Оснащение занятия.
Оборудование:
скарификаторы, штатив Панченкова,
капилляр Панченкова, пробирки, вата,
спирт.
Реактивы:
5 % раствор лимоннокислого натрия или
10
% трилон Б (ЭДТА)
Алгоритм определения соэ.
-
Ознакомьтесь
с капилляром Панченкова и штативом. -
Промойте
капилляр Панченкова 5 % цитратом натрия,
а затем наберите ¼ капилляра цитрата
натрия и поместите в центрифужную
пробирку. -
Обработайте
палец пациента. -
Проколите
палец пациента скарификатором до упора. -
Наберите
кровь в капилляр Панченкова до метки
«К» без пузырьков воздуха. Суженный
конец капилляра оботрите ваткой от
остатков крови. -
Опустите
капилляр с кровью в пробирку с цитратом
и тщательно перемешайте. -
Наберите
в капилляр смесь крови с цитратом до
метки «К», зажмите указательным
пальцем верхнее отверстие капилляра. -
Поставьте
вертикально капилляр в штатив Панченкова,
суженным отверстием надавив на одну
из резинок штатива и опустив указательный
палец с верхнего отверстия. Укажите
время постановки реакции. Ровно через
1 час снимайте показания.
Ошибки при выполнении анализа соэ.
Ошибки при постановке
СОЭ могут быть связаны с различными
факторами:
-
При
комнатной температуре СОЭ определяется
не позже, чем через 2 часа после взятия
крови. В случае хранения крови при +40С,
СОЭ определяется не позднее, чем через
6 часов, но перед выполнением кровь
прогревают до комнатной температуры. -
Исследование
СОЭ должно проводиться при 18-250С.
При более высоких температурах значение
СОЭ увеличивается, при низких –
замедляется. -
Перед
проведением анализа кровь хорошо
перемешивают, что обеспечит лучшую
воспроизводимость результатов. -
При
отсутствии резкой границы между
эритроцитным столбиком и плазмой
(регенеративных анемиях), над компактной
массой эритроцитов образуется светлая
«вуаль» в несколько миллиметров
из разведенных эритроцитов (главным
образом из ретикулоцитов). В таком
случае определяется граница компактного
слоя, а эритроцитарная вуаль причисляется
к столбику плазмы. -
Стеклянные
капиллярные пипетки могут быть заменены
на пластмассовые (полипропил,
поликарбонат), однако они требуют
проверки и оценки степени корреляции
полученных результатов со стеклянными
капиллярами. -
Нарушение
соотношения кровь/цитрат (неточное
дозирование цитрата или крови), стояние
пробы под наклоном, на свету, в тепле,
более 4х часов с цитратом, во влажном
капилляре.
II. Блок контролирующих материалов.
А:
Инструкция к самостоятельной работе
на занятии.
-
При
подготовке рабочего места к работе
предусмотреть все необходимое и не
загромождать стол лишними реактивами
и оборудованием. -
Предварительно
работать с имитацией крови. -
Обратить
внимание на возможные ошибки при
определении СОЭ. -
Произвести
определение СОЭ. -
Записать
в тетрадь алгоритм методики и полученный
результат: -
Оценить
полученные результаты. -
При
уборке рабочего места, обработке
капилляров и перчаток соблюдать правила
техники безопасности при работе с
заведомо инфицированными материалами
и электроприборами.
Б:
Тема считается усвоенной, если студент
может:
а)
Ответить на вопросы (вопросы для
самоконтроля):
-
Почему
необходимо кровь смешивать с цитратом
натрия? -
Как
называется та прозрачная жидкость,
которая образуется при стоянии капилляра
Панченкова в штативе в течение часа? -
Чему
равно одно деление в капилляре Панченкова? -
Какие
ошибки могут быть допущены при взятии
крови на СОЭ? -
Почему
очень важно соблюдать время при
постановке СОЭ? -
Как
надо обработать капилляр и резиночки
штатива Панченкова после окончания
исследования? -
Как
дезинфицируют капилляры после забора
крови? -
Как
правильно обработать и простерилизовать
скарификаторы после работы?
б)
Выполнить практическую работу.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Ю.В. Первушин, В.В. Вельков*, Л.С. Путренок.**
ГОУ ВПО Ставропольская государственная медицинская академия Росздрава, кафедра клинической лабораторной диагностики ФПО,
*ЗАО «ДИАКОН», Пущино, Московской области,
** Ставропольский краевой клинический диагностический центр.
Почему, врачи, даже современных лечебных учреждений, не могут расстаться с традицией определения СОЭ, несмотря на многочисленные научные данные, которые ставят под сомнение точность и диагностическое значение этого теста?
Скорость оседания эритроцитов (СОЭ, ранее реакция оседания эритроцитов – (РОЭ) — неспецифический лабораторный показатель крови, изменение СОЭ может служить косвенным признаком текущего воспалительного или иного патологического процесса. Более ста лет этот тест, несмотря на то, что является неспецифичным, применяется для количественной характеристики степени тяжести воспалительных процессов, вызванных инфекциями, различными воспалениями, развитием новообразований. Однако, хотя воспаление и является наиболее частой причиной ускорения оседания эритроцитов, увеличение СОЭ также может обуславливаться и другими, в том числе и не всегда патологическими, состояниями. Таким образом, результаты определения СОЭ можно считать достоверными только тогда, когда никакие другие параметры кроме предполагаемых, не влияют на изучаемый показатель. На самом деле слишком многие факторы оказывают влияние на результаты этого теста и поэтому его клиническое значение должно быть пересмотрено.
Основное влияние на скорость оседания эритроцитов, взвешенных в плазме, оказывает степень их агрегации. Процесс этот достаточно сложен. Он зависит от многих факторов и ведущая роль в нем принадлежит трем главным – влияющим на агрегацию эритроцитов, это: 1) поверхностная энергия клеток, 2) заряд клеток и 3) диэлектрическая постоянная.
Последний показатель является характеристикой плазмы, связанной с концентрацией асимметричных молекул. Увеличение содержания таких молекул (белков) приводит к повышению прочности связей между эритроцитами, что, в свою очередь, приводит к агглютинации и слипанию (образованию столбиков) эритроцитов и, тем самым, к более высокой скорости их оседания. Однако и эти основные факторы в свою очередь зависят от многих физико-химических сдвигов, происходящих в организме (Таблица 1).
Таблица 1
Влияние некоторых физико-химических факторов на величину СОЭ (по Г.Е. Ройтбергу и А.В. Струтынскому, 1999)
Основные физико-химические факторы |
Наиболее частые |
Изменение СОЭ |
Фибриноген |
Увеличение |
Увеличение |
α-глобулины |
Увеличение |
Увеличение |
γ-глобулины |
Увеличение |
Увеличение |
Парапротеины |
Увеличение |
Увеличение |
Альбумин |
Увеличение |
Увеличение |
Желчные пигменты |
Увеличение |
Уменьшение |
Желчные кислоты |
Увеличение |
Уменьшение |
Изменения рН крови |
Уменьшение (ацидоз) Увеличение (алкалоз) |
Уменьшение |
Вязкость крови |
Увеличение |
Уменьшение |
Число эритроцитов |
Увеличение (эритроцитоз) |
Уменьшение |
Кроме этих факторов изменять показатель СОЭ могут лабораторно-методические, биологические и ятрогенные воздействия (Таблица 2).
Таблица 2
Факторы, вызывающие увеличение СОЭ (Л.И. Дворецкий, 1998)
Лабораторно-методические |
Биологические |
Ятрогенные |
Неточное количество цитрата |
Макроцитоз |
Декстраны |
Стояние пробы с цитратом более |
Анемия |
Фенотиазин |
Стояние пробы на свету |
Антиэритроцитарные антитела |
а-Метилдопа |
Стояние пробы в тепле |
Гиперпротеинемия |
Витамин А |
Влажный капилляр |
Диспротеинемия |
Контрацептивы |
Стояние пробы под наклоном |
Гиперфибриногенемия |
g-глобулин |
Гиперлипидемия |
Дезерил |
|
Алкалоз |
||
Беременность |
||
Пожилой возраст |
Что приводит к ложным результатам при измерении СОЭ?
Ложное повышение СОЭ – суммируя наиболее распространенные факторы и часто встречающиеся клинические ситуации, влияющие на СОЭ, можно заключить, что клиницист чаще всего встречается с ложным повышением СОЭ, когда имеют место:
- анемия с нормальной морфологией эритроцитов
- увеличение в плазме концентрации всех белков, кроме фибриногена, М-протеина, макроглобулинов и агглютининов эритроцитов
- почечная недостаточность
- применение гепарина при взятии крови
- гиперхолестеринемия
- крайняя степень ожирения
- беременность (кстати, определение СОЭ изначально использовали для установления беременности)
- женский пол
- пожилой возраст
- технические погрешности при тестировании (отклонение пробирки от вертикального положения увеличивает СОЭ, при этом угол в 3° от вертикальной линии может приводить к увеличению СОЭ до 30 единиц).
Ложное снижение СОЭ может возникать, когда имеют место:
- повышение количества эритроцитов
- значительное повышение уровня лейкоцитов
- ДВС-синдром (из-за гипофибриногенемии)
- дисфибриногенемия
- афибриногенемия
- значительное увеличение уровня желчных солей в плазме крови
- застойная сердечная недостаточность
- вальпроевая кислота
- низкомолекулярный декстран
- кахексия,
- кормление грудью.
Ложное снижение СОЭ может возникать при морфологических изменениях эритроцитов: эритроциты аномальной, необычной формы препятствуют образованию столбиков и приводят к снижению СОЭ. Именно таким образом, влияют на агрегацию эритроцитов, снижая СОЭ: 1) сфероцитоз, 2) анизоцитоз , 3) пойкилоцитоз.
Интересно, как объективно оценить, что происходит при железодефицитной анемии, когда снижение количества эритроцитов ускоряет СОЭ, а анизо- и пойкилоцитоз его замедляют и как правильно рассчитать относительное значение этих факторов?
Наиболее частые технические погрешности при определении СОЭ
СОЭ снижается при понижении температуры в лаборатории, для определения СОЭ нельзя использовать кровь, полученную более чем за 2 ч до проведения теста: при хранении эритроциты принимают сферическую форму и СОЭ снижается. Полагается также, что тремя наиболее частыми факторами, занижающими СОЭ у пациентов являются: 1) сгущение крови, 2) ацидоз, 3) гипербилирубинемия.
Исходя из перечисленного следует особо подчеркнуть, что при любых заболеваниях, для которых в принципе характерно увеличение СОЭ, этот показатель на определенных стадиях развития патологического процесса, в действительности может оказаться не повышенным и привести к ошибочным выводам, если одновременно имеет место по крайней мере один из ниже перечисленных факторов: 1) сгущение крови, 2) состояние ацидоза или гипербилирубинемия (желтуха), 3) сердечная декомпенсация, 4) состояние кетоацидоза при сахарном диабете и 4) многие другие сдвиги в организме больного. Таким образом, очевидно, что врачи, требующие определения СОЭ, больше опираются на традиции медицины, чем на действительную достоверность этого метод.
Но врачу крайне необходима оценка тяжести воспалительной реакции. Наилучший метод для такой оценки – измерение концентрации С-реактивного белка – основного из белков острой фазы (БОФ) воспаления. Уровни БОФ при воспалительном процессе меняются в разной степени и в зависимости от стадии воспаления (Рис 1). Оценивая эту группу показателей, исходя из динамики уровней БОФ, из степени повышения этих уровней, из их специфичности, и, наконец, из надежности их лабораторного определения, можно четко назвать самого «достойного кандидата на замещение должности» СОЭ – СРБ. Как и все БОФ, СРБ синтезируется в печени под влиянием интерлейкинов, онкостатина М, при модулирующих воздействиях других интерлейкинов и фактора некроза опухолей. СРБ относят к «главным» БОФ воспаления у человека, так как возрастает очень быстро (в первые 6-8 часов) и очень значительно (в 20-100 раз, иногда в 1 000 раз). Но действительно ли измерение уровней СРБ лучше, чем определение СОЭ? В Таблице 3 сопоставлены результаты измерений СОЭ и СРБ, из которых следует, что СРБ является наиболее специфичным и наиболее чувствительным качественным и количественным лабораторным индикатором воспаления и некроза. Концентрация СРБ быстро изменяется в ответ на усиление тяжести воспаления или на его уменьшение. Именно поэтому измерение уровней СРБ широко применяется для мониторинга и контроля эффективности терапии бактериальных и вирусных инфекций, хронических воспалительных заболеваний, онкологических заболеваний, осложнений в хирургии и гинекологии и др.
Рис. 1.Изменения концентрации БОФ при умеренном воспалении (Шевченко О.П., 2005)
Уровни СРБ при различных воспалительных процессах
До 10-30 мг/л – СРБ повышается при вирусных инфекциях, метастазировании опухолей, вялотекущих хронических и некоторых системных ревматических заболеваниях.
До 40-100 мг/л (а иногда и до 200 мг/л) СРБ возрастает при: 1) бактериальных инфекциях, 2) обострении некоторых хронических воспалительных заболеваний и 3) повреждении тканей (хирургические операции, острый инфаркт миокарда). При эффективной терапии бактериальных инфекций уровень СРБ снижается уже на следующий день, если нет – необходимо более эффективное антибактериальное лечение.
До 300 мг/л и более – СРБ возрастает при: 1) тяжелых генерализованных инфекциях, 2) ожогах, 3) сепсисе, которые повышают СРБ почти запредельно.
