Рассмотрим популярные инструменты для анализа кода Python и подробно расскажем об их специфике и основных принципах работы.
Автор: Валерий Шагур, teacher assistance на курсе Программирование на Python
Высокая стоимость ошибок в программных продуктах предъявляет повышенные
требования к качеству кода. Каким критериям должен соответствовать хороший код?
Отсутствие ошибок, расширяемость, поддерживаемость, читаемость и наличие документации. Недостаточное внимание к любому из этих критериев может привести к появлению новых ошибок или снизить вероятность обнаружения уже существующих. Небрежно написанный или чересчур запутанный код, отсутствие документации напрямую влияют на время исправления найденного бага, ведь разработчику приходится заново вникать в код. Даже такие, казалось бы, незначительные вещи как неправильные имена переменных или отсутствие форматирования могут сильно влиять на читаемость и понимание кода.
Командная работа над проектом еще больше повышает требования к качеству кода, поэтому важным условием продуктивной работы команды становится описание формальных требований к написанию кода. Это могут быть соглашения, принятые в языке программирования, на котором ведется разработка, или собственное (внутрикорпоративное) руководство по стилю. Выработанные требования к оформлению кода не исключают появления «разночтений» среди разработчиков и временных затрат на их обсуждение. Кроме этого, соблюдение выработанных требований ложится на плечи программистов в виде дополнительной нагрузки. Все это привело к появлению инструментов для проверки кода на наличие стилистических и логических ошибок. О таких инструментах для языка программирования Python мы и поговорим в этой статье.
Анализаторы и автоматическое форматирование кода
Весь инструментарий, доступный разработчикам Python, можно условно разделить на две группы по способу реагирования на ошибки. Первая группа сообщает о найденных ошибках, перекладывая задачу по их исправлению на программиста. Вторая — предлагает пользователю вариант исправленного кода или автоматически вносит изменения.
И первая, и вторая группы включают в себя как простые утилиты командной строки для решения узкоспециализированных задач (например, проверка docstring или сортировка импортов), так и богатые по возможностям библиотеки, объединяющие в себе более простые утилиты. Средства анализа кода из первой группы принято называть линтерами (linter). Название происходит от lint — статического анализатора для языка программирования Си и со временем ставшего нарицательным. Программы второй группы называют форматировщиками (formatter).
Даже при поверхностном сравнении этих групп видны особенности работы с ними. При применении линтеров программисту, во-первых, необходимо писать код с оглядкой, дабы позже не исправлять найденные ошибки. И во вторых, принимать решение по поводу обнаруженных ошибок — какие требуют исправления, а какие можно проигнорировать. Форматировщики, напротив, автоматизируют процесс исправления ошибок, оставляя программисту возможность осуществлять контроль.
Часть 1
- pycodestyle
- pydocstyle
- pyflakes
- pylint
- vulture
Часть 2
- flake8
- prospector
- pylama
- autopep8
- yapf
- black
Соглашения принятые в статье и общие замечания
Прежде чем приступить к обзору программ, мы хотели бы обратить ваше внимание на несколько важных моментов.
Версия Python: во всех примерах, приведенных в статье, будет использоваться третья версия языка программирования Python.
Установка всех программ в обзоре практически однотипна и сводится к использованию пакетного менеджера pip.
$ python3.6 -m pip install --upgrade <package_name>
Некоторые из библиотек имеют готовые бинарные пакеты в репозиториях дистрибутивов linux или возможность установки с использованием git. Тем не менее для большей определенности и возможности повторения примеров из статьи, установка будет производится с помощью pip.
Об ошибках: стоит упомянуть, что говоря об ошибках, обнаруживаемых анализаторами кода, как правило, имеют в виду два типа ошибок. К первому относятся ошибки стиля (неправильные отступы, длинные строки), ко второму — ошибки в логике программы и ошибки синтаксиса языка программирования (опечатки при написании названий стандартных функций, неиспользуемые импорты, дублирование кода). Существуют и другие виды ошибок, например — оставленные в коде пароли или высокая цикломатическая сложность.
Тестовый скрипт: для примеров использования программ мы создали простенький по содержанию файл example.py. Мы сознательно не стали делать его более разнообразным по наличию в нем ошибок. Во-первых, добавление листингов с выводом некоторых анализаторов в таком случае сильно “раздуло” бы статью. Во-вторых, у нас не было цели детально показать различия в “отлове” тех или иных ошибок для каждой из утилит.
Содержание файла example.py:
import os import notexistmodule def Function(num,num_two): return num class MyClass: """class MyClass """ def __init__(self,var): self.var=var def out(var): print(var) if __name__ == "__main__": my_class = MyClass("var") my_class.out("var") notexistmodule.func(5)
В коде допущено несколько ошибок:
- импорт неиспользуемого модуля os,
- импорт не существующего модуля notexistmodule,
- имя функции начинается с заглавной буквы,
- лишние аргументы в определении функции,
- отсутствие self первым аргументом в методе класса,
- неверное форматирование.
Руководства по стилям: для тех, кто впервые сталкивается с темой оформления кода, в качестве знакомства предлагаем прочитать официальные руководства по стилю для языка Python PEP8 и PEP257. В качестве примера внутрикорпоративных соглашений можно рассмотреть Google Python Style Guide — https://github.com/google/styleguide/blob/gh-pages/pyguide.md
Pycodestyle
Pycodestyle — простая консольная утилита для анализа кода Python, а именно для проверки кода на соответствие PEP8. Один из старейших анализаторов кода, до 2016 года носил название pep8, но был переименован по просьбе создателя языка Python Гвидо ван Россума.
Запустим проверку на нашем коде:
$ python3 -m pycodestyle example.py example.py:4:1: E302 expected 2 blank lines, found 1 example.py:4:17: E231 missing whitespace after ',' example.py:7:1: E302 expected 2 blank lines, found 1 example.py:10:22: E231 missing whitespace after ',' example.py:11:17: E225 missing whitespace around operator
Лаконичный вывод показывает нам строки, в которых, по мнению анализатора, есть нарушение соглашений PEP8. Формат вывода прост и содержит только необходимую информацию:
<имя файла>: <номер строки> :<положение символа>: <код и короткая расшифровка ошибки>
Возможности программы по проверке соглашений ограничены: нет проверок на правильность именования, проверка документации сводится к проверки длины docstring. Тем не менее функционал программы нельзя назвать “спартанским”, он позволяет настроить необходимый уровень проверок и получить различную информацию о результатах анализа. Запуск с ключом —statistics -qq выводит статистику по ошибкам:
$ python3 -m pycodestyle --statistics -qq example.py 1 E225 missing whitespace around operator 2 E231 missing whitespace after ',' 2 E302 expected 2 blank lines, found 1
Более наглядный вывод можно получить при использовании ключа —show-source. После каждого сообщения об ошибке будет выведена строка исходного кода, в которой содержится ошибка.
