Программа содержит ошибку если

Существует две фундаментальные стратегии: обработка исправимых ошибок (исключения, коды возврата по ошибке, функции-обработчики) и неисправимых (assert(), abor...

Существует две фундаментальные стратегии: обработка исправимых ошибок (исключения, коды возврата по ошибке, функции-обработчики) и неисправимых (assert(), abort()). В каких случаях какую стратегию лучше использовать?

Виды ошибок

Ошибки возникают по разным причинам: пользователь ввёл странные данные, ОС не может дать вам обработчика файла или код разыменовывает (dereferences) nullptr. Каждая из описанных ошибок требует к себе отдельного подхода. По причинам ошибки делятся на три основные категории:

  • Пользовательские ошибки: здесь под пользователем подразумевается человек, сидящий перед компьютером и действительно «использующий» программу, а не какой-то программист, дёргающий ваш API. Такие ошибки возникают тогда, когда пользователь делает что-то неправильно.
  • Системные ошибки появляются, когда ОС не может выполнить ваш запрос. Иными словами, причина системных ошибок — сбой вызова системного API. Некоторые возникают потому, что программист передал системному вызову плохие параметры, так что это скорее программистская ошибка, а не системная.
  • Программистские ошибки случаются, когда программист не учитывает предварительные условия API или языка программирования. Если API требует, чтобы вы не вызывали foo() с 0 в качестве первого параметра, а вы это сделали, — виноват программист. Если пользователь ввёл 0, который был передан foo(), а программист не написал проверку вводимых данных, то это опять же его вина.

Каждая из описанных категорий ошибок требует особого подхода к их обработке.

Пользовательские ошибки

Сделаю очень громкое заявление: такие ошибки — на самом деле не ошибки.

Все пользователи не соблюдают инструкции. Программист, имеющий дело с данными, которые вводят люди, должен ожидать, что вводить будут именно плохие данные. Поэтому первым делом нужно проверять их на валидность, сообщать пользователю об обнаруженных ошибках и просить ввести заново.

Поэтому не имеет смысла применять к пользовательским ошибкам какие-либо стратегии обработки. Вводимые данные нужно как можно скорее проверять, чтобы ошибок не возникало.

Конечно, такое не всегда возможно. Иногда проверять вводимые данные слишком дорого, иногда это не позволяет сделать архитектура кода или разделение ответственности. Но в таких случаях ошибки должны обрабатываться однозначно как исправимые. Иначе, допустим, ваша офисная программа будет падать из-за того, что вы нажали backspace в пустом документе, или ваша игра станет вылетать при попытке выстрелить из разряженного оружия.

Если в качестве стратегии обработки исправимых ошибок вы предпочитаете исключения, то будьте осторожны: исключения предназначены только для исключительных ситуаций, к которым не относится большинство случаев ввода пользователями неверных данных. По сути, это даже норма, по мнению многих приложений. Используйте исключения только тогда, когда пользовательские ошибки обнаруживаются в глубине стека вызовов, вероятно, внешнего кода, когда они возникают редко или проявляются очень жёстко. В противном случае лучше сообщать об ошибках с помощью кодов возврата.

Системные ошибки

Обычно системные ошибки нельзя предсказать. Более того, они недетерминистские и могут возникать в программах, которые до этого работали без нареканий. В отличие от пользовательских ошибок, зависящих исключительно от вводимых данных, системные ошибки — настоящие ошибки.

Но как их обрабатывать, как исправимые или неисправимые?

Это зависит от обстоятельств.

Многие считают, что ошибка нехватки памяти — неисправимая. Зачастую не хватает памяти даже для обработки этой ошибки! И тогда приходится просто сразу же прерывать выполнение.

Но падение программы из-за того, что ОС не может выделить сокет, — это не слишком дружелюбное поведение. Так что лучше бросить исключение и позволить catch аккуратно закрыть программу.

Но бросание исключения — не всегда правильный выбор.

Кто-то даже скажет, что он всегда неправильный.

Если вы хотите повторить операцию после её сбоя, то обёртывание функции в try-catch в цикле — медленное решение. Правильный выбор — возврат кода ошибки и цикличное исполнение, пока не будет возвращено правильное значение.

Если вы создаёте вызов API только для себя, то просто выберите подходящий для своей ситуации путь и следуйте ему. Но если вы пишете библиотеку, то не знаете, чего хотят пользователи. Дальше мы разберём подходящую стратегию для этого случая. Для потенциально неисправимых ошибок подойдёт «обработчик ошибок», а при других ошибках необходимо предоставить два варианта развития событий.

Обратите внимание, что не следует использовать подтверждения (assertions), включающиеся только в режиме отладки. Ведь системные ошибки могут возникать и в релизной сборке!

Программистские ошибки

Это худший вид ошибок. Для их обработки я стараюсь сделать так, чтобы мои ошибки были связаны только с вызовами функций, то есть с плохими параметрами. Прочие типы программистских ошибок могут быть пойманы только в runtime, с помощью отладочных макросов (assertion macros), раскиданных по коду.

При работе с плохими параметрами есть две стратегии: дать им определённое или неопределённое поведение.

Если исходное требование для функции — запрет на передачу ей плохих параметров, то, если их передать, это считается неопределённым поведением и должно проверяться не самой функцией, а оператором вызова (caller). Функция должна делать только отладочное подтверждение (debug assertion).

С другой стороны, если отсутствие плохих параметров не является частью исходных требований, а документация определяет, что функция будет бросать bad_parameter_exception при передаче ей плохого параметра, то передача — это хорошо определённое поведение (бросание исключения или любая другая стратегия обработки исправимых ошибок), и функция всегда должна это проверять.

В качестве примера рассмотрим получающие функции (accessor functions) std::vector<T>: в спецификации на operator[] говорится, что индекс должен быть в пределах валидного диапазона, при этом at() сообщает нам, что функция кинет исключение, если индекс не попадает в диапазон. Более того, большинство реализаций стандартных библиотек обеспечивают режим отладки, в котором проверяется индекс operator[], но технически это неопределённое поведение, оно не обязано проверяться.

Примечание: необязательно бросать исключение, чтобы получилось определённое поведение. Пока это не упомянуто в исходных условиях для функции, это считается определённым. Всё, что прописано в исходных условиях, не должно проверяться функцией, это неопределённое поведение.

Когда нужно проверять только с помощью отладочных подтверждений, а когда — постоянно?

К сожалению, однозначного рецепта нет, решение зависит от конкретной ситуации. У меня есть лишь одно проверенное правило, которому я следую при разработке API. Оно основано на наблюдении, что проверять исходные условия должен вызывающий, а не вызываемый. А значит, условие должно быть «проверяемым» для вызывающего. Также условие «проверяемое», если можно легко выполнить операцию, при которой значение параметра всегда будет правильным. Если для параметра это возможно, то это получается исходное условие, а значит, проверяется только посредством отладочного подтверждения (а если слишком дорого, то вообще не проверяется).

Но конечное решение зависит от многих других факторов, так что очень трудно дать какой-то общий совет. По умолчанию я стараюсь свести к неопределённому поведению и использованию только подтверждений. Иногда бывает целесообразно обеспечить оба варианта, как это делает стандартная библиотека с operator[] и at().

Хотя в ряде случаев это может быть ошибкой.

Об иерархии std::exception

Если в качестве стратегии обработки исправимых ошибок вы выбрали исключения, то рекомендуется создать новый класс и наследовать его от одного из классов исключений стандартной библиотеки.

Я предлагаю наследовать только от одного из этих четырёх классов:

  • std::bad_alloc: для сбоев выделения памяти.
  • std::runtime_error: для общих runtime-ошибок.
  • std::system_error (производное от std::runtime_error): для системных ошибок с кодами ошибок.
  • std::logic_error: для программистских ошибок с определённым поведением.

Обратите внимание, что в стандартной библиотеке разделяются логические (то есть программистские) и runtime-ошибки. Runtime-ошибки — более широкое определение, чем «системные». Оно описывает «ошибки, обнаруживаемые только при выполнении программы». Такая формулировка не слишком информативна. Лично я использую её для плохих параметров, которые не являются исключительно программистскими ошибками, а могут возникнуть и по вине пользователей. Но это можно определить лишь глубоко в стеке вызовов. Например, плохое форматирование комментариев в standardese приводит к исключению при парсинге, проистекающему из std::runtime_error. Позднее оно ловится на соответствующем уровне и фиксируется в логе. Но я не стал бы использовать этот класс иначе, как и std::logic_error.

Подведём итоги

Есть два пути обработки ошибок:

  • как исправимые: используются исключения или возвращаемые значения (в зависимости от ситуации/религии);
  • как неисправимые: ошибки журналируются, а программа прерывается.

Подтверждения — это особый вид стратегии обработки неисправимых ошибок, только в режиме отладки.

Есть три основных источника ошибок, каждый требует особого подхода:

  • Пользовательские ошибки не должны обрабатываться как ошибки на верхних уровнях программы. Всё, что вводит пользователь, должно проверяться соответствующим образом. Это может обрабатываться как ошибки только на нижних уровнях, которые не взаимодействуют с пользователями напрямую. Применяется стратегия обработки исправимых ошибок.
  • Системные ошибки могут обрабатываться в рамках любой из двух стратегий, в зависимости от типа и тяжести. Библиотеки должны работать как можно гибче.
  • Программистские ошибки, то есть плохие параметры, могут быть запрещены исходными условиями. В этом случае функция должна использовать только проверку с помощью отладочных подтверждений. Если же речь идёт о полностью определённом поведении, то функции следует предписанным образом сообщать об ошибке. Я стараюсь по умолчанию следовать сценарию с неопределённым поведением и определяю для функции проверку параметров лишь тогда, когда это слишком трудно сделать на стороне вызывающего.

Гибкие методики обработки ошибок в C++

Иногда что-то не работает. Пользователи вводят данные в недопустимом формате, файл не обнаруживается, сетевое соединение сбоит, в системе кончается память. Всё это ошибки, и их надо обрабатывать.

Это относительно легко сделать в высокоуровневых функциях. Вы точно знаете, почему что-то пошло не так, и можете обработать это соответствующим образом. Но в случае с низкоуровневыми функциями всё не так просто. Они не знают, что пошло не так, они знают лишь о самом факте сбоя и должны сообщить об этом тому, кто их вызвал.

В C++ есть два основных подхода: коды возврата ошибок и исключения. Сегодня широко распространено использование исключений. Но некоторые не могут / думают, что не могут / не хотят их использовать — по разным причинам.