Таблица 3
От чего зависят изменения СОЭ и уровня СРБ (T. Husain, et al. 2001)
Результат измерения зависит от |
СОЭ |
СРБ |
Пола |
Да |
Нет |
Возраста |
Да |
Нет |
Беременности |
Да |
Нет |
Температуры |
Да |
Нет |
Лекарств (стероиды, салицилаты) |
Да |
Нет |
Курения |
Да |
Нет |
Уровня белков плазмы |
Да |
Нет |
Эритроцитов – кол-ва (Ht) |
Да |
Нет |
Лабораторные характеристики показателей |
||
Скорость повышения в ответ на заболевание |
Умеренная |
Высокая |
Значения нормы |
Широкие |
Узкие |
Специфичность |
Умеренная |
Высокая |
Чувствительность |
Умеренная |
Высокая |
Воспроизводимость |
Низкая/умеренная |
Высокая |
Выявление ошибок при выполнении анализа |
Сложное |
Легкое |
Продолжительность |
> 60 мин |
< 20 мин |
Относительная цена |
х 1 |
х 2-3 |
При подозрении на сепсис новорожденных, уровень СРБ более 12 мг/л — указание на немедленное начало противомикробной терапии (у части новорожденных бактериальная инфекция может и не повышать СРБ). Нейтропения: у взрослого пациента уровень СРБ более 10 мг/л может быть единственным объективным указанием на бактериальную инфекцию. Послеоперационные осложнения: если в течение 4-5 дней после операции СРБ продолжает оставаться высоким (или увеличивается), это указание на развитие осложнений (пневмонии, тромбофлебита, раневого абсцесса). После операции уровень СРБ будет тем выше, чем тяжелее прошедшая операция, чем более она травматична. Сопутствующие бактериальные инфекции: при любых заболеваниях присоединение бактериальной инфекции повышает СРБ более 100 мг/л. Некроз тканей вызывает ОФ, похожий на таковой при бактериальной инфекции. Такой ОФ возможен при: 1) инфаркте миокарда, 2)опухолевых некрозах – тканей почек, легких, толстого кишечника.
Мониторинг СРБ при контроле эффективности лечения различных заболеваний
Системные ревматические заболевания резко увеличивают уровень СРБ: снижение СРБ при ревматоидном артрите указывает на эффективность терапии. При системном васкулите мониторинг СРБ позволяет минимизировать дозы стероидов. При воспалительных заболеваниях желудочно-кишечного тракта: 1) сильное повышение СРБ вызывает болезнь Крона, 2) незначительное увеличение СРБ наблюдается при неспецифическом язвенном колите и 3) при функциональных расстройствах желудочно–кишечного тракта СРБ обычно не повышен. При вторичном амилоидозе повышение СРБ коррелирует с развитием почечных осложнений. При отторжении сердечного трансплантата высокий СРБ связан с инфекционными осложнениями, но не свидетельствует об отторжении как о таковом. При отторжении почечного трансплантата сильная ОФ – один из ранних индикаторов отторжения.
Повышение уровней СРБ при онкологических заболеваниях
Если при высоком уровне СРБ нет явных признаков воспаления или некроза больного следует обследовать на наличие онкозаболеваний!
При злокачественных опухолях возможны различные изменения уровня СРБ, что зависит от: 1) присоединения инфекции, 2) некроза тканей, 3) нарушения функций органов из-за непроходимости респираторных путей или ЖКТ, 4) влияние иммуносупрессии и химиотерапии. Сильная ОФ и повышение СРБ наблюдается при некрозе солидных опухолей. Лимфомы редко сопровождаются тканевым некрозом и изменением спектра белков плазмы. При миеломе очень сильная острая фаза – плохой прогностический признак.
Высокочувствительное измерение СРБ и оценки сердечно-сосудистых рисков
Новое технологическое решение – высокочувствительное иммунотурбидиметрическое определение СРБ или hs-CРБ (hs – high sensitivity) с латексным усилением позволило повысить чувствительность анализа в 10 раз и довести нижнюю границу определения до 0,03-0,05 мг/л. Базовый уровень СРБ – это его уровень в плазме практически здоровых людей: 1) без острого воспалительного процесса, 2) вне обострения хронического заболевания, 3) без перенесенных операций, 4) без травм, 5) при отсутствии некроза тканей и 6) не имеющих онкологии. При измерении hs-СРБ именно изменения его базовых концентраций позволили оценить вялотекущие воспалительные процессы, в частности в эндотелии сосудов, с которыми связывают развитие атеросклероза и его осложнений. Важность определения hs-СРБ при атеросклерозе стала ясна после многочисленных проспективных исследований свидетельствующих, что СРБ при атеросклерозе – это не просто маркер воспаления, но активный участник развития этого заболевания на всех этапах патогенеза.
Итак, о чем свидетельствует изменение базовых концентраций СРБ? В результате многочисленных исследований установлено, что измерения базовых уровней СРБ имеют прогностическое значение, которое позволяет оценить степень риска развития: 1) острого инфаркта миокарда, 2) мозгового инсульта, 3) внезапной сердечной смерти у лиц, не страдающих сердечно- сосудистыми заболеваниями (таблица 4).
Таблица 4
Риск развития сосудистых осложнений в зависимости от уровня hs-СРБ
(О.П.Шевченко, 2005)
Уровень hs-СРБ, мг/л |
Риск развития сосудистых осложнений |
< 1 |
минимальный |
1,1 – 1,9 |
низкий |
2,0 – 2,9 |
умеренный |
> 3 |
высокий |
- Следует обязательно учитывать, что для стратификации риска сосудистых осложнений значимыми являются уровни СРБ ниже 10 мг/л.
- Если уровень СРБ выше10 мг/л, то очевидно, это связано с острым воспалением, хроническим заболеванием и др.
- Базовый уровень СРБ, измеряется не ранее, чем через 2 недели после исчезновения симптомов любого острого заболевания или обострения хронического заболевания.
При определении риска атерогенеза измерение hs-СРБ проводят в дублях с желательным интервалом в 2 недели. Наибольшее прогностическое значение для оценки риска развития сердечно-сосудистых заболеваний имеет совместное определение hs-СРБ и показателей обмена липидов.
При остром коронарном синдроме – дестабилизацию атеромы и образование тромба связывают с процессами воспаления. При нестабильной стенокардии повышенный уровень СРБ встречается значительно чаще (у 70% пациентов), чем при стенокардии напряжения (у 20% больных). Кроме этого у больных с нестабильной стенокардией, у которых развился острый инфаркт миокарда, СРБ был повышен (>3 мг/л) практически у всех (98%) пациентов. При стратификации риска ранней (до 14 дней) летальности у больных с нестабильной стенокардией и острым инфарктом миокарда наиболее информативно сочетанное определение hsСРБ и тропонина Т. Повышение этих обоих маркеров риска (hsСРБ > 1,55 мг/л, тропонин Т > 0,1 мг/л) указывает на высокий риск летального исхода. Уровни hsСРБ <1,55 мг/л и тропонина Т < 0,1 мг/л – указывают на минимальный риск. При отказе от курения, регулярной физической нагрузке, умеренном потреблении алкоголя, лечении ожирения снижается базовый уровень hsСРБ и, одновременно, коронарный риск. Прием аспирина для профилактики сосудистых осложнений эффективен только у лиц с исходно повышенным базовым уровнем hsСРБ.
hsСРБ и оценки рисков кардиохирургии
У больных, перенесших коронарное шунтирование, повышенный hsСРБ связан с риском ранних отсроченных осложнений. При ангиопластике со стентированием коронарных артерий у больных с ИБС высокий hsСРБ связан с более высоким риском последующего рестеноза. О связи hsСРБ с риском осложнений после инвазивного лечения ИБС свидетельствует следующее: только у 12% пациентов с рестенозом коронарных артерий, развившимся после ангиопластики со стентированием, hsСРБ был < 5 мг/л (в сочетании с нормальным уровнем церулоплазмина, >2 г/л). У всех больных с hsСРБ > 9 мг/л (в сочетании со сниженным уровнем церулоплазмина <0,2 г/л), развился рестеноз коронарных артерий.
hsСРБ и оценки рисков патологий беременности
Измерение hsСРБ дает возможность оценить у беременных женщины риск спонтанных абортов, которые могут быть связаны с вялотекущими воспалительными процессами. При доношенной беременности уровень СРБ обычно составляет 2,4 мг/л. Женщины с повышенным уровнями СРБ в течение 5-19 недели беременности (3,2 мг/л), имеют высокий риск преждевременных родов. А при — при СРБ — 8 мг/л и выше риск преждевременных родов возрастает в 2,5 раза, независимо от других факторов риска.
СОЭ и/или СРБ?
К сожалению, в настоящее время, скорее всего, невозможно полностью отказаться от определения СОЭ и повсеместно перейти на измерение СРБ. Определение СОЭ нельзя заменить в участковых больницах и врачебных амбулаториях. Но в более крупных и современных лечебных учреждениях измерение СОЭ должно постепенно уступать свои позиции определению СРБ. Настоятельно необходимо осуществлять постепенный плановый переход к количественному определению СРБ и использовать его показатель: во-первых, для оценки тяжести воспалительных процессов (диапазон измеряемых концентраций от 10 мг/л и выше) и, во-вторых, для оценки рисков, связанных с вялотекущими воспалительными процессами (диапазон измеряемых концентраций – менее 10 мг/л).
СРБ в воспалительном диапазоне следует измерять для
- определения тяжести воспалительных процессов, вызванных бактериальными и вирусными инфекциями
- мониторинга изменения тяжести таких процессов с целью коррекции их терапии
- мониторинга состояния больного после хирургического вмешательства,
- мониторинга процесса отторжения пересаженной почки
- мониторинга состояния больного после перенесенного инфаркта или ишемического инсульта.
Высокочувствительное измерение СРБ следует применять для оценки рисков:
- возникновения и прогрессирования атеросклероза
- острых коронарных событий
- рисков ишемических инсультов
- оценки рисков патологий беременности.
ЛИТЕРАТУРА
1. Амелюшкина В.А. СОЭ – методы определения и клиническое значение.// В кн. Лабораторная диагностика / ред. В.В.Долгов, О.П. Шевченко. – М.: Изд. «Реафарм». – 2005.– С. 107-109.
2. Шевченко О.П. Характеристика и клиническое значение белков острой фазы воспаления.// В кн. Лабораторная диагностика / ред. В.В.Долгов, О.П. Шевченко. – М.: Изд.«Реафарм». – 2005. – С.137-143
3. Дворецкий Л.И., Особенности лабораторной диагностики в гериатрии.// Клиническая лабораторная диагностика, 1998, № 1, С. 25-32.
4. Карпов Ю.А., Сорокин Е.В. Первичная профилактика сердечно-сосудистых заболеваний: новые ориентиры? РМЖ, Том 10 № 19, 2002
5. Ройтберг Г. Е., Струтынский А. В. Лабораторная и инструментальная диагностика заболеваний внутренних органов. 1999. Изд. «Бином». – 622 с.
6. Сумароков А.Б., Наумов В.Г., Масепко В.П., С-реактивный белок и сердечно-сосудистая патология. 2006, Триада.
7. Albert C, Rifai N, et al; Prospective Study of C-Reactive Protein, Homocysteine, and Plasma Lipid Levels as Predictors of Sudden Cardiac Death; Circulation 2002;105(22):2595-2599
8. Jurado R.L. Why Shouldn’t We Determine the Erythrocyte Sedimentation Rate?// Clinical Infectious Diseases, 2001; 33: 54854-9
9. Ridker P, Rifai N, et al; Comparison of C-Reactive Protein and Low-Density Lipoprotein Cholesterol Levels in the Prediction of First Cardiovascular Events N Engl J Med 2002, 14;347(20):1557-1565
10. Pitiphat W, et al. Plasma C-reactive protein in early pregnancy and preterm delivery. Am J Epidemiol. 2005;162(11):1108-1113.
Лабораторные исследования — более ранний и намного более чувствительный показатель состояния человека, чем его самочувствие. Результаты анализов отражают физико-химические свойства исследуемой пробы и дают объективную диагностическую информацию. Важные решения по тактике лечения врач зачастую принимает даже при небольших изменениях лабораторных показателей. Поэтому лабораторные исследования для диагностики и лечения заболеваний так важны. Однако результаты анализов далеко не всегда бывают правильными! Это связано с большим количеством факторов, способных оказать влияние на конечные результаты лабораторного тестирования.
Результаты лабораторных исследований подвержены влиянию биологической и аналитической вариации.
Биологическая вариация обусловлена внутрииндивидуальной вариацией, наблюдаемой у одного и того же человека, и межиндивидуальной вариацией, связанной с различиями между людьми.
К факторам, обуславливающим биологическую вариацию, относят:
-
Физиологические закономерности (влияние расы, пола, возраста, телосложения, характера физической активности и питания);
-
Влияние окружающей среды (климат, геомагнитные факторы, время года и суток, состав воздуха, воды и почвы в месте обитания, социально-бытовая среда);
-
Воздействие производственных и бытовых (алкоголь, никотин, наркотики) токсичных веществ, ятрогенных влияний (диагностические и лечебные процедуры, прием лекарственных средств);
-
Условия, предваряющие или сопровождающие взятие пробы (приём пищи и воды, физическая нагрузка, положение тела при взятии пробы, стрессорные и прочие факторы);
-
Время забора пробы, связанное с влиянием циркадных (суточных) ритмов и времени года;
-
Аналитическая вариация зависит от технологии анализа и используемого оборудования. Также к факторам, обуславливающим аналитическую вариацию, относят:
-
Методику взятия пробы (способ и погрешности процедуры, используемые средства, оборудование и консерванты);
-
Условия окружающей среды (температура, вибрации, тряска, интенсивность освещения) и продолжительность транспортировки биоматериала для исследования в лабораторию.