$ python3 -m pycodestyle --show-source example.py example.py:4:1: E302 expected 2 blank lines, found 1 def Function(num,num_two): ^ example.py:4:17: E231 missing whitespace after ',' def Function(num,num_two): ^ example.py:7:1: E302 expected 2 blank lines, found 1 class MyClass: ^ example.py:10:22: E231 missing whitespace after ',' def __init__(self,var): ^ example.py:11:17: E225 missing whitespace around operator self.var=var ^
Если есть необходимость посмотреть, какие из соглашений PEP8 были нарушены, используйте ключ — show-pep8. Программа выведет список всех проверок с выдержками из PEP8 для случаев нарушений. При обработке файлов внутри директорий предусмотрена возможность фильтрации по шаблону. Pycodestyle позволяет сохранять настройки поиска в конфигурационных файлах как глобально, так и на уровне проекта.
Pydocstyle
Утилиту pydocstyle мы уже упоминали в статье Работа с документацией в Python: поиск информации и соглашения. Pydocstyle проверяет наличие docstring у модулей, классов, функций и их соответствие официальному соглашению PEP257.
$ python3 -m pydocstyle example.py example.py:1 at module level: D100: Missing docstring in public module example.py:4 in public function `Function`: D103: Missing docstring in public function example.py:7 in public class `MyClass`: D400: First line should end with a period (not 's') example.py:7 in public class `MyClass`: D210: No whitespaces allowed surrounding docstring text example.py:10 in public method `__init__`: D107: Missing docstring in __init__ example.py:13 in public method `out`: D102: Missing docstring in public method
Как мы видим из листинга, программа указала нам на отсутствие документации в определениях функции, методов класса и ошибки оформления в docstring класса. Вывод можно сделать более информативным, если использовать ключи —explain и —source при вызове программы. Функционал pydocstyle практически идентичен описанному выше для pycodestyle, различия касаются лишь названий ключей.
Pyflakes
В отличие от уже рассмотренных инструментов для анализа кода Python pyflakes не делает проверок стиля. Цель этого анализатора кода — поиск логических и синтаксических ошибок. Разработчики pyflakes сделали упор на скорость работы программы, безопасность и простоту. Несмотря на то, что данная утилита не импортирует проверяемый файл, она прекрасно справляется c поиском синтаксических ошибок и делает это быстро. С другой стороны, такой подход сильно сужает область проверок.
Функциональность pyflakes — “нулевая”, все что он умеет делать — это выводить результаты анализа в консоль:
$ python3 -m pyflakes example.py example.py:1: 'os' imported but unused
В нашем тестовом скрипте, он нашел только импорт не используемого модуля os. Вы можете самостоятельно поэкспериментировать с запуском программы и передачей ей в качестве параметра командной строки Python файла, содержащего синтаксические ошибки. Данная утилита имеет еще одну особенность — если вы используете обе версии Python, вам придется установить отдельные утилиты для каждой из версий.
Pylint
До сих пор мы рассматривали утилиты, которые проводили проверки на наличие либо стилистических, либо логических ошибок. Следующий в обзоре статический инструмент для анализа кода Python — Pylint, который совместил в себе обе возможности. Этот мощный, гибко настраиваемый инструмент для анализа кода Python отличается большим количеством проверок и разнообразием отчетов. Это один из самых “придирчивых” и “многословных” анализаторов кода. Анализ нашего тестового скрипта выдает весьма обширный отчет, состоящий из списка найденных в ходе анализа недочетов, статистических отчетов, представленных в виде таблиц, и общей оценки кода:
$ python3.6 -m pylint --reports=y text example.py ************* Module text /home/ququshka77/.local/lib/python3.6/site-packages/pylint/reporters/text.py:79:22: W0212: Access to a protected member _splitstrip of a client class (protected-access) ************* Module example example.py:4:16: C0326: Exactly one space required after comma def Function(num,num_two): ^ (bad-whitespace) example.py:10:21: C0326: Exactly one space required after comma def __init__(self,var): ^ (bad-whitespace) example.py:11:16: C0326: Exactly one space required around assignment self.var=var ^ (bad-whitespace) example.py:1:0: C0111: Missing module docstring (missing-docstring) example.py:2:0: E0401: Unable to import 'notexistmodule' (import-error) example.py:4:0: C0103: Function name "Function" doesn't conform to snake_case naming style (invalid-name) example.py:4:0: C0111: Missing function docstring (missing-docstring) example.py:4:17: W0613: Unused argument 'num_two' (unused-argument) example.py:13:4: C0111: Missing method docstring (missing-docstring) example.py:13:4: E0213: Method should have "self" as first argument (no-self-argument) example.py:7:0: R0903: Too few public methods (1/2) (too-few-public-methods) example.py:18:4: C0103: Constant name "my_class" doesn't conform to UPPER_CASE naming style (invalid-name) example.py:19:4: E1121: Too many positional arguments for method call (too-many-function-args) example.py:1:0: W0611: Unused import os (unused-import) Report ====== 112 statements analysed. Statistics by type +----------+----------+---------------+-------------+-------------------+---------------+ |type |number |old number |difference |%documented |%badname | +======+======+========+========+===========+========+ |module |2 |2 |= |50.00 |0.00 | +-----------+----------+---------------+-------------+-------------------+---------------+ |class |5 |5 |= |100.00 |0.00 | +-----------+----------+---------------+-------------+-------------------+---------------+ |method |11 |11 |= |90.91 |0.00 | +-----------+----------+---------------+-------------+-------------------+---------------+ |function |4 |4 |= |75.00 |25.00 | +-----------+----------+---------------+-------------+-------------------+---------------+ External dependencies :: pylint -interfaces (text) -reporters (text) | -ureports | -text_writer (text) -utils (text) Raw metrics +-------------+----------+-------+-----------+-------------+ |type |number |% |previous |difference | +=======+======+=====+=====+========+ |code |128 |48.30 |128 |= | +-------------+----------+--------+-----------+------------+ |docstring |84 |31.70 |84 |= | +-------------+----------+--------+-----------+------------+ |comment |16 |6.04 |16 |= | +-------------+----------+--------+-----------+------------+ |empty |37 |13.96 |37 |= | +-------------+----------+--------+-----------+------------+ Duplication +-------------------------------+------+------------+-------------+ | |now |previous |difference | +=================+=====+======+========+ |nb duplicated lines |0 |0 |= | +-------------------------------+-------+------------+------------+ |percent duplicated lines |0.000 |0.000 |= | +-------------------------------+-------+------------+------------+ Messages by category +--------------+----------+-----------+-------------+ |type |number |previous |difference | +========+======+======+========+ |convention |8 |8 |= | +--------------+----------+-----------+-------------+ |refactor |1 |1 |= | +--------------+-----------+----------+-------------+ |warning |3 |3 |= | +--------------+-----------+----------+-------------+ |error |3 |3 |= | +--------------+-----------+----------+-------------+ % errors / warnings by module +-----------+--------+-----------+----------+--------------+ |module |error |warning |refactor |convention | +======+=====+======+======+========+ |example |100.00 |66.67 |100.00 |100.00 | +-----------+---------+----------+-----------+-------------+ |text |0.00 |33.33 |0.00 |0.00 | +-----------+---------+----------+-----------+-------------+ Messages +-----------------------------+----------------+ |message id |occurrences | +=================+=========+ |missing-docstring |3 | +-----------------------------+----------------+ |bad-whitespace |3 | +------------------------------+---------------+ |invalid-name |2 | +------------------------------+---------------+ |unused-import |1 | +------------------------------+---------------+ |unused-argument |1 | +------------------------------+---------------+ |too-many-function-args |1 | +------------------------------+---------------+ |too-few-public-methods |1 | +------------------------------+---------------+ |protected-access |1 | +------------------------------+---------------+ |no-self-argument |1 | +------------------------------+---------------+ |import-error |1 | +------------------------------+---------------+ ------------------------------------------------------------------------------------------ Your code has been rated at 7.59/10 (previous run: 7.59/10, +0.00)
Программа имеет свою внутреннюю маркировку проблемных мест в коде:
[R]efactor — требуется рефакторинг,
[C]onvention — нарушено следование стилистике и соглашениям,
[W]arning — потенциальная ошибка,
[E]rror — ошибка,
[F]atal — ошибка, которая препятствует дальнейшей работе программы.
