Погрешность или ошибка приближения х

Лекция "Приближенные числа и действия над ними"по учебной дисциплине "Численные методы"

ПРИБЛИЖЕННЫЕ ЧИСЛА И ДЕЙСТВИЯ НАД НИМИ

  1. Приближенное значение величины. Абсолютная и относительная погрешности
  2. Верные и значащие цифры. Запись приближенных значений.
  3. Вычисление погрешностей величин и арифметических действий
  4. Методы оценки погрешности приближенных вычислений
  1. Приближенное значение величины. Абсолютная и относительная погрешности

Решение практических задач, как правило, связано с числовыми значениями величин. Эти значения получаются либо в результате измерения, либо в результате вычислений. В большинстве случаев значения величин, которыми приходится оперировать, являются приближенными.

Пусть X — точное значение некоторой величины, а х — наилучшее из известных ее приближенных значений. В этом случае погрешность (или ошибка) приближения х определяется разностью Х-х. Обычно знак этой ошибки не имеет решающего значения, поэтому рассматривают ее абсолютную величину:

Величина ех, называемая абсолютной погрешностью приближенного значения х, в большинстве случаев остается неизвестной, так как для ее вычисления нужно точное значение X. Вместе с тем, на практике обычно удается установить верхнюю границу абсолютной погрешности, т.е. такое (по возможности наименьшее) число  для которого справедливо неравенство

Число  в этом случае называется предельной абсолютной погрешностью, или границей абсолютной погрешности приближения х.

Таким образом, предельная абсолютная погрешность приближенного числа х — это всякое число , не меньшее абсолютной погрешности ех этого числа.

Пример: Возьмем число . Если же вызвать  на индикатор 8-разрядного МК, получим приближение этого числа: Попытаемся выразить абсолютную погрешность значения . Получили бесконечную дробь, не пригодную для практических расчетов. Очевидно, однако, что  следовательно, число 0,00000006 = 0,6 * 10-7 можно считать предельной абсолютной погрешностью приближения , используемого МК вместо числа

Неравенство (2) позволяет установить приближения к точному значению X по недостатку и избытку:

которые могут рассматриваться как одна из возможных пар значений соответственно нижней границы (НГ) и верхней границы (ВГ) приближения х:

Во многих случаях значения границы абсолютной ошибки  так же как и наилучшие значения приближения х, получаются на практике в результате измерений. Пусть, например, в результате повторных измерений одной и той же величины х получены значения: 5,2; 5,3; 5,4; 5,3. В этом случае естественно принять за наилучшее приближение измеряемой величины среднее значение х=5,3. Очевидно также, что граничными значениями величины х в данном случае будут НГХ= 5,2, ВГХ = 5,4, а граница абсолютной погрешности х может быть определена как половина длины интервала, образуемого граничными значениями НГХ и ВГХ,

т.е.

По абсолютной погрешности нельзя в полной мере судить о точности измерений или вычислений. Качество приближения характеризуется величиной относительной погрешности, которая определяется как отношение ошибки ех к модулю значения X(когда оно неизвестно, то к модулю приближения х).

 Предельной относительной погрешностью (или границей относительной погрешности)  приближенного числа называется отношение предельной абсолютной погрешности к абсолютному значению приближения х:

Формула (5) позволяет при необходимости выражать абсолютную погрешность через относительную:

Относительную погрешность выражают обычно в процентах.

Пример  Определим предельные погрешности числа х=3,14 как приближенного значения π. Так как π=3,1415926…., то  |π-3,14|<0,0015927<0,0016=по формуле связи получаем таким образом

  1. Верные и значащие цифры. Запись приближенных значений

Цифра числа называется верной (в широком смысле), если ее абсолютная погрешность не превосходит единицы разряда, в котором стоит эта цифра.

Пример. Х=6,328 Х=0,0007 X<0,001 следовательно цифра 8-верная

Пример: А). Пусть 0 = 2,91385,  В числе а верны в широком смысле цифры 2, 9, 1.

Б) Возьмем в качестве приближения к числу = 3,141592… число = 3,142. Тогда  (рис.) откуда следует, что в приближенном значении = 3,142 все цифры являются верными.

В) Вычислим на 8-разрядном МК частное точных чисел 3,2 и 2,3, получим ответ: 1,3913043. Ответ содержит ошибку, поскольку

Рис.  Приближение числа π

разрядная сетка МК не вместила всех цифр результата и все разряды начиная с восьмого были опущены. (В том, что ответ неточен, легко убедиться, проверив деление умножением: 1,3913043 2,3 = 3,9999998.) Не зная истинного значения допущенной ошибки, вычислитель в подобной ситуации всегда может быть уверен, что ее величина не превышает единицы самого младшего из изображенных на индикаторе разряда результата. Следовательно, в полученном результате все цифры верны.

Первая отброшенная (неверная) цифра часто называется сомнительной.