Недостоверные результаты могут быть вызваны ошибками, допущенными на разных этапах лабораторного исследования, затрудняя постановку диагноза и проведение адекватного лечения. Наиболее часто получение ошибочных результатов связано с внелабораторным (т.н. преаналитическим) этапом. Он включает в себя все стадии от назначения анализов врачом до поступления пробы в лабораторию. Именно с этим этапом связано 2/3 всех ошибочных результатов, которые могут обесценить проведенные исследования. Поэтому правильная организация преаналитического этапа – важнейший элемент обеспечения качества лабораторной диагностики.
Факторы, влияющие на правильность лабораторных исследований на преаналитическом этапе
Прием пищи
Режим питания, состав пищи, перерывы в её приёме оказывают существенное влияние на многие лабораторные показатели. После приема пищи содержание отдельных веществ в крови может повышаться или подвергаться изменениям в результате последующих гормональных эффектов. Наиболее значительно прием пищи повышает содержание в крови триглицеридов и глюкозы. Увеличивается также содержание лейкоцитов (т.н. постпрандиальный лейкоцитоз). Определение многих веществ может затрудняться мутностью, вызванной появлением в крови после приема пищи мельчайших жировых частиц (хиломикронов). Их концентрация достигает максимума через 2-2,5 часа после приема пищи, а, затем, постепенно снижается до незначительной в течение 8-10 часов. В это время целый ряд лабораторных исследований крови может быть невозможен. Голодание, тоже, может искажать результаты исследований. У здоровых людей после двух дней голодания увеличивается концентрация билирубина в крови, после еды его содержание в крови, наоборот, снижается. 3-х дневное голодание в 2-3 раза снижает концентрацию глюкозы в крови, увеличивает концентрацию триглицеридов. После 2-4-недельного голодания в крови снижается концентрация общего белка, холестерина, триглицеридов, мочевины и липопротеинов, повышается выведение почками креатинина и мочевой кислоты. На фоне длительного голодания организм переходит в режим экономии энергии, для чего снижает концентрацию в крови гормонов щитовидной железы – тироксина и трийодтиронина. Одновременно, голодание ведет к увеличению содержания в крови кортизола и дегидроэпиандростерона.
Некоторые продукты и режим питания могут влиять на результаты биохимического исследования крови и мочи. Употребление жирной пищи может повысить в крови концентрацию калия, триглицеридов и активность щелочной фосфатазы. Потребление большого количества мяса, то есть пищи с высоким содержанием белка, может увеличить концентрацию в крови мочевины, аммиака и солей кальция в моче. Пища с высоким содержанием ненасыщенных жирных кислот может вызвать снижение в крови концентрации холестерина. Бананы, ананасы, томаты, авокадо богаты серотонином. При их употреблении за 2-3 дня до исследования мочи на содержание 5-оксииндолуксусной кислоты даже у здорового человека её концентрация может стать повышенной. Диета с низким содержанием соли может приводить к повышению уровня альдостерона в 3-5 раз. Напитки, богатые кофеином, увеличивают концентрацию в крови свободных жирных кислот, стимулируют выброс надпочечниками катехоламинов и повышают активность ренина.
Прием алкоголя
Алкоголь снижает в крови концентрацию глюкозы, повышает концентрацию молочной кислоты, мочевой кислоты и триглицеридов. Прямое токсическое воздействие алкоголя на печень повышает активность в крови печеночных ферментов. Повышенное содержание в крови углевод-дефицитного трансферрина, холестерина, мочевой кислоты, активности гамма-глутамилтрансферазы (ГГТ) и увеличение среднего объема эритроцитов свидетельствует о хроническом алкоголизме.
Физическая нагрузка
Может оказывать как временное, так и продолжительное влияние. Преходящие изменения вначале проявляются снижением, а затем увеличением концентрации свободных жирных кислот в крови, двухкратным повышением концентрации аммиака и трехкратным — молочной кислоты. 1-2 часовые активные занятий в спортзале или 1-2 часовая игра в футбол приводит к временным изменениям активности креатинфосфокиназы (КФК), которые наблюдаются при обширных трансмуральных инфарктах. В меньшей степени повышается активность аспартатаминотрансферазы (АСТ) и лактатдегидрогеназы (ЛДГ). Эта ферментативная активность остается повышенной в течение суток. Физические упражнения влияют на показатели гемостаза: активируют свертывание крови и функциональную активность тромбоцитов. Длительная физическая нагрузка увеличивает концентрацию в крови половых гормонов, таких как тестостерон, андростендион и лютеинизирующий гормон (ЛГ).
При длительном постельном режиме, иммобилизации, малоподвижном образе жизни и ограничении физической активности повышается протромботический потенциал крови, возрастает риск спонтанного тромбообразования. Также, при длительной иммобилизации увеличивается выделение с мочой норадреналина, кальция, хлора, фосфатов, аммиака, в крови возрастает активность щелочной фосфатазы.
Курение
Никотин и другие содержащиеся в табачной продукции вещества (их более 2000) изменяют секрецию некоторых биологически активных веществ. Курение приводит к увеличению концентрации гемоглобина, количества и объёма эритроцитов, снижает количество лейкоцитов. У курильщиков повышается концентрация карбоксигемоглобина, катехоламинов и кортизола. Изменение концентрации этих гормонов приводит к снижению количества эозинофилов; содержание нейтрофилов, моноцитов и свободных жирных кислот увеличивается. Потребление большого количества сигарет сопровождается также повышением активности гамма-глутамилтрансферазы (ГГТ).
Эмоциональный стресс
Страх, испуг в момент взятия крови, боязнь операции, волнение перед визитом к врачу может влиять на результаты лабораторных исследований. Стрессорные воздействия сопровождаются временным лейкоцитозом; в крови снижается концентрация железа; увеличивается уровень катехоламинов, альдостерона, кортизола, инсулина, пролактина, ангиотензина, ренина, соматотропного гормона, тиреотропного гормона (ТТГ), повышается концентрация альбумина, глюкозы, холестерина, фибриногена. Сильное беспокойство, сопровождаемое глубоким и учащенным дыханием, вызывает дисбаланс кислотно-щелочного равновесия со снижением концентрации в крови молочной и жирных кислот.
Пол пациента
Практически для всех лабораторных показателей установлены достоверные половые различия. В большей степени это относится к содержанию в крови гормонов (прогестерона, эстрадиола, тестостерона, 17-ОН прогестерона, лютеинизирующего гормона, фолликулостимулирующего гормона, пролактина), транспортных белков и биологически активных соединений. В меньшей степени это относится к другим соединениям и форменным элементам крови, но и там различия могут быть существенны.
Возраст пациента
Содержание в крови большинства диагностически значимых веществ зависит от возраста и может значительно изменяться от рождения до старости. Наиболее ярко возрастные изменения проявляются в содержании гемоглобина, билирубина, активности щелочной фосфатазы, показателей липидного обмена, половых гормонов, адренокортикотропного гормона (АКТГ), альдостерона, ренина, гормон роста, паратгормона, дегидроэпиандростерона. С возрастом может меняться содержание маркеров онкологической настороженности, например простатаспецифического антигена (ПСА).
Расовая принадлежность
Для некоторых лабораторных показателей установлены различия нормальных значений между людьми отдельных рас. В сложных клинических ситуациях эти различия нужно учитывать при оценке результатов лабораторных исследований.
Индивидуальные уровни нормальных значений
Установленные нормальные (референтные) значения лабораторных показателей, дифференцированные в зависимости от пола, возраста и технологии анализа, характеризуют группу людей в целом. Однако, внутри любой возрастно-половой группы между отдельными здоровыми людьми наблюдаются также индивидуальные различия. Для некоторых лабораторных показателей эти различия между людьми одного пола и возраста могут быть многократными. С развитием лабораторных технологий, повышением точности исследований, накоплением медицинских знаний таким различиям придается все большее значение. Причина в том, что результаты исследований, присущие одному здоровому человеку, могут говорить о патологическом процессе в организме другого человека, особенно при рассмотрении их в динамике.
Беременность
Беременность является нормальным физиологическим процессом, который сопровождается перестройкой работы многих органов, значительными изменениями выработки половых и тиреоидных гормонов, транспортных белков, адренокортикотропного гормона (АКТГ), ренина, а также целого ряда биохимических и гематологических показателей. Для правильной интерпретации результатов нужно знать срок беременности, когда была взята исследуемая проба крови.
Менструальный цикл
Содержание женских половых гормонов изменяется в широком диапазоне в зависимости от фазы менструального цикла. Оценка результата таких исследований возможна только с привязкой к фазам цикла, для каждой из которых характерны свои диапазоны нормальных значений. Перед исследованием следует уточнить у врача оптимальные дни для взятия крови на анализ уровня фолликулостимулирующего гормона (ФСГ), лютеинизирующего гормона (ЛГ), пролактина, прогестерона, эстрадиола, 17-ОН-прогестерона, андростендиона, ингибина и антимюллерова гормона (АМГ). Изменения гормонального фона могут также отражаться на результатах биохимических и гематологических лабораторных исследований. Для правильной интерпретации результатов важно точно указать день менструального цикла, когда была взята исследуемая проба крови.
Биологические ритмы
Все процессы в организме человека подвержены циклическим ритмам, таким, как циркадные и сезонные. Их влияние отражается на результатах лабораторных исследований. Циркадные (суточные) ритмы наиболее выражены для кортизола, адренокортикотропного гормона (АКТГ), альдостерона, пролактина, ренина, тиреотропного гормона (ТТГ), паратгормона и тестостерона. Отклонения их концентрации от среднесуточных значений могут достигать 400%, что обязательно должно приниматься во внимание. Например, циркадный ритм кортизола может быть причиной недостоверных результатов теста на толерантность к глюкозе, если он проводится во второй половине дня. Определяя индивидуальный циркадный ритм секреции гормона, когда в течение суток берется несколько проб анализируемого материала, в сопроводительных документах необходимо указывать точное время взятия каждой из них.
На циркадные ритмы, общие для всех людей, могут накладываться индивидуальные ритмы сна, еды и физической активности. В некоторых случаях следует учитывать сезонные влияния. Например, содержание гормона щитовидной железы трийодтиронина летом на 20% ниже, чем зимой. Содержание тестостерона, наоборот, несколько возрастает в теплое время года.
Прием лекарственных препаратов
Влияние лекарственных препаратов на результаты лабораторных тестов может быть двояким. Нужно различать действие препаратов:
а) Прием которых ожидаемо приводит к изменению результатов лабораторных исследований и действие которых контролируется по этим результатам. При проведении такого мониторинга точное время взятия крови является очень важным параметром для правильной интерпретации результатов.
б) Лабораторный контроль за действием которых не предусмотрен, но которые способны повлиять на правильность результатов лабораторных исследований. Эти препараты и их метаболиты могут привести к получению неправильных результатов лабораторных исследований, оказывая незапланированное влияние на физиологические процессы или негативно воздействовать на технологии лабораторного анализа. Например, уровень тиреотропного гормона (ТТГ) снижается при лечении допамином, концентрация тиреоидных гормонов тироксина и трийодтиронина изменяется при введении фуросемида, даназола, амиодарона и салицилатов, а применение некоторых антиантацидных препаратов может повышать уровень пролактина у мужчин. Присутствие в биологическом материале контрацептивов, салицилатов, андрогенов может специфически (перекрестные реакции) или не специфически (интерференция) влиять на результаты лабораторных исследований при определении стероидных и тиреоидных гормонов, а также связывающих белков крови. Это лишь краткая иллюстрация множества возможных воздействий. Проведение медикаментозной терапии, могущей искажать результаты анализа, следует обязательно учитывать при назначении лабораторных исследований.
По этим причинам лекарства, мешающие лабораторному анализу, если они назначены не по жизненным показаниям; принимают после взятия биоматериала. Это относится и к любым внутривенным инфузиям. Загрязнение лабораторных проб инфузионными растворами — обычная и часто встречающаяся причина получения неправильных результатов лабораторных исследований. Для исключения этого пробы следует брать из другой руки, из вены, в которую не проводится вливание. Рекомендуется информировать лабораторию о том, когда и какое вливание было проведено пациенту и когда была взята проба крови.
Диагностические и лечебные мероприятия
На результаты лабораторных исследований могут повлиять оперативные вмешательства, эндоскопия, диализ, внутривенные инфузии, пункции, инъекции, биопсии, пальпация, общий массаж, тепловые процедуры, эргометрия, функциональные тесты, введение рентгеноконтрастных веществ, лучевая и химиотерапия. Например, уровень простатаспецифического антигена (ПСА) может быть повышен в течение нескольких дней после массажа простаты, пальцевого исследования прямой кишки или катетеризации мочевого пузыря. Любые манипуляции с молочной железой или тепловые процедуры (например, сауна) приводят к увеличению уровня пролактина. Чтобы предотвратить такое влияние, пробы необходимо забирать до выполнения диагностических процедур, способных исказить результаты теста.
Прочие факторы
Среди прочих факторов, влияющих на результаты лабораторных исследований, имеют значение географическое положение местности, высота над уровнем моря и температура окружающей среды.