Я не буду принимать чью-либо сторону. Вместо этого я опишу методики, которые удовлетворят сторонников обоих подходов. Особенно методики пригодятся разработчикам библиотек.

Проблема

Я работаю над проектом foonathan/memory. Это решение предоставляет различные классы выделения памяти (allocator classes), так что в качестве примера рассмотрим структуру функции выделения.

Для простоты возьмём malloc(). Она возвращает указатель на выделяемую память. Если выделить память не получается, то возвращается nullptr, то есть NULL, то есть ошибочное значение.

У этого решения есть недостатки: вам нужно проверять каждый вызов malloc(). Если вы забудете это сделать, то выделите несуществующую память. Кроме того, по своей натуре коды ошибок транзитивны: если вызвать функцию, которая может вернуть код ошибки, и вы не можете его проигнорировать или обработать, то вы тоже должны вернуть код ошибки.

Это приводит нас к ситуации, когда чередуются нормальные и ошибочные ветви кода. Исключения в таком случае выглядят более подходящим решением. Благодаря им вы сможете обрабатывать ошибки только тогда, когда вам это нужно, а в противном случае — достаточно тихо передать их обратно вызывающему.

Это можно расценить как недостаток.

Но в подобных ситуациях исключения имеют также очень большое преимущество: функция выделения памяти либо возвращает валидную память, либо вообще ничего не возвращает. Это функция «всё или ничего», возвращаемое значение всегда будет валидным. Это полезное следствие согласно принципу Скотта Майера «Make interfaces hard to use incorrectly and easy to use correctly».

Учитывая вышесказанное, можно утверждать, что вам следует использовать исключения в качестве механизма обработки ошибок. Этого мнения придерживается большинство разработчиков на С++, включая и меня. Но проект, которым я занимаюсь, — это библиотека, предоставляющая средства выделения памяти, и предназначена она для приложений, работающих в реальном времени. Для большинства разработчиков подобных приложений (особенно для игроделов) само использование исключений — исключение.

Каламбур детектед.

Чтобы уважить эту группу разработчиков, моей библиотеке лучше обойтись без исключений. Но мне и многим другим они нравятся за элегантность и простоту обработки ошибок, так что ради других разработчиков моей библиотеке лучше использовать исключения.

Так что же делать?

Идеальное решение: возможность включать и отключать исключения по желанию. Но, учитывая природу исключений, нельзя просто менять их местами с кодами ошибок, поскольку у нас не будет внутреннего кода проверки на ошибки — весь внутренний код опирается на предположение о прозрачности исключений. И даже если бы внутри можно было использовать коды ошибок и преобразовывать их в исключения, это лишило бы нас большинства преимуществ последних.

К счастью, я могу определить, что вы делаете, когда обнаруживаете ошибку нехватки памяти: чаще всего вы журналируете это событие и прерываете программу, поскольку она не может корректно работать без памяти. В таких ситуациях исключения — просто способ передачи контроля другой части кода, которая журналирует и прерывает программу. Но есть старый и эффективный способ передачи контроля: указатель функции (function pointer), то есть функция-обработчик (handler function).

Если у вас включены исключения, то вы просто их бросаете. В противном случае вызываете функцию-обработчика и затем прерываете программу. Это предотвратит бесполезную работу функции-обработчика, та позволит программе продолжить выполняться в обычном режиме. Если не прервать, то произойдёт нарушение обязательного постусловия функции: всегда возвращать валидный указатель. Ведь на выполнении этого условия может быть построена работа другого кода, да и вообще это нормальное поведение.

Я называю такой подход обработкой исключений и придерживаюсь его при работе с памятью.

Решение 1: обработчик исключений

Если вам нужно обработать ошибку в условиях, когда наиболее распространённым поведением будет «журналировать и прервать», то можно использовать обработчика исключений. Это такая функция-обработчик, которая вызывается вместо бросания объекта-исключения. Её довольно легко реализовать даже в уже существующем коде. Для этого нужно поместить управление обработкой в класс исключений и обернуть в макрос выражение throw.

Сначала дополним класс и добавим функции для настройки и, возможно, запрашивания функции-обработчика. Я предлагаю делать это так же, как стандартная библиотека обрабатывает std::new_handler:

class my_fatal_error
{
public:
    // тип обработчика, он должен брать те же параметры, что и конструктор,
    // чтобы у них была одинаковая информация
    using handler = void(*)( ... );

    // меняет функцию-обработчика
    handler set_handler(handler h);

    // возвращает текущего обработчика
    handler get_handler();

    ... // нормальное исключение
};

Поскольку это входит в область видимости класса исключений, вам не нужно именовать каким-то особым образом. Отлично, нам же легче.

Если исключения включены, то для удаления обработчика можно использовать условное компилирование (conditional compilation). Если хотите, то также напишите обычный подмешанный класс (mixin class), дающий требуемую функциональность.

Конструктор исключений элегантен: он вызывает текущую функцию-обработчика, передавая ей требуемые аргументы из своих параметров. А затем комбинирует с последующим макросом throw:

If```cpp #if EXCEPTIONS #define THROW(Ex) throw (Ex) #else #define THROW(Ex) (Ex), std::abort() #endif

> Такой макрос throw также предоставляется [foonathan/compatiblity](https://github.com/foonathan/compatibility).

