При проведении эксперимента могут быть допущены ошибки

Работа по теме: Лекция Эксперимент в социологии. Глава: 5. Ошибки и трудности в эксперименте. ВУЗ: СГАКИ.

При проведении
эксперимента иногда допускают ошибки
и возникают определенные трудности:

  • эксперимент
    производится для получения информации,
    которая может быть добыта иными, более
    простыми способами;

  • за эксперимент
    выдается включенное или стандартизиро­ванное
    невключенное наблюдение;

  • экспериментальная
    ситуация четко не определена, в силу
    чего эксперимент проводится с нарушением
    его условий;

  • субъективные
    оценки экспериментальной ситуации
    преоб­ладают над объективными
    характеристиками;

  • неправильно
    построена теоретическая система
    переменных, перепуганы причины и
    следствия;

  • нет органической
    связи проведенного эксперимента с
    це­лью, задачами и гипотезами
    исследования;

  • сформулированные
    гипотезы не отражают проблемных
    си­туаций, существенных зависимостей
    в изучаемом объекте;

  • допущена
    двусмысленность или иная существенная
    значи­мая неточность в формулировке
    гипотезы, вынесенной на экспериментальную
    проверку;

  • в качестве
    независимой переменной выделен фактор,
    кото­рый не может быть причиной,
    устойчивой детерминантой процес­сов,
    происходящих в изучаемом явлении;

  • экспериментальный
    фактор (независимая переменная) выб­ран
    произвольно, без учета того, что он
    должен играть роль детерминанты и
    поддаваться управлению со стороны
    исследователя;

  • недооценено
    воздействие на зависимые переменные
    факто­ров, не входящих в независимую
    переменную;

  • связи между
    зависимой и независимой переменными
    носят случайный характер, неправильно
    установлена структура переменных;

  • независимая и
    зависимые переменные не нашли адекватного
    выражения в эмпирических индикаторах;

  • допущены ошибки
    в предварительном описании объекта,
    что привело к неверной эмпирической
    интерпретации перемен­ных, выбору
    неадекватных показателей;

  • были допущены
    ошибки при формировании эксперимен­тальных
    и контрольных групп. В ходе эксперимента
    обнаружилось значительное различие
    групп, что вызвало сомнение в возможно­сти
    сравнивать эти группы по составу
    переменных;

  • для экспериментальной
    группы трудно подобрать контрольную;

  • в ходе эксперимента
    выяснились такие важные свойства
    экспериментальной группы, которые не
    были известны до его начала;

  • контрольная группа
    не представляет собой аналога
    экспериментальной группы по существенным
    для исследования параметрам;

  • не поддается
    нейтрализации действие побочных
    факторов, трудно создать экспериментальную
    ситуацию;

  • не обеспечен
    достаточный уровень измерения и контроля
    за состоянием переменных;

  • при анализе данных
    использовался логико-математический
    аппарат, который неприменим к изучаемому
    классу явлений;

  • при анализе
    результатов эксперимента социолог
    переоцени­вает воздействие независимой
    на зависимую переменную, недо­учитывает
    влияние ряда случайных факторов на
    изменения в эк­спериментальной
    ситуации;

  • инструментарий
    эксперимента нацелен лишь на фиксацию
    определенных данных (по типу инструмента
    наблюдения), а не на соблюдение чистоты
    эксперимента;

  • использованные
    при анализе полученной информации
    статистические методы не соответствуют
    природе причинно-следственных связей;

  • выводы
    экспериментаторов подстраиваются
    (подгоняются) под гипотезу без достаточных
    на то оснований;

  • эксперимент
    проводится над людьми, которые не желают
    этого и сопротивляются ему;

  • среди организаторов
    экспериментальных работ оказались
    люди, не заинтересованные в положительных
    результатах эксперимента;

  • в ходе эксперимента
    возникли конфликты среди участни­ков
    по поводу участия в эксперименте;

  • коллектив
    отказывается принять участие в
    эксперименте, мо­тивируя свой отказ
    тем, что ранее уже приходилось участвовать
    в эксперименте и ничего кроме лишних
    забот это участие не принесло.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Изучение всех влияющих на исследуемый объект факторов одновременно
провести невозможно, поэтому в эксперименте рассматривается их ограниченное
число. Остальные активные факторы стабилизируются, т.е. устанавливаются на
каких-то одинаковых для всех опытов уровнях.