Положение тела при заборе крови
Положение тела пациента также влияет на ряд показателей. Переход из положения лёжа в положение сидя или стоя приводит к гидростатическому проникновению воды и фильтрующихся веществ из внутрисосудистого пространства в межклеточное (т.н. интерстициальное), составляющее 1/6 общего объема тела. Клетки крови, вещества, имеющие большую молекулярную массу и связанные с ними не могут проникнуть в ткани и остаются в сосудистом русле. Поэтому их концентрация в крови повышается, в среднем на 5-15%. С этим связана стандартизация положения пациента при взятии крови.
Способ и место забора крови
Участок тела пациента, используемый для взятия крови и техника забора также могут оказать существенное влияние на результаты лабораторных исследований. Лучшее место для забора крови на анализы — локтевая вена. Венозная кровь — лучший материал не только для определения биохимических, гормональных, серологических, иммунологических показателей, но и для общеклинического исследования. Это обусловлено тем, что применяемые в настоящее время гематологические анализаторы, с помощью которых проводят общеклинические исследования, предназначены для работы с венозной кровью. В странах, где их производят, они сертифицированы и стандартизированы для работы только с венозной кровью. Выпускаемые калибровочные и контрольные материалы также предназначены для работы гематологических анализаторов именно с венозной кровью. Помимо этого, при заборе крови из пальца есть методические особенности, которые стандартизировать очень трудно: попадание в образец значительных количеств тканевой (межклеточной) жидкости, нарушение периферического кровотока, необходимость в разведении образца и др., что приводит к ошибкам, низкой точности и воспроизводимости результатов.
Использование капиллярной крови для исследований свертывающей системы (системы гемостаза) не приемлемо в принципе. Это связано с неизбежным попаданием в образец значительных количеств тканевой (межклеточной) жидкости. Тканевая жидкость содержит тканевый тромбопластин, активирующий свертывающую систему, что приведет к получению совершенно неправильных результатов.
Важны также способ и продолжительность наложения жгута на руку при заборе крови. Наложение жгута на период более 2 мин при заборе крови из вены может привести к увеличению концентрации в пробе белков, факторов коагуляции и клеточных элементов.
Капиллярную кровь из пальца для лабораторных исследований допустимо использовать лишь в следующих случаях:
-
При ожогах, занимающих большую площадь поверхности тела пациента.
-
При наличии у пациента очень мелких вен или их плохой доступности.
-
При выраженном ожирении пациента с затрудненным доступом к венам.
-
При установленной склонности к венозному тромбозу.
-
У новорождённых.
Пункцию артерий для забора крови используют редко (преимущественно для исследования газового состава артериальной крови).
Хранение и транспортировка биологических материалов
Чувствительность компонентов биологических материалов, имеющих диагностическое значение и изучаемых в лабораториях, очень различна. Некоторые из этих компонентов способны выдерживать хранение и транспортировку при соблюдении определенных условий, другие – нет. По экономическим соображениям принято считать, что с использованием современных систем забора, методов консервации, соблюдении температурных режимов, хранение и транспортировка биологических материалов в течение ограниченного времени допустимы.
В ряде случаев это так. Тем не менее, известно, что многие важнейшие лабораторные показатели допускают очень ограниченную задержку между забором биологического материала и началом исследования. Ситуация еще больше осложняется тем, что одни компоненты лучше сохраняются при охлаждении, тогда как другие, наоборот, в таких условиях претерпевают ускоренную деградацию. Как очевидно, это значительно затрудняет хранение и транспортировку биологических материалов, учитывая, что компоненты с такими разными свойствами зачастую содержатся в одной пробирке. Нужно также учитывать различие между декларируемыми и реальными условиями сбора, хранения и доставки биологических материалов. При этом, стабильность многих компонентов крови и мочи в условиях лабораторной практики остается неизвестной.
Согласно ГОСТ Р 53079.4-2008 «Обеспечение качества клинических лабораторных исследований. Часть 4. Правила ведения преаналитического этапа», время доставки образцов в лабораторию не должно превышать 30-60 минут (для мочи – 90 минут), время от забора крови до ее центрифугирования (обязательный этап биохимических и коагулологических исследований) не должно превышать 1 часа. Также, согласно этому документу и другим авторитетным рекомендациям:
-
Не рекомендуется транспортировка образцов цельной крови, используемой, в частности, для проведения ее клинического анализа.
-
Определение скорости оседания эритроцитов (СОЭ) требует начала исследования не позднее 2-х часов с момента забора крови.
-
Моча, собранная для общего анализа крови, может храниться не более 2-х часов, причем применение консервантов нежелательно.
-
Для достоверного дифференциального подсчета лейкоцитарной формулы мазок крови должен быть приготовлен не позднее 3-х часов после ее забора.
Установлено, что в пробах крови, полученных от пациентов с выявленной патологией, могут усиливаться изменения, обычно наблюдаемые под влиянием времени и температуры. Это еще больше сокращает время допустимого хранения и транспортировки биологических материалов, поскольку стабильность компонентов может отличаться у разных пациентов.
Известно, что наименьшей стабильностью обладают показатели, характеризующие состояние свертывающей системы крови. Стандартным условием является проведение общих скрининговых исследований свертывающей системы в течение максимум 4-х часов с момента забора крови. Для т.н. интегральных исследований свертывающей системы крови (исследование тромбодинамики, тромбоэластография) временная задержка, связанная с транспортировкой образцов, недопустима в принципе – получение неправильных, дезориентирующих врача результатов происходит уже после 30-45-минутного промедления. Исследование тромбоцитарного звена свертывающей системы крови еще более уникально – это единственное из более чем 2500 лабораторных исследований, ведущееся на живых клетках. Последнее абсолютно исключает как транспортировку, так и любую задержку начала работы. Все сказанное тем более важно, что судить о состоянии свертывающей системы крови по концентрации или активности отдельных ее компонентов нельзя – значение имеет работа всей системы в целом.
Периодичность лабораторных исследований
Повторные исследования широко используются для оценки эффективности проводимого лечения и прогнозировании исхода заболевания, лекарственном мониторинге, постановке симуляционных тестов. Чтобы избежать получения ошибочных результатов, интервалы между исследованиями должны выбираться с учетом продолжительности «жизни» определяемого вещества в организме, динамики его накопления и выведения при нормальных и патологических процессах, фармакокинетических свойств лекарственных препаратов.
5. Реагенты. Важный компонент системы «автоматизированный анализ крови» — реагенты. Часто лаборатории, купив анализатор, сталкиваются с необходимостью нести довольно ощутимые постоянные затраты на реагенты. Количество разных реагентов, используемых анализатором, существенно влияет на себестоимость и качество исследований.
Каждый конкретный тип гематологического анализатора рассчитан на свою собственную реагентную систему, однако между ними есть много общего.
Основными составляющими комплектов реагентов для гематологических анализаторов являются:
— изотонический разбавитель;
— лизирующий раствор;
— промывающий раствор (после каждой пробы);
— промывающий раствор (для качественной очистки системы);
— очищающий раствор (для экстренной очистки датчика и/или сервисных работ).
В зависимости от конкретной конструкции анализатора в базовый комплект может входить лишь часть указанных реагентов.
Изотонический разбавитель — это буферный раствор с фиксированными параметрами рН, электропроводности и осмолярности. Слово «изотонический» указывает только на одно и не самое важное свойство реагента — поддержание требуемого осмотического давления с целью обеспечения постоянства объема клеток крови. Дело в том, что эритроциты принимают тот объем, который им диктует осмолярность раствора. При увеличении осмолярности, в течение 3-5 с эритроциты сжимаются до некоторого равновесного объема. Если осмолярность раствора уменьшается, объем эритроцитов, соответственно, увеличивается. Таким образом, средний объем эритроцитов (MCV) увязывается с осмолярностью изотонического разбавителя. Использование изотонического разбавителя, не соответствующего марке анализатора, может привести к ложному завышению/занижению MCV.
Стабилизирующие добавки в изотоническом разбавителе должны обеспечивать сохранность форменных элементов крови в первом разведении в течение достаточно длительного времени. Присутствие в растворе антикоагулянта должно эффективно предотвращать образование фибриновых сгустков и агрегацию тромбоцитов.
Очень важными компонентами гематологических реагентов и, в частности, изотонических разбавителей являются антибактериальные добавки, которые препятствуют бактериальному заражению гидравлических магистралей анализаторов. Учитывая тот факт, что бактериостатики, как правило, негативно влияют на клеточные мембраны, их выбор довольно ограничен. Следует иметь в виду, что для всех гематологических анализаторов с дифференциацией лейкоцитов на три популяции основным режимом является работа с цельной кровью. В случае гематологических анализаторов, проводящих дифференциацию лейкоцитов на три популяции, изотонический разбавитель содержит специальные добавки, модифицирующие мембраны лейкоцитов. В этом случае изотонический разбавитель должен применяться в согласованной паре с соответствующим лизирующим раствором.
NB! Нельзя совмещать в пару «изотонический раствор — лизирующий реагент» компоненты от разных производителей!
Другим важнейшим реагентом является лизирующий раствор (гемолитик), который при добавлении в разведение крови вызывает лизис эритроцитов и в то же время сохраняет лейкоциты. Необходимо, чтобы гемолиз эритроцитов был качественный и полный, поскольку в гемолизате подсчитываются лейкоциты, которых первоначально примерно в 1000 раз меньше, чем эритроцитов. Для обеспечения этих свойств лизирующий раствор, как правило, содержит сложную композицию ионных поверхностно-активных соединений. Современные гемолитики обеспечивают быструю реакцию и высокую степень отделения лейкоцитов от стромы независимо от настройки дискриминатора конкретного прибора.
В анализаторах с дифференциацией лейкоцитов на три популяции лейкоциты под действием лизирующего раствора изменяют свои размеры так, что выделяются фракции лимфоцитов (первый пик лейкоцитарной гистограммы), гранулоциты (крайний правый пик лейкоцитарной гистограммы). В средней части гистограммы, в области так называемых средних клеток, расположены моноциты, базофилы и эозинофилы. Наряду с факторами пробоподготовки свойства реагентной системы оказывают существенное влияние на качество дифференциации лейкоцитов.
Промывающие растворы непосредственно не участвуют в процессе измерения, однако их свойства существенно влияют на стабильность аналитических характеристик анализаторов. Характерной особенностью гематологических анализаторов, использующих принцип Культера, является наличие счетных апертур малого диаметра. Кровь содержит в себе ряд веществ, которые имеют тенденцию осаждаться на апертуре и внутренней поверхности гидравлической системы. Это постепенно приводит к уменьшению диаметра, закупорке апертуры и ошибочным результатам. В некоторых случаях прибор просто останавливается и требует тщательной промывки. Таким образом, качество промывающих растворов влияет на долговременную стабильность работы прибора.
Промывающие растворы бывают в основном трех типов. Первый тип — растворы для мягкой промывки магистралей анализатора между пробами, они не содержат поверхностно-активных веществ (детергенты) в значительных концентрациях. К сожалению, детергентные промывающие растворы практически не удаляют белки. Поэтому для очистки от белковых осадков применяют растворы на основе гипохлорита натрия — второй тип промывающих растворов. Эти растворы являются очень сильными депротеинезаторами. Однако раствор гипохлорита натрия — очень едкое вещество, долгого контакта с ним не выдерживают детали из пластика (они трескаются), металла (подвергаются коррозии). Поэтому злоупотреблять такими растворами нельзя. Данные растворы в основном применяются в экстренных случаях, когда необходимо быстро очистить счетную апертуру, а также для сервисных работ.
Современное решение проблемы качественной промывки прибора — применение ферментативных промывающих растворов. Благодаря наличию ферментов, такие растворы эффективно удаляют адсорбированные на стенках гидравлической системы белки и другие вещества. При этом они совершенно нейтральны и не оказывают вредного действия на детали прибора. Трудность создания таких промывающих растворов заключается в известном свойстве ферментов быстро терять активность.
6. Калибровка и контроль качества. Система управления качеством любого исследования складывается из оценки адекватности каждого этапа. Общеклинический анализ крови — не исключение, этапы его выполнения во многом схожи с другими видами лабораторных исследований и отличаются только применяемыми антикоагулянтами и аналитическим оборудованием:
1. Основание для назначения анализа.
2. Подготовка пациента.
3. Взятие биологического материала.
4. Идентификация проб.
5. Обработка биологического материала с использованием антикоагулянтов.
6. Транспортировка проб.
7. Аналитическое исследование на гематологическом анализаторе.
8. Оформление бланка с результатами теста (может выполняться на самом анализаторе).
9. Оценка результата по интервалам норм.
10. Использование результатов в диагностическом процессе.
Первые 6 пунктов включаются в понятие преаналитического этапа. Анализ назначается врачом и, как правило, берется натощак. Раздел 8 руководства подробно описывает правила и условия взятия и обработки проб.
Аналитический этап
Качество результатов исследования крови на гематологических анализаторах определяется следующими факторами:
— качеством используемых реагентов;
— точностью дозирования цельной или разведенной крови;
— точностью дозирования изотонического раствора при разведении крови;
— точностью определения объема суспензии клеток, пропущенной через апертуру;
— точностью самого подсчета клеток;
— точностью определения размеров клеток;
— корректностью математических методов обработки первичных результатов измерения.
Для настройки приборов производители применяют специальные калибровочные микросферы, которые представляют собой стандартные частицы латекса, а также фиксированные эритроциты. Обычно стандарт, выпущенный одной фирмой, не совсем подходит для калибровки приборов других фирм.
