I’m running an AWS EC2 g2.2xlarge instance with Ubuntu 14.04 LTS.
I’d like to observe the GPU utilization while training my TensorFlow models.
I get an error trying to run ‘nvidia-smi’.
ubuntu@ip-10-0-1-213:/etc/alternatives$ cd /usr/lib/nvidia-375/bin
ubuntu@ip-10-0-1-213:/usr/lib/nvidia-375/bin$ ls
nvidia-bug-report.sh nvidia-debugdump nvidia-xconfig
nvidia-cuda-mps-control nvidia-persistenced
nvidia-cuda-mps-server nvidia-smi
ubuntu@ip-10-0-1-213:/usr/lib/nvidia-375/bin$ ./nvidia-smi
NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.
ubuntu@ip-10-0-1-213:/usr/lib/nvidia-375/bin$ dpkg -l | grep nvidia
ii nvidia-346 352.63-0ubuntu0.14.04.1 amd64 Transitional package for nvidia-346
ii nvidia-346-dev 346.46-0ubuntu1 amd64 NVIDIA binary Xorg driver development files
ii nvidia-346-uvm 346.96-0ubuntu0.0.1 amd64 Transitional package for nvidia-346
ii nvidia-352 375.26-0ubuntu1 amd64 Transitional package for nvidia-375
ii nvidia-375 375.39-0ubuntu0.14.04.1 amd64 NVIDIA binary driver - version 375.39
ii nvidia-375-dev 375.39-0ubuntu0.14.04.1 amd64 NVIDIA binary Xorg driver development files
ii nvidia-modprobe 375.26-0ubuntu1 amd64 Load the NVIDIA kernel driver and create device files
ii nvidia-opencl-icd-346 352.63-0ubuntu0.14.04.1 amd64 Transitional package for nvidia-opencl-icd-352
ii nvidia-opencl-icd-352 375.26-0ubuntu1 amd64 Transitional package for nvidia-opencl-icd-375
ii nvidia-opencl-icd-375 375.39-0ubuntu0.14.04.1 amd64 NVIDIA OpenCL ICD
ii nvidia-prime 0.6.2.1 amd64 Tools to enable NVIDIA's Prime
ii nvidia-settings 375.26-0ubuntu1 amd64 Tool for configuring the NVIDIA graphics driver
ubuntu@ip-10-0-1-213:/usr/lib/nvidia-375/bin$ lspci | grep -i nvidia
00:03.0 VGA compatible controller: NVIDIA Corporation GK104GL [GRID K520] (rev a1)
ubuntu@ip-10-0-1-213:/usr/lib/nvidia-375/bin$
$ inxi -G
Graphics: Card-1: Cirrus Logic GD 5446
Card-2: NVIDIA GK104GL [GRID K520]
X.org: 1.15.1 driver: N/A tty size: 80x24 Advanced Data: N/A out of X
$ lspci -k | grep -A 2 -E "(VGA|3D)"
00:02.0 VGA compatible controller: Cirrus Logic GD 5446
Subsystem: XenSource, Inc. Device 0001
Kernel driver in use: cirrus
00:03.0 VGA compatible controller: NVIDIA Corporation GK104GL [GRID K520] (rev a1)
Subsystem: NVIDIA Corporation Device 1014
00:1f.0 Unassigned class [ff80]: XenSource, Inc. Xen Platform Device (rev 01)
I followed these instructions to install CUDA 7 and cuDNN:
$sudo apt-get -q2 update
$sudo apt-get upgrade
$sudo reboot
=======================================================================
Post reboot, update the initramfs by running ‘$sudo update-initramfs -u’
Now, please edit the /etc/modprobe.d/blacklist.conf file to blacklist nouveau. Open the file in an editor and insert the following lines at the end of the file.
blacklist nouveau
blacklist lbm-nouveau
options nouveau modeset=0
alias nouveau off
alias lbm-nouveau off
Save and exit from the file.