Для вывода подробного отчета мы использовали ключ командной строки —reports=y.
Более гибко настроить вывод команды позволяют разнообразные ключи командной строки. Настройки можно сохранять в файле настроек rcfile. Мы не будем приводить подробное описание ключей и настроек, для этого есть официальная документация — https://pylint.readthedocs.io/en/latest/index.html#, остановимся лишь на наиболее интересных, с нашей точки зрения, возможностях утилиты:
— Генерация файла настроек (—generate-rcfile). Позволяет не писать конфигурационный файл с нуля. В созданном rcfile содержатся все текущие настройки с подробными комментариями к ним, вам остается только отредактировать его под собственные требования.
— Отключение вывода в коде. При редактировании кода есть возможность вставить блокирующие вывод сообщений комментарии. Чтобы продемонстрировать это, в определение функции в файле примера example.py добавим строку:
# pylint: disable=unused-argument
и запустим pylint. Из результатов проверки “исчезло” сообщение:
example.py:4:17: W0613: Unused argument 'num_two' (unused-argument)
— Создание отчетов в формате json (—output-format=json). Полезно, если необходимо сохранение или дальнейшая обработка результатов работы линтера. Вы также можете создать собственный формат вывода данных.
— Параллельный запуск (-j 4). Запуск в нескольких параллельных потоках на многоядерных процессорах сокращает время проверки.
— Встроенная документация. Вызов программы с ключом —help-msg=<key> выведет справку по ключевому слову key. В качестве ключевого слова может быть код сообщения (например: E0401) или символическое имя сообщения (например: import-error). Ниже приведен листинг получения справки по ключу import-error:
$ python3.6 -m pylint --help-msg=import-error :import-error (E0401): *Unable to import %s* Used when pylint has been unable to import a module. This message belongs to the imports checker.
— Система оценки сохраняет последний результат и при последующих запусках показывает изменения, что позволяет количественно оценить прогресс исправлений.
— Плагины — отличная возможность изменять поведение pylint. Их применение может оказаться полезным в случаях, когда pylint неправильно обрабатывает код и есть “ложные” срабатывания, или когда требуется отличный от стандартного формат вывода результатов.
Vulture
Vulture — небольшая утилита для поиска “мертвого” кода в программах Python. Она использует модуль ast стандартной библиотеки и создает абстрактные синтаксические деревья для всех файлов исходного кода в проекте. Далее осуществляется поиск всех объектов, которые были определены, но не используются. Vulture полезно применять для очистки и нахождения ошибок в больших базовых кодах.
Продолжение следует
Во второй части мы продолжим разговор об инструментах для анализа кода Python. Будут рассмотрены линтеры, представляющие собой наборы утилит. Также мы посмотрим, какие программы можно использовать для автоматического форматирования кода.
Еще статьи по Python
- 26 полезных возможностей Python: букварь разработки от А до Z;
- ТОП-15 трюков в Python 3, делающих код понятнее и быстрее;
- Новый Python: 7 возможностей, которые вам понравятся;
- Крупнейшая подборка Python-каналов на Youtube;
- Изучение Python: ТОП-10 вопросов разной направленности.
Check your Python code security before your next PR commit and get alerts of critical bugs using our free online Python code checker — powered by Snyk Code.
Sign up for unlimited checks, no credit card required.
How to use the free code checker
Get code security right from your IDE
This free code checker can find critical vulnerabilities and security issues with a click. To take your application security to the next level, we recommend using Snyk Code for free right from your IDE.
Python code security powered by Snyk Code
This free web based Python code checker is powered by Snyk Code. Sign up now to get access to all the features including vulnerability alerts, real time scan results, and actionable fix advice within your IDE.
Learn about Snyk Code
Human-in-the-Loop Python Code Checker
Snyk Code is an expert-curated, AI-powered Python code checker that analyzes your code for security issues, providing actionable advice directly from your IDE to help you fix vulnerabilities quickly.
Real-time
Scan and fix source code in minutes.
Actionable
Fix vulns with dev friendly remediation.
Integrated in IDE
Find vulns early to save time & money.
Ecosystems
Integrates into existing workflow.
More than syntax errors
Comprehensive semantic analysis.
AI powered by people
Modern ML directed by security experts.
In-workflow testing
Automatically scan every PR and repo.
CI/CD security gate
Integrate scans into the build process.
Frequently asked questions
A code checker is automated software that statically analyzes source code and detects potential issues. More specifically, an online code checker performs static analysis to surface issues in code quality and security. Most code checkers provide in-depth insights into why a particular line of code was flagged to help software teams implement coding best practices. These code-level checks often measure the syntax, style, and documentation completeness of source code.
What are the benefits of an AI-powered Python code checker?
An AI-powered Python code checker allows organizations to detect and remediate more complex code issues earlier in the secure software development lifecycle (SSDLC). AI algorithms that have been trained by hundreds of thousands of open source projects to capture symbolic AI rules about possible issues and remediation. By leveraging this learned knowledge from the global open source development community, an AI engine can often detect quality and security issues that may not be caught during peer code reviews or pair programming. That means the efficiency of an AI-powered Python code checker enables developers to fix issues very early — before they reach production and potentially impact end-users.