Говоря о калибровке, хочется привести пример искажения результатов MCV, связанный с самим методом определения объема частицы. Если откалибровать анализатор взвесью эритроцитов, имеющих нормальную двояковогнутую форму, а затем измерить сферические клетки такого же объема, они будут восприняты как микроциты. И наоборот, если при калибровке применить сфероциты, то прибор будет регистрировать двояковогнутые нормоциты как макроциты. В коммерческих препаратах контрольной крови, применяемой для настройки приборов, эритроциты имеют сферическую форму, поэтому трудно говорить об адекватной калибровке MCV. До настоящего времени нет общепринятого стандарта для MCV.
Калибровка гематологических анализаторов представляет до сих пор не решенную до конца проблему. Если, например, для калибровки ручных методов определения гемоглобина существуют стандарты гемиглобинцианида, то признанных стандартов для калибровки счета клеток не существует. Те взвеси частиц и контрольная кровь, которые предлагают фирмы-производители для контроля своих приборов, калибраторами не являются и предназначены для проведения процедур контроля правильности положения дискриминаторов и счета импульсов. Все применяемые для «калибровки» и контроля работы приборов материалы имеют доверительные интервалы, в которые необходимо уложиться.
Если при калибровке гематологического анализатора показатели не укладываются в допустимые границы паспортных значений, необходимо исключить преаналитические ошибки: недостаточное перемешивание, отличие температуры контрольной крови, извлеченной из холодильника, от комнатной, нарушение режима хранения, приводящее к порче крови. Например, иногда приходилось наблюдать, как контрольную кровь замораживали. При замораживании наблюдается сильное занижение количества эритроцитов. Это бывает при хранении крови в старых моделях холодильников, встречающихся во многих лабораториях, рядом с морозильной камерой. Здесь температура может опускаться на несколько градусов ниже нуля, и этого достаточно для замораживания и последующего разрушения эритроцитов.
Необходимо также провести ряд мероприятий по обслуживанию прибора, по промывке и очистке апертур, затем вновь провести калибровку.
Клетки (частицы) контрольной крови должны удовлетворять следующим требованиям:
— отсутствие электропроводности;
— сопоставимость по размерам с контролируемыми клетками;
— сходная плотность;
— стабильность размеров во времени;
— химическая инертность.
Выпускаемая сегодня контрольная кровь представляет собой химеру, содержащую стабилизированные эритроциты, частицы латекса вместо лейкоцитов, тромбоциты животных и др. Поэтому стабилизированная кровь не является идеальным контрольным материалом, так как у содержащихся в ней клеток изменены размеры, форма поверхности, реологические свойства и специфическая электропроводность.
Следует заметить, что коммерческая контрольная кровь позволяет исследовать от 8-18 параметров и более. Для контроля приборов с дифференциацией лейкоцитов на 3 части используется кровь на 16-18 параметров. Однако необходимо понимать, что калиброванные латексные частицы, имитирующие лейкоциты, не реагируют на действие лизирующего раствора и при анализе не отражают правильность работы всей системы, а лишь правильность установки дискриминаторов. По сути, особого смысла в приобретении такой, более дорогой, крови нет, достаточно использовать контрольную кровь на 8-10 параметров.
Контрольная кровь применяется:
— для проверки правильности и воспроизводимости счета клеток;
— для проверки правильности разведения;
— для «калибровки» прибора.
Ежедневный контроль гематологических исследований включает исследование контрольной крови на анализаторе с каждой серией значений — в области нормы и в области низких и высоких значений. Все правила построения контрольных карт Леви-Дженнингса и оценка результатов по правилам Вестгарда применимы для работы с контрольной кровью, исследуемой на гематологических анализаторах. Поскольку коммерческая контрольная кровь до вскрытия флакона стабильна 4-6 мес, а после вскрытия — 20-30 дней, возможно и необходимо проводить ее анализ через каждые 20 проб пациентов и, конечно же, в каждой серии проб. Это позволяет:
1. Выявить отклонения в результатах исследований еще до того, как они станут клинически значимыми.
2. Получить необходимое количество результатов для более быстрого накопления статистики и построения карт, а также для оперативной оценки воспроизводимости работы прибора.
Многие современные гематологические анализаторы имеют встроенную программу оценки качества исследований, включающую построение контрольных карт.
Для повышения качества проводимых лабораторией исследований очень важно организовать не только внутрилабораторную, но и внешнюю межлабораторную систему управления качеством в форме локального, городского, федерального контроля. Внешний контроль качества позволяет справиться с наиболее трудной задачей — выявлением и устранением систематических ошибок измерений.
7. Обслуживание, консервация прибора. При эксплуатации гематологических анализаторов важную роль играет качество электрической сети и заземления. Внезапные отключения электропитания, перепады напряжения могут привести к выходу из строя микросхем и плат, сбоям в гидравлической системе, что неизбежно повлечет увеличение расходов на ремонт и обслуживание прибора. Приобретая гематологический анализатор, как и любое другое лабораторное оборудование, надо привыкнуть к необходимости затрат не только на расходные материалы, но и на такую важную «деталь», как источник бесперебойного питания с надежной стабилизацией напряжения.
Отключение электропитания на несколько часов в момент отбора и обработки пробы может привести к засорению трубок, апертур, клапанов. Это повлечет сбой дальнейшей работы, необходимость дополнительных процедур промывки и очистки прибора или даже незапланированное обслуживание прибора.
При получении прибора специалист, осуществляющий установку и обучение работе с анализатором, обязательно обратит ваше внимание на необходимость контроля фоновых значений, получаемых при счете в камерах без пробы. Многие приборы делают такой подсчет автоматически при запуске (процедура «start up»). Эта проверка фона дает уверенность в правильном определении параметров. В руководстве оператора к прибору обычно приводятся фоновые значения (табл. 1).
У большинства современных анализаторов есть процедура завершения работы («shut down»). Она позволяет удалить остатки биологического материала из системы, провести промывку прибора и подготовить его к отключению. Процедуры начала и окончания работы обязательны для выполнения.
Одно из действий прибора — заполнение счетных камер и микроотверстий моющим раствором, содержащим протеолитический фермент. Этот раствор находится в камерах несколько часов (ночь). Кровь, даже разведенная анализатором для подсчета, содержит достаточное количество белковых компонентов, постоянно оседающих на трубках, апертурном отверстии. К этим белкам прилипают микроскопические частицы, обломки клеток, бактерии. За несколько десятков циклов счета эта белково-детритная «пленка» может значительно увеличиться и привести к уменьшению диаметра отверстия. В результате — нарушение правильности подсчета (см. рис ).
Фермент, входящий в состав промывающего (моющего, очищающего) раствора, за несколько часов полностью растворяет белковую матрицу пленки и прибор вновь готов к работе.
Неукоснительное выполнение процедуры выключения является одним из факторов нормальной работы гематологического анализатора. Прибор, эксплуатируемый круглосуточно, не подвергается ферментативной очистке, что может привести к значительному изменению диаметра апертуры и нарушению счета. В таком отверстии могут застревать более мелкие частицы (ранее миновавшие апертуру беспрепятственно) и останавливать работу анализатора.
При закупоривании апертуры (сигнал «clog», «clogging») микросгустками, волокнами, частицами, прибор отмечает увеличение времени счета или разницу в количестве частиц, сосчитанных за несколько временны`х отрезков, в зависимости от конструкции прибора. При возникновении такой ситуации прибор обычно реализует запрограммированную процедуру автоматического устранения закупорки. Если самоочистка не приносит успеха, оператору необходимо вручную выполнить следующие действия:
— провести очистку концентрированным ферментативным раствором;
— провести очистку раствором специально приготовленного гипохлорита натрия;
— активизировать из меню прибора процедуру специальной очистки апертуры токами высокой частоты («прожиг» апертуры).
Неэффективность всех этих действий указывает на серьезную механическую закупорку микроотверстия и требует снятия и чистки апертуры в соответствии с инструкцией на прибор. В некоторых случаях может даже потребоваться вмешательство сервисной службы.
Важно помнить, что для обслуживания прибора необходимо всегда четко следовать инструкциям производителя.
Иногда, при эксплуатации гематологических анализаторов, большой проблемой становится высокий фон в канале счета тромбоцитов. Это часто наблюдается при загрязнении разбавителя штаммами бактерий, устойчивых к антибактериальным добавкам. Смена канистры с изотоническим раствором дает кратковременный успех — трубка, перенесенная из одной канистры в другую, заселяет микроорганизмами новую канистру. Через некоторое время бактерии размножаются и фон снова увеличивается. Эта ситуация требует полной дезинфекции гидравлических магистралей прибора, а иногда и замены состава реагентов и антибактериальных добавок в них.
Другой причиной увеличения фона и ложного цитоза может стать рост бактерий и попадание их в счетные камеры по трубкам слива от емкости отходов («waste»). Поверхности от камер до контейнера с отходами покрываются белково-липидной пленкой, на которой, как на питательной среде из агара, прорастают микроорганизмы. Несмотря на антибактериальные добавки, содержащиеся в дилюенте, бактерии быстро размножаются в банке с отходами и «дорастают» до камер счета. Для предотвращения этой проблемы необходимо:
1. Чаще опорожнять емкость с отходами.
2. Периодически проводить дезинфекцию емкости и сливных шлангов (о частоте и способе запросите инструкции у вашей сервисной службы).
3. НЕ ДОПУСКАТЬ соприкосновения конца сливного шланга с поверхностью отходов в канистре.
Консервация прибора
Гематологический анализатор, как и любой прибор, приобретается для того, чтобы работать непрерывно и избавлять лабораторию от трудоемких ручных операций. Приобретение анализатора является осознанной необходимостью. Ситуация с остановкой прибора из-за недостатка финансирования покупки расходных материалов — нонсенс, но встречается часто.
Если все же работу прибора приходится остановить, самое главное — это подготовить анализатор к длительному простою.
Большинство гематологических анализаторов можно остановить не более чем на одну неделю почти без последствий (летом, в жару, опаснее). Более долгий период простоя прибора с реагентами внутри системы приводит к размножению бактерий, высыханию солевых растворов, склеиванию трубок, прижатых клапанами, кристаллизации солей в апертурах, микротрубках. Привести прибор в рабочее состояние после такого безответственного отношения к нему требует множества сил и времени. Случаи оставления приборов с растворами не являются гарантийными, и пользователь вынужден будет оплачивать услуги сервисной службы в гарантийный срок, если не выполнит нескольких простых действий.
Эти действия чаще описаны в руководстве оператора или могут быть запрошены у сервис-инженеров. Процедура консервации в общих чертах выполняется с использованием соответствующих команд меню анализатора следующим образом:
1. Произвести очистку апертур, камер, трубок, гидравлической системы дезинфицирующим раствором (гипохлоритом).
2. Слить из жидкостной системы все реагенты (изотонический разбавитель, лизирующий и моющий растворы).
3. Промыть систему дистиллированной водой.
4. Осушить систему, прокачав воздух.
Теперь прибор готов к длительному ожиданию следующей поставки реагентов.
Совет: если есть небольшой запас изотонического разбавителя и поставка реагентов ожидается в ближайшее время, лучше прекратить выполнять анализы. Прибор необходимо включать и выключать 2-3 раза в неделю, выполняя процедуры начала и окончания рабочего дня («start up» и «shut down») с оставшимися растворами. Это будет поддерживать прибор в рабочем состоянии до поступления новой партии реактивов. Не следует проводить описанные процедуры с использованием дистиллированной воды, в ней нет антибактериальных добавок, прибор в этом случае может стать инкубатором для бактерий и грибков.
8. Преаналитика, ошибки и проблемы. Даже при наличии современного гематологического анализатора лаборатория иногда выдает результаты, не отражающие истинное состояние пациента, вводящие в заблуждение лечащих врачей. Денег в прибор вложено много, а результат не всегда удовлетворительный. В чем причина?
От 70 до 80% лабораторных ошибок связаны с нарушениями на преаналитическом этапе, ошибки аналитического этапа составляют 10-15%, постаналитического — 15-20%.
Ошибки внелабораторного этапа отличают случайность, бессистемность и трудноуловимость. Именно внелабораторные ошибки вносят самый весомый вклад в искажение результатов анализа, маскируются под проблемы, связанные с приборами и реагентами. В таких случаях несоответствие результатов клинической картине или результатам предыдущего обследования заставляет сотрудников лаборатории перепроверять аппаратуру или заменять реагенты. Это приводит к нерациональной трате рабочего времени и средств, а выявить истинную причину проблемы, как правило, не удается.
Взятие образца, его транспортировка, хранение требуют постоянного контроля со стороны лаборатории. Для получения качественных результатов необходимо учитывать присутствие в пробе интерферирующих веществ, индивидуальные особенности пациента, его подготовку к взятию пробы на анализ. Усилия по предотвращению ошибок на этом этапе окупятся ощутимым улучшением качества гематологических исследований, снижением необоснованных повторов, расходов рабочего времени и средств на обследование больного.
Только полностью стандартизуя все этапы гематологического, да и любого другого исследования от назначения до интерпретации результатов, можно ожидать получения адекватных данных.
Техника взятия крови, используемые иглы, скарификаторы, капилляры, пробирки для транспортировки и хранения проб, реагенты и аналитические системы — все должно быть «однородным» изо дня в день. Часть проблем устраняется с внедрением коммерческих систем взятия венозной и капиллярной крови (вакуумных и невакуумных пробирок с антикоагулянтами).
