Предельная ошибка выборки при уровне вероятности превышающем 0 7

Работа по теме: 11-12. Выборка. Глава: 5. Предельная ошибка выборки.. ВУЗ: МГТУ.

В
конкретной выборке действительная
ошибка может быть больше средней, меньше
средней или равна средней. Каждое из
этих расхождений имеет определенную
вероятность.

Предельная
ошибка выборки

– это максимальное различие между
выборочной и генеральной характеристикой,
гарантируемое с определенной вероятностью.

где
t – нормированное
отклонение, зависящее от вероятности,
определяемое как аргумент интегральной
функции Лапласа
Ф(t).
Определение предельной ошибки выборки
основано на теореме Чебышева –Ляпунова.

Теорема
Чебышева-Ляпунова:

С

вероятностью сколь угодно близкой к
единице можно утверждать, что при
достаточно большом объеме выборки и
ограниченной дисперсии выборочная
характеристика будет очень мало
отличаться от генеральной характеристики.

З

начение
этой функций находиться в таблице,
поэтому, зная вероятность P
=Ф(t),
можно определить аргумент
t.

Наиболее часто используемые значения
приведем в таблице:

Р(t)

0,683

0,95

0,954

0,99

0,997

t

1

1,96

2

2,58

3

Чем
больше вероятность, с которой гарантируются
результаты, тем больше будет предельная
ошибка и менее надежные результаты
выборки. Поэтому
в экономических исследованиях используется
Р=0,95 и Р=0,954.

6. Распределение результатов выборки на генеральную совокупность

Конечным
итогом выборочного обследования
является оценка неизвестных генеральных
характеристик на основе данных выборки.

По
этой оценке строится доверительный
интервал для генеральной средней

и
генеральной доли.

Ошибка
выборки зависит не только от вероятности,
но и от того, как было организовано
выборочное обследование.

Выделим
основные
этапы

выборочного обследования:

  1. определение
    объекта исследования;

  2. постановка
    цели и задач;

  3. определение
    процедуры отбора, проведение отбора
    единиц в выборку;

  4. подготовка
    кадров и инструментария;

  5. сбор
    данных;

  6. определение
    выборочных характеристик, ошибок
    выборки;

  7. оценка
    доверительных интервалов;

  8. о

    ценка
    возможностей распространения результатов
    на генеральную совокупность. Для этого
    определяют относительные ошибки
    выборки:

Если
эти ошибки не превышают заранее заданной
величины, то результаты можно распространить
на генеральную совокупность, если
превышает, то изменить процедуру отбора
или методы ремонта выборки.

9.
Распространение результатов. Для этого
применяются следующие способы:

1.
Прямой пересчет, т.е.
границы доверительного интервала
умножаются на объем генеральной
совокупности.

2.
Способ поправочных коэффициентов –
используется в тех случаях, когда
корректируются данные сплошного
обследования. По выборке рассчитывается
поправочный коэффициент, и данные
сплошного обследования исправляются
на этот коэффициент.

7. Определение необходимой численности выборки.

При
проведении выборочного обследования
возникает вопрос, сколько нужно отобрать
единиц в выборку, чтобы результаты
обследования удовлетворяли заранее
заданным величинам, т.е. предельная
ошибка не превышала определенного
значения. Для определения необходимой
численности выборки применяются формулы,
которые выводятся из предельной ошибки.

Возьмем
собственно-случайный повторный отбор:

______

x
= t∙μx
= t∙√Sx2
/ n

=> n

=


t2·
S
x2

x2

Для
бесповторного отбора:

___________

x
= t·√Sx
/ n·(1-n/N) =>
t2·N·Sx2

n
=

____________

x2·N
+ t
2·
S
x2

Для
других способов отбора формулы необходимой
численности выборки аналогичны,
изменяется только дисперсия.

Значения
дисперсии при определении необходимой
численности выборки достаточно часто
бывает неизвестно. В этом случае ее
определяют:

  1. из
    предыдущего обследования на данную
    тему;

  2. рассчитывают
    приближенно Sx2≈(R/6)2
    по пробному обследованию малого
    количества единиц;

  3. неизвестную
    дисперсию для доли берут равной 0,25.