Говорят, что приближенное данное записано правильно, если в его записи все цифры верные. Если число записано правильно, то по одной только его записи в виде десятичной дроби можно судить о точности этого числа. Пусть, например, записано приближенное число а = 16,784, в котором все цифры верны. Из того, что верна последняя цифра 4, которая стоит в разряде тысячных, следует, что абсолютная погрешность значения а не превышает 0,001. Это значит, что можно принять  т.е. а = 16,784±0,001.

Очевидно, что правильная запись приближенных данных не только допускает, но и обязывает выписывать нули в последних разрядах, если эти нули являются выражением верных цифр. Например, в записи = 109,070 нуль в конце означает, что цифра в разряде тысячных верна и она равна нулю. Предельной абсолютной погрешностью значения , как следует из записи, можно считать  Для сравнения можно заметить, что значение с = 109,07 является менее точным, так как из его записи приходится принять, что

Значащими цифрами в записи числа называются все цифры в его десятичном изображении, отличные от нуля, и нули, если они расположены между значащими цифрами или стоят в конце для выражения верных знаков.

Пример  а) 0,2409 — четыре значащие цифры; б) 24,09 — четыре значащие цифры; в) 100,700 — шесть значащих цифр.

Выдача числовых значений в ЭВМ, как правило, устроена таким образом, что нули в конце записи числа, даже если они верные, не сообщаются. Это означает, что если, например, ЭВМ показывает результат 247,064 и в то же время известно, что в этом результате верными должны быть восемь значащих цифр, то полученный ответ следует дополнить нулями: 247,06400.

В процессе вычислений часто происходит округление чисел, т.е. замена чисел их значениями с меньшим количеством значащих цифр. При округлении возникает погрешность, называемая погрешностью округления. Пусть х  данное число, а х1 — результат округления. Погрешность округления определяется как модуль разности прежнего и нового значений числа:

В отдельных случаях вместо ∆окр приходится использовать его верхнюю оценку.

Пример  Выполним на 8-разрядном МК действие 1/6. На индикаторе высветится число 0,1666666. Произошло автоматическое округление бесконечной десятичной дроби 0,1(6) до числа разрядов, вмещающихся в регистре МК. При этом можно принять

Цифра числа называется верной в строгом смысле, если абсолютная погрешность этого числа не превосходит половины единицы разряда, в котором стоит эта цифра.

Правила записи приближенных чисел.

  1. Приближенные числа записываются в форме х ± х. Запись X = х ± x означает, что неизвестная величина X удовлетворяет следующим неравенствам:     x-x <= X <= x+x

При этом погрешность х рекомендуется подбирать так, чтобы

а) в записи х было не более 1-2 значащих цифр;

б) младшие разряды в записи чисел х и х соответствовали друг другу.

Примеры:  23,4±0,2 ;   2,730±0,017 ;   -6,970,10.

  1. Приближенное число может быть записано без явного указания  его  предельной абсолютной погрешности. В этом случае в его  записи  (мантиссе)  должны  присутствовать только верные цифры (в широком смысле, если не сказано обратное). Тогда по самой записи числа можно судить о его точности.

Примеры. Если в числе А=5,83 все цифры верны в строгом смысле, то А=0,005. Запись В=3,2 подразумевает, что В=0,1. А по записи С=3,200 мы можем заключить, что С=0,001. Таким образом, записи 3,2 и 3,200  в теории приближенных вычислений означают не одно и то же.

 Цифры в записи приближенного числа, о которых нам неизвестно, верны они или нет, называются сомнительными. Сомнительные цифры (одну-две) оставляют в  записи чисел промежуточных результатов для сохранения  точности  вычислений.  В окончательном результате сомнительные цифры отбрасываются.

Округление чисел.

  1. Правило округления. Если в старшем из отбрасываемых  разрядов  стоит  цифра меньше пяти, то содержимое сохраняемых разрядов числа не изменяется. В противном случае в младший сохраняемый разряд добавляется единица с тем же знаком, что и у самого числа.
  2. При округлении числа, записанного в форме х±х, его  предельная  абсолютная погрешность увеличивается с учетом погрешности округления.

Пример: Округлим до сотых число 4,5371±0,0482. Неправильно было бы записать 4,54±0,05 ,  так как погрешность  округленного числа складывается из погрешности исходного числа и погрешности округления.  В данном случае она равна 0,0482 + 0,0029 = 0,0511 .  Округлять погрешности всегда следует с избытком, поэтому окончательный ответ:  4,54±0,06.

Пример  Пусть в приближенном значении а = 16,395 все цифры верны в широком смысле. Округлим а до сотых: a1 = 16,40. Погрешность округления  Для нахождения полной погрешности , нужно сложить c погрешностью исходного значения а1 которая в данном случае может быть найдена из условия, что все цифры в записи а верны: = 0,001. Таким образом, . Отсюда следует, что в значении a1 = 16,40 цифра 0 не верна в строгом смысле.