Взятие крови
Материал для анализа. Вена или палец?
Наилучшим материалом для выполнения анализа на гематологических анализаторах является венозная кровь. Несмотря на распространенное среди медицинских работников отечественных ЛПУ мнение, что «часто в вену лазить» плохо, во всем цивилизованном мире кровь на общий анализ у взрослых берется именно из вены. Важным подспорьем для взятия венозной крови на гемограмму стала разработка и широкое внедрение вакуумных пробирок, содержащих антикоагулянт. Принудительное всасывание крови под действием вакуума позволило использовать для венозной венепункции тонкие атравматичные иглы. Капиллярная кровь в других странах используется реже, в основном у маленьких детей, и связано это с техническими трудностями получения у них венозной крови. Очевидно, что для медицины развитых стран намного важнее получение достоверных результатов из более адекватного материала, чем лозунги об опасности венепункции. Тканевая жидкость, обрывки тканей и микросгустки в капиллярной крови — причина ошибок и сбоев анализатора.
В пробах капиллярной крови более активно происходит агрегация тромбоцитов, больше травмируются форменные элементы, Венозная же кровь, взятая в объеме 2-3 мл, может быть проанализирована повторно, из нее можно выполнить дополнительные исследования.
Взятие капиллярной крови рекомендовано:
— у новорожденных, детей младшего возраста;
— у лиц со склонностью к венозному тромбозу;
— при обширных ожогах и выраженном ожирении;
— при мелких и труднодоступных венах.
На преаналитическом этапе взятия биологического материала имеется более сотни (!) условий, регламентирующих получение адекватных результатов.
Взятие венозной крови как метод выбора имеет свои правила и ограничения, обсуждаемые в специальной литературе. Стоит напомнить, что для исключения общих факторов, влияющих на результаты гематологического исследования, необходимо соблюдение следующего:
— кровь берется после 15-минутного отдыха пациента;
— исключается прием алкоголя и курение непосредственно перед исследованием;
— кровь берется натощак, утром (7-9 ч), пациент во время процедуры сидит или лежит;
— наложение жгута на руку более чем на 1 мин приводит к сосудистому стазу и завышению уровня гемоглобина в венозной крови;
— для взятия венозной крови необходимо избегать мест травм, шрамов, гематом; вен, используемых для переливания растворов; ножных вен у больных диабетом, при нарушениях периферического кровотока, ангиопатиях.
Антикоагулянт
Стабилизация крови, анализируемой на автоматических счетчиках, проводится натриевыми или калиевыми солями этилендиаминтетрауксусной кислоты (ЭДТА — этилендиаминтетраацетат). Гепарин и цитрат натрия для этих целей не применяется. Кровь, стабилизированная цитратом натрия, используется при исследовании гемостаза и СОЭ.
Обычно указываемая в справочниках и инструкциях к приборам концентрация ЭДТА — 1-2 мг на 1 мл для венозной крови. В случае капиллярной крови концентрация антикоагулянта должна быть увеличена в 2-3 раза. Увеличение концентрации ЭДТА в 5 раз не опасно и приводит лишь к небольшому снижению MCV, но увлекаться не стоит.
Одно из важных условий получения качественного образца — тщательное перемешивание крови с антикоагулянтом. Имеет значение и форма нанесения антикоагулянта. Лучшие результаты дает применение пробирок с аэрозольным покрытием и мелкодисперсным порошковым напылением. Кристаллическая форма солей ЭДТА плохо растворима в крови. Применение кристаллических солей приводит к образованию фибриновых нитей в верхней части пробы крови.
Для предотвращения свертывания крови пробирку следует перевернуть, НЕ ВСТРЯХИВАЯ (!), около 10 раз.
Недостаток антикоагулянта в пробе (крови взято больше отмеченного на пробирке уровня) приводит к образованию микросгустков и нарушению работы прибора. Избыток антикоагулянта может повлиять на некоторые показатели только при очень большом превышении оптимальной концентрации.
Анализ СОЭ может быть выполнен из крови, стабилизированной ЭДТА.
Все, как обычно: 4 части крови смешать с 1 частью 3,8% раствора цитрата или физиологического раствора, выдержать 60 мин в капилляре, измерить.
Из стабилизированной ЭДТА можно приготовить мазки крови для подсчета лейкоформулы, но как можно быстрее от момента получения крови.
Авторы надеются, что в самое ближайшее время во всех отечественных лабораториях методы взятия венозной и капиллярной крови с использованием стандартизованных коммерческих систем, обработанных антикоагулянтом, станут нормой жизни. Медицинским сестрам, сопротивляющимся внедрению взятия крови на общий анализ из вены («мы не будем работать на лабораторию!»), необходимо помнить, что вся деятельность учреждений здравоохранения и персонала больниц и поликлиник направлена, в первую очередь, на благо пациента.
Безопасность
Взятие венозной крови с помощью вакуумных систем также называют бесконтактным методом. При работе с вакуумными пробирками, кроме всех прочих преимуществ, отсутствует контакт медицинского персонала с кровью (как при взятии через обычную иглу в пробирку) и, особенно, с аэрозолями крови, образующимися в большом количестве при взятии шприцем. Этот самый излюбленный метод, когда кровь струей устремляется в пробирку (травмирование клеток, гемолиз и пр.), одновременно является и самым опасным, самым «грязным» способом!
Кроме того, взятие крови шприцем с последующим разливанием аликвот по пробиркам вообще недопустимо из-за опасности образования микросгустков, травмирования иглой оператора, высокой вероятности попадания следов крови на руки медсестры, окружающие предметы!
Лозунги о недостатке средств на одноразовые изделия для взятия крови, исключающие преаналитические ошибки, меркнут перед статистикой заражения медицинского персонала вирусным гепатитом. Качество лабораторных исследований и безопасность работников здравоохранения должны чего-то стоить!
Кроме этих систем: стерильные одноразовые пособия: иглы, скарификаторы, перчатки, салфетки. Все, как всегда, плюс маски, дезрастворы, система утилизации.
Салфетки
Взятие крови для автоматического гематологического анализатора возможно только с использованием безворсовых материалов.
Никакой ваты для обработки кожи! Ворсинки ваты вместе с кровью попадают в гемоглобиновую и счетные камеры анализатора, нарушают точность и воспроизводимость анализа, это приводит к увеличению расхода реагентов (повторные промывки) и необходимости внепланового технического обслуживания прибора. Экономия на салфетках оборачивается увеличением затрат на ликвидацию последствий экономии.
Специальные салфетки, пропитанные дезинфицирующими составами и упакованные в индивидуальные пакеты в заводских условиях, — лучшая альтернатива ватным и марлевым шарикам.
Пробирки из пластика являются единственно возможными при взятии крови для последующей обработки на анализаторе.
Кровь, взятая в правильном соотношении с адекватным антикоагулянтом в пластиковую пробирку, сохраняется несколько часов (до 24 ч при 4 °С) без существенных изменений количества и морфологии клеток. Однако скорейшее выполнение анализа предпочтительно, так как патологические клетки менее устойчивы к хранению.
Контакт со стеклом, как и недостаточное количество антикоагулянта, неизбежно приводит к активации тромбоцитов и их агрегации. Результат агрегации — ложная «преаналитическая» тромбоцитопения 50-80·109/л, ошибка счета лейкоцитов может достигать 150% (ложный лейкоцитоз/лимфоцитоз), число эритроцитов может быть завышено почти на 0,5 Т/л, отсюда — неправильно рассчитанные эритроцитарные индексы. Это же может наблюдаться при появлении в кровотоке гигантских форм тромбоцитов, фрагментов мегакариоцитов, но уже относится к факторам физиологии пациента.
Кровь в пластиковых пробирках значительно меньше подвергается травмированию при транспортировке.
Как только цельная кровь взята в пробирку с антикоагулянтом и установлена в штатив, запускается процесс седиментации клеток (подобный СОЭ). Уже в первые минуты стояния образца эритроциты продолжают беспорядочно перемещаться и агрегируют с образованием «монетных столбиков». Спустя 4 мин эритроцитарные агрегаты состоят примерно из 10 эритроцитов, далее они постепенно становятся крупнее (до 50 и более эритроцитов) и разветвляются.
При хранении пробирок со стабилизированной кровью в вертикальном положении появляется лейкоцитарная пленка, состоящая из лейкоцитов и тромбоцитов. Они скапливаются на границе между эритроцитами и плазмой. Недостаточное перемешивание осевшей крови может стать одним из наиболее серьезных источников погрешности при анализе.
Пробирки типа «эппендорф»
В некоторых лабораториях кровь берут в эти «микроконические» пробирки. Цельная кровь имеет высокую вязкость, качественно перемешать ее в пробирке типа «эппендорф» очень трудно. После оседания клеток крови в этот маленький конус оператор может погрузить пробоотборник в более жидкую или более густую фракцию. Результатом будет неправильный счет. Поэтому специалисты не рекомендуют такие пробирки для гематологических исследований.
Нельзя трясти пробу крови! Ручное перемешивание даже в круглодонных микропробирках — процесс с большой долей человеческого фактора — источник ошибок.
Качественное перемешивание пробы возможно с использованием специальных гематологических миксеров. Эффект от приобретения дорогого анализатора часто сводится к нулю из-за экономии нескольких сотен рублей на покупке ротационного или качающего пробирки устройства (шейкера, гематологического миксера).
Продолжительность перемешивания до непосредственного анализа крови должна составлять не менее нескольких минут. Это время зависит от скорости перемешивания, конфигурации пробирок, вязкости крови и других факторов, но в среднем должно составлять не менее 2 мин.
Необходимо помнить, что длительное перемешивание может привести к травмированию и распаду патологических клеток.
Правильное решение проблемы — применение уже упоминавшихся вакуумных пробирок, гематологического миксера и приборов с автоматической системой отбора пробы (автосамплера).
Для преаналитического и аналитического этапов гематологического анализа оптимально:
— применение одноразовых безворсовых салфеток, обработанных дезинфицирующим составом;
— применение одноразовых стерильных вакуумных систем для венозной и микропробирок для капиллярной крови;
— применение перемешивающих устройств для гомогенизации крови или приставки-автосамплера к прибору.
Одноразовые системы для взятия крови не только обеспечивают качество исследований, но и помогают соблюдать санитарно-эпидемиологические требования.
Использование вакуумных систем позволяет:
— снизить опасность возможного инфицирования персонала при работе с кровью (так как кровь сразу же из вены поступает в герметично закрытую пробирку), конструкция систем полностью исключает контакт крови пациента с окружающей средой;
— повысить достоверность результата анализа за счет исключения ошибок преаналитического этапа, связанных с транспортировкой и центрифугированием пробирок;
— обеспечить сохранность проб, исключить разбивание пробирок при транспортировке и центрифугировании и уменьшить риск соприкосновения с кровью при порезе колотым краем стеклянной пробирки; отсутствует необходимость уравновешивания пробирок при центрифугировании;
— исключить ошибки идентификации пациента, пробирки снабжены этикеткой для маркировки;
— соблюсти правильное соотношение кровь-антикоагулянт, важное для точности результатов анализа;
— набрать кровь в одну, две пробирки и более за очень короткий промежуток времени и без повторного введения иглы в вену;
— манипуляция
Опубликовано: 16.04.2012 Обновлено: 20.05.2021 Просмотров: 483625
СОЭ — это скорость оседания эритроцитов, Erythrocyte Sedimentation Rate (ESR) одно из наиболее распространённых лабораторных исследований. Наряду с увеличением количества лейкоцитов и сдвигом формулы влево СОЭ служит лабораторным признаком наличия воспалительного или инфекционного процесса.
Характеристика исследования
СОЭ — показатель скорости разделения крови в пробирке с добавленным антикоагулянтом на 2 слоя: верхний (прозрачная плазма) и нижний (осевшие эритроциты). Скорость оседания эритроцитов оценивается по высоте образовавшегося слоя плазмы в мм за 1 час. Удельная масса эритроцитов выше, чем удельная масса плазмы, поэтому при наличии антикоагулянта под действием силы тяжести эритроциты оседают на дно. Скорость, с которой происходит оседание эритроцитов, в основном определяется степенью их агрегации, то есть способностью слипаться вместе.
Агрегация эритроцитов главным образом зависит от их электрических свойств и белкового состава плазмы крови. В норме эритроциты несут отрицательный заряд (Z-потенциал эритроцитов), который обусловлен заряженными группами сиаловых кислот на эритроцитарной мембране, он способствует их взаимному отталкиванию и поддержанию эритроцитов во взвешенном состоянии. Степень агрегации эритроцитов (а значит и СОЭ) повышается при увеличении концентрации белков острой фазы (фибриноген, С — реактивный белок, гаптоглобин, альфа-1 антитрипсин, церулоплазмин, иммуноглобулины и д.р.). Напротив, СОЭ снижается при увеличении концентрации альбуминов. На Z-потенциал эритроцитов влияют и другие факторы: рН плазмы (ацидоз снижает СОЭ, алкалоз — повышает), ионный заряд плазмы, липиды, вязкость крови, наличие антиэритроцитарных антител. Число, форма и размер эритроцитов также влияют на СОЭ. Снижение количества эритроцитов (анемия) в крови приводит к ускорению СОЭ, и, напротив, повышение количества эритроцитов замедляет скорость оседания.