Некоторые факторы не могут быть обеспечены системами стабилизации
(например, погодные условия, самочувствие оператора и т.д.), другие же
стабилизируются с какой-то погрешностью (например, содержание какого-либо
компонента в среде зависит от ошибки при взятии навески и приготовления
раствора). Учитывая также, что измерение параметра у осуществляется
прибором, обладающим какой-то погрешностью, зависящей от класса точности
прибора, можно прийти к выводу, что результаты повторностей одного и того же
опыта ук будут приближенными и должны
отличаться один от другого и от истинного значения выхода процесса.
Неконтролируемое, случайное изменение и множества других влияющих на процесс
факторов вызывает случайные отклонения измеряемой величины ук
от ее истинного значения – ошибку опыта.

Каждый эксперимент содержит элемент неопределенности вследствие
ограниченности экспериментального материала. Постановка повторных (или
параллельных) опытов не дает полностью совпадающих результатов, потому что
всегда существует ошибка опыта (ошибка воспроизводимости). Эту ошибку и нужно
оценить по параллельным опытам. Для этого опыт воспроизводится по возможности в
одинаковых условиях несколько раз и затем берется среднее арифметическое всех
результатов. Среднее арифметическое у равно сумме всех
n отдельных результатов, деленной на
количество параллельных опытов
n:

Отклонение результата любого опыта от среднего арифметического
можно представить как разность
y2
, где
y2 – результат отдельного
опыта. Наличие отклонения свидетельствует об изменчивости, вариации значений
повторных опытов. Для измерения этой изменчивости чаще всего используют
дисперсию.

Дисперсией называется среднее значение квадрата отклонений
величины от ее среднего значения. Дисперсия обозначается s2 и
выражается формулой:

где (n-1)
– число степеней свободы, равное количеству опытов минус единица. Одна степень
свободы использована для вычисления среднего.

Корень квадратный из дисперсии, взятый с положительным знаком,
называется средним квадратическим отклонением, стандартом или квадратичной
ошибкой:

Ошибка опыта является суммарной величиной, результатом многих
ошибок: ошибок измерений факторов, ошибок измерений параметра оптимизации и др.
Каждую из этих ошибок можно, в свою очередь, разделить на составляющие.

Все ошибки принято разделять на два класса: систематические и
случайные (рисунок 1).

Систематические ошибки порождаются причинами, действующими
регулярно, в определенном направлении. Чаще всего эти ошибки можно изучить и
определить количественно. Систематическая ошибка – это ошибка,
которая остаётся постоянно или закономерно изменяется при повторных измерениях
одной и той же величины. Эти ошибки появляются вследствие неисправности
приборов, неточности метода измерения, какого либо упущения экспериментатора,
либо использования для вычисления неточных данных. Обнаружить систематические
ошибки, а также устранить их во многих случаях нелегко. Требуется тщательный
разбор методов анализа, строгая проверка всех измерительных приборов и
безусловное выполнение выработанных практикой правил экспериментальных работ.
Если систематические ошибки вызваны известными причинами, то их можно
определить. Подобные погрешности можно устранить введением поправок.

Систематические ошибки находят, калибруя измерительные приборы и
сопоставляя опытные данные с изменяющимися внешними условиями (например, при
градуировке термопары по реперным точкам, при сравнении с эталонным прибором).
Если систематические ошибки вызываются внешними условиями (переменной
температуры, сырья и т.д.), следует компенсировать их влияние.

Случайными ошибками называются
те, которые появляются нерегулярно, причины, возникновения которых неизвестны и
которые невозможно учесть заранее. Случайные ошибки вызываются и объективными
причинами и субъективными. Например, несовершенством приборов, их освещением,
расположением, изменением температуры в процессе измерений, загрязнением
реактивов, изменением электрического тока в цепи. Когда случайная ошибка больше
величины погрешности прибора, необходимо многократно повторить одно и тоже
измерение. Это позволяет сделать случайную ошибку сравнимой с погрешностью
вносимой прибором. Если же она меньше погрешности прибора, то уменьшать её нет
смысла. Такие ошибки имеют значение, которое отличается в отдельных измерениях.
Т.е. их значения могут быть неодинаковыми для измерений сделанных даже в
одинаковых условиях. Поскольку причины, приводящие к случайным ошибкам
неодинаковы в каждом эксперименте, и не могут быть учтены, поэтому исключить
случайные ошибки нельзя, можно лишь оценить их значения. При многократном
определении какого-либо показателя могут встречаться результаты, которые
значительно отличаются от других результатов той же серии. Они могут быть
следствием грубой ошибки, которая вызвана невнимательностью экспериментатора.

Систематические и случайные ошибки состоят из множества
элементарных ошибок. Для того чтобы исключать инструментальные ошибки, следует
проверять приборы перед опытом, иногда в течение опыта и обязательно после опыта.
Ошибки при проведении самого опыта возникают вследствие неравномерного нагрева
реакционной среды, разного способа перемешивания и т.п.