Why is a Python code checker vital to secure development?
A key part of DevSecOps is shifting left — or detecting and remediating vulnerabilities earlier in the development process. Implementing a Python code checker into your existing continuous integration and continuous delivery (CI/CD) pipeline is one of the most widely accepted best practices. Embedding static analysis into the IDE informs developers of Python vulnerabilities at the earliest possible moment — eliminating Python code security risks at the source.
What is a syntax error in Python?
A Python syntax error is an issue that occurs when Python code is interpreted during execution. Syntax errors are one of three basic types of error, and are almost always fatal because the Python interpreter cannot understand a line of code. Logic errors occur when the code is valid, but the application doesn’t do what the developer intended. Exceptions occur when the Python parser understands a line of code, but the interpreter is unable to execute it during runtime.
Common Python syntax and logical errors
There are a variety of syntax and logical errors, so it’s important to know how to remediate the most common issues that a debugger or code checker may flag. While logical errors aren’t recognized by the Python interpreter, they still prevent the application from performing as the developer originally intended. Here are some tips to avoid some common logical flaws when writing Python code:
- Remember to invoke a function to start the execution of the program.
- Check for infinite loops where the program gets stuck in a recurring code block.
- Use print statements to understand the flow of execution and ensure it’s correct.
- Avoid complex expressions that make code harder to read and debug.
How to use a Python code checker to improve code quality and security practices
Integrating a Python code checker into the existing developer workflow is a great way to fix code issues earlier, while also helping developers learn about best practices. This can make a significant impact on the quality and security of Python code that developers write going forward. More maintainable code can also improve the customer experience because there are fewer bugs and technical debt to deal with in the future.When it comes to static application security testing (SAST) with a Python code checker, it’s important to choose a developer-first tool that integrates into developer workflows and produces minimal false positives in scan results. A SAST tool also needs to take a comprehensive approach for scanning source code, and be able to combine with linters to check code syntax and style.The most common types of SAST security analysis are:CONFIGURATION:
Ensures that application configuration files are following security best practices and policies.SEMANTIC:
Examines code contextually to estimate what the developer intended, and check whether the code syntax differs.DATA FLOW:
Tracks the flow of data from insecure sources to ensure it’s cleansed before consumption by the Python application.STRUCTURAL:
Determines whether there are inconsistencies with implementing language-specific best practices and cryptographic techniques.The Python code checker you use should also leverage a comprehensive vulnerability database to identify security issues at the code level, as well as known vulnerabilities introduced via open source dependencies.Vulnerability databases help developers stay on top of the latest security exploits as they’re discovered, without spending endless hours researching the current cyber threat landscape. This type of data-driven security works in tandem with threat intelligence to improve the overall security posture of your organization.Finally, detecting Python code security issues is only half the battle. An effective code checker solution will identify flaws, while also giving developers the insights they need to remediate them. This should include the precise source of the issue, and any known publicly available fixes for both security flaws and code anti-patterns.
What is Python code security?
Python code security can be described using the CIA triad — confidentiality, integrity, and availability. The CIA triad is often used as a model for secure systems, and to identify possible vulnerabilities and fixes. Today, applications consist of 80 to 90% open source dependencies. But the remaining 10 to 20% is critical: this code reflects your personal IP, and there is no open source community helping you keep it secure. The best practice is to accept the work of the open source community by scanning and updating software dependencies in your project using scanners like Snyk Open Source — while doing your part by scanning and fixing your code using Snyk Code.Confidentiality
Secure software systems do not disclose information to parties that are not allowed to receive it. That includes malicious external actors as well as unauthorized internal stakeholders.Integrity
Secure software systems make sure that data and processes are not tempered with, destroyed, or altered. Transactions succeed when all sub-transactions succeed, and the stored data does not contradict each other.Availability
A secure system also needs to be able to be used in due time. Blocking a system by overloading parts of it renders the system useless and insecure.
What is Python code quality?
Python code quality is a subjective term, and means something different to every development team. In general, however, the quality of code relates to how closely it follows commonly accepted coding standards and best practices. Here are five frequently used measures of code quality to consider when developers ask, how do I check my Python code?
- Reusability
It’s best to write code that’s highly reusable. For example, in object-oriented programming, it’s important to make classes and methods clean and modular, so that code is easier to debug and scale across projects. Restricting access to certain reusable blocks of code through encapsulation can also improve security.
- Maintainability
Along with being reusable, it’s important that Python source code is maintainable. As a codebase grows, complexity and technical debt often increase, leading to bugs that are difficult to pinpoint and slow development in the long run. Automated code analysis and peer reviews can ensure that developers are only pushing highly maintainable code into production.
- Testability
High-quality Python code should support testing efforts. Along with writing modular code that makes automated testing easier, developers need to prioritize clear and up-to-date documentation. This allows test engineers to more easily understand the purpose of a particular code snippet.
- Consistency
Python code should be portable enough that it can run on any development, staging, or production environment without compatibility issues. Docker and other containerization platforms can help ensure Python code and dependencies are consistent across different deployment environments.
- Reliability
Software should be designed for reliability from the start. Meaning developers need to proactively prevent technical debt from accruing when they push Python code. Otherwise, software can become less reliable over time and have a decrease in availability, fault tolerance, data integrity, and ability to recover from outages. These lack of reliability can also have a negative impact on the security posture of an application.Perform a semantic check and secure your Python code in your IDE.
Secure your code as you develop. Snyk’s free IDE plugins scan your Python code for vulnerabilities in real-time and provide fix advice.
I wrote a python module. Running python filename.py, only checks for syntax errors. Is there a tool, which checks for runtime errors also, like concatenating int with string etc..
Thank you
Bala
Update:
Scripts are mainly about setting up a hadoop cluster in the cloud. I am not sure how I can write a unit test, because everything runs in the cloud. You can think of code as legacy code, and I just added more logging and some extra conditions a few places
asked Mar 18, 2010 at 2:06
BooleanBoolean
14.1k29 gold badges88 silver badges128 bronze badges
Traditionally, if not writing full-fledged unit-tests and/or doc-tests (writing lots of tests is of course best practice!), one at least puts in every module a def main():
function to exercise it and ends the module with
if __name__ == '__main__':
main()
so main()
won’t get in the way if the module’s just imported, but it will execute if you run the module as your main script. Of course, you need to actually exercise the code in the module from within main()
, for this to catch all kinds of semantic problems such as the type error you mention — doing a really thorough job this way is often as hard as writing real unit tests and doc tests would be, but you can at least get started!
answered Mar 18, 2010 at 2:12
Alex MartelliAlex Martelli
839k165 gold badges1210 silver badges1389 bronze badges
4
You could write a unit test for your module. That way it will execute your code and any runtime errors (or even better, test failures) will be reported.