При острых воспалительных и инфекционных процессах увеличение СОЭ отмечается через 24 часа после повышения температуры и увеличения числа лейкоцитов. Показатель СОЭ меняется в зависимости от множества физиологических и патологических факторов. Показатели СОЭ у женщин несколько выше, чем у мужчин. Изменения белкового состава крови при беременности ведут к повышению СОЭ в этот период. В течение дня возможно колебание значений, максимальный уровень отмечается в дневное время.
Измерение СОЭ необходимо рассматривать как скрининговый тест, который не имеет специфичности при каком-либо заболевании. Обычно исследование СОЭ назначают вместе с общим анализом крови.
Показания к назначению исследования
- воспалительные заболевания;
- инфекционные заболевания;
- опухоли;
- скрининговые исследования при профилактических осмотрах.
Методы исследования
Для определения СОЭ Международным комитетом стандартизации в гематологии (ICSH) рекомендован метод Вестергрена. Метод является эталонным. Исследование проводится в специальных капиллярах Вестергрена с просветом 2,5 мм и градуированной шкалой в 200 мм. Результаты исследования СОЭ выражаются в мм за 1 час (мм/час).
В нашей стране чаще применяется микрометод Панченкова, для данного метода используется аппарат Панченкова, состоящий из штатива и капиллярных пипеток со шкалой100 мм.
Результаты, получаемые при использовании метода Вестергрена, в области нормальных значений совпадают с результатами, получаемыми при определении СОЭ методом Панченкова. Однако метод Вестергрена более чувствителен к повышению СОЭ, и результаты в зоне повышенных значений, полученные методом Вестергрена, выше результатов, получаемых методом Панченкова.
Исследование СОЭ в лабораториях Ассоциации СИТИЛАБ
Определение СОЭ в лабораториях Ассоциации проводится классическим методом Вестергрена на автоматических анализаторах StaRRsed фирмы Radiomet. Данный анализатор автоматически забирает пробу, разводит её цитратом в нужном соотношении, и результаты исследования отправляются в информационную систему. Кроме того, технологические особенности прибора позволяют в автоматическом режиме производить поправки на температуру окружающего воздуха. При проведении исследования полностью исключается так называемый «человеческий фактор».
По номенклатуре исследований в лабораториях СИТИЛАБ это исследование: 11-10-003 — СОЭ (Вестергрен)
Взятие крови на исследование:
Кровь берётся в вакуумную пробирку с ЭДТА.
Единицы измерения: мм/час
Референсные значения*:
Возраст, пол |
СОЭ, мм/час |
|
Дети до 10 лет |
0 — 10 |
|
До 50 лет |
мужчины |
0 — 15 |
женщины |
0 — 20 |
|
Старше 50 лет |
мужчины |
0 — 20 |
женщины |
0 — 30 |
Примечание: * — Bottiger LE, Svedberg CA. Normal erythrocyte sedimentation rate and age. Br Med J 1967;2:85-7.
Повышение (ускорение) СОЭ
- воспалительные заболевания различной этиологии;
- острые и хронические инфекции;
- парапротеинемии (множественная миелома, болезнь Вальденстрема);
- опухолевые заболевания;
- аутоиммунные заболевания (коллагенозы);
- заболевания почек (хронический нефрит, нефротический синдром);
- инфаркт миокарда;
- гипопротеинемии;
- анемии;
- интоксикации;
- травмы, переломы костей;
- состояния после шока, операционных вмешательств;
- у женщин во время беременности, менструации, в послеродовом периоде;
- у лиц пожилого возраста;
- при приёме лекарственных препаратов (эстрогенов, глюкокортикоидов).
Для получения сопоставимых результатов и контроля за динамикой заболевания исследования рекомендуется проводить в одной лаборатории. Однако к лечащим врачам иногда обращаются пациенты, которые проводили исследования в разных лабораториях, и результаты исследований трудно сравнить (особенно если исследование проводилось разными методами, например, Вестергрена и Панченкова). Как было сказано выше, результаты, получаемые при использовании метода Вестергрена, в области нормальных значений совпадают с результатами метода Панченкова, однако при высоких значениях СОЭ такого совпадения нет.
Для облегчения трактовки результатов исследования СОЭ нашими врачами была разработана таблица соответствия результатов, получаемых методами Вестергрена и Панченкова.
Таблица 1.
Соответствие результатов СОЭ, получаемых методами Вестергрена и Панченкова
В |
П |
В |
П |
В |
П |
В |
П |
||||
1 |
1 |
31 |
27 |
61 |
48 |
91 |
66 |
||||
2 |
2 |
32 |
27 |
62 |
49 |
92 |
67 |
||||
3 |
3 |
33 |
28 |
63 |
49 |
93 |
67 |
||||
4 |
4 |
34 |
29 |
64 |
50 |
94 |
68 |
||||
5 |
5 |
35 |
30 |
65 |
50 |
95 |
68 |
||||
6 |
6 |
36 |
30 |
66 |
51 |
96 |
69 |
||||
7 |
7 |
37 |
31 |
67 |
52 |
97 |
69 |
||||
8 |
8 |
38 |
32 |
68 |
52 |
98 |
70 |
||||
9 |
9 |
39 |
33 |
69 |
53 |
99 |
70 |
||||
10 |
10 |
40 |
33 |
70 |
54 |
100 |
71 |
||||
11 |
11 |
41 |
34 |
71 |
54 |
101 |
71 |
||||
12 |
12 |
42 |
35 |
72 |
55 |
102 |
72 |
||||
13 |
13 |
43 |
36 |
73 |
55 |
103 |
72 |
||||
14 |
14 |
44 |
36 |
74 |
56 |
104 |
73 |
||||
15 |
14 |
45 |
37 |
75 |
57 |
105 |
73 |
||||
16 |
15 |
46 |
38 |
76 |
57 |
106 |
74 |
||||
17 |
16 |
47 |
38 |
77 |
58 |
107 |
74 |
||||
18 |
17 |
48 |
39 |
78 |
59 |
108 |
75 |
||||
19 |
17 |
49 |
40 |
79 |
59 |
109 |
75 |
||||
20 |
18 |
50 |
40 |
80 |
60 |
110 |
76 |
||||
21 |
19 |
51 |
41 |
81 |
60 |
111 |
76 |
||||
22 |
20 |
52 |
42 |
82 |
61 |
112 |
77 |
||||
23 |
21 |
53 |
43 |
83 |
61 |
113 |
77 |
||||
24 |
21 |
54 |
43 |
84 |
62 |
114 |
78 |
||||
25 |
22 |
55 |
44 |
85 |
63 |
115 |
78 |
||||
26 |
23 |
56 |
45 |
86 |
63 |
116 |
79 |
||||
27 |
24 |
57 |
45 |
87 |
64 |
117 |
79 |
||||
28 |
24 |
58 |
46 |
88 |
64 |
118 |
80 |
||||
29 |
25 |
59 |
47 |
89 |
65 |
119 |
80 |
||||
30 |
26 |
60 |
47 |
90 |
65 |
120 |
81 |
Примечание: Результаты СОЭ представлены в мм/час; В — метод Вестергрена; П — метод Панченкова.
Список литературы
- Луговская С.А., Долгов В.В. Лабораторная Гематология. Тверь, Триада, 2006.
- Bottiger LE, Svedberg CA. Normal erythrocyte sedimentation rate and age. Br Med J 1967;2:85-7.
- Brigden M. The erythrocyte sedimentation rate: still a helpful test when used judiciously. Postgrad Med 1998;103:257-74.
- Saadeh C. The erythrocyte sedimentation rate: old and new clinical applications. South Med J 1998; 3:220-5.
- Sox HC Jr, Liang MH. The erythrocyte sedimentation rate: guidelines for rational use. Ann Intern Med 1986;104:515-23.
- Stuart J, Whicher JT. Tests for detecting and monitoring the acute phase response. Arch Dis Child 1988;63:115-7.
- Wolfe F, Michaud K. The clinical and research significance of the erythrocyte sedimentation rate. J Rheumatol 1994;21:1227-37.
Актуальность
Часто у лечащего врача возникают претензии к лабораторным анализам, т. е. происходит не совпадение клинической картины с лабораторными показателями. Нарушение преаналитики является одной из самых частых причин этой проблемы. Данная статья поможет разобраться с этой нелепой, но весьма серьезной задачей.
Что такое преаналитика? Преаналитика – это все процедуры, выполняемые до начала проведения лабораторных исследований, которые непосредственно влияют на результат лабораторного анализа.
Оптимально проведенная преаналитическая подготовка является основным условием точной и полной лабораторной диагностики.
Зачем нужно врачам знать преаналитику? При нарушении преаналитического этапа врачи собственноручно готовят предпосылки для заведомо ложных результатов лабораторного анализа.
Статистика
Затраты времени на этапах лабораторного исследования:
Преаналитическии этап вне лаборатории – 20,20%
Преаналитическии этап в лаборатории – 37,10%
Аналитическии этап – 25,10%
Постаналитическии этап – 13,60%
Отправка результатов – 4%
Анализ ошибок показывает, что около 40% ошибок совершается на преаналитическом этапе при выполнении исследований в плановом порядке и около 60% ошибок происходит на преаналитическом этапе при неотложных анализах. (M.Plebani, P.Carraro, 1997).
Из чего состоит преналитическии этап вне лаборатории?
— Назначение анализов
— Подготовка пациента (психологическая и физическая)
— Заполнение направления.
— Взятие биоматериала.
— Хранение и доставка биоматериала.
На каждом из выше указанных составных может быть допущена ошибка.
Общие правила при подготовке к исследованию крови:
1. Кровь сдается в утренние часы натощак (или в дневные и вечерние часы, спустя 4-5 часов после последнего приема пищи). За 1-2 дня до исследования исключить из рациона продукты с высоким содержанием жиров.
2. Показатели крови могут существенно меняться в течение дня, поэтому рекомендуется все анализы сдавать в утренние часы.
3. Накануне исследования (в течение 24 часов) исключить алкоголь, интенсивные физические нагрузки, прием лекарственных препаратов (по согласованию с врачом).
4. За 1-2 часа до сдачи крови воздержаться от курения, не употреблять сок, чай, кофе, можно пить негазированную воду. Исключить физическое напряжение (бег, быстрый подъем по лестнице), эмоциональное возбуждение. За 15 минут до сдачи крови рекомендуется отдохнуть, успокоиться.
5. Не следует сдавать кровь для лабораторного исследования сразу после физиотерапевтических процедур, инструментального обследования, рентгенологического и ультразвукового исследований, массажа и других медицинских процедур.
6. При контроле лабораторных показателей в динамике рекомендуется проводить повторные исследования в одинаковых условиях – в одной лаборатории, сдавать кровь в одинаковое время суток и пр.
7. Кровь для исследований нужно сдавать до начала приема лекарственных препаратов или не ранее, чем через 10 — 14 дней после их отмены. Для оценки контроля эффективности лечения любыми препаратами нужно проводить исследование спустя 7 – 14 дней после последнего приема препарата. Если Вы принимаете лекарства, обязательно предупредите об этом лечащего врача.
Общие правила применимы ко всем анализам, но для некоторых исследований требуется специальная подготовка и дополнительные ограничения.
Влияние некоторых факторов на результат анализов.
Психический стресс
Степень влияния психического стресса (страх перед взятием крови, предоперационный стресс и т.д.) на лабораторные результаты часто недооценивается. Между тем, под его влиянием может наблюдаться увеличение секреции гормонов (альдостерона, ангиотензина, катехоламинов, кортизола, пролактина, ренина, соматотропина, ТСГ, вазопрессина) и повышение концентрации альбумина, фибриногена, глюкозы, инсулина, лактата и холестерина.
Наложение жгута
Что происходит, когда жгут накладывается на весь период времени при взятии пробы? При использовании давления ниже уровня систолического, внутри капилляров поддерживается эффективное фильтрационное давление. Как следствие, жидкость и низкомолекулярные соединения перемещаются из внутрисосудистого пространства в интерстициальное. Макромолекулы, вещества, связанные с белками и клетки крови не проникают через стенку капилляров, таким образом, их концентрация заметно возрастает, тогда как концентрации низкомолекулярных веществ не изменяются.
Длительность наложения жгута и изменения уровней исследуемых параметров
Сравнение: через 1 мин. через 3 мин.
Параметры Отклонение в %
Билирубин +8
Холестерин +5
Креатинин -9
Креатинкиназа -4
Железо +7
Глюкоза -9
γ-Глютамилтрансфераза -10
Калий +5
Положение тела
Изменение положения тела – из горизонтального в вертикальное – приводит к увеличению уровня ряда показателей.
Параметры Увеличение в %
Гематокрит 13
Эритроциты 15
Холестерин высокой плотности 10
Альдостерон 15
Ренин 60
Взятие пробы из катетера
Если пробы берут из венозных или артериальных инфузионных катетеров, канюлю следует промыть изотоническим солевым раствором в объеме, соизмеримом с объемом катетера. Прежде чем взять пробу, выбросить первые 5 мл крови, полученной из катетера. Взятиепроб для исследований свертывающей системы из катетеров, обработанных гепарином, неприемлемо. Для гепарин-зависимых методов (тромбиновое время, АЧТВ) рекомендуется
предварительно отбросить объем крови, вдвое превышающий объем катетера; первая порция взятой затем крови может быть использована для выполнения исследований, не относящихся к системе гемостаза; последующая порция цитратной крови может использоваться только для определения нечувствительных к присутствию гепарина аналитов: протромбинового времени, рептилазного времени, фибриногена по Clauss, АТ III, мономеров фибрина. Важно, чтобы перед взятием крови в пробирку с раствором цитрата натрия не было длительной паузы, в течение которой кровь в катетере может «застаиваться».