Можно использовать его и так:

```cpp
THROW(my_fatal_error(...))

Если у вас включена поддержка исключений, то будет создан и брошен объект-исключение, всё как обычно. Но если поддержка выключена, то объект-исключение всё равно будет создан, и — это важно — только после этого произойдёт вызов std::abort(). А поскольку конструктор вызывает функцию-обработчика, то он и работает, как требуется: вы получаете точку настройки для журналирования ошибки. Благодаря же вызову std::abort() после конструктора пользователь не может нарушить постусловие.

Когда я работаю с памятью, то при включённых исключениях у меня также включён и обработчик, который вызывается при бросании исключения.

Так что при этой методике вам ещё будет доступна определённая степень кастомизации, даже если вы отключите исключения. Конечно, замена неполноценная, мы только журналируем и прерываем работу программы, без дальнейшего продолжения. Но в ряде случаев, в том числе при исчерпании памяти, это вполне пригодное решение.

А если я хочу продолжить работу после бросания исключения?

Методика с обработчиком исключений не позволяет этого сделать в связи с постусловием кода. Как же тогда продолжить работу?

Ответ прост — никак. По крайней мере, это нельзя сделать так же просто, как в других случаях. Нельзя просто так вернуть код ошибки вместо исключения, если функция на это не рассчитана.
Есть только одно решение: сделать две функции. Одна возвращает код ошибки, а вторая бросает исключения. Клиенты, которым нужны исключения, будут использовать второй вариант, остальные — первый.

Извините, что говорю такие очевидные вещи, но ради полноты изложения я должен был об этом сказать.

Для примера снова возьмём функцию выделения памяти. В этом случае я использую такие функции:

void* try_malloc(..., int &error_code) noexcept;

void* malloc(...);

При сбое выделения памяти первая версия возвращает nullptr и устанавливает error_code в коде ошибки. Вторая версия не возвращает nullptr, зато бросает исключение. Обратите внимание, что в рамках первой версии очень легко реализовать вторую:

void* malloc(...)
{
    auto error_code = 0;
    auto res = try_malloc(..., error_code);
    if (!res)
        throw malloc_error(error_code);
    return res;
}

Не делайте этого в обратной последовательности, иначе вам придётся ловить исключение, а это дорого. Также это не даст нам скомпилировать код без включённой поддержки исключений. Если сделаете, как показано, то можете просто стереть другую перегрузку (overload) с помощью условного компилирования.

Но даже если у вас включена поддержка исключений, клиенту всё равно может понадобиться вторая версия. Например, когда нужно выделить наибольший возможный объём памяти, как в нашем примере. Будет проще и быстрее вызывать в цикле и проверять по условию, чем ловить исключение.

Решение 2: предоставить две перегрузки

Если недостаточно обработчика исключений, то нужно предоставить две перегрузки. Одна использует код возврата, а вторая бросает исключение.

Если рассматриваемая функция не имеет возвращаемого значения, то можете её использовать для кода ошибки. В противном случае вам придётся возвращать недопустимое значение для сигнализирования об ошибке — как nullptr в вышеприведённом примере, — а также установить выходной параметр для кода ошибки, если хотите предоставить вызывающему дополнительную информацию.

Пожалуйста, не используйте глобальную переменную errno или что-то типа GetLastError()!

Если возвращаемое значение не содержит недопустимое значение для обозначения сбоя, то по мере возможности используйте std::optional или что-то похожее.

Перегрузка исключения (exception overload) может — и должна — быть реализована в рамках версии с кодом ошибки, как это показано выше. Если компилируете без исключений, сотрите перегрузку с помощью условного компилирования.

std::system_error

Подобная система идеально подходит для работы с кодами ошибок в С++ 11.

Она возвращает непортируемый (non-portable) код ошибки std::error_code, то есть возвращаемый функцией операционной системы. С помощью сложной системы библиотечных средств и категорий ошибок вы можете добавить собственные коды ошибок, или портируемые std::error_condition. Для начала почитайте об этом здесь. Если нужно, то можете использовать в функции кода ошибки std::error_code. А для функции исключения есть подходящий класс исключения: std::system_error. Он берёт std::error_code и применяется для передачи этих ошибок в виде исключений.

Эту или подобную систему должны использовать все низкоуровневые функции, являющиеся закрытыми обёртками ОС-функций. Это хорошая — хотя и сложная — альтернатива службе кодов ошибок, предоставляемой операционной системой.

Да, и мне ещё нужно добавить подобное в функции виртуальной памяти. На сегодняшний день они не предоставляют коды ошибок.

std::expected

Выше упоминалось о проблеме, когда у вас нет возвращаемого значения, содержащего недопустимое значение, которое можно использовать для сигнализирования об ошибке. Более того, выходной параметр — не лучший способ получения кода ошибки.

А глобальные переменные вообще не вариант!

В № 4109 предложено решение: std::expected. Это шаблон класса, который также хранит возвращаемое значение или код ошибки. В вышеприведённом примере он мог бы использоваться так:

std::expected<void*, std::error_code> try_malloc(...);

В случае успеха std::expected будет хранить не-null указатель памяти, а при сбое — std::error_code. Сейчас эта методика работает при любых возвращаемых значениях. Комбинация std::expected и функции исключения определённо допускает любые варианты использования.

Заключение

Если вы создаёте библиотеки, то иногда приходится обеспечивать максимальную гибкость использования. Под этим подразумевается и разнообразие средств обработки ошибок: иногда требуются коды возврата, иногда — исключения.

Одна из возможных стратегий — улаживание этих противоречий с помощью обработчика исключений. Просто удостоверьтесь, что когда нужно, то вызывается callback, а не бросается исключение. Это замена для критических ошибок, которая в любом случае будет журналироваться перед прерыванием работы программы. Как таковой этот способ не универсален, вы не можете переключаться в одной программе между двумя версиями. Это лишь обходное решение при отключённой поддержке исключений.

Более гибкий подход — просто предоставить две перегрузки, одну с исключениями, а вторую без. Это даст пользователям максимальную свободу, они смогут выбирать ту версию, что лучше подходит в их ситуации. Недостаток этого подхода: вам придётся больше потрудиться при создании библиотеки.

Отладка программы призвана выискивать «вредителей» кода и устранять их. За это отвечают отладчик и журналирование для вывода сведений о программе.

В предыдущей части мы рассмотрели исходный код и его составляющие.

После того, как вы начнете проверять фрагменты кода или попытаетесь решить связанные с ним проблемы, вы очень скоро поймете, что существуют моменты, когда программа крашится, прерывается и прекращает работу.

Отладка программы

Это часто вызвано ошибками, известными как дефекты или исключительные ситуации во время выполнения. Акт обнаружения и удаления ошибок из нашего кода – это отладка программы. Вы лучше разберетесь в отладке на практике, используя ее как можно чаще. Мы не только отлаживаем собственный код, но и порой дебажим написанное другими программистами.

Для начала необходимо рассортировать общие ошибки, которые могут возникнуть в исходном коде.

отладка программы

Синтаксические ошибки

Эти эрроры не позволяют скомпилировать исходный код на компилируемых языках программирования. Они обнаруживаются во время компиляции или интерпретации исходного кода. Они также могут быть легко обнаружены статическими анализаторами (линтами). Подробнее о линтах мы узнаем немного позже.

Синтаксические ошибки в основном вызваны нарушением ожидаемой формы или структуры языка, на котором пишется программа. Как пример, это может быть отсутствующая закрывающая скобка в уравнении.

Семантические ошибки

Отладка программы может потребоваться и по причине семантических ошибок, также известных как логические. Они являются наиболее сложными из всех, потому что не могут быть легко обнаружены. Признак того, что существует семантическая ошибка, – это когда программа запускается, отрабатывает, но не дает желаемого результата.

Рассмотрим данный пример:

3 + 5 * 6

По порядку приоритета, называемому старшинством операции, с учетом математических правил мы ожидаем, что сначала будет оценена часть умножения, и окончательный результат будет равен 33. Если программист хотел, чтобы сначала происходило добавление двух чисел, следовало поступить иначе. Для этого используются круглые скобки, которые отвечают за смещение приоритетов в математической формуле. Исправленный пример должен выглядеть так:

(3 + 5) * 6

3 + 5, заключенные в скобки, дадут желаемый результат, а именно 48.

Ошибки в процессе выполнения

Как и семантические, ошибки во время выполнения никогда не обнаруживаются при компиляции. В отличие от семантических ошибок, эти прерывают программу и препятствуют ее дальнейшему выполнению. Они обычно вызваны неожиданным результатом некоторых вычислений в исходном коде.

Вот хороший пример:

input = 25
x = 0.8/(Math.sqrt(input) - 5)

Фрагмент кода выше будет скомпилирован успешно, но input 25 приведет к ZeroDivisionError. Это ошибка во время выполнения. Другим популярным примером является StackOverflowError или IndexOutofBoundError. Важно то, что вы идентифицируете эти ошибки и узнаете, как с ними бороться.

Существуют ошибки, связанные с тем, как ваш исходный код использует память и пространство на платформе или в среде, в которой он запущен. Они также являются ошибками во время выполнения. Такие ошибки, как OutOfMemoryErrorand и HeapError обычно вызваны тем, что ваш исходный код использует слишком много ресурсов. Хорошее знание алгоритмов поможет написать код, который лучше использует ресурсы. В этом и заключается отладка программы.

Процесс перезаписи кода для повышения производительности называется оптимизацией. Менее популярное наименование процесса – рефакторинг. Поскольку вы тратите больше времени на кодинг, то должны иметь это в виду.

Отладка программы

Вот несколько советов о том, как правильно выполнять отладку:

  1. Использовать Linters. Linters – это инструменты, которые помогают считывать исходный код, чтобы проверить, соответствует ли он ожидаемому стандарту на выбранном языке программирования. Существуют линты для многих языков.
  2. Превалирование IDE над простыми редакторами. Вы можете выбрать IDE, разработанную для языка, который изучаете. IDE – это интегрированные среды разработки. Они созданы для написания, отладки, компиляции и запуска кода. Jetbrains создают отличные IDE, такие как Webstorm и IntelliJ. Также есть NetBeans, Komodo, Qt, Android Studio, XCode (поставляется с Mac), etc.
  3. Чтение кода вслух. Это полезно, когда вы ищете семантическую ошибку. Читая свой код вслух, есть большая вероятность, что вы зачитаете и ошибку.
  4. Чтение логов. Когда компилятор отмечает Error, обязательно посмотрите, где он находится.

Двигаемся дальше

Поздравляем! Слово «ошибка» уже привычно для вас, равно как и «отладка программы». В качестве новичка вы можете изучать кодинг по книгам, онлайн-урокам или видео. И даже чужой код вам теперь не страшен :)