При повторении опытов такие ошибки могут вызвать большой разброс
экспериментальных результатов.

Очень важно исключить из экспериментальных данных грубые ошибки,
так называемый брак при повторных опытах. Грубые ошибки легко
обнаружить. Для выявления ошибок необходимо произвести измерения в других
условиях или повторить измерения через некоторое время. Для предотвращения
грубых ошибок нужно соблюдать аккуратность в записях, тщательность в работе и
записи результатов эксперимента. Грубая ошибка должна быть исключена из
экспериментальных данных. Для отброса ошибочных данных существуют определённые
правила.

Например, используют критерий Стьюдента t (Р;
f):
Опыт считается бракованным, если экспериментальное значение критерия t по
модулю больше табличного значения
t (Р; f).

Если в распоряжении исследователя имеется экспериментальная оценка
дисперсии
S2(yk)
с небольшим конечным числом степеней свободы, то доверительные ошибки
рассчитываются с помощью критерий Стьюдента
t (Р;
f):

ε()
= t (
Р; f)* S(yk)/= t (Р; f)* S()

ε(yk) = t (Р; f)* S(yk)

Какие бывают погрешности

Любое число, которое выдает нам эксперимент, это результат измерения. Измерение производится прибором, и это либо непосредственные показания прибора, либо результат обработки этих показаний. И в том, и в другом случае полученный результат измерения неидеален, он содержит погрешности. И потому любой грамотный физик должен не только предъявить численный результат измерения, но и обязан указать все сопутствующие погрешности. Не будет преувеличением сказать, что численный экспериментальный результат, предъявленный без указания каких-либо погрешностей, бессмыслен.

В физике элементарных частиц к указанию погрешностей относятся исключительно ответственно. Экспериментаторы не только сообщают погрешности, но и разделяют их на разные группы. Три основных погрешности, которые встречаются чаще всего, это статистическая, систематическая и теоретическая (или модельная) погрешности. Цель такого разделения — дать четкое понимание того, что именно ограничивает точность этого конкретного измерения, а значит, за счет чего эту точность можно улучшить в будущем.

Статистическая погрешность связана с разбросом значений, которые выдает эксперимент после каждой попытки измерить величину.

(Подробнее о статистической погрешности)

Систематическая погрешность характеризует несовершенство самого измерительного инструмента или методики обработки данных, а точнее, недостаточное знание того, насколько «сбоит» инструмент или методика.

(Подробнее о систематической погрешности)

Теоретическая/модельная погрешность — это неопределенность результата измерения, которая возникла потому, что методика обработки данных была сложная и в чем-то опиралась на теоретические предположения или результаты моделирования, которые тоже несовершенны. Впрочем, иногда эту погрешность считают просто разновидностью систематических погрешностей.

(Подробнее о погрешности теории и моделирования)

Наконец, в отдельный класс, видимо, можно отнести возможные человеческие ошибки, прежде всего психологического свойства (предвзятость при анализе данных, ленность при проверке того, как результаты зависят от методики анализа). Строго говоря, они не являются погрешностью измерения, поскольку могут и должны быть устранены. Зачастую это избавление от человеческих ошибок может быть вполне формализовано. Так называемый дважды слепой эксперимент в биомедицинских науках — один тому пример. В физике частиц есть похожие приемы (см. заметку Что означает «слепой анализ» при поиске новых частиц?).

Что означает погрешность

Стандартный вид записи измеренной величины с погрешностью знаком всем. Например, результат взвешивания какого-то предмета может быть 100 ± 5 грамм. Это означает, что мы не знаем абсолютно точно массу, она может быть и 101 грамм, и 96 грамм, а может быть и все 108 грамм. Но уж точно не 60 и не 160 грамм. Мы говорим лишь, сколько нам показывают весы, и из каких-то соображений определяем тот примерный разброс, который измерение вполне могло бы дать.

Тут надо подчеркнуть две вещи. Во-первых, в бытовой ситуации значение 100 ± 5 грамм часто интерпретируется так, словно истинная масса гарантированно лежит в этом диапазоне и ни в коей мере не может быть 94 или 106 грамм. Научная запись подразумевает не это. Она означает, что истинная масса скорее всего лежит в этом интервале, но в принципе может случиться и так, что она немножко выходит за его пределы. Это становится наиболее четко, когда речь идет о статистических погрешностях; см. подробности на страничке Что такое «сигма»?.

Во-вторых, надо четко понимать, что погрешности — это не ошибки эксперимента. Наоборот, они являются показателем качества эксперимента. Погрешности характеризуют объективный уровень несовершенства прибора или неидеальности методики обработки. Их нельзя полностью устранить, но зато можно сказать, в каких рамках результату можно доверять.