Области
применения выборочного метода
обследования.

В
настоящее время выборочный метод сбора
данных является одним из наиболее часто
используемых. Выборочное наблюдение
используется для:

  1. статистического
    оценивания и проверки различных гипотез;

  2. при
    контроле технологических процессов и
    показателей качества продукции;

  3. при
    различных отраслевых обследованиях;

  4. при
    решении задач в сфере предпринимательства.

Пример:
Имеются данные выборочного
собственно-случайного бесповторного
обследования 30% работников коммерческого
банка об их стаже работы.
Результаты
обследования представлены в таблице.

Стаж
работы, лет

До
3

3-5

5-7

7-9

Свыше
9

Итого

Число
работников, чел.

10

48

28

10

4

100

С
вероятностью 0,997 определить возможные
пределы среднего стажа работы по всем
работникам банка, а также возможные
пределы для доли работников банка,
имеющих стаж работы менее 5 лет.

Решение:
1
Для
расчетов построим расчетную таблицу

Стаж,
лет

Число
работ.,

fi

Середина

xi

xi*fi

_

(xi

x)

_

(xi

x)2

_

(xi

x)2*fi

До
3

10

2

20


3

9

90

3-5

48

4

192


1

1

48

5-7

28

6

168

1

1

28

7-9

10

8

80

3

9

90

Свыше
9

4

10

40

5

25

100

Итого

100

500

356

С

редний
стаж работников равен

Д

исперсия
равна

Средн­­еквадратическое
отклонение равно 
= 2
=
3,56
= 1,887 лет.

Определим
ошибки выборки. Так как вероятность Р=
0,997, то коэффициент доверия t
= 3.
Рассчитаем выборочную долю для признака
– стаж работы менее 5 лет. Так как данный
стаж работы имеют 1 и 2 группы работников
в выборке, то w
= m/n = (10+48)/100 = 0.58.
Дисперсия выборочной доли 2w
= w*(1 – w) = 0,58*0,42 =0,2434.

Определим
предельную ошибку выборки для среднего

О

пределим
предельную ошибку выборки для доли

Построим
доверительный интервал для среднего.

П

остроим
доверительный интервал для выборочной
доли

В

ывод
2.
С
вероятностью 0,997 можно утверждать, что
средний стаж работы всех работников
банка находится в пределах от 4,526 до
5,474 лет, а доля всех работников банка,
имеющих стаж работы менее 5 лет, находится
в пределах от 45,6% до 70,4%.

7

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    10.02.201516.87 Mб211321388933_cifrovaya_obrabotka_izobrageniy.djvu

Предельная ошибка выборки равна t-кратному числу средних ошибок выборки: 

    [mathop Delta nolimits_x  = t cdot mu  = t cdot sqrt {frac{{sigma _x^2}}{n}left( {1 - frac{n}{N}} right)} ;; to mathop sigma nolimits_x  = sqrt {frac{{sum {{{mathop xnolimits_i }^2} cdot {f_i}} }}{{sum {{f_i}} }} - {{bar x}^2}} ]

μ – средняя ошибка выборки, рассчитанная с учетом поправки, на которую производится корректировка в случае бесповторного отбора;

t – коэффициент доверия, который находят при заданном уровне вероятности. Так для Р=0,997 по таблице значений интегральной функции Лапласа t=3

Величина предельной ошибки выборки может быть установлена с определенной вероятностью. Вероятность появления такой ошибки, равной или больше утроенной средней ошибки выборки, крайне мала и равна 0,003 (1–0,997). Такие маловероятные события считаются практически невозможными, а потому вероятность того, что эта разность превысит трехкратную величину средней ошибки, определяет уровень ошибки и составляет не более 0,3%.