В процессе кодинга измените что-нибудь, чтобы понять, как он работает. Но будьте уверены в том, что сами написали.

Викторина

  1. Какая ошибка допущена в фрагменте кода Python ниже?
items = [0,1,2,3,4,5]
print items[8]
//комментарий: элементы здесь представляют собой массив с шестью элементами. Например, чтобы получить 4-й элемент, вы будете использовать [3]. Мы начинаем отсчет с 0.
  1. Какая ошибка допущена в фрагменте кода Python ниже?
input = Hippo'
if input == 'Hippo':
  print 'Hello, Hippo'

Ответы на вопросы

  1. Ошибка выполнения: ошибка индекса вне диапазона.

2. Синтаксическая ошибка: Отсутствует стартовая кавычка в первой строке.

Автор материалов — Лада Борисовна Есакова.
Самая распространенная ошибка, которую нужно найти и исправить – это неправильное использование вложенных условных операторов. Для усложнения поиска возможно неправильное форматирование текста (неправильно поставленные отступы).

Для того, чтобы найти ошибку, нужно поставить в соответствие друг другу все части условного оператора if и else.

Помним, что часть else относится к ближайшему if. При этом наличие части else не обязательно.

Кроме того, часто присутствует ошибка при вводе или выводе. Обязательно нужно проверить, та ли информация выводится на экран.

Особого внимания требует инициализация переменных.

Формат книги не позволяет рассмотреть все основные типы задач 2 части, рассмотрим лишь те, которые встречались на проверочных и экзаменационных работах последних двух лет.

Пример 1.

На об­ра­бот­ку по­сту­па­ет по­ло­жи­тель­ное целое число, не пре­вы­ша­ю­щее 109. Нужно на­пи­сать про­грам­му, ко­то­рая вы­во­дит на экран сумму цифр этого числа, мень­ших 7. Если в числе нет цифр, мень­ших 7, тре­бу­ет­ся на экран вы­ве­сти 0. Про­грам­мист на­пи­сал про­грам­му не­пра­виль­но. Ниже эта про­грам­ма для Ва­ше­го удоб­ства при­ве­де­на на пяти язы­ках про­грам­ми­ро­ва­ния.

 Бей­сик

Python

DIM N, DIGIT, SUM AS LONG

INPUT N

SUM = 0

WHILE N > 0

DIGIT = N MOD 10

IF DIGIT < 7 THEN

SUM = SUM + 1

END IF

N = N 10

WEND

PRINT DIGIT

N = int(input())

sum = 0

while N > 0:

digit = N % 10

if digit < 7:

sum = sum + 1

N = N // 10

print(digit)

Пас­каль

Ал­го­рит­ми­че­ский язык

var N, digit, sum: longint;

begin

readln(N);

sum := 0;

while N > 0 do

begin

digit := N mod 10;

if digit < 7 then

sum := sum + 1;

N := N div 10;

end;

writeln(digit)

end.

алг

нач

цел N, digit, sum

ввод N

sum := 0

нц пока N > 0

digit := mod(N,10)

если digit < 7 то

sum := sum + 1

все

N := div(N,10)

кц

вывод digit

кон

Си

#include

int main()

{

int N, digit, sum;

scanf(«%d», &N);

sum = 0;

while (N > 0)

{

digit = N % 10;

if (digit < 7)

sum = sum + 1;

N = N / 10;

}

printf(«%d»,digit);

return0;

}

По­сле­до­ва­тель­но вы­пол­ни­те сле­ду­ю­щее.

1. На­пи­ши­те, что вы­ве­дет эта про­грам­ма при вводе числа 456.

2. При­ве­ди­те при­мер та­ко­го трёхзнач­но­го числа, при вводе ко­то­ро­го про­грам­ма выдаёт вер­ный ответ.

3. Най­ди­те все ошиб­ки в этой про­грам­ме (их может быть одна или не­сколь­ко). Из­вест­но, что каж­дая ошиб­ка за­тра­ги­ва­ет толь­ко одну стро­ку и может быть ис­прав­ле­на без из­ме­не­ния дру­гих строк. Для каж­дой ошиб­ки:

1) вы­пи­ши­те стро­ку, в ко­то­рой сде­ла­на ошиб­ка;

2) ука­жи­те, как ис­пра­вить ошиб­ку, т.е. при­ве­ди­те пра­виль­ный ва­ри­ант стро­ки.

До­ста­точ­но ука­зать ошиб­ки и спо­соб их ис­прав­ле­ния для од­но­го языка про­грам­ми­ро­ва­ния. Об­ра­ти­те вни­ма­ние, что тре­бу­ет­ся найти ошиб­ки в име­ю­щей­ся про­грам­ме, а не на­пи­сать свою, воз­мож­но, ис­поль­зу­ю­щую дру­гой ал­го­ритм ре­ше­ния. Ис­прав­ле­ние ошиб­ки долж­но за­тра­ги­вать толь­ко стро­ку, в ко­то­рой на­хо­дит­ся ошиб­ка.

Решение:

Ре­ше­ние ис­поль­зу­ет за­пись про­грам­мы на Пас­ка­ле. До­пус­ка­ет­ся ис­поль­зо­ва­ние про­грам­мы на любом из четырёх дру­гих язы­ков.

1. Про­грам­ма вы­ве­дет число 4.

2. При­мер числа, при вводе ко­то­ро­го про­грам­ма выдаёт вер­ный ответ: 835.

Про­грам­ма ра­бо­та­ет не­пра­виль­но из-за не­вер­ной вы­во­ди­мой на экран пе­ре­мен­ной и не­вер­но­го уве­ли­че­ния суммы. Со­от­вет­ствен­но, про­грам­ма будет ра­бо­тать верно, если в числе стар­шая цифра (край­няя левая) равна сумме цифр, мень­ших 7.

3. В про­грам­ме есть две ошиб­ки.

Пер­вая ошиб­ка. Не­вер­ное уве­ли­че­ние суммы.

Стро­ка с ошиб­кой:

sum := sum + 1;

Вер­ное ис­прав­ле­ние:

sum := sum + digit;

Вто­рая ошиб­ка. Не­вер­ный вывод от­ве­та на экран.

Стро­ка с ошиб­кой:

writeln(digit)

Вер­ное ис­прав­ле­ние:

writeln(sum)

Пример 2.

Для за­дан­но­го по­ло­жи­тель­но­го ве­ще­ствен­но­го числа A не­об­хо­ди­мо найти мак­си­маль­ное целое число K, при ко­то­ром вы­пол­ня­ет­ся не­ра­вен­ство

(при K = 0 сумма счи­та­ет­ся рав­ной 0).

Для ре­ше­ния этой за­да­чи уче­ник на­пи­сал такую про­грам­му.

 Бей­сик

Python

DIM A, S AS DOUBLE

DIM K AS INTEGER

INPUT A

K = 1

S = 1

WHILE S < A

S = S + 1.0/K

K = K + 1

WEND

PRINT K

END

a = float(input())

k = 1

s = 1

while s < a:

s = s + 1.0/k

k = k + 1

print(k)

Ал­го­рит­ми­че­ский язык

Пас­каль

алг

нач

вещ a, s

цел k

ввод a

k := 1

s := 1

нц пока s<a

s := s + 1.0/k

k := k + 1

кц

вывод k

кон

var a, s: real;

k: integer;

begin

read(a);

k := 1;

s := 1;

while s<a do begin

s := s + 1.0/k;

k := k + 1;

end;

write(k);

end.

Си

#include <stdio.h>

int main(){

double a, s;

int k;

scanf(«%lf»,&a);

k = 1;

s = 1;

while (s<a) {

s = s + 1.0/k;

k = k + 1;

}

printf(«%d», k);

return 0;

}

По­сле­до­ва­тель­но вы­пол­ни­те сле­ду­ю­щее.

1. На­пи­ши­те, что вы­ве­дет эта про­грам­ма при вводе числа 1.2.

2. При­ве­ди­те при­мер числа, при вводе ко­то­ро­го про­грам­ма даст вер­ный ответ.

3. Най­ди­те в про­грам­ме все ошиб­ки (их может быть одна или не­сколь­ко).

Для каж­дой ошиб­ки вы­пи­ши­те стро­ку, в ко­то­рой она до­пу­ще­на, и при­ве­ди­те эту же стро­ку в ис­прав­лен­ном виде.

Об­ра­ти­те вни­ма­ние: вам нужно ис­пра­вить при­ведённую про­грам­му, а не на­пи­сать свою. Вы мо­же­те толь­ко ис­прав­лять оши­боч­ные стро­ки; уда­лять стро­ки или до­бав­лять новые стро­ки нель­зя. По­ста­рай­тесь также не вне­сти новые ошиб­ки – за это оцен­ка сни­жа­ет­ся.

Решение:

Ре­ше­ние ис­поль­зу­ет за­пись про­грам­мы на Пас­ка­ле. До­пус­ка­ет­ся ис­поль­зо­ва­ние про­грам­мы на дру­гих язы­ках.

1. При вводе числа 1.2 про­грам­ма вы­ве­дет число 2.

2. При­ме­ры чисел, при вводе ко­то­рых про­грам­ма вы­во­дит вер­ный ответ: 1.6, 2.05.

Про­грам­ма со­дер­жит две ошиб­ки, одна из ко­то­рых при­во­дит к уве­ли­че­нию от­ве­та, дру­гая – к умень­ше­нию.

В не­ко­то­рых слу­ча­ях эти ошиб­ки ком­пен­си­ру­ют друг друга, и ответ ока­зы­ва­ет­ся пра­виль­ным. Это про­ис­хо­дит, если зна­че­ние A по­па­да­ет в один из сле­ду­ю­щих диа­па­зо­нов: 1.5 < A < 1.83, 2 < A < 2.08.

3. Про­грам­ма со­дер­жит две ошиб­ки.

1) Не­вер­ная ини­ци­а­ли­за­ция. На­чаль­ное зна­че­ние S долж­но быть равно нулю.

В при­ведённом ва­ри­ан­те вы­чис­лен­ная сумма ока­зы­ва­ет­ся на 1 боль­ше пра­виль­но­го зна­че­ния.

Стро­ка с ошиб­кой:

s := 1;

Пра­виль­ная стро­ка:

s := 0;

2) Не­вер­ное опре­де­ле­ние от­ве­та. При­ведённая про­грам­ма на­хо­дит не мак­си­маль­ное K, при ко­то­ром вы­пол­ня­ет­ся не­ра­вен­ство, а ми­ни­маль­ное, при ко­то­ром оно не вы­пол­ня­ет­ся, то есть уве­ли­чи­ва­ет вер­ное зна­че­ние на 1.

Кроме того, ис­поль­зо­ван­ный по­ря­док дей­ствий в цикле (уве­ли­че­ние K после уве­ли­че­ния S) при­во­дит к уве­ли­че­нию ещё на 1. Это можно было бы ис­пра­вить, из­ме­нив по­ря­док дей­ствий в цикле и умень­шив K после за­вер­ше­ния цикла, но эти дей­ствия не раз­ре­ше­ны по усло­вию за­да­чи.

По­это­му для ис­прав­ле­ния ошиб­ки можно про­сто скор­рек­ти­ро­вать зна­че­ние при вы­во­де.

Стро­ка с ошиб­кой:

write(k);

Пра­виль­ная стро­ка:

write(k-2);

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задача №24. Исправление ошибок в программе.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
07.02.2023

Как искать и исправлять ошибки в коде

Искать ошибки в программах — непростая задача. Здесь нет никаких готовых методик или рецептов успеха. Можно даже сказать, что это — искусство. Тем не менее есть общие советы, которые помогут вам при поиске. В статье описаны основные шаги, которые стоит предпринять, если ваша программа работает некорректно.

Шаг 1: Занесите ошибку в трекер

После выполнения всех описанных ниже шагов может так случиться, что вы будете рвать на себе волосы от безысходности, все еще сидя на работе, когда поймете, что:

  1. Вы забыли какую-то важную деталь об ошибке, например, в чем она заключалась.
  2. Вы могли делегировать ее кому-то более опытному.

Трекер поможет вам не потерять нить размышлений и о текущей проблеме, и о той, которую вы временно отложили. А если вы работаете в команде, это поможет делегировать исправление коллеге и держать все обсуждение в одном месте.

Вы должны записать в трекер следующую информацию:

  1. Что делал пользователь.
  2. Что он ожидал увидеть.
  3. Что случилось на самом деле.

Это должно подсказать, как воспроизвести ошибку. Если вы не сможете воспроизвести ее в любое время, ваши шансы исправить ошибку стремятся к нулю.

Шаг 2: Поищите сообщение об ошибке в сети

Если у вас есть сообщение об ошибке, то вам повезло. Или оно будет достаточно информативным, чтобы вы поняли, где и в чем заключается ошибка, или у вас будет готовый запрос для поиска в сети. Не повезло? Тогда переходите к следующему шагу.

Шаг 3: Найдите строку, в которой проявляется ошибка

Если ошибка вызывает падение программы, попробуйте запустить её в IDE под отладчиком и посмотрите, на какой строчке кода она остановится. Совершенно необязательно, что ошибка будет именно в этой строке (см. следующий шаг), но, по крайней мере, это может дать вам информацию о природе бага.

Шаг 4: Найдите точную строку, в которой появилась ошибка

Как только вы найдете строку, в которой проявляется ошибка, вы можете пройти назад по коду, чтобы найти, где она содержится. Иногда это может быть одна и та же строка. Но чаще всего вы обнаружите, что строка, на которой упала программа, ни при чем, а причина ошибки — в неправильных данных, которые появились ранее.

Если вы отслеживаете выполнение программы в отладчике, то вы можете пройтись назад по стектрейсу, чтобы найти ошибку. Если вы находитесь внутри функции, вызванной внутри другой функции, вызванной внутри другой функции, то стектрейс покажет список функций до самой точки входа в программу (функции main() ). Если ошибка случилась где-то в подключаемой библиотеке, предположите, что ошибка все-таки в вашей программе — это случается гораздо чаще. Найдите по стектрейсу, откуда в вашем коде вызывается библиотечная функция, и продолжайте искать.

Шаг 5: Выясните природу ошибки

Ошибки могут проявлять себя по-разному, но большинство из них можно отнести к той или иной категории. Вот наиболее частые.

    Вы начали цикл for с единицы вместо нуля или наоборот. Или, например, подумали, что метод .count() или .length() вернул индекс последнего элемента. Проверьте документацию к языку, чтобы убедиться, что нумерация массивов начинается с нуля или с единицы. Эта ошибка иногда проявляется в виде исключения Index out of range .
