) {
    console.log(`Failed to set gid: ${err}`);
  }
}
const process = require('process');

if (process.getegid && process.setegid) {
  console.log(`Current gid: ${process.getegid()}`);
  try {
    process.setegid(501);
    console.log(`New gid: ${process.getegid()}`);
  } catch (err) {
    console.log(`Failed to set gid: ${err}`);
  }
}

Эта функция доступна только на платформах POSIX (то есть не в Windows или Android). Эта функция недоступна в Worker потоки.

process.seteuid(id)

  • id {string | number} Имя или идентификатор пользователя.

В process.seteuid() Метод устанавливает эффективную идентификацию пользователя процесса. (См. Seteuid (2).) id может быть передан как числовой идентификатор или как строка имени пользователя. Если указано имя пользователя, метод блокируется при разрешении связанного числового идентификатора.

import process from 'process';

if (process.geteuid && process.seteuid) {
  console.log(`Current uid: ${process.geteuid()}`);
  try {
    process.seteuid(501);
    console.log(`New uid: ${process.geteuid()}`);
  } catch (err) {
    console.log(`Failed to set uid: ${err}`);
  }
}
const process = require('process');

if (process.geteuid && process.seteuid) {
  console.log(`Current uid: ${process.geteuid()}`);
  try {
    process.seteuid(501);
    console.log(`New uid: ${process.geteuid()}`);
  } catch (err) {
    console.log(`Failed to set uid: ${err}`);
  }
}

Эта функция доступна только на платформах POSIX (то есть не в Windows или Android). Эта функция недоступна в Worker потоки.

process.setgid(id)

  • id {строка | номер} Имя или идентификатор группы

В process.setgid() устанавливает групповой идентификатор процесса. (См. Setgid (2).) id может быть передан как числовой идентификатор или как строка имени группы. Если указано имя группы, этот метод блокируется при разрешении связанного числового идентификатора.

import process from 'process';

if (process.getgid && process.setgid) {
  console.log(`Current gid: ${process.getgid()}`);
  try {
    process.setgid(501);
    console.log(`New gid: ${process.getgid()}`);
  } catch (err) {
    console.log(`Failed to set gid: ${err}`);
  }
}
const process = require('process');

if (process.getgid && process.setgid) {
  console.log(`Current gid: ${process.getgid()}`);
  try {
    process.setgid(501);
    console.log(`New gid: ${process.getgid()}`);
  } catch (err) {
    console.log(`Failed to set gid: ${err}`);
  }
}

Эта функция доступна только на платформах POSIX (то есть не в Windows или Android). Эта функция недоступна в Worker потоки.

process.setgroups(groups)

  • groups {целое []}

В process.setgroups() устанавливает дополнительные идентификаторы групп для процесса Node.js. Это привилегированная операция, требующая, чтобы процесс Node.js root или CAP_SETGID возможность.

В groups массив может содержать числовые идентификаторы групп, имена групп или и то, и другое.

import process from 'process';

if (process.getgroups && process.setgroups) {
  try {
    process.setgroups([501]);
    console.log(process.getgroups()); // new groups
  } catch (err) {
    console.log(`Failed to set groups: ${err}`);
  }
}
const process = require('process');

if (process.getgroups && process.setgroups) {
  try {
    process.setgroups([501]);
    console.log(process.getgroups()); // new groups
  } catch (err) {
    console.log(`Failed to set groups: ${err}`);
  }
}

Эта функция доступна только на платформах POSIX (то есть не в Windows или Android). Эта функция недоступна в Worker потоки.

process.setuid(id)

  • id {целое | нить}

В process.setuid(id) устанавливает идентификатор пользователя процесса. (См. Setuid (2).) id может быть передан как числовой идентификатор или как строка имени пользователя. Если указано имя пользователя, метод блокируется при разрешении связанного числового идентификатора.

import process from 'process';

if (process.getuid && process.setuid) {
  console.log(`Current uid: ${process.getuid()}`);
  try {
    process.setuid(501);
    console.log(`New uid: ${process.getuid()}`);
  } catch (err) {
    console.log(`Failed to set uid: ${err}`);
  }
}
const process = require('process');

if (process.getuid && process.setuid) {
  console.log(`Current uid: ${process.getuid()}`);
  try {
    process.setuid(501);
    console.log(`New uid: ${process.getuid()}`);
  } catch (err) {
    console.log(`Failed to set uid: ${err}`);
  }
}

Эта функция доступна только на платформах POSIX (то есть не в Windows или Android). Эта функция недоступна в Worker потоки.

process.setSourceMapsEnabled(val)

Стабильность: 1 — экспериментальная

  • val {логический}

Эта функция включает или отключает Исходная карта v3 поддержка трассировки стека.