Определение предельной ошибки выборки для доли

Условие:

Из готовой продукции, в порядке собственно-случайного бесповторного отбора, было отобрано 200 ц, из которых 8 ц оказалось испорчено. Можно ли полагать с вероятностью 0,954, что потери продукции не превысят 5%, если выборка составляет 1:20 часть ее размера?

Дано:

  • n =200ц – объем выборки (выборочная совокупность)
  • m =8ц  —  кол-во испорченной продукции
  • n:N = 1:20 – пропорция отбора, где N- объем совокупности (генеральная совокупность)
  • Р = 0,954 – вероятность

Определить: ∆ω< 5% (согласуется ли то, что потери продукции не превысят 5%)

Решение:

1. Определим выборочную долю-такую долю составляет испорченная продукция в выборочной совокупности:

2. Определим объем генеральной совокупности:

N=n*20=200*20=4000(ц) – количество всей продукции.                                           

3. Определим предельную ошибку выборки для доли продукции, обладающей соответствующим признаком, т.е. для доли испорченной продукции: Δ = t*μ,  где µ– средняя ошибка доли, обладающей альтернативным признаком, с учетом поправки, на которую производится корректировка в случае бесповторного отбора; t – коэффициент доверия, который находят при заданном уровне вероятности Р=0,954 по таблице значений интегральной функции Лапласа: t=2

4. Определим границы доверительного интервала для доли альтернативного признака в генеральной совокупности, т.е. какую долю испорченная продукция составит в общем объеме: поскольку доля испорченной продукции в выборочном объеме составляет ω = 0,04, то с учетом предельной ошибки ∆ω= 0,027 генеральная доля альтернативного признака (p) примет значения:

 ω-∆ω < p < ω+∆ω

  0.04-0.027< p < 0.04+0.027

0.013 < p < 0.067

Вывод: с вероятностью Р=0,954 можно утверждать, что доля испорченной продукции при выборке большего объема не выйдет за пределы найденного интервала (не менее 1,3% и не более 6,7%). Но остается вероятность того, что доля испорченной продукции может превысить 5% в пределах до 6,7%, что, в свою очередь, не согласуется с утверждением  ∆ω< 5%.

*******

Условие:

Менеджер магазина по опыту знает, что 25% входящих в магазин покупателей, совершают покупки. Предположим, что в магазин вошло 200 покупателей.

Определить:

  1. долю покупателей, совершивших покупки
  2. дисперсию выборочной доли
  3. среднее квадратическое отклонение выборочной доли
  4. вероятность того, что выборочная доля будет в пределах между 0,25 и 0,30

Решение:

В качестве генеральной доли (p) принимаем выборочную долю (ω) и определяем верхнюю границу доверительного интервала.
Зная критическую точку (по условию: выборочная доля будет в пределах 0,25-0,30), строим одностороннюю критическую область (правостороннюю).
По таблице значений интегральной функции Лапласа находим Z
Этот же вариант можно рассматривать и как повторный отбор при условии, если один и тот же покупатель, не купив в 1-й раз, возвращается и совершает покупку.

omega =frac{m}{n}=frac{50}{200}=0.25

sigma =sqrt{pq}=sqrt{p(1-p)}=sqrt{0.25*0.75}=0.433

sigma {}^{2}=pq=0.25*0.75=0.1875
pleq omega +Delta {}_{omega }=omega +tmu=omega +t*sqrt{frac{omega (1-omega )}{n}}=0.25+t*sqrt{frac{0.25(1-0.25)}{200}}=0.25 +t*0.0306leq 0.30

theta {}_{2}=omega +Zsqrt{frac{omega (1-omega )}{n}}=0.25+Z*sqrt{frac{0.25(1-0.25)}{200}}=0.25+Z*0.0306=0.30

Z=1.634Rightarrow P=89.68

В случае, если выборку рассматривать как бесповторную, необходимо среднюю ошибку скорректировать на поправочный коэффициент. Тогда, подставив скоррекированные значения предельной ошибки для выборочной доли, при определении критической области, изменятся Z и P

mu =sqrt{frac{omega (1-omega )}{n}*(1-frac{n}{N})}=sqrt{frac{0.25*0.75}{200}*(1-frac{50}{200})}=0.0265

Z=1.885Rightarrow P=93.98

Определение предельной ошибки выборки для средней

По данным 17 сотрудников фирмы, где работает 260 человек, среднемесячная заработная плата составила 360 у.е., при s=76 у.е. Какая минимальная сумма должна быть положена на счет фирмы, чтобы с вероятностью 0,98 гарантировать выдачу заработной платы всем сотрудникам?