    Ваш процесс или поток пытается использовать результат выполнения дочернего до того, как тот завершил свою работу. Ищите использование sleep() в коде. Возможно, на мощной машине дочерний поток выполняется за миллисекунду, а на менее производительной системе происходят задержки. Используйте правильные способы синхронизации многопоточного кода: мьютексы, семафоры, события и т. д.

  1. Неправильные настройки или константы
    Проверьте ваши конфигурационные файлы и константы. Я однажды потратил ужасные 16 часов, пытаясь понять, почему корзина на сайте с покупками виснет на стадии отправки заказа. Причина оказалась в неправильном значении в /etc/hosts , которое не позволяло приложению найти ip-адрес почтового сервера, что вызывало бесконечный цикл в попытке отправить счет заказчику.
  2. Неожиданный null
    Бьюсь об заклад, вы не раз получали ошибку с неинициализированной переменной. Убедитесь, что вы проверяете ссылки на null , особенно при обращении к свойствам по цепочке. Также проверьте случаи, когда возвращаемое из базы данных значение NULL представлено особым типом.
  3. Некорректные входные данные
    Вы проверяете вводимые данные? Вы точно не пытаетесь провести арифметические операции с введенными пользователем строками?
  4. Присваивание вместо сравнения
    Убедитесь, что вы не написали = вместо == , особенно в C-подобных языках.
  5. Ошибка округления
    Это случается, когда вы используете целое вместо Decimal , или float для денежных сумм, или слишком короткое целое (например, пытаетесь записать число большее, чем 2147483647, в 32-битное целое). Кроме того, может случиться так, что ошибка округления проявляется не сразу, а накапливается со временем (т. н. Эффект бабочки).
  6. Переполнение буфера и выход за пределы массива
    Проблема номер один в компьютерной безопасности. Вы выделяете память меньшего объема, чем записываемые туда данные. Или пытаетесь обратиться к элементу за пределами массива.
  7. Программисты не умеют считать
    Вы используете некорректную формулу. Проверьте, что вы не используете целочисленное деление вместо взятия остатка, или знаете, как перевести рациональную дробь в десятичную и т. д.
  8. Конкатенация строки и числа
    Вы ожидаете конкатенации двух строк, но одно из значений — число, и компилятор пытается произвести арифметические вычисления. Попробуйте явно приводить каждое значение к строке.
  9. 33 символа в varchar(32)
    Проверяйте данные, передаваемые в INSERT , на совпадение типов. Некоторые БД выбрасывают исключения (как и должны делать), некоторые просто обрезают строку (как MySQL). Недавно я столкнулся с такой ошибкой: программист забыл убрать кавычки из строки перед вставкой в базу данных, и длина строки превысила допустимую как раз на два символа. На поиск бага ушло много времени, потому что заметить две маленькие кавычки было сложно.
  10. Некорректное состояние
    Вы пытаетесь выполнить запрос при закрытом соединении или пытаетесь вставить запись в таблицу прежде, чем обновили таблицы, от которых она зависит.
  11. Особенности вашей системы, которых нет у пользователя
    Например: в тестовой БД между ID заказа и адресом отношение 1:1, и вы программировали, исходя из этого предположения. Но в работе выясняется, что заказы могут отправляться на один и тот же адрес, и, таким образом, у вас отношение 1:многим.

Если ваша ошибка не похожа на описанные выше, или вы не можете найти строку, в которой она появилась, переходите к следующему шагу.

Шаг 6: Метод исключения

Если вы не можете найти строку с ошибкой, попробуйте или отключать (комментировать) блоки кода до тех пор, пока ошибка не пропадет, или, используя фреймворк для юнит-тестов, изолируйте отдельные методы и вызывайте их с теми же параметрами, что и в реальном коде.

Попробуйте отключать компоненты системы один за другим, пока не найдете минимальную конфигурацию, которая будет работать. Затем подключайте их обратно по одному, пока ошибка не вернется. Таким образом вы вернетесь на шаг 3.

Шаг 7: Логгируйте все подряд и анализируйте журнал

Пройдитесь по каждому модулю или компоненту и добавьте больше сообщений. Начинайте постепенно, по одному модулю. Анализируйте лог до тех пор, пока не проявится неисправность. Если этого не случилось, добавьте еще сообщений.

Ваша задача состоит в том, чтобы вернуться к шагу 3, обнаружив, где проявляется ошибка. Также это именно тот случай, когда стоит использовать сторонние библиотеки для более тщательного логгирования.

Шаг 8: Исключите влияние железа или платформы

Замените оперативную память, жесткие диски, поменяйте сервер или рабочую станцию. Установите обновления, удалите обновления. Если ошибка пропадет, то причиной было железо, ОС или среда. Вы можете по желанию попробовать этот шаг раньше, так как неполадки в железе часто маскируют ошибки в ПО.

Если ваша программа работает по сети, проверьте свитч, замените кабель или запустите программу в другой сети.

Ради интереса, переключите кабель питания в другую розетку или к другому ИБП. Безумно? Почему бы не попробовать?

Если у вас возникает одна и та же ошибка вне зависимости от среды, то она в вашем коде.

Шаг 9: Обратите внимание на совпадения

  1. Ошибка появляется всегда в одно и то же время? Проверьте задачи, выполняющиеся по расписанию.
  2. Ошибка всегда проявляется вместе с чем-то еще, насколько абсурдной ни была бы эта связь? Обращайте внимание на каждую деталь. На каждую. Например, проявляется ли ошибка, когда включен кондиционер? Возможно, из-за этого падает напряжение в сети, что вызывает странные эффекты в железе.
  3. Есть ли что-то общее у пользователей программы, даже не связанное с ПО? Например, географическое положение (так был найден легендарный баг с письмом за 500 миль).
  4. Ошибка проявляется, когда другой процесс забирает достаточно большое количество памяти или ресурсов процессора? (Я однажды нашел в этом причину раздражающей проблемы «no trusted connection» с SQL-сервером).

Шаг 10: Обратитесь в техподдержку

Наконец, пора попросить помощи у того, кто знает больше, чем вы. Для этого у вас должно быть хотя бы примерное понимание того, где находится ошибка — в железе, базе данных, компиляторе. Прежде чем писать письмо разработчикам, попробуйте задать вопрос на профильном форуме.

Ошибки есть в операционных системах, компиляторах, фреймворках и библиотеках, и ваша программа может быть действительно корректна. Но шансы привлечь внимание разработчика к этим ошибкам невелики, если вы не сможете предоставить подробный алгоритм их воспроизведения. Дружелюбный разработчик может помочь вам в этом, но чаще всего, если проблему сложно воспроизвести вас просто проигнорируют. К сожалению, это значит, что нужно приложить больше усилий при составлении багрепорта.

Полезные советы (когда ничего не помогает)

  1. Позовите кого-нибудь еще.
    Попросите коллегу поискать ошибку вместе с вами. Возможно, он заметит что-то, что вы упустили. Это можно сделать на любом этапе.
  2. Внимательно просмотрите код.
    Я часто нахожу ошибку, просто спокойно просматривая код с начала и прокручивая его в голове.
  3. Рассмотрите случаи, когда код работает, и сравните их с неработающими.
    Недавно я обнаружил ошибку, заключавшуюся в том, что когда вводимые данные в XML-формате содержали строку xsi:type=’xs:string’ , все ломалось, но если этой строки не было, все работало корректно. Оказалось, что дополнительный атрибут ломал механизм десериализации.
  4. Идите спать.
    Не бойтесь идти домой до того, как исправите ошибку. Ваши способности обратно пропорциональны вашей усталости. Вы просто потратите время и измотаете себя.
  5. Сделайте творческий перерыв.
    Творческий перерыв — это когда вы отвлекаетесь от задачи и переключаете внимание на другие вещи. Вы, возможно, замечали, что лучшие идеи приходят в голову в душе или по пути домой. Смена контекста иногда помогает. Сходите пообедать, посмотрите фильм, полистайте интернет или займитесь другой проблемой.
  6. Закройте глаза на некоторые симптомы и сообщения и попробуйте сначала.
    Некоторые баги могут влиять друг на друга. Драйвер для dial-up соединения в Windows 95 мог сообщать, что канал занят, при том что вы могли отчетливо слышать звук соединяющегося модема. Если вам приходится держать в голове слишком много симптомов, попробуйте сконцентрироваться только на одном. Исправьте или найдите его причину и переходите к следующему.
  7. Поиграйте в доктора Хауса (только без Викодина).
    Соберите всех коллег, ходите по кабинету с тростью, пишите симптомы на доске и бросайте язвительные комментарии. Раз это работает в сериалах, почему бы не попробовать?

Что вам точно не поможет

  1. Паника
    Не надо сразу палить из пушки по воробьям. Некоторые менеджеры начинают паниковать и сразу откатываться, перезагружать сервера и т. п. в надежде, что что-нибудь из этого исправит проблему. Это никогда не работает. Кроме того, это создает еще больше хаоса и увеличивает время, необходимое для поиска ошибки. Делайте только один шаг за раз. Изучите результат. Обдумайте его, а затем переходите к следующей гипотезе.
  2. «Хелп, плиииз!»
    Когда вы обращаетесь на форум за советом, вы как минимум должны уже выполнить шаг 3. Никто не захочет или не сможет вам помочь, если вы не предоставите подробное описание проблемы, включая информацию об ОС, железе и участок проблемного кода. Создавайте тему только тогда, когда можете все подробно описать, и придумайте информативное название для нее.
  3. Переход на личности
    Если вы думаете, что в ошибке виноват кто-то другой, постарайтесь по крайней мере говорить с ним вежливо. Оскорбления, крики и паника не помогут человеку решить проблему. Даже если у вас в команде не в почете демократия, крики и применение грубой силы не заставят исправления магическим образом появиться.

Ошибка, которую я недавно исправил

Это была загадочная проблема с дублирующимися именами генерируемых файлов. Дальнейшая проверка показала, что у файлов различное содержание. Это было странно, поскольку имена файлов включали дату и время создания в формате yyMMddhhmmss . Шаг 9, совпадения: первый файл был создан в полпятого утра, дубликат генерировался в полпятого вечера того же дня. Совпадение? Нет, поскольку hh в строке формата — это 12-часовой формат времени. Вот оно что! Поменял формат на yyMMddHHmmss , и ошибка исчезла.

Отладка

Отладка, или debugging, — это поиск (локализация), анализ и устранение ошибок в программном обеспечении, которые были найдены во время тестирования.

Виды ошибок

Ошибки компиляции

Это простые ошибки, которые в компилируемых языках программирования выявляет компилятор (программа, которая преобразует текст на языке программирования в набор машинных кодов). Если компилятор показывает несколько ошибок, отладку кода начинают с исправления самой первой, так как она может быть причиной других.

В интерпретируемых языках (например Python) текст программы команда за командой переводится в машинный код и сразу исполняется. К моменту обнаружения ошибки часть программы уже может исполниться.

Ошибки компоновки

Ошибки связаны с разрешением внешних ссылок. Выявляет компоновщик (редактор связей) при объединении модулей программы. Простой пример — ситуация, когда требуется обращение к подпрограмме другого модуля, но при компоновке она не найдена. Ошибки также просто найти и устранить.

Ошибки выполнения (RUNTIME Error)