  1. Вычисление погрешностей арифметических действий

1. Сложение и вычитание. Предельной абсолютной погрешностью алгебраической суммы является сумма соответствующих погрешностей слагаемых:

Ф.1                               (X+Y) = Х + Y ,       (X-Y) = Х + Y .

Пример.  Даны приближенные числа Х = 34,38 и Y = 15,23 , все цифры верны в строгом смысле. Найти (X-Y) и (X-Y). По формуле Ф.1 получаем:

(X-Y) = 0,005 + 0,005 = 0,01.

Относительную погрешность получим по формуле связи:

2. Умножение и деление. Если   Х << |Х| и Y << |Y|,   то имеет место следующая формула:

Ф.2                                     (X · Y) = (X/Y) = X + Y.

Пример. Найти (X·Y) и (X·Y) для чисел из предыдущего примера. Сначала с помощью формулы Ф.2 найдем (X·Y):

(X·Y)= X + Y=0,00015+0,00033=0,00048

Теперь (X·Y) найдем с помощью формулы связи:

(X·Y) = |X·Y|·(X·Y) = |34,38 -15,23|·0,00048  0,26 .

3. Возведение в степень и извлечение корня. Если   Х << |Х| , то справедливы формулы

Ф.З

4. Функция одной переменной. 

Пусть даны аналитическая функция f(x) и приближенное число с ± с. Тогда, обозначая через  малое приращение аргумента, можно написать

Если f ‘(с)  0, то приращение функции f(с+) — f(c) можно оценить ее дифференциалом:

f(c+) — f(c)  f ‘(c) ·.

Если погрешность с достаточно мала, получаем окончательно следующую формулу:

Ф.4                                               f(c) = |f ‘(с)|· с .

Пример.  Даны   f(x) = arcsin x , с = 0,5 , с = 0,05 . Вычислить f(с).

Применим формулу Ф.4:    

5. Функция нескольких переменных.

Для функции нескольких переменных f(x1, … , хn) при xk= ck ± ck справедлива формула, аналогичная Ф.4:

Ф.5             f(c1, … ,сn)  l df(c1, … ,сn) | = |f ‘x1 (с1)|·с1+… + |f ‘xn (сn)|· сn.

Пример  Пусть х = 1,5, причем  т.е. все цифры в числе х верны в строгом смысле. Вычислим значение tg x. С помощью МК получаем: tgl,5= 14,10141994. Для определения верных цифр в результате оценим его абсолютную погрешность:  отсюда следует, что в полученном значении tgl,5 ни одну цифру нельзя считать верной.

  1. Методы оценки погрешности приближенных вычислений

Существуют строгие и нестрогие методы оценки точности результатов вычислений.

1.   Строгий метод итоговой оценки. Если приближенные вычисления выполняются по сравнительно простой формуле, то с помощью формул Ф.1-Ф.5 и формул связи погрешностей можно вывести формулу итоговой погрешности вычислений. Вывод формулы и оценка погрешности вычислений с ее помощью составляют суть данного метода.

Пример Значения a = 23,1 и b = 5,24 даны цифрами, верными в строгом смысле. Вычислить значение выражения

С помощью МК получаем В = 0,2921247. Используя формулы относительных погрешностей частного и произведения, запишем:

 т.е.

Пользуясь МК, получим 5, что дает . Это означает, что в результате две цифры после запятой верны в строгом смысле: В=0,29±0,001.

2.   Метод строгого пооперационного учета погрешностей. Иногда попытка применения метода итоговой оценки приводит к слишком громоздкой формуле. В этом случае более целесообразным может оказаться применение данного метода. Он заключается в том, что оценивается точность каждой операции вычислений отдельно с помощью тех же формул Ф.1-Ф.5 и формул связи.        

3.   Метод подсчета верных цифр. Данный метод относится к нестрогим. Оценка точности вычислений, которую он дает, в принципе не гарантирована (в отличие  от строгих методов), но на практике является довольно надежной. Суть метода заключается в том, что после каждой операции вычислений в полученном числе определяется количество верных цифр с помощью нижеследующие правил.

П.1. При сложении и вычитании приближенных чисел в результате верными следует считать, те цифры, десятичным разрядам которых соответствуют верные цифры во всех слагаемых. Цифры всех других разрядов кроме самого старшего из них перед выполнением сложения или вычитания должны быть округлены во всех слагаемых.

П.2. При умножении и делении приближенных чисел в результате верными следует считать столько значащих цифр, сколько их имеет приближенное данное с наименьшим количеством верных значащих цифр. Перед  выполнением  этих  действий среди приближенных данных нужно выбрать число с наименьшим количеством значащих цифр и округлить остальные числа так, чтобы они имели лишь на одну значащую цифру больше него.