Он предоставляет те же функции, что и запуск процесса Node.js с параметрами командной строки. --enable-source-maps.

Только исходные карты в файлах JavaScript, которые загружаются после включения исходных карт, будут проанализированы и загружены.

process.setUncaughtExceptionCaptureCallback(fn)

  • fn {Функция | ноль}

В process.setUncaughtExceptionCaptureCallback() function устанавливает функцию, которая будет вызываться при возникновении неперехваченного исключения, которая получит само значение исключения в качестве своего первого аргумента.

Если такая функция установлена, 'uncaughtException' событие не будет отправлено. Если --abort-on-uncaught-exception был передан из командной строки или установлен через v8.setFlagsFromString(), процесс не будет прерван. Также будут затронуты действия, настроенные на выполнение исключений, например создание отчетов.

Чтобы отключить функцию захвата, process.setUncaughtExceptionCaptureCallback(null) может быть использовано. Вызов этого метода с не-null аргумент, когда установлена другая функция захвата, вызовет ошибку.

Использование этой функции является взаимоисключающим с использованием устаревшего domain встроенный модуль.

process.stderr

  • {Транслировать}

В process.stderr свойство возвращает поток, подключенный к stderr (fd 2). Это net.Socket (что является Дуплекс stream), если только fd 2 относится к файлу, и в этом случае это Возможность записи транслировать.

process.stderr отличается от других потоков Node.js. Видеть примечание по вводу / выводу процесса для дополнительной информации.

process.stderr.fd

  • {количество}

Это свойство относится к значению базового файлового дескриптора process.stderr. Значение фиксировано на 2. В Worker потоков, это поле не существует.

process.stdin

  • {Транслировать}

В process.stdin свойство возвращает поток, подключенный к stdin (fd 0). Это net.Socket (что является Дуплекс stream), если только fd 0 относится к файлу, и в этом случае это Удобочитаемый транслировать.

Для получения подробной информации о том, как читать из stdin видеть readable.read().

Как Дуплекс транслировать, process.stdin также может использоваться в «старом» режиме, который совместим со сценариями, написанными для Node.js до v0.10. Для получения дополнительной информации см. Совместимость потоков.

В режиме «старых» потоков stdin поток по умолчанию приостановлен, поэтому необходимо вызвать process.stdin.resume() читать с него. Также обратите внимание, что вызов process.stdin.resume() Сам бы переключил поток в «старый» режим.

process.stdin.fd

  • {количество}

Это свойство относится к значению базового файлового дескриптора process.stdin. Значение фиксировано на 0. В Worker потоков, это поле не существует.

process.stdout

  • {Транслировать}

В process.stdout свойство возвращает поток, подключенный к stdout (fd 1). Это net.Socket (что является Дуплекс stream), если только fd 1 относится к файлу, и в этом случае это Возможность записи транслировать.

Например, чтобы скопировать process.stdin к process.stdout:

import { stdin, stdout } from 'process';

stdin.pipe(stdout);
const { stdin, stdout } = require('process');

stdin.pipe(stdout);

process.stdout отличается от других потоков Node.js. Видеть примечание по вводу / выводу процесса для дополнительной информации.

process.stdout.fd

  • {количество}

Это свойство относится к значению базового файлового дескриптора process.stdout. Значение фиксировано на 1. В Worker потоков, это поле не существует.

Замечание по вводу / выводу процесса¶

process.stdout а также process.stderr отличаются от других потоков Node.js важными способами:

  1. Они используются внутри компании console.log() а также console.error(), соответственно.
  2. Записи могут быть синхронными в зависимости от того, к чему подключен поток и от того, является ли система Windows или POSIX:
    • Файлы: синхронный в Windows и POSIX
    • TTY (терминалы): асинхронный в Windows, синхронный в POSIX
    • Трубы (и розетки): синхронный в Windows, асинхронный в POSIX

Такое поведение частично обусловлено историческими причинами, поскольку их изменение может создать обратную несовместимость, но некоторые пользователи также ожидают этого.