Ошибки, которые обнаруживают операционная система, аппаратные средства или пользователи при выполнении программы. Они считаются непредсказуемыми и проявляются после успешной компиляции и компоновки. Можно выделить четыре вида проявления таких ошибок:

  • сообщение об ошибке, которую зафиксировали схемы контроля машинных команд. Это может быть переполнение разрядной сетки (когда старшие разряды результата операции не помещаются в выделенной области памяти), «деление на ноль», нарушение адресации и другие;
  • сообщение об ошибке, которую зафиксировала операционная система. Она же, как правило, и документирует ошибку. Это нарушение защиты памяти, отсутствие файла с заданным именем, попытка записи на устройство, защищенное от записи;
  • прекращение работы компьютера или зависание. Это и простые ошибки, которые не требуют перезагрузки компьютера, и более сложные, когда нужно выключать ПК;
  • получение результатов, которые отличаются от ожидаемых. Программа работает стабильно, но выдает некорректный результат, который пользователь воспринимает за истину.

Ошибки выполнения можно разделить на три большие группы.

Ошибки определения данных или неверное определение исходных данных. Они могут появиться во время выполнения операций ввода-вывода.

К ним относятся:

  • ошибки преобразования;
  • ошибки данных;
  • ошибки перезаписи.

Как правило, использование специальных технических средств для отладки (API-логгеров, логов операционной системы, профилировщиков и пр.) и программирование с защитой от ошибок помогает обнаружить и решить лишь часть из них.

Логические ошибки. Они могут возникать из ошибок, которые были допущены при выборе методов, разработке алгоритмов, определении структуры данных, кодировании модуля.

В эту группу входят:

  • ошибки некорректного использования переменных. Сюда относятся неправильный выбор типов данных, использование индексов, выходящих за пределы определения массивов, использование переменных до присвоения переменной начального значения, нарушения соответствия типов данных;
  • ошибки вычислений. Это некорректная работа с переменными, неправильное преобразование типов данных в процессе вычислений;
  • ошибки взаимодействия модулей или межмодульного интерфейса. Это нарушение типов и последовательности при передаче параметров, области действия локальных и глобальных переменных, несоблюдение единства единиц измерения формальных и фактических параметров;
  • неправильная реализация логики при программировании.

Ошибки накопления погрешностей. Могут возникать при неправильном округлении, игнорировании ограничений разрядной сетки, использовании приближенных методов вычислений и т.д.

Веб-разработчик с нуля

Освойте веб-разработку за 12 месяце и делайте сайты и приложения любой сложности.

Методы отладки программного обеспечения

Метод ручного тестирования

Отладка программы заключается в тестировании вручную с помощью тестового набора, при работе с которым была допущена ошибка. Несмотря на эффективность, метод не получится использовать для больших программ или программ со сложными вычислениями. Ручное тестирование применяется как составная часть других методов отладки.

Метод индукции

В основе отладки системы — тщательный анализ проявлений ошибки. Это могут быть сообщения об ошибке или неверные результаты вычислений. Например, если во время выполнения программы завис компьютер, то, чтобы найти фрагмент проявления ошибки, нужно проанализировать последние действия пользователя. На этапе отладки программы строятся гипотезы, каждая из них проверяется. Если гипотеза подтвердилась, информация об ошибке детализируется, если нет — выдвигаются новые.

Вот как выглядит процесс:

Важно, чтобы выдвинутая гипотеза объясняла все проявления ошибки. Если объясняется только их часть, то либо гипотеза неверна, либо ошибок несколько.

Метод дедукции

Сначала специалисты предлагают множество причин, по которым могла возникнуть ошибка. Затем анализируют их, исключают противоречащие имеющимся данным. Если все причины были исключены, проводят дополнительное тестирование. В обратном случае наиболее вероятную причину пытаются доказать.

Метод обратного прослеживания

Эффективен для небольших программ. Начинается с точки вывода неправильного результата. Для точки выдвигается гипотеза о значениях основных переменных, которые могли привести к ошибке. Далее на основании этой гипотезы строятся предположения о значениях переменных в предыдущей точке. Процесс продолжается до момента, пока не найдут ошибку.

Как выполняется отладка в современных IDE

Ранние отладчики, например gdb, представляли собой отдельные программы с интерфейсами командной строки. Более поздние, например первые версии Turbo Debugger, были автономными, но имели собственный графический интерфейс для облегчения работы. Сейчас большинство IDE имеют встроенный отладчик. Он использует такой же интерфейс, как и редактор кода, поэтому можно выполнять отладку в той же среде, которая используется для написания кода.

Отладчик позволяет разработчику контролировать выполнение и проверять (или изменять) состояние программ. Например, можно использовать отладчик для построчного выполнения программы, проверяя по ходу значения переменных. Сравнение фактических и ожидаемых значений переменных или наблюдение за ходом выполнения кода может помочь в отслеживании логических (семантических) ошибок.

Пошаговое выполнение — это набор связанных функций отладчика, позволяющих поэтапно выполнять код.

Шаг с заходом (step into)

Команда выполняет очередную инструкцию, а потом приостанавливает процесс, чтобы с помощью отладчика было можно проверить состояние программы. Если в выполняемом операторе есть вызов функции, step into заставляет программу переходить в начало вызываемой функции, где она приостанавливается.

Шаг с обходом (step over)

Команда также выполняет очередную инструкцию. Однако когда step into будет входить в вызовы функций и выполнять их строка за строкой, step over выполнит всю функцию, не останавливаясь, и вернет управление после ее выполнения. Команда step over позволяет пропустить функции, если разработчик уверен, что они уже исправлены, или не заинтересован в их отладке в данный момент.

Шаг с выходом (step out)

В отличие от step into и step over, step out выполняет не следующую строку кода, а весь оставшийся код функции, исполняемой в настоящее время. После возврата из функции он возвращает управление разработчику. Эта команда полезна, когда специалист случайно вошел в функцию, которую не нужно отлаживать.

Как правило, при пошаговом выполнении можно идти только вперед. Поэтому легко перешагнуть место, которое нужно проверить. Если это произошло, необходимо перезапустить отладку.

У некоторых отладчиков (таких как GDB 7.0, Visual Studio Enterprise Edition 15.5 и более поздних версий) есть возможность вернуться на шаг назад. Это полезно, если пропущена цель либо нужно повторно проверить выполненную инструкцию.

Веб-разработчик с нуля

За 12 месяцев вы освоите базовую верстку, frontend и backend. В конце обучения у вас будет готовое портфолио из проектов.

Виды ошибок в программах

Я учусь на своих ошибках. Ругаю себя за это, но продолжаю ошибаться. С другой стороны — это всё-таки лучше, чем не учиться совсем, и наступать на одни и те же грабли бесконечно.

При создании программ, даже простых, ошибки неизбежны. Поэтому для поиска ошибок во всех средствах разработки имеются особые инструменты для отладки. Но сегодня не об отладке и не о поиске ошибок. Сегодня о видах ошибок, которые встречаются в программах.

Итак, основных вида всего три:

Синтаксические ошибки в программах

Эти ошибки довольно распространены, особенно среди начинающих. Но эти ошибки — самые безобидные. Потому что компиляторы легко находят ошибки синтаксиса и указывают место в исходном коде, где обнаружена такая ошибка. Программисту остаётся только исправить её.

Синтаксические ошибки — это ошибки синтаксиса (а то бы вы не догадались))). То есть ошибки правил языка. Например, для Паскаля это будет синтаксической ошибкой:

Потому что после первой строки нет точки с запятой.

Подобные ошибки очень часто совершают новички. И это вгоняет их в ступор — они пугаются и не могут понять, что же не так с их кодом. Хотя если бы они внимательно его посмотрели и прочитали сообщение об ошибке, то легко могли бы исправить её:

Синтаксические ошибки в программах

Потому что в сообщении чётко сказано:

что можно перевести как

То есть компилятор говорит нам: я ожидал увидеть точку с запятой, а нашёл идентификатор READLN .

Логические ошибки в программах

Это самые противные и самые труднонаходимые ошибки. Программа может быть написана совершенно правильно с точки зрения синтаксиса языка, и при этом она будет неправильно работать. Потому что программист допустил где-то логическую ошибку.

И компилятор вам ничего об этой ошибке не расскажет, потому что правила языка не нарушены.

Поиски таких ошибок могут занять много времени и отнять у вас немало здоровья. Поэтому при разработке программ лучше не торопиться и стараться не допускать логических ошибок.

Пример логической ошибки:

Здесь мы сравниваем значение i с числом 15, и выводим сообщение, если i = 15 . Но фишка в том, что в данном цикле i не будет равно 15 НИКОГДА, потому что в цикле переменной i присваиваются значения от 1 до 10.

Эта ошибка довольно безобидная. Здесь мы имеем просто бессмысленный код, который не причинит никакого вреда. Однако представьте, что программа должна выдавать какой-то сигнал тревоги, если i = 15 . Тогда получится, что никакого сигнала пользователь никогда не услышит, даже если случилось что-то страшное. А всё потому, что программист немного ошибся. Вот так вот и падают ракеты и самолёты…

Распространённые логические ошибки в С++ вы можете посмотреть здесь.

Ошибки времени выполнения программы

Даже если исходный код не содержит ни логических, не синтаксических ошибок, это ещё не означает, что ваша программа безупречна. Потому что ошибки могут возникнуть в ходе выполнения программы. Например, случайно будет удалён файл, который должна читать программа, и она не сможет его найти. Если не принять мер, то программа может завершиться аварийно. А пользователям такое поведение программ очень не нравится.

Одна из самых рапространённых ошибок времени выполнения — это неожиданное деление на ноль. Пример:

Что здесь такого? Всё правильно и с точки зрения логики, и с точки зрения синтаксиса. И в большинстве случаев программа отработает без каких-либо неожиданностей.

Но представьте, что пользователь введёт ноль. Что тогда будет? Правильно — попытка деления на ноль. А на ноль делить нельзя. Поэтому во время выполнения этой программы произойдёт ошибка, которая очень расстроит пользователя. Потому что в случае, например, с консольным приложением программа просто закроется, и пользователь не поймёт, что это было. Но зато поймёт, что программа — говно, и программы от этого разработчика лучше больше никогда не использовать.

В данном случае, если вы не уверены на 100%, что y будет отличаться от нуля, надо всегда делать проверку на ноль. И хороший код должен быть хотя бы таким:

Ну что же. На этом с видами ошибок пока всё. Изучайте программирование и поменьше ошибайтесь.

    1. Отладка и тестирование программы

Отладка
программы является итеративным процессом
обнаружения и исправления ошибок и
обычно требует последовательного
выполнения четырех этапов:

  • выявления