Дано:

  • n=17 — объем выборки (выборочная совокупность)
  • N=260 — объем совокупности (генеральная совокупность)
  • Хср.=360 — выборочная средняя
  • S=76 — выборочное среднеквадратическое отклонение
  • Р = 0,98 –  доверительная вероятность

Определить: минимально допустимое значение генеральной средней (нижнюю границу доверительного интервала).

Решение:

Для определения доверительного интервала для средней, необходимо найти предельную ошибку для средней: при Р=0,98 по таблице значений интегральной функции Лапласа — t=2.33

Delta {bar{x}}_{}= t*sqrt{frac{{S}^{2}}{n}*left(1-frac{n}{N} right)}=2.33*sqrt{frac{{76}^{2}}{17}*left(1-frac{17}{260} right)}=41.52

Из условия определения границ доверительного интервала для средней:

Хср.-Δх≤Х≤ Хср.+Δх определяем нижнюю границу (левосторонняя критическая область): 360-41,52=318,48

Отсюда: 318,48*260=82804,7 у.е. — такова минимальная сумма, которая должна быть положена на счет фирмы.

11.2. Оценка результатов выборочного наблюдения

11.2.1. Средняя и предельная ошибки выборки. Построение доверительных границ для средней и доли

Средняя ошибка выборки показывает, насколько отклоняется в среднем параметр выборочной совокупности от соответствующего параметра генеральной. Если рассчитать среднюю из ошибок всех возможных выборок определенного вида заданного объема (n), извлеченных из одной и той же генеральной совокупности, то получим их обобщающую характеристику — среднюю ошибку выборки ( mu ).

В теории выборочного наблюдения выведены формулы для определения  mu , которые индивидуальны для разных способов отбора (повторного и бесповторного), типов используемых выборок и видов оцениваемых статистических показателей.

Например, если применяется повторная собственно случайная выборка, то  mu определяется как:

— при оценивании среднего значения признака;

— если признак альтернативный, и оценивается доля.

При бесповторном собственно случайном отборе в формулы вносится поправка (1 — n/N):

— для среднего значения признака;

— для доли.

Вероятность получения именно такой величины ошибки всегда равна 0,683. На практике же предпочитают получать данные с большей вероятностью, но это приводит к возрастанию величины ошибки выборки.

Предельная ошибка выборки (Delta) равна t-кратному числу средних ошибок выборки (в теории выборки принято коэффициент t называть коэффициентом доверия):

Delta =t mu.

Если ошибку выборки увеличить в два раза (t = 2), то получим гораздо большую вероятность того, что она не превысит определенного предела (в нашем случае — двойной средней ошибки) — 0,954. Если взять t = 3, то доверительная вероятность составит 0,997 — практически достоверность.

Уровень предельной ошибки выборки зависит от следующих факторов:

  • степени вариации единиц генеральной совокупности;
  • объема выборки;
  • выбранных схем отбора (бесповторный отбор дает меньшую величину ошибки);
  • уровня доверительной вероятности.

Если объем выборки больше 30, то значение t определяется по таблице нормального распределения, если меньше — по таблице распределения Стьюдента.

Приведем некоторые значения коэффициента доверия из таблицы нормального распределения.

Таблица
11.2.

Значение доверительной вероятности P 0,683 0,954 0,997
Значение коэффициента доверия t 1,0 2,0 3,0

Доверительный интервал для среднего значения признака и для доли в генеральной совокупности устанавливается следующим образом:

Итак, определение границ генеральной средней и доли состоит из следующих этапов:

Ошибки выборки при различных видах отбора

  1. Собственно случайная и механическая выборка. Средняя ошибка собственно случайной и механической выборки находятся по формулам, представленным в табл. 11.3.