Некоторые дополнительные тонкости, связанные с тем, что именно означают погрешности, описаны на странице Тонкости анализа данных.

Как записывают погрешности

Указанный выше способ записи не уточняет, что это за погрешность перед нами. В физике элементарных частиц при предъявлении результатов источники погрешностей принято уточнять. В результате запись результата может иногда принять пугающий своей сложностью вид. Таких выражений не надо бояться, просто нужно внимательно посмотреть, что там указано.

В самом простом случае экспериментально измеренное число записывается так: результат и две погрешности одна за другой:

μ = 1,33 ± 0,14 ± 0,15.

Тут вначале всегда идет статистическая, а за ней — систематическая погрешность. Если же измерение не прямое, а в чем-то опирается на теорию, которая тоже не идеально точна, то следом за ними приписывается теоретическая погрешность, например:

μ = 1,33 ± 0,14 ± 0,15 ± 0,11.

Иногда для пущей понятности явно указывают, что есть что, и тогда погрешностей может быть даже больше. Это делается вовсе не для того, чтобы запутать читателя, а с простой целью: упростить в будущем расчет уточенного результата, если какой-то один из источников погрешностей будет уменьшен. Вот пример из статьи arXiv:1205.0934 коллаборации LHCb:

Означает эта длинная строка следующее. Тут записана измеренная детектором вероятность выписанного распада Bs-мезона, которая равна [1,83 ± четыре вида погрешностей] · 10–5. В перечислении погрешностей вначале идет статистическая погрешность, потом систематическая погрешность, затем погрешность, связанная с плохим знанием некоторой величины fs/fd (неважно, что это такое), и наконец, погрешность, связанная с плохим знанием вероятности распада B0-мезона (потому что измерение Bs-распада косвенно опирается на B0-распад).

Нередки также случаи, когда погрешности в сторону увеличения и уменьшения разные. Тогда это тоже указывается явно (пример из статьи hep-ex/0403004):

И наконец, совсем экзотический случай: когда величина настолько плохо определена, что погрешность пишут не к самому числу, а к показателю степени. Например, 1012 ± 2 означает, что величина вполне может лежать где-то между 10 миллиардами и 100 триллионами. В этом случае обычно нет большого смысла разделять погрешности на разные типы.

Величина со всеми явно указанными погрешностями часто не очень удобна для работы, например при сравнении теории и эксперимента. В этом случае погрешности суммируют. Эти слова ни в коем случае нельзя воспринимать как простое сложение! Как правило, речь идет о сложении в квадратах: если все три типа погрешностей обозначить как Δxstat., Δxsys., Δxtheor., то глобальная погрешность обычно вычисляется по формуле

Стоит еще добавить, что в других разделах физики нередко используют иную запись: вместо символа «±» погрешность просто помещают в скобках. Тогда ее понимают так: это погрешность, выраженная в единицах последней значащей цифры. Например, 100(5) означает 100 ± 5, а 1,230(15) означает 1,230 ± 0,015. В этом случае принципиально важно писать правильное число нулей в результате измерения, ведь запись 1,23(15) уже будет означать вдесятеро большую погрешность: 1,23 ± 0,15.

Рис. 1. Два вида изображения погрешностей у экспериментальных данных. Слева: «усы» показывают полные погрешности; справа: засечки показывают статистические, а длина «усов» — полные погрешности

Как изображают погрешности

Когда экспериментально измеренные значения наносятся на график, погрешности тоже приходится указывать. Это обычно делают в виде «усов», как на рисунке слева. Такие «усы» с засечками относятся к глобальной погрешности. Если же хочется разделить статистические и систематические погрешности, то делают так, как показано на рисунке справа. Здесь засечки показывают только статистические погрешности, а полные усы во всю длину отвечают глобальным погрешностям. Другой вариант: выделение полных погрешностей цветом, как это показано, например, на рисунке с данными ATLAS по хиггсовскому бозону.

Наконец, когда экспериментальная точка имеет отдельные погрешности по обеим осям, то их тоже наносят, и результат выглядит в виде крестика.

Понравилась статья? Поделить с друзьями:
  • При проведении несплошного наблюдения допускаются ошибки
  • При проведении горизонтального анализа показателей во избежание ошибочных выводов следует определять
  • При пробитии чека произошла ошибка чек не пробит необходимо проверить оборудование
  • При присоединении к домену произошла следующая ошибка указанный домен не существует
  • При присоединении к домену произошла следующая ошибка указанное сетевое имя более недоступно