П.З. При возведении в квадрат или в куб, а также при извлечении квадратного или кубического корня в результате следует считать верными столько значащих цифр, сколько имелось верных значащих цифр в исходном числе.

П.4. Количество верных цифр в результате вычисления функции зависит от величины модуля производной и от количества верных цифр в аргументе. Если модуль производной близок к числу 10k  (k — целое), то в результате количество верных цифр относительно запятой на k меньше (если k отрицательно, то — больше), чем их было в аргументе. В данной лабораторной работе для  определенности  примем соглашение считать модуль, производной близким к 10k , если имеет  место  неравенство:

0,2·10K  < |f ‘(X) |  2·10k  .

П.5. В промежуточных результатах помимо верных цифр следует оставлять одну  сомнительную цифру (остальные сомнительные цифры можно округлять) для сохранения точности вычислений. В окончательном результате оставляют только верные цифры.

Вычисления по методу границ

Если нужно иметь абсолютно гарантированные границы возможных значений вычисляемой величины, используют специальный метод вычислений — метод границ.

Пусть f(x, у) — функция, непрерывная и монотонная в некоторой области допустимых значений аргументов х и у. Нужно получить ее значение f(a, b), где а и b  приближенные значения аргументов, причем достоверно известно, что

Здесь НГ, ВГ — обозначения соответственно нижней и верхней границ значений параметров. Итак, вопрос состоит в том, чтобы найти строгие границы значения f(a, b), при известных границах значений а и b.

Допустим, что функция f(x, у) возрастает по каждому из аргументов x и y. Тогда

f(НГа, НГb< f(a, b)<f(ВГa ВГb).

Пусть f(x, у) возрастает по аргументу х и убывает по аргументу у. Тогда будет строго гарантировано неравенство

f(НГa ВГb)< f(a, b)< f(ВГa, НГb).

Указанный принцип особенно очевиден для основных арифметических действий. Пусть, например, f(x, у)=х + у. Тогда очевидно, что

Точно так же для функции f2(x, у) = ху (она по х возрастает, а по у убывает) имеем

Аналогично для умножения и деления:

НГа*НГb<а * b<ВГa*ВГb.

НГа/ВГb<а / b<ВГa/НГb.

Пример. Вычислите значение где 2,57<=x<=2,58;  1,45<=y<=1,46;  8,33<=z<=8,34

Действие

Содержимое

НГ

ВГ

1

X

2.57

2.58

2

Y

1.45

1.46

3

Z

8.33

8.34

4

x+y

4.02

4.04

5

x-y

1.11

1.13

6

(x-y)z

9.24

9.43

7

2.28

2.35

Пример. В табл.  приведены вычисления по формуле  методом границ. Нижняя и верхняя границы значений a и b определены из условия, что в исходных данных а = 2,156 и b = 0,927 все цифры верны в строгом смысле (a = b = 0,0005), т.е. 2,1555<а<2,1565; 0,92650,9275.

a

b

ea

b2

a+b2

A

НГ

2,1555

0,9265

8,63220

0,96255

9,59475

0,85840

3,01434

1,10338

8,6894

ВГ

2,15,65

0,9275

8,64084

0,96307

9,60391

0,86026

3,01676

1,10419

8,7041

Рис. Связь между абсолютной погрешностью и границами

Таким образом, результат вычислений значения А по методу границ имеет следующий вид:

8,6894 <А< 8,7041.

Лекция 14.  Приближенные
числа. Погрешности арифметических действий.

Величиной называется то,
что может быть в определенных единицах выражено числом. Например, длина,
площадь, объем – это величины. Значение величины, в истинности которого мы не
сомневаемся, называется точным (в дальнейшем х — точное число).
Но обычно на практике, отыскивая значение какой-либо величины, получают лишь ее
приближенное значение (в дальнейшем а — приближенное число).
Например, при измерении физических величин с помощью измерительных приборов.

Модуль разности точного и приближенного значений
величины называется абсолютной погрешностью приближения http://ok-t.ru/studopediaru/baza3/660669977128.files/image002.gif.

Предельной абсолютной погрешностью приближения или
границей погрешности или оценкой абсолютной погрешности
называется число http://ok-t.ru/studopediaru/baza3/660669977128.files/image004.gif.

 Таких оценок может быть бесконечное число. Лучшей
оценкой погрешности является наименьшая оценка. Краткая запись точного числа:
http://ok-t.ru/studopediaru/baza3/660669977128.files/image006.gif

Отношение абсолютной погрешности приближения к модулю
точного значения величины называется относительной погрешностью http://ok-t.ru/studopediaru/baza3/660669977128.files/image008.gif.

На практике используется http://ok-t.ru/studopediaru/baza3/660669977128.files/image010.gif

Для предельной относительной погрешности (оценки
относительной погрешности): http://ok-t.ru/studopediaru/baza3/660669977128.files/image012.gif.

Относительная погрешность обычно выражается в %.