Now install the build essential tools and update the initramfs and reboot again as below:
$sudo apt-get install linux-{headers,image,image-extra}-$(uname -r) build-essential
$sudo update-initramfs -u
$sudo reboot
========================================================================
Post reboot, run the following commands to install Nvidia.
$sudo wget http://developer.download.nvidia.com/compute/cuda/7_0/Prod/local_installers/cuda_7.0.28_linux.run
$sudo chmod 700 ./cuda_7.0.28_linux.run
$sudo ./cuda_7.0.28_linux.run
$sudo update-initramfs -u
$sudo reboot
========================================================================
Now that the system has come up, verify the installation by running the following.
$sudo modprobe nvidia
$sudo nvidia-smi -q | head`enter code here`
You should see the output like ‘nvidia.png’.
Now run the following commands.
$
cd ~/NVIDIA_CUDA-7.0_Samples/1_Utilities/deviceQuery
$make
$./deviceQuery
However, ‘nvidia-smi’ still doesn’t show GPU activity while Tensorflow is training models:
ubuntu@ip-10-0-1-48:~$ ipython
Python 2.7.11 |Anaconda custom (64-bit)| (default, Dec 6 2015, 18:08:32)
Type "copyright", "credits" or "license" for more information.
IPython 4.1.2 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]: import tensorflow as tf
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.7.5 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.7.5 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.7.5 locally
ubuntu@ip-10-0-1-48:~$ nvidia-smi
Thu Mar 30 05:45:26 2017
+------------------------------------------------------+
| NVIDIA-SMI 346.46 Driver Version: 346.46 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GRID K520 Off | 0000:00:03.0 Off | N/A |
| N/A 35C P0 38W / 125W | 10MiB / 4095MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
Problem
Recently, when I re-configure my work environment, I install the Nvidia GPU driver. But after installation and reboot, I cannot use nvidia-smi command to get the GPU information. The only one message is:
NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.
I try to install different version by command line and GUI, but they are not the points. Finally, I found I have not use MOK manager correctly, so my driver cannot work
What is MOK?
MOK stands for Machine Owner Key, which is boot process that protects operating system components and drivers.
Of course, it is implemented by BIOS.
We need to create a pair of keys, the private key is used to sign the driver to be allowed to execute, and the public key is used by the MOK system for encryption.
Solution
During the installation of the Nvidia driver, we must have the opportunity to enter our password. If you want to reinstall the driver, you can refer the following command to remove the currently installed nvidia package.
sudo apt purge nvidia-*
Now maybe you want to search the Nvidia driver you can install:
sudo apt search nvidia-driver*
If you find the version you want to use, key in:
sudo apt install nvidia-driver<NVIDIA DRIVER VERSION>
For related apt
command operations, please refer the link at the bottom of the article.
And in case you missed the MOK screen and did not enter the MOK screen on the next reboot, maybe you can execute the following commands to re-do these procedures:
sudo mokutil --import /var/lib/shim-signed/mok/MOK.der
You’ll be prompted for your password, and you’ll be taken to the MOK screen upon reboot.
Operation steps in MOK screen
- Set the password in the configure secure boot stage, and remember your password
- If you enter the screen of Perform MOK management, please select Enroll MOK > Continue > Yes
- Enter the password at the screen of Enroll the key(s)?
- Select OK to reboot
- After rebooting, use
nvidia-smi
command to check the driver is work.
Hope everyone can successfully load their drivers!
References
- https://unix.stackexchange.com/questions/535434/what-exactly-is-mok-in-linux-for
- https://gist.github.com/bitsurgeon/b0f4440984c9e60dcd8fe8bbc346c029
- https://askubuntu.com/questions/1122855/mok-manager-nvidia-driver-issue-after-cuda-install
Read More
- [Linux] The Difference Between «apt» And «apt-get»
- [Solved] An Error Occurred while Installing the Nvidia Driver: «The Nouveau kernel driver is currently in use by your system. …»
- [Solved] An NVIDIA kernel module ‘nvidia-drm’ appears to already be loaded in your kernel
I recently install Ubuntu 18.04 and installed NVIDIA driver but they don’t seem to be loading.