Таблица
11.3.
Формулы для расчета средней ошибки собственно случайной и механической выборки ( mu )

где sigma^{2} — дисперсия признака в выборочной совокупности.

Пример 11.2. Для изучения уровня фондоотдачи было проведено выборочное обследование 90 предприятий из 225 методом случайной повторной выборки, в результате которого получены данные, представленные в таблице.

Таблица
11.4.

Уровень фондоотдачи, руб. До 1,4 1,4-1,6 1,6-1,8 1,8-2,0 2,0-2,2 2,2 и выше Итого
Количество предприятий 13 15 17 15 16 14 90

В рассматриваемом примере имеем 40%-ную выборку (90 : 225 = 0,4, или 40%). Определим ее предельную ошибку и границы для среднего значения признака в генеральной совокупности по шагам алгоритма:

  1. По результатам выборочного обследования рассчитаем среднее значение и дисперсию в выборочной совокупности:

Таблица
11.5.

Результаты наблюдения Расчетные значения
уровень фондоотдачи, руб., xi количество предприятий, fi середина интервала, xixb4 xixb4fi xixb42fi
До 1,4 13 1,3 16,9 21,97
1,4-1,6 15 1,5 22,5 33,75
1,6-1,8 17 1,7 28,9 49,13
1,8-2,0 15 1,9 28,5 54,15
2,0-2,2 16 2,1 33,6 70,56
2,2 и выше 14 2,3 32,2 74,06
Итого 90 162,6 303,62

Выборочная средняя

Выборочная дисперсия изучаемого признака

  1. Определяем среднюю ошибку повторной случайной выборки

  2. Зададим вероятность, на уровне которой будем говорить о величине предельной ошибки выборки. Чаще всего она принимается равной 0,999; 0,997; 0,954.

Для наших данных определим предельную ошибку выборки, например, с вероятностью 0,954. По таблице значений вероятности функции нормального распределения (см. выдержку из нее, приведенную в Приложении 1) находим величину коэффициента доверия t, соответствующего вероятности 0,954. При вероятности 0,954 коэффициент t равен 2.

  1. Предельная ошибка выборки с вероятностью 0,954 равна

    delta_{x}= tmu_{x}= 2*0.035 = 0.07

  2. Найдем доверительные границы для среднего значения уровня фондоотдачи в генеральной совокупности

Таким образом, в 954 случаях из 1000 среднее значение фондоотдачи будет не выше 1,88 руб. и не ниже 1,74 руб.

Выше была использована повторная схема случайного отбора. Посмотрим, изменятся ли результаты обследования, если предположить, что отбор осуществлялся по схеме бесповторного отбора. В этом случае расчет средней ошибки проводится по формуле

Тогда при вероятности равной 0,954 величина предельной ошибки выборки составит:

delta_{x}= tmu_{x}= 2*0.027 = 0.054

Доверительные границы для среднего значения признака при бесповторном случайном отборе будут иметь следующие значения:

Сравнив результаты двух схем отбора, можно сделать вывод о том, что применение бесповторной случайной выборки дает более точные результаты по сравнению с применением повторного отбора при одной и той же доверительной вероятности. При этом, чем больше объем выборки, тем существеннее сужаются границы значений средней при переходе от одной схемы отбора к другой.

По данным примера определим, в каких границах находится доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., в генеральной совокупности:

  1. рассчитаем выборочную долю.

Количество предприятий в выборке с уровнем фондоотдачи, не превышающим значения 2,0 руб., составляет 60 единиц. Тогда

m = 60, n = 90, w = m/n = 60 : 90 = 0,667;

  1. рассчитаем дисперсию доли в выборочной совокупности

sigma_{w}^{2}= w(1 - w) = 0,667(1 - 0,667) = 0,222;

  1. средняя ошибка выборки при использовании повторной схемы отбора составит

Если предположить, что была использована бесповторная схема отбора, то средняя ошибка выборки с учетом поправки на конечность совокупности составит

  1. зададим доверительную вероятность и определим предельную ошибку выборки.