Синхронная запись позволяет избежать таких проблем, как вывод, записанный с помощью console.log() или console.error() неожиданно перемежается или вообще не записывается, если process.exit() вызывается до завершения асинхронной записи. Видеть process.exit() для дополнительной информации.

Предупреждение: Синхронная запись блокирует цикл событий до тех пор, пока запись не будет завершена. Это может происходить почти мгновенно в случае вывода в файл, но при высокой загрузке системы, каналах, которые не читаются на принимающей стороне, или с медленными терминалами или файловыми системами, цикл событий может блокироваться достаточно часто. и достаточно долго, чтобы иметь серьезные негативные последствия для производительности. Это может не быть проблемой при записи в интерактивный сеанс терминала, но будьте особенно осторожны при ведении производственного журнала в потоки вывода процесса.

Чтобы проверить, подключен ли поток к Телетайп контекст, проверьте isTTY имущество.

Например:

$ node -p "Boolean(process.stdin.isTTY)"
true
$ echo "foo" | node -p "Boolean(process.stdin.isTTY)"
false
$ node -p "Boolean(process.stdout.isTTY)"
true
$ node -p "Boolean(process.stdout.isTTY)" | cat
false

Увидеть Телетайп документация для получения дополнительной информации.

process.throwDeprecation

  • {логический}

Начальное значение process.throwDeprecation указывает, есть ли --throw-deprecation установлен флаг для текущего процесса Node.js. process.throwDeprecation является изменяемым, поэтому вопрос о том, приводят ли предупреждения об устаревании к ошибкам, можно изменить во время выполнения. См. Документацию по 'warning' событие и emitWarning() метод для дополнительной информации.

$ node --throw-deprecation -p "process.throwDeprecation"
true
$ node -p "process.throwDeprecation"
undefined
$ node
> process.emitWarning('test', 'DeprecationWarning');
undefined
> (node:26598) DeprecationWarning: test
> process.throwDeprecation = true;
true
> process.emitWarning('test', 'DeprecationWarning');
Thrown:
[DeprecationWarning: test] { name: 'DeprecationWarning' }

process.title

  • {нить}

В process.title свойство возвращает текущий заголовок процесса (т.е. возвращает текущее значение ps). Присвоение нового значения process.title изменяет текущее значение ps.

Когда назначается новое значение, разные платформы налагают разные ограничения максимальной длины на заголовок. Обычно такие ограничения довольно ограничены. Например, в Linux и macOS process.title ограничен размером двоичного имени плюс длиной аргументов командной строки, потому что установка process.title перезаписывает argv память о процессе. Node.js v0.8 позволяет использовать более длинные строки заголовка процесса, также перезаписывая environ память, но это было потенциально небезопасно и сбивало с толку в некоторых (довольно неясных) случаях.

Присвоение значения process.title может не дать точной метки в приложениях диспетчера процессов, таких как MacOS Activity Monitor или Windows Services Manager.

process.traceDeprecation

  • {логический}

В process.traceDeprecation свойство указывает, --trace-deprecation установлен флаг для текущего процесса Node.js. См. Документацию по 'warning' событие и emitWarning() метод для получения дополнительной информации о поведении этого флага.

process.umask()

Стабильность: 0 — Не рекомендуется. Вызов process.umask() без аргумента вызывает запись umask всего процесса дважды. Это создает состояние гонки между потоками и является потенциальной уязвимостью безопасности. Безопасного кроссплатформенного альтернативного API не существует.

process.umask() возвращает маску создания файлового режима процесса Node.js. Дочерние процессы наследуют маску от родительского процесса.

process.umask(mask)

  • mask {строка | целое число}

process.umask(mask) устанавливает маску создания файлового режима процесса Node.js. Дочерние процессы наследуют маску от родительского процесса. Возвращает предыдущую маску.

import { umask } from 'process';

const newmask = 0o022;
const oldmask = umask(newmask);
console.log(
  `Changed umask from ${oldmask.toString(
    8
  )} to ${newmask.toString(8)}`
);
const { umask } = require('process');

const newmask = 0o022;
const oldmask = umask(newmask);
console.log(
  `Changed umask from ${oldmask.toString(
    8
  )} to ${newmask.toString(8)}`
);

В Worker потоки, process.umask(mask) вызовет исключение.

process.uptime()

  • Возврат: {number}

В process.uptime() возвращает количество секунд, в течение которых выполнялся текущий процесс Node.js.