I had to make the following edit to my grub file to make things boot properly as per this little guide.
GRUB_CMDLINE_LINUX_DEFAULT="quiet splash nouveau.modeset=0 tpm_tis.interrupts=0 acpi_osi=Linux i915.preliminary_hw_support=1 idle=nomwait"
This is what my command outputs currently give:
$ nvidia-smi
NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.
$ nvidia-settings
ERROR: NVIDIA driver is not loaded
ERROR: Error querying enabled displays on GPU 0 (Missing Extension)
$ name -r
4.15.0-38-generic
$ lshw -c display
WARNING: you should run this program as super-user.
*-display UNCLAIMED
description: VGA compatible controller
product: GP102 [GeForce GTX 1080 Ti]
vendor: NVIDIA Corporation
physical id: 0
bus info: pci@0000:0a:00.0
version: a1
width: 64 bits
clock: 33MHz
capabilities: vga_controller cap_list
configuration: latency=0
resources: memory:f4000000-f4ffffff memory:60000000-6fffffff memory:70000000-71ffffff ioport:a000(size=128) memory:f5000000-f507ffff
*-display UNCLAIMED
description: VGA compatible controller
product: GP102 [GeForce GTX 1080 Ti]
vendor: NVIDIA Corporation
physical id: 0
bus info: pci@0000:09:00.0
version: a1
width: 64 bits
clock: 33MHz
capabilities: vga_controller cap_list
configuration: latency=0
resources: memory:f6000000-f6ffffff memory:80000000-8fffffff memory:90000000-91ffffff ioport:b000(size=128) memory:f7000000-f707ffff
*-display UNCLAIMED
description: VGA compatible controller
product: GP102 [GeForce GTX 1080 Ti]
vendor: NVIDIA Corporation
physical id: 0
bus info: pci@0000:06:00.0
version: a1
width: 64 bits
clock: 33MHz
capabilities: vga_controller cap_list
configuration: latency=0
resources: memory:f8000000-f8ffffff memory:a0000000-afffffff memory:b0000000-b1ffffff ioport:c000(size=128) memory:f9000000-f907ffff
*-display UNCLAIMED
description: VGA compatible controller
product: GP102 [GeForce GTX 1080 Ti]
vendor: NVIDIA Corporation
physical id: 0
bus info: pci@0000:05:00.0
version: a1
width: 64 bits
clock: 33MHz
capabilities: vga_controller bus_master cap_list
configuration: latency=0
resources: memory:fa000000-faffffff memory:c0000000-cfffffff memory:d0000000-d1ffffff ioport:d000(size=128) memory:c0000-dffff
WARNING: output may be incomplete or inaccurate, you should run this program as super-user.