При значении вероятности Р = 0,997 по таблице нормального распределения получаем значение для коэффициента доверия t = 3 (см. выдержку из нее, приведенную в Приложении 1):

delta_{x}= tmu_{x}= 3*0.04 = 0.12

  1. установим границы для генеральной доли с вероятностью 0,997:

Таким образом, с вероятностью 0,997 можно утверждать, что в генеральной совокупности доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., не меньше, чем 54,7%, и не больше 78,7%.

  1. Типическая выборка. При типической выборке генеральная совокупность объектов разбита на k групп, тогда

N1 + N2 + … + Ni + … + Nk = N.

Объем извлекаемых из каждой типической группы единиц зависит от принятого способа отбора; их общее количество образует необходимый объем выборки

n1 + n2 + … + ni + … + nk = n.

Существуют следующие два способа организации отбора внутри типической группы: пропорциональной объему типических групп и пропорциональной степени колеблемости значений признака у единиц наблюдения в группах. Рассмотрим первый из них, как наиболее часто используемый.

Отбор, пропорциональный объему типических групп, предполагает, что в каждой из них будет отобрано следующее число единиц совокупности:

n = ni · Ni/N

где ni — количество извлекаемых единиц для выборки из i-й типической группы;

n — общий объем выборки;

Ni — количество единиц генеральной совокупности, составивших i-ю типическую группу;

N — общее количество единиц генеральной совокупности.

Отбор единиц внутри групп происходит в виде случайной или механической выборки.

Формулы для оценивания средней ошибки выборки для среднего и доли представлены в табл. 11.6.

Таблица
11.6.
Формулы для расчета средней ошибки выборки (mu) при использовании типического отбора, пропорционального объему типических групп

Здесь sigma^{2} — средняя из групповых дисперсий типических групп.

Пример 11.3. В одном из московских вузов проведено выборочное обследование студентов с целью определения показателя средней посещаемости вузовской библиотеки одним студентом за семестр. Для этого была использована 5%-ная бесповторная типическая выборка, типические группы которой соответствуют номеру курса. При отборе, пропорциональном объему типических групп, получены следующие данные:

Таблица
11.7.

Номер курса Всего студентов, чел., Ni Обследовано в результате выборочного наблюдения, чел., ni Среднее число посещений библиотеки одним студентом за семестр, xi Внутригрупповая выборочная дисперсия, sigma_{i}^{2}
1 650 33 11 6
2 610 31 8 15
3 580 29 5 18
4 360 18 6 24
5 350 17 10 12
Итого 2 550 128 8

Число студентов, которое необходимо обследовать на каждом курсе, рассчитаем следующим образом:

  • общий объем выборочной совокупности:

    n = 2550/130*5 =128 (чел.);

  • количество единиц, отобранных из каждой типической группы:

аналогично для других групп:

n2 = 31 (чел.);

n3 = 29 (чел.);

n4 = 18 (чел.);

n5 = 17 (чел.).

Проведем необходимые расчеты.

  1. Выборочная средняя, исходя из значений средних типических групп, составит:

  2. Средняя из внутригрупповых дисперсий

  3. Средняя ошибка выборки:

    С вероятностью 0,954 находим предельную ошибку выборки:

    delta_{x} = tmu_{x} = 2*0.334 = 0.667

  4. Доверительные границы для среднего значения признака в генеральной совокупности:

Таким образом, с вероятностью 0,954 можно утверждать, что один студент за семестр посещает вузовскую библиотеку в среднем от семи до девяти раз.

  1. Малая выборка. В связи с небольшим объемом выборочной совокупности те формулы для определения ошибок выборки, которые использовались нами ранее при «больших» выборках, становятся неподходящими и требуют корректировки.