If you choose to go down this route, http://docs.python.org/library/unittest.html would probably be a good place to start. Alternatively, as Alex wrote, you can just put code at the bottom of your module that will execute when the module is run directly. This is more expedient and probably a better first approach, although if you have a lot of modules you may want a more structured approach.
answered Mar 18, 2010 at 2:11
Justin EthierJustin Ethier
130k51 gold badges227 silver badges284 bronze badges
1
You can give a try to pyanalyze. It is able to detect possible run-time errors without running the program.
pip3 install pyanalyze
python3 -m pyanalyze file.py
answered Sep 9, 2021 at 20:42
Анализ кода в Python может быть трудной темой, но очень полезной в тех случаях, когда вам нужно повысить производительность вашей программы. Существует несколько анализаторов кода для Python, которые вы можете использовать для проверки своего кода и выяснить, соответствует ли он стандартам. Самым популярным можно назвать pylint. Он очень удобен в настойках и подключениях. Он также проверяет ваш код на соответствие с PEP8, официальным руководством по стилю ядра Python, а также ищет программные ошибки. Обратите внимание на то, что pylint проверяет ваш код на большую часть стандартов PEP8, но не на все. Также мы уделим наше внимание тому, чтобы научиться работать с другим анализатором кода, а именно pyflakes.
Начнем с pylint
Пакет pylint не входит в Python, так что вам нужно будет посетить PyPI (Python Package Index), или непосредственно сайт пакета для загрузки. Вы можете использовать следующую команду, которая сделает всю работу за вас:
Если все идет по плану, то pylint установится, и мы сможем пойти дальше.
Анализ вашего кода
После установки pylint вы можете запустить его в командной строке, без каких либо аргументов, что бы увидеть, какие опции он принимает. Если это не сработало, можете прописать полный путь, вот так:
c:Python34Scriptspylint |
Теперь нам нужен какой-нибудь код для анализа. Вот часть кода, которая содержит четыре ошибки. Сохраните её в файле под названием crummy_code.py:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
import sys class CarClass: «»»»»» def __init__(self, color, make, model, year): «»»Constructor»»» self.color = color self.make = make self.model = model self.year = year if «Windows» in platform.platform(): print(«You’re using Windows!») self.weight = self.getWeight(1, 2, 3) def getWeight(this): «»»»»» return «2000 lbs» |
Можете увидеть ошибки не запуская код? Давайте посмотрим, может ли pylint найти их!
Есть вопросы по Python?
На нашем форуме вы можете задать любой вопрос и получить ответ от всего нашего сообщества!
Telegram Чат & Канал
Вступите в наш дружный чат по Python и начните общение с единомышленниками! Станьте частью большого сообщества!
Паблик VK
Одно из самых больших сообществ по Python в социальной сети ВК. Видео уроки и книги для вас!
После запуска этой команды вы увидите большую выдачу на вашем экране. Вот частичный пример:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
c:py101>c:Python34Scriptspylint crummy_code.py No config file found, using default configuration ************* Module crummy_code C: 2, 0: Trailing whitespace (trailing-whitespace) C: 5, 0: Trailing whitespace (trailing-whitespace) C: 12, 0: Trailing whitespace (trailing-whitespace) C: 15, 0: Trailing whitespace (trailing-whitespace) C: 17, 0: Trailing whitespace (trailing-whitespace) C: 1, 0: Missing module docstring (missing-docstring) C: 3, 0: Empty class docstring (empty-docstring) C: 3, 0: Old-style class defined. (old-style-class) E: 13,24: Undefined variable ‘platform’ (undefined-variable) E: 16,36: Too many positional arguments for function call (too-many-function-args) C: 18, 4: Invalid method name «getWeight» (invalid-name) C: 18, 4: Empty method docstring (empty-docstring) E: 18, 4: Method should have «self» as first argument (no-self-argument) R: 18, 4: Method could be a function (no-self-use) R: 3, 0: Too few public methods (1/2) (too-few-public-methods) W: 1, 0: Unused import sys (unused-import) |
Давайте немного притормозим и разберемся. Сначала нам нужно понять, что означают буквы:
- С – конвенция (convention)
- R – рефакторинг (refactor)
- W – предупреждение (warning)
- E – ошибка (error)
Наш pylint нашел 3 ошибки, 4 проблемы с конвенцией, 2 строки, которые нуждаются в рефакторинге и одно предупреждение. Предупреждение и 3 ошибки – это как раз то, что я искал. Мы попытаемся исправить этот код и устранить ряд проблем. Для начала мы наведем порядок в импортах, и изменить функцию getWeight на get_weight, в связи с тем, что camelCase не используется в названиях методов. Нам также нужно исправить вызов get_weight, чтобы он передавал правильное количество аргументов и исправить его, чтобы “self” выступал в качестве первого аргумента. Взглянем на новый код:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
# crummy_code_fixed.py import platform class CarClass: «»»»»» def __init__(self, color, make, model, year): «»»Constructor»»» self.color = color self.make = make self.model = model self.year = year if «Windows» in platform.platform(): print(«You’re using Windows!») self.weight = self.get_weight(3) def get_weight(self, this): «»»»»» return «2000 lbs» |
Давайте запустим новый код с pylint и посмотрим, насколько успешно мы провели работу. Для краткости, мы еще раз рассмотрим первую часть:
c:py101>c:Python34Scriptspylint crummy_code_fixed.py No config file found, using default configuration ************* Module crummy_code_fixed C: 1,0: Missing docstring C: 4,0: CarClass: Empty docstring C: 21,4: CarClass.get_weight: Empty docstring W: 21,25: CarClass.get_weight: Unused argument ‘this’ R: 21,4: CarClass.get_weight: Method could be a function R: 4,0: CarClass: Too few public methods (1/2) |
Как мы видим, это очень помогло. Если мы добавим docstrings, мы можем снизить количество ошибок вдвое. Теперь мы готовы перейти к pyflakes!
Работаем с pyflakes
Проект pyflakes это часть чего-то, что называется Divmod Project. Pyflakes на самом деле не выполняет проверяемый код также, как и pylint. Вы можете установить pyflakes при помощи pip, easy_install, или из другого источника.
Данный сервис может предложить Вам персональные условия при заказе классов на посты и фото в Одноклассники. Приобретайте необходимый ресурс не только со скидками, но и с возможностью подобрать наилучшее качество и скорость поступления.