$ lspci | grep -i nvidia
05:00.0 VGA compatible controller: NVIDIA Corporation GP102 [GeForce GTX 1080 Ti] (rev a1)
05:00.1 Audio device: NVIDIA Corporation GP102 HDMI Audio Controller (rev a1)
06:00.0 VGA compatible controller: NVIDIA Corporation GP102 [GeForce GTX 1080 Ti] (rev a1)
06:00.1 Audio device: NVIDIA Corporation GP102 HDMI Audio Controller (rev a1)
09:00.0 VGA compatible controller: NVIDIA Corporation GP102 [GeForce GTX 1080 Ti] (rev a1)
09:00.1 Audio device: NVIDIA Corporation GP102 HDMI Audio Controller (rev a1)
0a:00.0 VGA compatible controller: NVIDIA Corporation GP102 [GeForce GTX 1080 Ti] (rev a1)
0a:00.1 Audio device: NVIDIA Corporation GP102 HDMI Audio Controller (rev a1)
$ lsmod
Module Size Used by
snd_hda_codec_hdmi 49152 4
nls_iso8859_1 16384 1
input_leds 16384 0
intel_rapl 20480 0
eeepc_wmi 16384 0
asus_wmi 28672 1 eeepc_wmi
sparse_keymap 16384 1 asus_wmi
video 45056 1 asus_wmi
mxm_wmi 16384 0
wmi_bmof 16384 0
x86_pkg_temp_thermal 16384 0
intel_powerclamp 16384 0
intel_wmi_thunderbolt 16384 0
coretemp 16384 0
snd_hda_codec_realtek 106496 1
snd_hda_codec_generic 73728 1 snd_hda_codec_realtek
kvm 598016 0
irqbypass 16384 1 kvm
snd_seq_midi 16384 0
crct10dif_pclmul 16384 0
crc32_pclmul 16384 0
snd_seq_midi_event 16384 1 snd_seq_midi
snd_hda_intel 40960 7
ghash_clmulni_intel 16384 0
pcbc 16384 0
snd_rawmidi 32768 1 snd_seq_midi
snd_hda_codec 126976 4 snd_hda_codec_generic,snd_hda_codec_hdmi,snd_hda_intel,snd_hda_codec_realtek
snd_hda_core 81920 5 snd_hda_codec_generic,snd_hda_codec_hdmi,snd_hda_intel,snd_hda_codec,snd_hda_codec_realtek
snd_hwdep 20480 1 snd_hda_codec
snd_pcm 98304 4 snd_hda_codec_hdmi,snd_hda_intel,snd_hda_codec,snd_hda_core
snd_seq 65536 2 snd_seq_midi,snd_seq_midi_event
snd_seq_device 16384 3 snd_seq,snd_seq_midi,snd_rawmidi
aesni_intel 188416 0
snd_timer 32768 2 snd_seq,snd_pcm
aes_x86_64 20480 1 aesni_intel
crypto_simd 16384 1 aesni_intel
glue_helper 16384 1 aesni_intel
snd 81920 25 snd_hda_codec_generic,snd_seq,snd_seq_device,snd_hda_codec_hdmi,snd_hwdep,snd_hda_intel,snd_hda_codec,snd_hda_codec_realtek,snd_timer,snd_pcm,snd_rawmidi
cryptd 24576 3 crypto_simd,ghash_clmulni_intel,aesni_intel
mei_me 40960 0
lpc_ich 24576 0
intel_cstate 20480 0
soundcore 16384 1 snd
intel_rapl_perf 16384 0
shpchp 36864 0
mei 90112 1 mei_me
joydev 24576 0
wmi 24576 4 intel_wmi_thunderbolt,asus_wmi,wmi_bmof,mxm_wmi
mac_hid 16384 0
sch_fq_codel 20480 6
parport_pc 36864 0
ppdev 20480 0
lp 20480 0
parport 49152 3 parport_pc,lp,ppdev
ip_tables 28672 0
x_tables 40960 1 ip_tables
autofs4 40960 2
hid_generic 16384 0
usbhid 49152 0
hid 118784 2 usbhid,hid_generic
drm_kms_helper 172032 0
syscopyarea 16384 1 drm_kms_helper
sysfillrect 16384 1 drm_kms_helper
igb 212992 0
sysimgblt 16384 1 drm_kms_helper
fb_sys_fops 16384 1 drm_kms_helper
e1000e 249856 0
dca 16384 1 igb
drm 401408 1 drm_kms_helper
i2c_algo_bit 16384 1 igb
ahci 36864 2
ptp 20480 2 igb,e1000e
pps_core 20480 1 ptp
libahci 32768 1 ahci
ipmi_devintf 20480 0
ipmi_msghandler 53248 1 ipmi_devintf
I installed the drivers via sudo ubuntu-drivers autoinstall
as per this guide
EDIT: Here are some more command outputs:
$ dpkg --get-selections | grep nvidia-driver-
nvidia-driver-390 install
$ lsmod | grep nvidia
<blank>
$ ls /lib/modules/*/updates/dkms/nvidia.ko
/lib/modules/4.15.0-38-generic/updates/dkms/nvidia.ko
Problem description
I am trying to set up a centos-7 GPU (Nvidia Tesla K80) instance on Google Cloud, to execute CUDA work.