Среднюю ошибку малой выборки определяют по формуле

Предельная ошибка малой выборки:

delta_{MB}= tmu_{MB}

Распределение значений выборочных средних всегда имеет нормальный закон распределения (или приближается к нему) при п > 100, независимо от характера распределения генеральной совокупности. Однако в случае малых выборок действует иной закон распределения — распределение Стьюдента. В этом случае коэффициент доверия находится по таблице t-распределения Стьюдента в зависимости от величины доверительной вероятности Р и объема выборки п. В Приложении 1 приводится фрагмент таблицы t-распределения Стьюдента, представленной в виде зависимости доверительной вероятности от объема выборки и коэффициента доверия t.

Пример 11.4. Предположим, что выборочное обследование восьми студентов академии показало, что на подготовку к контрольной работе по статистике они затратили следующее количество часов: 8,5; 8,0; 7,8; 9,0; 7,2; 6,2; 8,4; 6,6.

Оценим выборочные средние затраты времени и построим доверительный интервал для среднего значения признака в генеральной совокупности, приняв доверительную вероятность равной 0,95.

  1. Среднее значение признака в выборке равно

  2. Значение среднего квадратического отклонения составляет

  3. Средняя ошибка выборки:

  4. Значение коэффициента доверия t = 2,365 для п = 8 и Р = 0,95 .
  5. Предельная ошибка выборки:

    delta_{MB}= tmu_{MB}=2,365*0,344 = 0,81356 ~ 0,81 (ч)

  6. Доверительный интервал для среднего значения признака в генеральной совокупности:

То есть с вероятностью 0,95 можно утверждать, что затраты времени студента на подготовку к контрольной работе находятся в пределах от 6,9 до 8,5 ч.

11.2.2. Определение численности выборочной совокупности

Перед непосредственным проведением выборочного наблюдения всегда решается вопрос, сколько единиц исследуемой совокупности необходимо отобрать для обследования. Формулы для определения численности выборки выводят из формул предельных ошибок выборки в соответствии со следующими исходными положениями (табл. 11.7):

  1. вид предполагаемой выборки;
  2. способ отбора (повторный или бесповторный);
  3. выбор оцениваемого параметра (среднего значения признака или доли).

Кроме того, следует заранее определиться со значением доверительной вероятности, устраивающей потребителя информации, и с размером допустимой предельной ошибки выборки.

Таблица
11.8.
Формулы для определения численности выборочной совокупности

Примечание: при использовании приведенных в таблице формул рекомендуется получаемую численность выборки округлять в большую сторону для обеспечения некоторого запаса в точности.

Пример 11.5. Рассчитаем, сколько из 507 промышленных предприятий следует проверить налоговой инспекции, чтобы с вероятностью 0,997 определить долю предприятий с нарушениями в уплате налогов. По данным прошлого аналогичного обследования величина среднего квадратического отклонения составила 0,15; размер ошибки выборки предполагается получить не выше, чем 0,05.

При использовании повторного случайного отбора следует проверить

При бесповторном случайном отборе потребуется проверить

Как видим, использование бесповторного отбора позволяет проводить обследование гораздо меньшего числа объектов.

Пример 11.6. Планируется провести обследование заработной платы на предприятиях отрасли методом случайного бесповторного отбора. Какова должна быть численность выборочной совокупности, если на момент обследования в отрасли число занятых составляло 100 000 чел.? Предельная ошибка выборки не должна превышать 100 руб. с вероятностью 0,954. По результатам предыдущих обследований заработной платы в отрасли известно, что среднее квадратическое отклонение составляет 500 руб.

Следовательно, для решения поставленной задачи необходимо включить в выборку не менее 100 человек.

Понравилась статья? Поделить с друзьями:
  • Предполагает ли врачебная ошибка недостаточную квалификацию врача при оказании медицинской помощи
  • Предельная ошибка выборки знак
  • Предохранитель ошибочного действия
  • Предельная ошибка выборки дает возможность определить
  • Предотвращение ошибок пока екэ