В дальнейшем слово оценка
опускается.

ПРИМЕР 1. Найти абсолютную и относительную погрешность
приближения а=3,14 для х=π.

Известно, что 3,14<π<3,15.

Отсюда следует, что http://ok-t.ru/studopediaru/baza3/660669977128.files/image014.gif, т.е. http://ok-t.ru/studopediaru/baza3/660669977128.files/image016.gif

Если учесть, что 3,14<π<3,142, то
получим лучшую оценку http://ok-t.ru/studopediaru/baza3/660669977128.files/image018.gif

http://ok-t.ru/studopediaru/baza3/660669977128.files/image020.gif

ПРИМЕР
2. При измерении длины пути получен результат 25,2 км с точностью до 2м.
Вычислить предельную абсолютную и предельную относительную погрешности.

Решение. В нашем
случае предельная абсолютная погрешность равна
D = 0,002 км, а предельная
относительная погрешность

d =

0,002

25,2

=
0,00008 = 0,008%

ПРИМЕР
3. При измерении длины пути L = 10 км допущена ошибка
D (L) = 10 м, а
при измерении диаметра гайки d = 4см допущена погрешность
D ( d  ) = 1мм.
Какое из этих двух измерений более точное?

Решение. Найдём
предельные относительные погрешности чисел L и d.

По
условию задач
D(L) =
0,01 км,

тогда

d (L)
=

0,01

10

=
0,001 = 0,1%

Аналогично,
вычисляем

d (d)
=

0,1

4

=
0,025 = 2,5%

Поскольку
d(L) < d( d ) то первое
измерение является более точным.

Цифра в десятичной записи приближенного значения
величины х называется верной в широком смысле,
если абсолютная погрешность приближения не превосходит единицы того разряда r,
которому принадлежит эта цифра http://ok-t.ru/studopediaru/baza3/660669977128.files/image022.gif(Нулевым
разрядом считается разряд единиц, десятичные цифры считаются отрицательными
разрядами).

Существует еще понятие верной цифры в узком
смысле
: http://ok-t.ru/studopediaru/baza3/660669977128.files/image024.gif.

В дальнейшем будем рассматривать верные цифры в
широком смысле. Остальные цифры числа называются сомнительными.

Значащими цифрами числа,
записанного в десятичной форме, называются все верные цифры числа, начиная с
первой слева, отличной от 0. Все нули слева являются незначащими. По количеству
значащих цифр можно легко оценить абсолютную погрешность приближенного числа.
За оценку абсолютной погрешности можно взять 0,5 разряда, следующего за
последней значащей цифрой. Предельную относительную погрешность можно принять
равной дроби, числитель которой 1, а знаменатель – удвоенное целое число,
записанное при помощи всех значащих цифр данного числа.

ПРИМЕР. а=0,065; http://ok-t.ru/studopediaru/baza3/660669977128.files/image026.gif

ЗАДАЧА 1.1. Объем помещения V определен
с предельной относительной погрешностью δ Сколько значащих цифр в
V?

V=503м3 http://ok-t.ru/studopediaru/baza3/660669977128.files/image028.gif

РЕШЕНИЕ. http://ok-t.ru/studopediaru/baza3/660669977128.files/image030.gif

n – ?

V=500±5

ЗАДАЧА 1.2. Известно, что приближенное значение а
имеет n значащих цифр. Оценить абсолютную и относительную
погрешность.

a=0,0359 n=2

РЕШЕНИЕ. http://ok-t.ru/studopediaru/baza3/660669977128.files/image032.gif

http://ok-t.ru/studopediaru/baza3/660669977128.files/image034.gif

ЗАДАЧА 1.3. Округлите сомнительные цифры приближенного
числа а, если известна относительная погрешность δ

Задание 1.1.

Известно, что приближенное значение а
имеет n значащих цифр. Оценить абсолютную и относительную
погрешность со следующими исходными данными.

a=295,3 n=2, n=3, n=4

http://ok-t.ru/studopediaru/baza3/660669977128.files/image034.gif

Задание 1.2.

Округлите сомнительные цифры приближенного числа а,
если известна относительная погрешность δ

При численном решении задач приходится
оперировать двумя видами чисел – точными
и приближенными. К точным
относятся числа, которые дают истинное
значение исследуемой величины. К
приближенным относятся числа,
близкие к истинному значению, причем
степень близости и определяется
погрешностью вычислений.

Результатами вычислений являются, как
правило, только приближенные числа.
Поэтому для указания области
неопределенности результата вводятся
некоторые специальные понятия, широко
используемые при подготовке исходных
данных или (и) оценке погрешности
численных решений.