Unfortunately, I can’t seem to properly install/configure drivers.
Indeed, here is what happens when trying to interact with nvidia-smi
(NVIDIA System Management Interface):
# nvidia-smi -pm 1
NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.
Same operation with more recent method nvidia-persistenced
:
# nvidia-persistenced
nvidia-persistenced failed to initialize. Check syslog for more details.
+ I get the following error in syslog (using journalctl
command):
Failed to query NVIDIA devices. Please ensure that the NVIDIA device files (/dev/nvidia*) exist, and that user 0 has read and write permissions for those files.
Indeed, no nvidia devices are present:
# ll /dev/nvidia*
ls: cannot access /dev/nvidia*: No such file or directory
However, here is a proof that the GPU is correctly connected to the instance:
# lshw -numeric -C display
*-display UNCLAIMED
description: 3D controller
product: GK210GL [Tesla K80] [10DE:102D]
vendor: NVIDIA Corporation [10DE]
physical id: 4
bus info: pci@0000:00:04.0
version: a1
width: 64 bits
clock: 33MHz
capabilities: msi pm cap_list
configuration: latency=0
resources: iomemory:40-3f iomemory:80-7f memory:fc000000-fcffffff memory:400000000-7ffffffff memory:800000000-801ffffff ioport:c000(size=128)
Installation process I followed
Creation of the centos-7 instance, following this section of the Google Cloud docs:
gcloud compute instances create test-gpu-drivers
--machine-type n1-standard-2
--boot-disk-size 250GB
--accelerator type=nvidia-tesla-k80,count=1
--image-family centos-7 --image-project centos-cloud
--maintenance-policy TERMINATE
Then, the installation process I followed for the drivers & CUDA is inspired by Google Cloud documentation, but with latest versions instead:
gcloud compute ssh test-gpu-drivers
sudo su
yum -y update
# Reboot for kernel update to be taken into account
reboot
gcloud compute ssh test-gpu-drivers
sudo su
# Install nvidia drivers repository, found here: https://www.nvidia.com/Download/index.aspx?lang=en-us
curl -J -O http://us.download.nvidia.com/tesla/410.72/nvidia-diag-driver-local-repo-rhel7-410.72-1.0-1.x86_64.rpm
yum -y install ./nvidia-diag-driver-local-repo-rhel7-410.72-1.0-1.x86_64.rpm
# Install CUDA repository, found here: https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=CentOS&target_version=7&target_type=rpmlocal
curl -J -O https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-repo-rhel7-10.0.130-1.x86_64.rpm
yum -y install ./cuda-repo-rhel7-10.0.130-1.x86_64.rpm
# Install CUDA & drivers & dependencies
yum clean all
yum -y install cuda
nvidia-smi -pm 1
reboot
gcloud compute ssh test-gpu-drivers
sudo su
nvidia-smi -pm 1
Full logs here.
(I also tried the exact GCE driver install script, without upgrading versions, but with no luck too)
Environment
-
Distribution release
[root@test-gpu-drivers myuser]# cat /etc/*-release | head -n 1 CentOS Linux release 7.6.1810 (Core)
-
Kernel release
[root@test-gpu-drivers myuser]# uname -r 3.10.0-957.1.3.el7.x86_64
I can make it work on Ubuntu!
To analyze the problem, I decided to try doing the same thing on Ubuntu 18.04 (LTS). This time, I had no problem.