Мы начнем с запуска pyflakes в изначальной версии той же части кода, которую мы использовали для проверки pylint. Вот и он:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
import sys class CarClass: «»»»»» def __init__(self, color, make, model, year): «»»Constructor»»» self.color = color self.make = make self.model = model self.year = year if «Windows» in platform.platform(): print(«You’re using Windows!») self.weight = self.getWeight(1, 2, 3) def getWeight(this): «»»»»» return «2000 lbs» |
Как мы отмечали в предыдущем разделе, в этом поломанном коде четыре ошибки, три из которых препятствуют работе программы. Давайте посмотрим, что же pyflakes может найти. Попытайтесь запустить данную команду и на выходе вы должны получить следующее:
c:py101>c:Python34Scriptspyflakes.exe crummy_code.py crummy_code.py:1: ‘sys’ imported but unused crummy_code.py:13: undefined name ‘platform’ |
Несмотря на суперски быструю скорость возврата выдачи, pyflakes не нашел все ошибки. Вызов метода getWeight передает слишком много аргументов, также метод getWeight сам по себе определен некорректно, так как у него нет аргумента self. Что-же, вы, собственно, можете называть первый аргумент так, как вам угодно, но в конвенции он всегда называется self. Если вы исправили код, оперируя тем, что вам сказал pyflakes, код не заработает, несмотря на это.
Подведем итоги
Следующим шагом должна быть попытка запуска pylint и pyflakes в вашем собственном коде, либо же в пакете Python, вроде SQLAlchemy, после чего следует изучить полученные в выдаче данные. Вы можете многое узнать о своем коде, используя данные инструменты. pylint интегрирован с Wingware, Editra, и PyDev. Некоторые предупреждения pylint могут показаться вам раздражительными, или не особо уместными. Существует несколько способов избавиться от таких моментов, как предупреждения об устаревании, через опции командной строки. Вы также можете использовать -generate-rcfile для создания примера файла config, который поможет вам контролировать работу pylint. Обратите внимание на то, что pylint и pyflakes не импортируют ваш код, так что вам не нужно беспокоиться о нежелательных побочных эффектах.
Являюсь администратором нескольких порталов по обучению языков программирования Python, Golang и Kotlin. В составе небольшой команды единомышленников, мы занимаемся популяризацией языков программирования на русскоязычную аудиторию. Большая часть статей была адаптирована нами на русский язык и распространяется бесплатно.
E-mail: vasile.buldumac@ati.utm.md
Образование
Universitatea Tehnică a Moldovei (utm.md)
- 2014 — 2018 Технический Университет Молдовы, ИТ-Инженер. Тема дипломной работы «Автоматизация покупки и продажи криптовалюты используя технический анализ»
- 2018 — 2020 Технический Университет Молдовы, Магистр, Магистерская диссертация «Идентификация человека в киберпространстве по фотографии лица»
In this post , we will explore – How to Check Syntax Errors in Python Code.
You can use various options to check for any syntax errors in Python without executing the script .
Try the below options –
if( aicp_can_see_ads() ) {
}
Option 1 – Using Compilation Script :
- Using Python basic compilation . Use the code below and save it as any .py file e.g pythonSyntaxChecker.py
import sys your_python_script_name = sys.argv[1] source = open(your_python_script_name, 'r').read() + 'n' compile(source, your_python_script_name, 'exec')
- Next run your Python script(say yourPythonScript.py) against the above script
python3 pythonSyntaxChecker.py yourPythonScript.py OR python pythonSyntaxChecker.py yourPythonScript.py
Option 2 – Using Direct Compilation :
- You can directly compile your Python script
- Note the below poinst –
- python returns a non-zero exit code if the compilation fails.
- Also type errors are not detected — those are only detected at runtime
python -m py_compile yourPythonScript.py
Option 3 – Using Pychecker :
- You can use PyChecker to syntax check your python code. Use code below from the command line:
pychecker [options] YOUR_PYTHON_SCRIPT.py
- The [options] provides below features –
- –only –> only warn about files passed on the command line
- -#, –limit –> the maximum number of warnings to be displayed
- –no-shadowbuiltin –> check if a variable shadows a builtin
- -q, –stdlib –> ignore warnings from files under standard library
- -T, –argsused –> unused method/function arguments
- If you want to syntax check multiple Python scripts at one go ,
if( aicp_can_see_ads() ) {
}
pychecker <YOUR_DIR>/*.py
Sample how pychecker shows the syntax errors –
script1.py:5: Imported module (string) not used script1.py:6: Instantiating an object with arguments, but no constructor script1.py:7: Object (useless) has no attribute (valeu) script1.py:8: No local variable (var1) script1.py:9: self is not first method argument
Option 4 – Using Pyflakes :
- Another worthy option to try – https://github.com/PyCQA/pyflakes
pyflakes yourPythonScript.py
Option 5 – Using “ast” module
- The ast module helps to process trees of the Python abstract syntax grammar – basically ast helps to find out the current grammar appearance.
- More here – https://docs.python.org/3/library/ast.html
- Using CLI
python -c "import ast; ast.parse(open('yourPythonScript.py').read())"
- Check syntax of any block of code
import ast tree = ast.parse("print ('This is Great')") ast.dump(tree) "Module(body=[Expr(value=Call(func=Name(id='print', ctx=Load()), args=[Str(s='This is Great')], keywords=[]))])"
- Alternatively use as a python script
import ast, traceback g = '<YOUR PYTHON SCRIPT NAME>' with open(g) as f: source = f.read() valid = True try: ast.parse(source) except SyntaxError: valid = False traceback.print_exc() finally: print(valid) ast.dump(source)
if( aicp_can_see_ads() ) {
}
Hope this write up was helpful.
Other Interesting Reads –
-
How To Create A Kerberos Keytab File ?
-
How To Code a PySpark Cassandra Application ?
-
How To Setup Spark Scala SBT in Eclipse
-
What Are The Most Important Metrics to Monitor in Kafka ?
python syntax check, python syntax, invalid syntax python, python for loop syntax, python if syntax, python, pycharm, django, matplotlib, python online, python programming, python list, learn python, python syntax checker,How do I check Python syntax, How do I check Python syntax online, What is Python basic syntax, What Is syntax check,check python script online,python code tester,how to find error in python code ,pep8 checker,python 3.5 syntax checker,python syntax error,python check function,bug checker python, python syntax checker command line, python 3.5 syntax checker, python syntax error fixer,syntaxerror: invalid syntax python 3,invalid syntax python print,how to resolve name error in python,invalid syntax python def,pylint syntax error,how to find error in python code,file <stdin>”, line 1 syntaxerror: invalid syntax,online python compiler, python find syntax error,How to find syntax error in python,How to solve the python syntax error,What is a syntax error in python,How does Python handle syntax errors,python syntax error,how to find error in python code,python compiler invalid syntax python ,check python script online,python code tester,occurs when a syntax error is raised for a module
if( aicp_can_see_ads() ) {
}
Pylint checkers’ options and switches#
Pylint checkers can provide three set of features:
-
options that control their execution,
-
messages that they can raise,
-
reports that they can generate.
Below is a list of all checkers and their features.
Async checker#
Verbatim name of the checker is async
.