Если х – точное, вообще говоря,
неизвестное значение некоторой величины,
а а – его приближенное значение, то
разность х а называется
ошибкой, или погрешностью
приближения
. Часто знак ошибки х
а неизвестен, поэтому используется
так называемая абсолютная погрешность
(Х) приближенного
числа а, определяемая равенством

(Х) = | х а |, (1.1)

откуда

х = а  (Х). (1.2)

Изучаемая числовая величина х
именованная, т. е. определяется
в соответствующих единицах измерения,
например, в сантиметрах, килограммах
и т. п. Погрешность (1.1) имеет ту же
размерность.

Однако часто возникает необходимость
заменить эту погрешность безразмерной
величиной – относительной погрешностью.
При этом из-за незнания точного значения
изучаемой величины принято называть
относительной погрешностью величину


. (1.3)

Относительную погрешность часто выражают
в процентах:

100
%. Она сопоставима в идентичных
экспериментах, т. е. характеризует
качество измерения, а именно, точность
результата лучше характеризуется его
(Х), так как
абсолютная погрешность (Х)
не достаточна, например, для характеристики
качества измерения двух стержней l1
= 100,8 ± 0,1 см и l2
= 5,2 ± 0,1 см. Очевидно, что качество
измерения первого значительно выше.

В связи с тем что точное значение х,
как правило, неизвестно, формулы (1.1) –
(1.3) носят сугубо теоретический характер.

Для практических целей вводится понятие
предельной погрешности. Предельная
абсолютная погрешность
а
– это верхняя оценка модуля абсолютной
погрешности числа х, т. е.

| х | 
a.

При произвольном выборе а
всегда стремятся каким-либо образом
взять наименьшим. Истинное
значение числа х будет находиться
в интервале с границами (а – а)
– с недостатком и (а + а)
– с избытком, т. е.

( а – а ) 
х
( а + а ).

Обычно для приближенных чисел по
результатам округлений в качестве а
принимают единицу или 1/2 единицы
оставленного разряда числа. Первое
условие называют погрешностью в
«широком» смысле, второе 
в «узком» смысле.

Пример погрешностей в «узком» смысле:

а

51,7

–0,0031

16

16,00

а

0,05

0,00005

0,5

0,005

Предельная относительная погрешность

также может выражаться в процентах. При
локальных ручных расчетах и на этапе
подготовки исходных данных существуют
определенные правила оценки предельных
погрешностей для арифметических
операций
:


;


;


;


;

(а  b)
= а + b;

(а b)
= a
b[ (а)
+ (b)] = bа
+ ab;


;


;

где  – относительная
предельная погрешность; m
– рациональное число; 
– предельная абсолютная погрешность.

Следует отметить, что приведенные оценки
погрешностей приближенных чисел
справедливы, если в записи этих чисел
все «значащие» цифры «верны».
Определение этих понятий рассмотрим
ниже.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Тема: Погрешность и точность приближения

Содержание модуля (краткое изложение модуля):


По графику функции y = x2 найдём приближённые значения функции для х = 1,8 и х = 2,9.

При х = 1,8 у ≈ 3,3.
При х = 2,9 y ≈ 8,4.

Найдем точные значения функции при указанных значениях аргумента.

При x = 1,8 y = x2 = 1,82 = 3,24.
При x = 2,9 y = x2 = 2,92 = 8,41.

Посмотрим, насколько отличаются приближённые значения от точных.

3,3 – 3,24 = 0,06.
8,41 – 8,4 = 0,01.

Для того, чтобы узнать разницу между приближённым значением и точным, мы из бОльшего значения вычли меньшее. Иными словами, мы нашли модуль разницы точного и приближённого значений.
Модуль разности точного и приближенного значений называют абсолютной погрешностью.

|3,24 – 3,3| = 0,06.
|8,41 – 8,4| = 0,01.

В некоторых случаях абсолютную погрешность найти невозможно. Например, комнатный термометр.
Термометр показывает температуру приблизительно равную t ≈ 12° по Цельсию. Точное значение нам не известно, значит абсолютную погрешность вычислить не можем, но можем указать такое число, больше которого абсолютная погрешность быть не может. В приведённом примере это может быть 1, т.к. шкала деления термометра равна 1°.
Модуль разницы |t – 12| ≤ 1. Значит: t ≈ 12° с точностью 1°.
Записывается это таким образом: t ≈ 12° ± 1°.
Это значит, что значение температуры расположено между 12 – 1 ≤ t ≤ 12 + 1 или 11 ≤ t ≤ 13.
Для оценки качества измерения вычисляют относительную погрешность приближённого значения.
Относительная погрешность приближённого значения – это отношение абсолютной погрешности к модулю приближённого значения. Относительная погрешность выражается в процентах.
Если значение абсолютной величины неизвестно, но известна точность приближённого значения, то выполняют оценку относительной погрешности.
Например, масса двух яблок равна 200 г ±5 г. Тогда относительная погрешность не превосходит значения, равного 5 : 200 • 100% = 2,5%. Иными словами, измерение выполнено с относительной точностью до 2,5%.