    ошибки;

  • локализации
    ошибки в тексте программы;

  • установления
    причины ошибки;

  • исправления
    ошибки.

Некоторые
ошибки проявляются после первого же
запуска программы на выполнение, и для
их обнаружения не надо прибегать ни к
каким специальным средствам. Некоторые
ошибки проявляются в случайные моменты
работы программы. С такими ошибками
справиться труднее всего – зафиксировать
условия возникновения ошибки, понять
причину ошибки и устранить ее. С целью
обнаружения подобных ошибок осуществляется
тестирование
программы

ее выполнение для специально подобранных
представительных контрольных примеров
– тестов. Тест
это такой
набор исходных данных, для которого
вручную или другим способом просчитаны
промежуточные и конечные результаты и
который может быть использован для
получения информации о надежности
проверяемой программы.

Тестирование
программы должно включать в себя прогон
трех видов контрольных примеров:
нормальных ситуаций, граничных ситуаций
и случаев неправильных данных.
Нормальные
случаи

это примеры с правильными входными
данными. Если программа не работает в
подобных случаях, она требует серьезных
переделок. Граничные контрольные примеры
помогают установить, способна ли
программа нормально реагировать на
особые случаи во входных данных. Граничные
примеры

представляют собой данные, которые,
будучи математически корректными,
приводят программу к необходимости
работать особым образом. Неправильными
являются
такие данные,
которые расположены вне допустимого
диапазона. Примеры с неправильными
данными должны быть обработаны
соответствующим образом, поскольку в
повседневной эксплуатации программе
придется иметь дело и с неверными
входными данными.

После того как
ошибка обнаружена, необходимо найти в
исходном тексте программы то место, в
котором она возникала, – локализовать
ошибку.
Можно
использовать ряд различных методов
отладки, позволяющих обнаружить
расположение ошибки; выбор существенно
зависит от особенностей ситуации.
Большинство программистов начинают с
неформального метода, известного под
названием проверка
за столом.
Используя
контрольный пример, который привел к
ошибке в программе, программист
аналитически трассирует листинг
программы в надежде локализовать ошибку.
Проверка за столом – это хороший метод,
поскольку он заставляет программиста
детально понять работу программы. Если
применение метода проверки за столом
оказалось бесплодным, нужно использовать
специальные методы и способы отладки,
позволяющие наблюдать за передачей
управления в программе и за изменением
значений наиболее важных переменных.
Полученная отладочная информация
позволит локализовать подозрительные
ситуации, провести анализ и выявить
причину ошибки, устранить ее, а затем
продолжить поиск других ошибок.

      1. Причины и типы ошибок

В общем случае
ошибки могут возникать на любом этапе
разработки программы, причина ошибок
может быть связана с недопониманием
сути задачи, недостатками проектирования
алгоритма, неправильным использованием
языковых средств. При выполнении
программы ошибки разного типа проявляют
себя различным образом, и их принято
подразделять на следующие группы:

  • синтаксические
    ошибки;

  • семантические
    ошибки;

  • логические
    ошибки.

Синтаксические
ошибки

это ошибки, проявляющиеся на этапе
компиляции программы и возникающие в
связи с нарушением синтаксических
правил написания предложений используемого
языка программирования (к таким ошибкам
относятся
пропущенные точки с запятой, ссылки на
неописанные переменные, присваивание
переменной значений неверного типа и
т. д.). Если компилятор встречает в
тексте программы оператор или описание,
которые
он не может интерпретировать, то он
позиционирует курсор на место обнаруженной
ошибки и
в строку статуса выводит сообщение,
содержащее номер ошибки и ее краткое
описание.

Семантические
ошибки –
это
ошибки, проявляющиеся на этапе
выполнения программы при ее попытке
вычислить недопустимые значения
параметров или выполнить недопустимые
действия. Причина возникновения ошибок
данного типа связана с нарушением
семантических правил написания программ
(примером являются ситуации
попытки
открыть несуществующий файл или выполнить
деление на нуль). Если программа
обнаруживает ошибку такого типа, то она
завершает свое выполнение
и
выводит
соответствующее сообщение в окне Build,
содержащее номер строки с ошибкой и ее
возможный характер. Список сообщений
можно просмотреть с помощью команды
меню View/Debug
Windows/Event
Log.
При выполнении программы из среды Delphi
автоматически выбирается соответствующий
исходный файл и в нем находится
местоположение ошибки. Если же программа
выполнялась вне среды и в ней появилась
ошибка данного типа, то необходимо
запустить
среду и найти вызвавший ошибку оператор.

Логические
(смысловые) ошибки –
самые
сложные и трудноуловимые, связанные с
неправильным применением тех или иных
алгоритмических конструкций. Эти ошибки
при выполнении программы могут проявиться
явно (выдано сообщение об ошибке, нет
результата или выдан неверный результат,
программа «зацикливается»), но чаще
они проявляют себя только при определенных
сочетаниях параметров или вообще не
вызывают нарушения работы программы,
которая в этом случае выдает правдоподобные,
но неверные результаты.

Ошибки первого
типа легко выявляются самим компилятором.
Обычно устранение синтаксических ошибок
не вызывает особых трудностей. Более
сложно выявить ошибки второго и особенно
третьего типа. Для обнаружения и
устранения ошибок второго и третьего
типа обычно применяют специальные
способы и средства отладки программ.
Выявлению ошибок второго типа часто
помогает использование контролирующих
режимов компиляции с проверкой допустимых
значений тех или иных параметров (границ
индексов элементов массивов, значений
переменных типа диапазона, ситуаций
переполнения, ошибок ввода-вывода).
Устанавливаются эти режимы с помощью
ключей
компилятора
,
задаваемых либо в программе, либо в меню
Project/Options/Compiler
среды
Delphi, либо
в
меню
Options/Compiler Турбо-среды.

Соседние файлы в папке крутые билеты по инфе

  • #
  • #
  • #
  • #

#Руководства

  • 30 июн 2020

  • 14

Что такое баги, ворнинги и исключения в программировании

Разбираемся, какие бывают типы ошибок в программировании и как с ними справляться.

 vlada_maestro / shutterstock

Евгений Кучерявый

Пишет о программировании, в свободное время создаёт игры. Мечтает открыть свою студию и выпускать ламповые RPG.

Многим известно слово баг (англ. bug — жук), которым называют ошибки в программах. Однако баг — это не совсем ошибка, а скорее неожиданный результат работы. Также есть и другие термины: ворнинг, исключение, утечка.

В этой статье мы на примере C++ разберём, что же значат все эти слова и как эти проблемы влияют на эффективность программы.

Словом «ошибка» (англ. error) можно описать любую проблему, но чаще всего под ним подразумевают синтаксическую ошибку некорректно написанный код, который даже не скомпилируется:

//В конце команды забыли поставить точку с запятой (;)
int a = 5

Компилятор тут же скажет, что в коде ошибка и скорее всего не хватает запятой или точки с запятой.

Также существуют ворнинги (англ. warning предупреждение). Они не являются ошибками, поэтому программа всё равно будет собрана. Вот пример:

int main()
{
   //Мы создаём две переменные, которые просто занимают память и никак не используются
   int a, b;
}

Мы можем попросить компилятор показать нам все предупреждения с помощью флага -Wall:

Предупреждения не являются чем-то критичным, но могут иметь негативные последствия. Например, ваша программа будет использовать больше памяти, чем должна. Так как C++ нужен в том числе и для разработки высоконагруженных систем, этого допускать нельзя.

После восклицательного знака в треугольнике количество предупреждений

Третий вид ошибок — ошибки сегментации (англ. segmentation fault, сокр. segfault, жарг. сегфолт). Они возникают, если программа пытается записать что-то в ячейку, недоступную для записи. Например:

//Создаём константный массив символов 
const char * s = "Hello World";
//Если мы попытаемся перезаписать значение константы, компилятор выдаст ошибку
//Но с помощью указателей мы можем обойти её, поэтому программа успешно скомпилируется
//Однако во время работы она будет выдавать ошибку сегментации
* (char *) s = 'H';

Вот результат работы такого кода:

Мы выяснили, что баг — это не совсем ошибка, а скорее неожиданное поведение программы или результат такого поведения. Баги могут быть чем-то забавным или неприятным. Например, как в играх:

Но они могут привести и к более серьёзным последствиям. Если неправильно спроектировать работу многопоточного приложения, то потоки будут постоянно опережать друг друга. Например, сообщение об ошибке из одного потока может опоздать на миллисекунду, из-за чего второй поток подумает, что никакой ошибки не было, и продолжит работу.

Если ваш код приводит в действие какое-нибудь потенциально опасное устройство, то ценой такой ошибки может быть чья-нибудь жизнь. Такое случилось с кодом для аппарата лучевой терапии Therac-25 — как минимум два человека умерло и ещё больше пострадали из-за превышения дозы радиации.

Также во время работы программы могут возникать ситуации, которые мешают корректной работе программы. Например, если вы просите пользователя ввести число, а он вводит строку.

Конвертировать введённое значение не всегда возможно, поэтому функция, которая занимается преобразованием, «выбрасывает» исключение (англ. exception). Это специальное сообщение говорит о том, что что-то идёт не так.

Если разработчик не описывает логику работы программы при вы выбрасывании исключения, то программа аварийно закрывается. Подробнее мы рассказали об этом в статье про ввод и конвертацию в C++.

Одно из самых известных исключений — переполнение стека (англ. stack overflow). В честь него даже назвали сайт, на котором программисты ищут помощь в решении своих проблем.

int main()
{
   //Бесконечная рекурсия - одна из причин переполнения стека вызовов
   main();
}

Компилятор C++ при этом может выдать ошибку сегментации, а не сообщение о переполнении стека:

Вот аналогичный код на языке C#:

class Program
{
   static void Main(string[] args)
   {
       Main(args);
   }
}

Однако сообщение в этот раз более конкретное:

В обоих случаях программа завершается, потому что не может дальше корректно работать.

Похожая ситуация — переполнение буфера (англ. buffer overflow). Она происходит, когда записываемое значение больше выделенной области в памяти.

//Пробуем записать в переменную типа int значение, которое превышает лимит
//Константа INT_MAX находится в библиотеке climits
int a = INT_MAX + 1;

Обратите внимание, что мы получили предупреждение об арифметическом переполнении (англ. integer overflow):

Тем не менее программа скомпилировалась. Если же такая ситуация возникнет во время вычислений, то мы можем не получить предупреждения.

Арифметическое переполнение стало причиной одной из самых дорогих аварий, произошедших из-за ошибки в коде. В 1996 году ракета-носитель «Ариан-5» взорвалась на 40-й секунде полёта — потери оценивают в 360–500 миллионов долларов.

К сожалению, вручную всё это заметить и исправить не получится. Однако существуют различные инструменты и технологии, которые могут помочь.