Async checker Messages#
- not-async-context-manager (E1701)
-
Async context manager ‘%s’ doesn’t implement __aenter__ and __aexit__.
Used when an async context manager is used with an object that does not
implement the async context management protocol. This message can’t be
emitted when using Python < 3.5. - yield-inside-async-function (E1700)
-
Yield inside async function
Used when an yield or yield from statement is found inside an async
function. This message can’t be emitted when using Python < 3.5.
Basic checker#
Verbatim name of the checker is basic
.
See also basic checker’s options’ documentation
Basic checker Messages#
- not-in-loop (E0103)
-
%r not properly in loop
Used when break or continue keywords are used outside a loop. - function-redefined (E0102)
-
%s already defined line %s
Used when a function / class / method is redefined. - continue-in-finally (E0116)
-
‘continue’ not supported inside ‘finally’ clause
Emitted when the continue keyword is found inside a finally clause, which
is a SyntaxError. - abstract-class-instantiated (E0110)
-
Abstract class %r with abstract methods instantiated
Used when an abstract class with abc.ABCMeta as metaclass has abstract
methods and is instantiated. - star-needs-assignment-target (E0114)
-
Can use starred expression only in assignment target
Emitted when a star expression is not used in an assignment target. - duplicate-argument-name (E0108)
-
Duplicate argument name %s in function definition
Duplicate argument names in function definitions are syntax errors. - return-in-init (E0101)
-
Explicit return in __init__
Used when the special class method __init__ has an explicit return value. - too-many-star-expressions (E0112)
-
More than one starred expression in assignment
Emitted when there are more than one starred expressions (*x) in an
assignment. This is a SyntaxError. - nonlocal-and-global (E0115)
-
Name %r is nonlocal and global
Emitted when a name is both nonlocal and global. - used-prior-global-declaration (E0118)
-
Name %r is used prior to global declaration
Emitted when a name is used prior a global declaration, which results in an
error since Python 3.6. This message can’t be emitted when using Python <
3.6. - return-outside-function (E0104)
-
Return outside function
Used when a «return» statement is found outside a function or method. - return-arg-in-generator (E0106)
-
Return with argument inside generator
Used when a «return» statement with an argument is found outside in a
generator function or method (e.g. with some «yield» statements). This
message can’t be emitted when using Python >= 3.3. - invalid-star-assignment-target (E0113)
-
Starred assignment target must be in a list or tuple
Emitted when a star expression is used as a starred assignment target. - bad-reversed-sequence (E0111)
-
The first reversed() argument is not a sequence
Used when the first argument to reversed() builtin isn’t a sequence (does not
implement __reversed__, nor __getitem__ and __len__ - nonexistent-operator (E0107)
-
Use of the non-existent %s operator
Used when you attempt to use the C-style pre-increment or pre-decrement
operator — and ++, which doesn’t exist in Python. - yield-outside-function (E0105)
-
Yield outside function
Used when a «yield» statement is found outside a function or method. - init-is-generator (E0100)
-
__init__ method is a generator
Used when the special class method __init__ is turned into a generator by a
yield in its body. - misplaced-format-function (E0119)
-
format function is not called on str
Emitted when format function is not called on str object. e.g doing
print(«value: {}»).format(123) instead of print(«value: {}».format(123)).
This might not be what the user intended to do. - nonlocal-without-binding (E0117)
-
nonlocal name %s found without binding
Emitted when a nonlocal variable does not have an attached name somewhere in
the parent scopes - lost-exception (W0150)
-
%s statement in finally block may swallow exception
Used when a break or a return statement is found inside the finally clause of
a try…finally block: the exceptions raised in the try clause will be
silently swallowed instead of being re-raised. - assert-on-tuple (W0199)
-
Assert called on a populated tuple. Did you mean ‘assert x,y’?
A call of assert on a tuple will always evaluate to true if the tuple is not
empty, and will always evaluate to false if it is. - assert-on-string-literal (W0129)
-
Assert statement has a string literal as its first argument. The assert will %s fail.
Used when an assert statement has a string literal as its first argument,
which will cause the assert to always pass. - self-assigning-variable (W0127)
-
Assigning the same variable %r to itself
Emitted when we detect that a variable is assigned to itself - comparison-with-callable (W0143)
-
Comparing against a callable, did you omit the parenthesis?
This message is emitted when pylint detects that a comparison with a callable
was made, which might suggest that some parenthesis were omitted, resulting
in potential unwanted behaviour. - nan-comparison (W0177)
-
Comparison %s should be %s
Used when an expression is compared to NaN values like numpy.NaN and
float(‘nan’). - dangerous-default-value (W0102)
-
Dangerous default value %s as argument
Used when a mutable value as list or dictionary is detected in a default
value for an argument. - duplicate-key (W0109)
-
Duplicate key %r in dictionary
Used when a dictionary expression binds the same key multiple times. - duplicate-value (W0130)
-
Duplicate value %r in set
This message is emitted when a set contains the same value two or more times. - useless-else-on-loop (W0120)
-
Else clause on loop without a break statement, remove the else and de-indent all the code inside it
Loops should only have an else clause if they can exit early with a break
statement, otherwise the statements under else should be on the same scope as
the loop itself. - pointless-exception-statement (W0133)
-
Exception statement has no effect
Used when an exception is created without being assigned, raised or returned
for subsequent use elsewhere. - expression-not-assigned (W0106)
-
Expression «%s» is assigned to nothing
Used when an expression that is not a function call is assigned to nothing.
Probably something else was intended. - confusing-with-statement (W0124)
-
Following «as» with another context manager looks like a tuple.
Emitted when a with statement component returns multiple values and uses
name binding with as only for a part of those values, as in with ctx() as
a, b. This can be misleading, since it’s not clear if the context manager
returns a tuple or if the node without a name binding is another context
manager. - unnecessary-lambda (W0108)
-
Lambda may not be necessary
Used when the body of a lambda expression is a function call on the same
argument list as the lambda itself; such lambda expressions are in all but a
few cases replaceable with the function being called in the body of the
lambda. - named-expr-without-context (W0131)
-
Named expression used without context
Emitted if named expression is used to do a regular assignment outside a
context like if, for, while, or a comprehension. - redeclared-assigned-name (W0128)
-
Redeclared variable %r in assignment
Emitted when we detect that a variable was redeclared in the same assignment. - pointless-statement (W0104)
-
Statement seems to have no effect
Used when a statement doesn’t have (or at least seems to) any effect. - pointless-string-statement (W0105)
-
String statement has no effect
Used when a string is used as a statement (which of course has no effect).