Высота над уровнем моря
Содержание некоторых компонентов крови подвержено значительным изменениям в зависимости от высоты над уровнем моря. С увеличением высоты значительное повышение наблюдается в отношении, например реактивного белка (до 65% на высоте 3600 м), гематокрита и гемоглобина (до 8% на высоте 1400 м) и мочевой кислоты. Адаптация к высоте занимает недели, а возвращение к значениям на уровне моря происходит в течение нескольких дней. Значительное снижение величин с ростом высоты над уровнем моря обнаружено в отношении мочевого креатинина, клиренса креатинина, эстриола (до 50% на высоте 4200 м), осмоляльности сыворотки, ренина плазмы и трансферрина сыворотки.
1 Мошкин А., Долгов В. Обеспечение качества в клинической лабораторной диагностике.. — М.: 2004. – С. 26-43.
2 Преаналитический этап. Пробоподготовка. West Medica
3 Преаналитика: практические советы и методы. SARSTEDT AG & Co.
Түйін: преаналитикалық кезенде көптеген факторлар зертханалық зертудің нәтижесіне әсер ететің зертхана дәрігерлері жақсы түсінеді. Ал клиникалық дәрігердің көбісі бұл жағдайдың маңызың ескермейді. Осы салалардың әсерінен зертханалық зертудің нәтижесін дәрігерлер дұрыс талдамауына және дұрыс ем шара жасамауына алып келеді.
Resume: physicians of Clinical Laboratory Diagnostics had recognized that, in the preanalytical phase, many factors can affect to the results of laboratory tests. Most of physicians don’t know of their influence. Ignorance of this factors may lead to misinterpretation of the result and take on a patient the wrong action.
Аптинов М.М. – руководитель учебного центра компании West Medica
Скорость оседания эритроцитов (СОЭ) – показатель, определение которого входит в общий анализ крови. Это неспецифический лабораторный скрининговый тест, изменение которого может служить косвенным признаком текущего воспалительного или иных патологических процессов, таких как злокачественные опухоли и диффузные заболевания соединительной ткани.
Скорость оседания эритроцитов определяют в разведенной цитратом крови за определенный промежуток времени (1час) и выражают в мм за 1 час.Значение СОЭ определяют как расстояние от нижней части поверхностного мениска (прозрачная плазма) до верхней части осевших эритроцитов в вертикальном столбце стабилизированной цитратом цельной крови.
Удельная масса эритроцитов выше, чем удельная масса плазмы, поэтому в пробирке при наличии антикоагулянта (цитрата натрия) под действием силы тяжести эритроциты оседают на дно. Процесс оседания (седиментации) эритроцитов можно разделить на 3 фазы, которые происходят с разной скоростью:
- Первая фаза:медленное оседание отдельных эритроцитов.
- Вторая фаза:образование агрегатов эритроцитов (т.н. «монетные столбики»), ускорение оседания.
- Третья фаза:образование множества агрегатов эритроцитов и их «упаковка», оседание замедляется и постепенно прекращается.
Показатель СОЭ меняется в зависимости от множества физиологических и патологических факторов. Значения СОЭ у женщин несколько выше, чем у мужчин. Изменения белкового состава крови при беременности ведут к повышению СОЭ в этот период. Снижение содержания эритроцитов в крови (анемия) приводит к ускорению СОЭ и, напротив, повышение содержания эритроцитов в крови замедляет скорость седиментации. В течение дня возможно колебание значений, максимальный уровень отмечается в дневное время.
Основным фактором, влияющим на образование «монетных столбиков» при оседании эритроцитов является белковый состав плазмы крови. Острофазные белки, адсорбируясь на поверхности эритроцитов, снижают их заряд и отталкивание друг от друга, способствуют образованию монетных столбиков и ускоренному оседанию эритроцитов. Повышение уровнябелков острой фазы, например, С-реактивного белка, гаптоглобина, альфа-1-антитрипсина и др., при остром воспалении приводит к повышению СОЭ.
При острых воспалительных и инфекционных процессах изменение СОЭ отмечается через 24 ч после повышения температуры и увеличения числа лейкоцитов. При хроническом воспалении повышение СОЭ обусловлено увеличением концентрации фибриногена и иммуноглобулинов. Определение СОЭ в динамике, в комплексе с другими тестами, используют в контроле эффективности лечения воспалительных и инфекционных заболеваний.
Методы определения СОЭ
Метод Панченкова
- Капилляр Панченкова.Стандартный стеклянный капилляр для определения СОЭ: длина – 172 мм; наружный диаметр – 5 мм; диаметр отверстия – 1,0 мм; четкая коричневая градуировка от 0 до 10 см, шаг шкалы – 1,0 мм; верхнее деление шкалы отмечено «0» и буквой «К» (кровь), напротив деления 50 имеется буква «Р» (реактив).
- Прибор ПР-3 (СОЭ-метр, аппарат Панченкова) –представляет собой пластиковый штатив с гнездами для установки 20 капилляров.
- Время измерения: один час.
Процедура определения:
- Подготовить 5% раствор цитрата натрия и внести на часовое стекло.
- Промыть капилляр 5% раствором цитрата натрия.
- Произвести забор капиллярной крови в промытый капилляр.
- Перенести кровь из капилляра на часовое стекло.
- Повторить шаги 3 и 4.
- Перемешать кровь с цитратом натрия на часовом стекле и вновь заполнить капилляр.
- Установить капилляр в штатив Панченкова. Запустить таймер для каждого капилляра отдельно.
- Через 1 час определить СОЭ по высоте столба прозрачной плазмы.
Метод Вестергрена
- Стандартные размеры капилляра: длина: 300 мм± 1,5 мм;диаметр: 2,55 мм± 0,15 мм
- Стандартные температура (18-25˚С) и условия (не позже 2 ч после взятия крови).
- Время измерения: один час.
Процедура определения:
- При взятии пробы венозной крови смешать ее с 5% раствором цитрата натрия в соотношении 4+1.
- Произвести забор капиллярной крови в капилляр Вестергрена.
- Установить капилляр вертикально. Запустить таймер для каждого капилляра отдельно.
- Через 1 час определить СОЭ по высоте столба прозрачной плазмы.
Модифицированный метод Вестергрена: Система Ves-matic (Diesse – Италия).
- Объем пробы: 1 мл венозной крови
- Пластиковые пробирки (вакуумные и простые)
- Безопасность оператора (измерение выполняется в закрытых пробирках)
- Автоматическое перемешивание
- Измерение за 20 минут (10 минбыстрый режим)
- Угол наклона пробирки: 18°
- Температурная коррекция результатов по номограмме Менли
- Простота использования.
- Объективность измерения (результат не зависит от оператора).
- Встроенный термопринтер.
Процедура определения:
- Произвести забор венозной крови до метки в пробирку (вакуумную или простую), содержащую раствор цитрата натрия.
- Перемешать кровь с цитратом натрия в пробирке.
- Установить пробирки в анализатор СОЭ Ves-matic.
- Нажать кнопку Test для запуска измерения.
- Через 20 (или 10) минут анализатор автоматически определит СОЭ для 10, 20 или 30 проб.
Использование для определения СОЭ анализаторов серии Ves-matic позволяет не только повысить скорость анализа, но и существенно повышает точность полученных результатов, т.к., полностью исключает влияние субъективного фактора на результат определения.
Анализаторы серии Ves-matic, производитель Diesse – Италия
VES-MATIC 20 – Стационарный настольный автоматический СОЭ-метр на 20 позиций с перемешиванием проб крови и измерением результатов. Оптимальный прибор для средних и больших лабораторий. Кровь, собранная в специальные пробирки, тщательно перемешивается прибором. Ротор прибора вращается с заданной скоростью (1 поворот каждые 1,5 с). Посредством цифрового датчика прибор автоматически определяет уровень осаждения эритроцитов, данные рассчитываются и выводятся на принтер и дисплей. Время измерения 20 минут. Производительность: до 60 тестов в час. Память на 3 последних цикла измерения (до 60 тестов). 4 режима измерения. Клавиатура: 12 функциональных клавиш.
Сравнение значений СОЭ (мм/час), определенных двумя методами
Результаты сравнения результатов определения СОЭ методом Панченкова и Вестергрена представлены в Таблице 1 и на Рис. 1-2. Как видно из представленных данных, методы Панченкова и Вестергрена дают сходные результаты лишь в диапазоне нормальных значений СОЭ (рис.1, табл.1). В области высоких значений метод Вестергрена показывает более высокие уровни СОЭ (Табл.1).
Таблица 1. Пример результатов СОЭ у одних и тех же пациентов, определенных методом Панченкова и методом Вестергрена
метод Панченкова |
метод Вестергрена |
2 |
2 |
4 |
4 |
6 |
6 |
8 |
8 |
10 |
10 |
14 |
15 |
16 |
17 |
18 |
20 |
20 |
22 |
30 |
35 |
40 |
50 |
50 |
65 |
60 |
80 |
70 |
100 |
80 |
120 |
— |
140 |
— |
160 |
Факторы, влияющие на определение СОЭ:
- Гематокрит
- Температура анализа
- Время хранения пробы (не более 4 ч при комнатной температуре)
- Антикоагулянт (рекомендован цитрат Na)
- Вертикальность пробирки / капилляра
- Длина пробирки / капилляра
- Внутренний диаметр пробирки / капилляра
- Вязкость плазмы
- Степень разведения крови (рекомендуемое разведение 1:5)
Таблица 2. Диапазон нормальных значений СОЭ
Группы пациентов |
Значение СОЭ, мм/час |
||
метод Панченкова |
метод Вестергрена |
||
Дети (до 17 лет) |
4 – 11 |
2 – 10 |
|
Мужчины |
(17–50 лет) |
2 – 10 |
2 – 15 |
(>50 лет) |
2 – 20 |
||
Женщины |
(17–50 лет) |
2 – 15 |
2 – 20 |
(>50 лет) |
2 – 30 |
Показания к назначению анализа:
- Воспалительные заболевания;
- Инфекции;
- Подозрение на новообразования;
- Скрининговое обследование при профилактических осмотрах.
Измерение СОЭ необходимо рассматривать как скрининговый тест, который не имеет специфичности для какого-то определенного заболевания и может использоваться в качестве вспомогательного диагностического теста.
Причины изменения СОЭ
Повышение (ускорение СОЭ):
Физиологическое
- Пожилой возраст;
- У женщин во время беременности, менструации, в послеродовом периоде.
Патологическое
- Воспалительные процессы;
- Интоксикации;
- Острые и хронические инфекции (пневмония, остеомиелит, туберкулез, сифилис);
- Аутоиммунные заболевания (коллагенозы);
- Инфаркт миокарда;
- Травмы, переломы костей;
- Состояние после шока, операционных вмешательств;
- Анемии, состояние после кровопотери;
- Заболевания почек (хронический нефрит, нефротический синдром);
- Злокачественные опухоли;
- Парапротеинемии (миеломная болезнь, макроглобулинемия Вальденстрема);
- Гиперфибриногенемия;
- Прием лекарственных препаратов (эстрогенов, глюкокортикоидов)
Понижение (замедление СОЭ):
- Голодание, снижение мышечной массы;
- Прием кортикостероидов;
- Беременность (особенно 1 и 2 семестр);
- Вегетарианская диета;
- Гипергидратация;
- Миодистрофии.
В России и СНГ для определения СОЭ широко используется метод Панченкова, который имеет ряд недостатков:
- возможность использовать для анализа только капиллярную кровь,
- необходимость подготовки антикоагулянта и мытья капилляров,
- отсутствие автоматических приборов для измерения.
- субъективность ручного метода
В западных странах в широко используется метод Вестергрена. В 1977 г. Международный комитет по стандартизации в гематологии (ICSH – InternationalCommitteeforStandardizationinHematology) рекомендовал применение метода Вестергрена по всему миру. Обычно определение СОЭ производится с помощью автоматических анализаторов, в частности с помощью системы Ves-matic (Diesse, Италия). В России они появились в 2005 году и сталиочень популярными.
Преимущества метода Вестергрена с помощью системы Ves-matic:
- Сокращение времени анализа в 2 – 6 раз (10 или 20 минут).
- Точность и объективность (на результат анализа не влияет человеческий фактор).
- Безопасность – применение стандартных одноразовых пробирок с цитратом натрия (оптимальное соотношение кровь/цитрат). уменьшение контакта с кровью. Нет необходимости мыть капилляры.
- Удобствои простота выполнения.
- Стандартизованное перемешивание – количество переворачиваний пробирок – 40 раз.
- Стандартизация выполнения анализа (коррекция результатов в зависимости от температуры по номограмме Менли).
- Возможность использования считывателя штрих-кода (ускорение регистрации и устранение ошибок).
- Возможность подключения к информационной сети.
Литература
- Луговская С.А. и др. «Лабораторная гематология», 2006, «Триада», г.Тверь.
- InternationalCouncilforStandardizationinHaematology (Expert Panel on Blood Rheology).ICSH recommendations for measurement of erythrocyte sedimentation rate. J Clin Pathol 1993; 46:198 – 203.
- Tietz N.W. et al. Clinical Guide to Laboratory Tests, 3rd ed. AACC 1995.
- F.C Prischl and J.D. Schwarzmeier. Automated Determination of the Erythrocyte Sedimentation Rate. I. Med. Univ. — Klinik, Lazarettgasse 14, A-1090 Vienna, Austria.