Instance creation:
gcloud compute instances create gpu-ubuntu-1804
--machine-type n1-standard-2
--boot-disk-size 250GB
--accelerator type=nvidia-tesla-k80,count=1
--image-family ubuntu-1804-lts --image-project ubuntu-os-cloud
--maintenance-policy TERMINATE
Install process:
gcloud compute ssh gpu-ubuntu-1804
sudo su
apt update
apt -y upgrade
reboot
gcloud compute ssh gpu-ubuntu-1804
sudo su
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.0.130-1_amd64.deb
apt -y install ./cuda-repo-ubuntu1804_10.0.130-1_amd64.deb
rm cuda-repo-ubuntu1804_10.0.130-1_amd64.deb
apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
apt-get update
apt-get -y install cuda
nvidia-smi -pm 1
Full installation logs available here.
Test:
# nvidia-smi -pm 1
Enabled persistence mode for GPU 00000000:00:04.0.
All done.
# ll /dev/nvidia*
crw-rw-rw- 1 root root 241, 0 Dec 4 14:01 /dev/nvidia-uvm
crw-rw-rw- 1 root root 195, 0 Dec 4 14:01 /dev/nvidia0
crw-rw-rw- 1 root root 195, 255 Dec 4 14:01 /dev/nvidiactl
One thing I noticed is that on Ubuntu installation of package nvidia-dkms
triggers some stuff, which I did not see on centos:
Setting up nvidia-dkms-410 (410.79-0ubuntu1) ...
update-initramfs: deferring update (trigger activated)
A modprobe blacklist file has been created at /etc/modprobe.d to prevent Nouveau
from loading. This can be reverted by deleting the following file:
/etc/modprobe.d/nvidia-graphics-drivers.conf
A new initrd image has also been created. To revert, please regenerate your
initrd by running the following command after deleting the modprobe.d file:
`/usr/sbin/initramfs -u`
*****************************************************************************
*** Reboot your computer and verify that the NVIDIA graphics driver can ***
*** be loaded. ***
*****************************************************************************
Loading new nvidia-410.79 DKMS files...
Building for 4.15.0-1025-gcp
Building for architecture x86_64
Building initial module for 4.15.0-1025-gcp
Generating a 2048 bit RSA private key
.............................................................................................................+++
..........+++
writing new private key to '/var/lib/shim-signed/mok/MOK.priv'
-----
EFI variables are not supported on this system
/sys/firmware/efi/efivars not found, aborting.
Done.
nvidia:
Running module version sanity check.
- Original module
- No original module exists within this kernel
- Installation
- Installing to /lib/modules/4.15.0-1025-gcp/updates/dkms/
nvidia-modeset.ko:
Running module version sanity check.
- Original module
- No original module exists within this kernel
- Installation
- Installing to /lib/modules/4.15.0-1025-gcp/updates/dkms/
nvidia-drm.ko:
Running module version sanity check.
- Original module
- No original module exists within this kernel
- Installation
- Installing to /lib/modules/4.15.0-1025-gcp/updates/dkms/
nvidia-uvm.ko:
Running module version sanity check.
- Original module
- No original module exists within this kernel
- Installation
- Installing to /lib/modules/4.15.0-1025-gcp/updates/dkms/
depmod...
DKMS: install completed.
Environment
-
Distribution release
root@gpu-ubuntu-1804:/home/elouan_keryell-even# cat /etc/*-release DISTRIB_ID=Ubuntu DISTRIB_RELEASE=18.04 DISTRIB_CODENAME=bionic DISTRIB_DESCRIPTION="Ubuntu 18.04.1 LTS" NAME="Ubuntu" VERSION="18.04.1 LTS (Bionic Beaver)" ID=ubuntu ID_LIKE=debian PRETTY_NAME="Ubuntu 18.04.1 LTS" VERSION_ID="18.04" HOME_URL="https://www.ubuntu.com/" SUPPORT_URL="https://help.ubuntu.com/" BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/" PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy" VERSION_CODENAME=bionic UBUNTU_CODENAME=bionic
-
Kernel release
root@gpu-ubuntu-1804:/home/elouan_keryell-even# uname -r 4.15.0-1025-gcp
Question
Does someone understand what goes wrong with my installation of NVIDIA drivers on Centos 7?