Один из таких инструментов — отладчик. Он помогает контролировать ход работы программы, чтобы отслеживать разные показатели.

Второй, более эффективный метод — unit-тесты. Они представляют из себя набор описанных ситуаций для каждого компонента программы с указанием ожидаемого поведения.

Например, у вас есть функция sum (int a, int b), которая возвращает сумму двух чисел. Вы можете написать unit-тесты, чтобы проверять следующие ситуации:

Входные данные Ожидаемый результат
5, 10 15
99, 99 198
8, -9 -1
-1, -1 -2
fff, 8 IllegalArgumentException

Если какой-то из этих тестов не пройден, вы узнаете об этом и сможете всё исправить. Это намного быстрее, чем проверять всё вручную.

Ошибок существует слишком много. При этом самые опасные тяжелее обнаружить, что только усугубляет ситуацию.


Учись бесплатно:
вебинары по программированию, маркетингу и дизайну.

Участвовать

Школа дронов для всех
Учим программировать беспилотники и управлять ими.

Узнать больше

Ошибки в программировании – дело обычное, хоть и неприятное. В данной статье будет рассказано о том, какими бывают ошибки (баги), а также что собой представляют исключения.

Определение

Ошибка в программировании (или так называемый баг) – это ситуация у разработчиков, при которой определенный код вследствие обработки выдает неверный результат. Причин данному явлению множество: неисправность компилятора, сбои интерфейса, неточности и нарушения в программном коде.

Баги обнаруживаются чаще всего в момент отладки или бета-тестирования. Реже – после итогового релиза готовой программы. Вот несколько вариантов багов:

  1. Появляется сообщение об ошибке, но приложение продолжает функционировать.
  2. ПО вылетает или зависает. Никаких предупреждений или предпосылок этому не было. Процедура осуществляется неожиданно для пользователя. Возможен вариант, при котором контент перезапускается самостоятельно и непредсказуемо.
  3. Одно из событий, описанных ранее, сопровождается отправкой отчетов разработчикам.

Ошибки в программах могут привести соответствующее приложение в негодность, а также к непредсказуемым алгоритмам функционирования. Желательно обнаруживать баги на этапе ранней разработки или тестирования. Лишь в этом случае программист сможет оперативно и относительно недорого внести необходимые изменения в код для отладки ПО.

История происхождения термина

Баг – слово, которое используется разработчиками в качестве сленга. Оно произошло от слова «bug» – «жук». Точно неизвестно, откуда в программировании и IT возник соответствующий термин. Существуют две теории:

  1. 9 сентября 1945 года ученые из Гарварда тестировали очередную вычислительную машину. Она называлась Mark II Aiken Relay Calculator. Устройство начало работать с ошибками. Когда его разобрали, то ученые заметили мотылька, застрявшего между реле. Тогда некая Грейс Хоппер назвала произошедший сбой упомянутым термином.
  2. Слово «баг» появилось задолго до появления Mark II. Термин использовался Томасом Эдисоном и указывал на мелкие недочеты и трудности. Во время Второй Мировой войны «bugs» называли проблемы с радарной электроникой.

Второй вариант кажется более реалистичным. Это факт, который подтвержден документально. Со временем научились различать различные типы багов в IT. Далее они будут рассмотрены более подробно.

Как классифицируют

Ошибки работы программ разделяются по разным факторам. Классификация у рядовых пользователей и разработчиков различается. То, что для первых – «просто программа вылетела» или «глючит», для вторых – огромная головная боль. Но существует и общепринятая классификация ошибок. Пример – по критичности:

  1. Серьезные неполадки. Это нарушения работоспособности приложения, которые могут приводить к непредвиденным крупным изменениям.
  2. Незначительные ошибки в программах. Чаще всего не оказывают серьезного воздействия на функциональность ПО.
  3. Showstopper. Критические проблемы в приложении или аппаратном обеспечении. Приводят к выходу программы из строя почти всегда. Для примера можно взять любое клиент-серверное приложение, в котором не получается авторизоваться через логин и пароль.

Последний вариант требует особого внимания со стороны программистов. Их стараются обнаружить и устранить в первую очередь. Критические ошибки могут отложить релиз исходной программы на неопределенный срок.

Также существуют различные виды сбоев в плане частоты проявления: постоянные и «разовые». Вторые встречаются редко, чаще – при определенных настройках и действиях со стороны пользователя. Первые появляются независимо от используемой платформы и выполненных клиентом манипуляций.

Иногда может получиться так, что ошибка возникает только на устройстве конкретного пользователя. В данном случае устранение неполадки требует индивидуального подхода. Иногда – полной замены компьютера. Связано это с тем, что никто не будет редактировать исходный код, когда он «глючит» только у одного пользователя.

Виды

Существуют различные типы ошибок в программах в зависимости от типовых условий использования приложений. Пример – сбои, которые возникают при возрастании нагрузки на оперативную память или центральный процессор устройства. Есть баги граничных условий, сбоя идентификаторов, несовместимости с архитектурой процессора (наиболее распространенная проблема на мобильных устройствах).

Разработчики выделяют следующие типы ошибок по уровню сложности:

  1. «Борбаг» – «стабильная» неполадка. Она легко обнаруживается на этапе разработки и компилирования. Иногда – во время тестирования наработкой исходной программы.
  2. «Гейзенбаг» – баги с поддержкой изменения свойств, включая зависимость от среды, в которой было запущено приложение. Сюда относят периодические неполадки в программах. Они могут исчезать на некоторое время, но через какой-то промежуток вновь дают о себе знать.
  3. «Мандельбаг» – непредвиденные ошибки. Обладают энтропийным поведением. Предсказать, к чему они приведут, практически невозможно.
  4. «Шрединбаг» – критические неполадки. Приводят к тому, что злоумышленники могут взломать программу. Данный тип ошибок обнаружить достаточно трудно, потому что они никак себя не проявляют.

Также есть классификация «по критичности». Тут всего два варианта – warning («варнинги») и критические весомые сбои. Первые сопровождаются характерными сообщениями и отчетами для разработчиков. Они не представляют серьезной опасности для работоспособности приложения. При компилировании такие сбои легко исправляются. В отдельных случаях компилятор справляется с этой задачей самостоятельно. А вот критические весомые сбои говорят сами за себя. Они приводят к серьезным нарушениям ПО. Исправляются обычно путем проработки логики и значительных изменений программного кода.

Типы багов

Ошибки в программах бывают:

  • логическими;
  • синтаксическими;
  • взаимодействия;
  • компиляционные;
  • ресурсные;
  • арифметические;
  • среды выполнения.

Это – основная классификация сбоев в приложениях и операционных системах. Логические, синтаксические и «среды выполнения» встречаются в разработке чаще остальных. На них будет сделан основной акцент.

Ошибки синтаксиса

Синтаксические баги распространены среди новичков. Они относятся к категории «самых безобидных». С данной категорией ошибок способны справиться компиляторы тех или иных языков. Соответствующие инструменты показывают, где допущена неточность. Остается лишь понять, как исправить ее.

Синтаксические ошибки – ошибки синтаксиса, правил языка. Вот пример в Паскале:

Код написан неверно. Согласно действующим синтаксическим нормам, в Pascal в первой строчке нужно в конце поставить точку с запятой.

Логические

Тут стоит выделить обычные и арифметические типы. Вторые возникают, когда программе при работе необходимо вычислить много переменных, но на каком-то этапе расчетов возникают неполадки или нечто непредвиденное. Пример – получение в результатах «бесконечности».

Логические сбои обычного типа – самые сложные и неприятные. Их тяжелее всего обнаружить и исправить. С точки зрения языка программа может быть написана идеально, но работать неправильно. Подобное явление – следствие логической ошибки. Компиляторы их не обнаруживают.

Выше – пример логической ошибки в программе. Тут:

  1. Происходит сравнение значения i с 15.
  2. На экран выводится сообщение, если I = 15.
  3. В заданном цикле i не будет равно 15. Связано это с диапазоном значений – от 1 до 10.

Может показаться, что ошибка безобидная. В приведенном примере так и есть, но в более крупных программах такое явление приводит к серьезным последствиям.

Время выполнения

Run-time сбои – это ошибка времени выполнения программы. Встречается даже когда исходный код лишен логических и синтаксических ошибок. Связаны такие неполадки с ходом выполнения программного продукта. Пример – в процессе функционирования ПО был удален файл, считываемый программой. Если игнорировать подобные неполадки, можно столкнуться с аварийным завершением работы контента.

Самый распространенный пример в данной категории – это неожиданное деление на ноль. Предложенный фрагмент кода с точки зрения синтаксиса и логики написан грамотно. Но, если клиент наберет 0, произойдет сбой системы.

Компиляционный тип

Встречается при разработке на языках высокого уровня. Во время преобразований в машинный тип «что-то идет не так». Причиной служат синтаксические ошибки или сбои непосредственно в компиляторе.

Наличие подобных неполадок делает бета-тестирование невозможным. Компиляционные ошибки устраняются при разработке-отладке.

Ресурсные

Ресурсный тип ошибок – это сбои вроде «переполнение буфера» или «нехватка памяти». Тесно связаны с «железом» устройства. Могут быть вызваны действиями пользователя. Пример – запуск «свежих» игр на стареньких компьютерах.

Исправить ситуацию помогают основательные работы над исходным кодом. А именно – полное переписывание программы или «проблемного» фрагмента.

Взаимодействие

Подразумевается взаимодействие с аппаратным или программным окружением. Пример – ошибка при использовании веб-протоколов. Это приведет к тому, что облачный сервис не будет нормально функционировать. При постоянном возникновении соответствующей неполадки остается один путь – полностью переписывать «проблемный» участок кода, ответственный за соответствующий баг.

Исключения и как избежать багов

Исключение – событие, при возникновении которых начинается «неправильное» поведение программы. Механизм, необходимый для стабилизации обработки неполадок независимо от типа ПО, платформ и иных условий. Помогают разрабатывать единые концепции ответа на баги со стороны операционной системы или контента.

Исключения бывают:

  1. Программными. Они генерируются приложением или ОС.
  2. Аппаратными. Создаются процессором. Пример – обращение к невыделенной памяти.

Исключения нужны для охвата критических багов. Избежать неполадок помогут отладчики на этапе разработки. А еще – своевременное поэтапное тестирование программы.

P. S. Большой выбор курсов по тестированию есть и в Otus. Присутствуют варианты как для продвинутых, так и для начинающих пользователей.

Понравилась статья? Поделить с друзьями:
  • Программа просит запуск от имени администратора как исправить
  • Программа проводник перезапускается windows 7 как исправить
  • Программа проводник не работает windows 7 как исправить
  • Программа проверки телефона на ошибки
  • Программа прекратила работу как исправить