Алгебра. 8 класс: учеб. для общеобразоват. организаций / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. – 6-е изд. – М.: Просвещение, 2017.

Содержание:

  1. Приближённые вычисления
  2. Абсолютная и относительная погрешности
  3. Выполнение действий над приближёнными числами
  4. Выполнение действий без точного учёта погрешности

Приближённые вычисления

Приближённые вычисления — вычисления, в которых данные и результат (или только результат) являются числами, приближенно представляющими истинные значения соответствующих величин. Числовые данные, полученные измерением реальных объектов, редко бывают точными значениями соответствующей величины, а обычно имеют некоторую погрешность

Абсолютная и относительная погрешности

При решении практических задач часто приходится иметь дело с приближёнными значениями разных числовых величин. К ним относятся: результаты измерения разных величин с помощью приборов; значения полученные при считывании на графиках, диаграммах, номограммах; проектные данные; результаты округления чисел; результаты действий над приближёнными числами; табличные значения некоторых величин; результаты вычислений значений функции. Приближённые значения (приближение, приближённые числа) могут значительно отличаться от точных, либо быть близкими к ним.

Для оценки отклонения приближённых чисел от точных используют такие понятия как абсолютная и относительная погрешности.

Абсолютной погрешностью  приближённой называется модуль разности между точным значением величины Приближённые вычисления в математике и её приближённым значением х, то есть

Приближённые вычисления в математике

Пример.

Абсолютная погрешность приближённого числа Приближённые вычисления в математике числом 0,44 составляет

Приближённые вычисления в математике

Если точное число неизвестно, то найти абсолютную погрешность Приближённые вычисления в математике невозможно. На практике вводят оценку допустимой при данных измерениях или вычислениях абсолютной погрешности, которую называют пределом абсолютной погрешности и обозначают буквой h. Считают, что hПриближённые вычисления в математике. Как правило, предел абсолютной погрешности устанавливают из практических соображений, например, при измерениях  пределом абсолютной погрешности считают наименьшее деление прибора.

При записи приближённых чисел часто используют понятия верной и сомнительной цифры.

Цифра Приближённые вычисления в математике называется верной, если предел абсолютной погрешности данного приближения не превышает единицы того разряда, в котором записана эта цифра. В другом случае цифра называется  сомнительной.

Например: в числе Приближённые вычисления в математикедве цифры верны, поскольку погрешность 0,04 не превышает единицу разряда десятых. Цифры 9 и 7 верны, поскольку Приближённые вычисления в математике а цифры 4 и 6 являются сомнительными, поскольку Приближённые вычисления в математике

В конечной записи приближённого числа сохраняют только верные цифры. Так число Приближённые вычисления в математике можно записать в виде  Приближённые вычисления в математике, число Приближённые вычисления в математике в виде Приближённые вычисления в математике Если в десятичной дроби последние верные цифры — нули, то их оставляют в записи числа.

Например: если Приближённые вычисления в математике, то правильной записью числа будет 0,260.

Если в целом числе последние нули являются сомнительными, их исключают из записи числа.

Именно поэтому при работе с приближёнными числами широко используют стандартную форму записи числа.

Например: в числе Приближённые вычисления в математике верными являются три первые цифры, а два последних нуля — сомнительные цифры. Запись числа возможна только в виде: 

Приближённые вычисления в математике

Следовательно, в десятичной записи приближённого числа последняя цифра указывает на точность приближённости, то есть предел абсолютной погрешности не превышает единицу последнего разряда.

Например:

1. Запись Приближённые вычисления в математике означает, что Приближённые вычисления в математике, то есть предел абсолютной погрешности h=0,01.

2. Запись Приближённые вычисления в математике

3. Если Приближённые вычисления в математике

В десятичной записи числа значимыми цифрами называются все его верные цифры начиная с первой слева, отличной от нуля.

Например: в числе 1,13 — три значимых цифры, в числе 0,017 — две, в числе 0,303 — три, в числе 5,200 — четыре, в числе 25*10— две значимых цифры.

При таком подходе к записи приближенного числа необходимо уметь округлять числа.

Правила округления чисел:

— Если первая цифра, которую отбрасываем является меньше пяти, то в основном разряде, который сохраняется цифра не меняется. Например: 879,673≈879,67.

— Если первая цифра, которую отбрасываем больше пяти, то в последнем разряде, который сохраняется цифра увеличивается на единицу. Например: 456,87≈456,9.

— Если первая цифра, которая отбрасывается пять и за ней есть ещё отличны от нуля, то в последнем разряде, который сохраняется цифра увеличивается на единицу. Например: 1246,5002≈1247.

— Если первая цифра, которая отбрасывается — пять и за ней нет больше никаких цифра, то в последнем разряде, который сохраняется цифра увеличивается на единицу. Например: 0,275≈0,28; 1,865≈1,86.