Возвращаемое значение включает доли секунды. Использовать Math.floor() чтобы получить целые секунды.

process.version

  • {нить}

В process.version свойство содержит строку версии Node.js.

import { version } from 'process';

console.log(`Version: ${version}`);
// Version: v14.8.0
const { version } = require('process');

console.log(`Version: ${version}`);
// Version: v14.8.0

Чтобы получить строку версии без добавленного v, использовать process.versions.node.

process.versions

  • {Объект}

В process.versions Свойство возвращает объект, в котором перечислены строки версии Node.js и его зависимостей. process.versions.modules указывает текущую версию ABI, которая увеличивается при изменении C ++ API. Node.js откажется загружать модули, которые были скомпилированы для другой версии ABI модуля.

import { versions } from 'process';

console.log(versions);
const { versions } = require('process');

console.log(versions);

Сгенерирует объект, похожий на:

{ node: '11.13.0',
  v8: '7.0.276.38-node.18',
  uv: '1.27.0',
  zlib: '1.2.11',
  brotli: '1.0.7',
  ares: '1.15.0',
  modules: '67',
  nghttp2: '1.34.0',
  napi: '4',
  llhttp: '1.1.1',
  openssl: '1.1.1b',
  cldr: '34.0',
  icu: '63.1',
  tz: '2018e',
  unicode: '11.0' }

Коды выхода¶

Node.js обычно завершается с 0 код состояния, когда больше нет ожидающих асинхронных операций. В других случаях используются следующие коды состояния:

  • 1 Неперехваченное фатальное исключение: Произошло неперехваченное исключение, которое не было обработано доменом или 'uncaughtException' обработчик события.
  • 2: Не используется (зарезервировано Bash для встроенного неправильного использования)
  • 3 Внутренняя ошибка синтаксического анализа JavaScript: Внутренний исходный код JavaScript в процессе начальной загрузки Node.js вызвал ошибку синтаксического анализа. Это происходит крайне редко и обычно может произойти только во время разработки самого Node.js.
  • 4 Внутренняя ошибка оценки JavaScript: Исходный код JavaScript, внутренний в процессе начальной загрузки Node.js, не смог вернуть значение функции при оценке. Это происходит крайне редко и обычно может произойти только во время разработки самого Node.js.
  • 5 Фатальная ошибка: В V8 произошла фатальная неисправимая ошибка. Обычно сообщение печатается на stderr с префиксом FATAL ERROR.
  • 6 Нефункциональный внутренний обработчик исключений: Произошло неперехваченное исключение, но внутренняя функция обработчика фатальных исключений каким-то образом была установлена как нефункциональная и не могла быть вызвана.
  • 7 Ошибка выполнения внутреннего обработчика исключений: Произошло неперехваченное исключение, и сама функция внутреннего фатального обработчика исключений вызвала ошибку при попытке ее обработать. Это может произойти, например, если 'uncaughtException' или domain.on('error') обработчик выдает ошибку.
  • 8: Не используется. В предыдущих версиях Node.js код выхода 8 иногда указывал на неперехваченное исключение.
  • 9 Недействительным аргумент: Либо была указана неизвестная опция, либо опция, требующая значения, была предоставлена без значения.
  • 10 Внутренний сбой времени выполнения JavaScript: Исходный код JavaScript, внутренний в процессе начальной загрузки Node.js, вызывал ошибку при вызове функции начальной загрузки. Это происходит крайне редко и обычно может произойти только во время разработки самого Node.js.
  • 12 Недействительный аргумент отладки: The --inspect и / или --inspect-brk были заданы параметры, но выбранный номер порта недействителен или недоступен.
  • 13 Незаконченное ожидание верхнего уровня: await использовался вне функции в коде верхнего уровня, но переданный Promise никогда не решается.
  • >128 Сигнальные выходы: Если Node.js получает фатальный сигнал, например SIGKILL или SIGHUP, то его код выхода будет 128 плюс значение сигнального кода. Это стандартная практика POSIX, поскольку коды выхода определены как 7-битные целые числа, а выходы сигналов устанавливают бит старшего разряда, а затем содержат значение сигнального кода. Например, сигнал SIGABRT имеет ценность 6, поэтому ожидаемый код выхода будет 128 + 6, или 134.

Понравилась статья? Поделить с друзьями:
  • No space left on device как исправить
  • No space between attributes как исправить
  • No sound device detected skyrim cannot run как исправить
  • Nod32 при установке драйвера edevmon произошла ошибка
  • Nod32 ошибка обновления 0x4002