Абсолютная погрешность не полностью характеризует точность приближения. Например, Приближённые вычисления в математике будет грубой ошибкой при измерении жука, и незначительной при измерении кита. Тоже самое можно сказать и про предел абсолютной погрешности. Качество (точность) приближённости лучше характеризуется относительной погрешностью.

Относительной погрешностью Приближённые вычисления в математике (омега) приближённости х величины Приближённые вычисления в математике называется отношением абсолютной погрешности Приближённые вычисления в математике этого приближения к модулю приближённого значения х, то есть 

Приближённые вычисления в математике

Поскольку абсолютная погрешность Приближённые вычисления в математике обычно бывает неизвестна, то на практике оценивают модуль относительной погрешности некоторым числом, которое не меньше чем этот модуль: 

Приближённые вычисления в математике

Число Приближённые вычисления в математике называется пределом относительной погрешности.

Предел относительной погрешности можно вычислить по формуле: Приближённые вычисления в математике

Конечно относительная погрешность выражается в процентах.

С помощью относительной погрешности легко установить точность приближённости.

Пример 1. Найти относительную погрешность числа Приближённые вычисления в математике

Решение: Имеем Приближённые вычисления в математике

Следовательно Приближённые вычисления в математике

Пример 2. Сравнить точность измерения толщины книги d (см) и высоты стола H (см), если известно, что  Приближённые вычисления в математике.

Решение: 

Приближённые вычисления в математике

Как видим, точность измерения высоты стола значительно выше.

Выполнение действий над приближёнными числами

Результат арифметических действий над приближёнными числами является также приближённым числом.

Необходимо уметь устанавливать погрешности результатов вычислений. Их находят с точным и без точного учёта погрешностей исходных данных. Правила нахождения погрешностей результатов действий с точным учётом погрешности приведены в таблице (обозначения — Приближённые вычисления в математике исходные данные; Приближённые вычисления в математике пределы абсолютных погрешностей относительно чисел; Приближённые вычисления в математикепределы относительных погрешностей).

Приближённые вычисления в математике

Пример 3. Вычислить приближение значения выражения Приближённые вычисления в математике и найти предел погрешностей результата.

Решение: находим значение квадрата числа 5,62 и квадратного корня из числа 18,50. Приближённые вычисления в математике

Найдём границу относительной погрешности результата:

Приближённые вычисления в математике

Граница абсолютной погрешности результата:

Приближённые вычисления в математике

Ответ: Приближённые вычисления в математике

Пример 4. Вычислить приближение значения выражения Приближённые вычисления в математике  и найти предел погрешностей результата.

Решение: находим значение квадратного корня из числа 6,24 и Приближённые вычисления в математике, имеем:

Приближённые вычисления в математике

Граница относительной погрешности результата:

Приближённые вычисления в математике

Граница абсолютной погрешности результата: Приближённые вычисления в математике

Ответ: Приближённые вычисления в математике

Выполнение действий без точного учёта погрешности

Точный учёт погрешности усложняет вычисление. Поэтому, если не надо учитывать погрешность промежуточных результатов, можно использовать более простые правила. 

Сложение и вычитание приближённых вычислений рекомендуется выполнять так:

а) выделить слагаемое с наименьшим числом верных десятичных знаков;

б) округлить другие слагаемые так, чтобы каждое из них содержало на один десятичный знак больше чем выделенное;

в) выполнить действия, учитывая все сохранённые десятичные знаки;

г) результаты округлить и сохранить столько десятичных знаков, сколько их есть в приближённом числе с наименьшим числом десятичных знаков.

Умножение и деление приближённых вычислений рекомендуется выполнять так:

а) выделить среди данных чисел, число с наименьшим количеством верных значимых цифр;

б) округлить оставшиеся данные так, чтобы каждое из них содержало на одну значащую цифру больше, чем в выделенном;

в) выполнить действия — сохранить все значимые цифры;

г) сохранять в результате столько значащих цифр, сколько их имеет выделенное число с наименьшим количеством верных значимых цифр.

При возведении в степень приближённого числа в результате сохраняют столько значимых цифр, сколько верных значимых цифр имеет основа степени.

При извлечении корня из приближённого числа в результате сохраняют столько верных цифр, сколько имеет подкоренное число.

Лекции:

  • Уравнение сферы
  • Пределы: примеры решения
  • Площадь поверхности конуса
  • Целые рациональные выражения
  • Числовые ряды. Числовой ряд. Сумма ряда
  • Свойства логарифмов
  • Линейные дифференциальные уравнения первого порядка
  • Скрещивающиеся прямые
  • Скалярное призведение двух векторов
  • Теоремы, связанные с понятием производной

Понравилась статья? Поделить с друзьями:
  • Повысить потенциал лексическая ошибка
  • Повысить подготовку специалистов лексическая ошибка
  • Поверхностный человек как исправить
  • Поверх других окон функция недоступна как исправить
  • Повернулся экран на мониторе как исправить