This is a particular case of W0104 with its own message so you can easily
disable it if you’re using those strings as documentation, instead of
comments. - unnecessary-pass (W0107)
-
Unnecessary pass statement
Used when a «pass» statement that can be avoided is encountered. - unreachable (W0101)
-
Unreachable code
Used when there is some code behind a «return» or «raise» statement, which
will never be accessed. - eval-used (W0123)
-
Use of eval
Used when you use the «eval» function, to discourage its usage. Consider
using ast.literal_eval for safely evaluating strings containing Python
expressions from untrusted sources. - exec-used (W0122)
-
Use of exec
Raised when the ‘exec’ statement is used. It’s dangerous to use this function
for a user input, and it’s also slower than actual code in general. This
doesn’t mean you should never use it, but you should consider alternatives
first and restrict the functions available. - using-constant-test (W0125)
-
Using a conditional statement with a constant value
Emitted when a conditional statement (If or ternary if) uses a constant value
for its test. This might not be what the user intended to do. - missing-parentheses-for-call-in-test (W0126)
-
Using a conditional statement with potentially wrong function or method call due to missing parentheses
Emitted when a conditional statement (If or ternary if) seems to wrongly call
a function due to missing parentheses - comparison-of-constants (R0133)
-
Comparison between constants: ‘%s %s %s’ has a constant value
When two literals are compared with each other the result is a constant.
Using the constant directly is both easier to read and more performant.
Initializing ‘True’ and ‘False’ this way is not required since Python 2.3. - literal-comparison (R0123)
-
In ‘%s’, use ‘%s’ when comparing constant literals not ‘%s’ (‘%s’)
Used when comparing an object to a literal, which is usually what you do not
want to do, since you can compare to a different literal than what was
expected altogether. - comparison-with-itself (R0124)
-
Redundant comparison — %s
Used when something is compared against itself. - invalid-name (C0103)
-
%s name «%s» doesn’t conform to %s
Used when the name doesn’t conform to naming rules associated to its type
(constant, variable, class…). - singleton-comparison (C0121)
-
Comparison %s should be %s
Used when an expression is compared to singleton values like True, False or
None. - disallowed-name (C0104)
-
Disallowed name «%s»
Used when the name matches bad-names or bad-names-rgxs- (unauthorized names). - empty-docstring (C0112)
-
Empty %s docstring
Used when a module, function, class or method has an empty docstring (it
would be too easy ;). - missing-class-docstring (C0115)
-
Missing class docstring
Used when a class has no docstring. Even an empty class must have a
docstring. - missing-function-docstring (C0116)
-
Missing function or method docstring
Used when a function or method has no docstring. Some special methods like
__init__ do not require a docstring. - missing-module-docstring (C0114)
-
Missing module docstring
Used when a module has no docstring. Empty modules do not require a
docstring. - typevar-name-incorrect-variance (C0105)
-
Type variable name does not reflect variance%s
Emitted when a TypeVar name doesn’t reflect its type variance. According to
PEP8, it is recommended to add suffixes ‘_co’ and ‘_contra’ to the variables
used to declare covariant or contravariant behaviour respectively. Invariant
(default) variables do not require a suffix. The message is also emitted when
invariant variables do have a suffix. - typevar-double-variance (C0131)
-
TypeVar cannot be both covariant and contravariant
Emitted when both the «covariant» and «contravariant» keyword arguments are
set to «True» in a TypeVar. - typevar-name-mismatch (C0132)
-
TypeVar name «%s» does not match assigned variable name «%s»
Emitted when a TypeVar is assigned to a variable that does not match its name
argument. - unidiomatic-typecheck (C0123)
-
Use isinstance() rather than type() for a typecheck.
The idiomatic way to perform an explicit typecheck in Python is to use
isinstance(x, Y) rather than type(x) == Y, type(x) is Y. Though there are
unusual situations where these give different results.
Basic checker Reports#
- RP0101
-
Statistics by type
Classes checker#
Verbatim name of the checker is classes
.
See also classes checker’s options’ documentation
Classes checker Messages#
- access-member-before-definition (E0203)
-
Access to member %r before its definition line %s
Used when an instance member is accessed before it’s actually assigned. - method-hidden (E0202)
-
An attribute defined in %s line %s hides this method
Used when a class defines a method which is hidden by an instance attribute
from an ancestor class or set by some client code. - assigning-non-slot (E0237)
-
Assigning to attribute %r not defined in class slots
Used when assigning to an attribute not defined in the class slots. - duplicate-bases (E0241)
-
Duplicate bases for class %r
Duplicate use of base classes in derived classes raise TypeErrors. - invalid-enum-extension (E0244)
-
Extending inherited Enum class «%s»
Used when a class tries to extend an inherited Enum class. Doing so will
raise a TypeError at runtime. - inconsistent-mro (E0240)
-
Inconsistent method resolution order for class %r
Used when a class has an inconsistent method resolution order. - inherit-non-class (E0239)
-
Inheriting %r, which is not a class.
Used when a class inherits from something which is not a class. - invalid-slots (E0238)
-
Invalid __slots__ object
Used when an invalid __slots__ is found in class. Only a string, an iterable
or a sequence is permitted. - invalid-class-object (E0243)
-
Invalid assignment to ‘__class__’. Should be a class definition but got a ‘%s’
Used when an invalid object is assigned to a __class__ property. Only a class
is permitted. - invalid-slots-object (E0236)
-
Invalid object %r in __slots__, must contain only non empty strings
Used when an invalid (non-string) object occurs in __slots__. - no-method-argument (E0211)
-
Method %r has no argument
Used when a method which should have the bound instance as first argument has
no argument defined. - no-self-argument (E0213)
-
Method %r should have «self» as first argument
Used when a method has an attribute different the «self» as first argument.
This is considered as an error since this is a so common convention that you
shouldn’t break it! - unexpected-special-method-signature (E0302)
-
The special method %r expects %s param(s), %d %s given
Emitted when a special method was defined with an invalid number of
parameters. If it has too few or too many, it might not work at all. - class-variable-slots-conflict (E0242)
-
Value %r in slots conflicts with class variable
Used when a value in __slots__ conflicts with a class variable, property or
method. - invalid-bool-returned (E0304)
-
__bool__ does not return bool
Used when a __bool__ method returns something which is not a bool - invalid-bytes-returned (E0308)
-
__bytes__ does not return bytes
Used when a __bytes__ method returns something which is not bytes - invalid-format-returned (E0311)
-
__format__ does not return str
Used when a __format__ method returns something which is not a string - invalid-getnewargs-returned (E0312)
-
__getnewargs__ does not return a tuple
Used when a __getnewargs__ method returns something which is not a tuple - invalid-getnewargs-ex-returned (E0313)
-
__getnewargs_ex__ does not return a tuple containing (tuple, dict)
Used when a __getnewargs_ex__ method returns something which is not of the
form tuple(tuple, dict) - invalid-hash-returned (E0309)
-
__hash__ does not return int
Used when a __hash__ method returns something which is not an integer - invalid-index-returned (E0305)
-
__index__ does not return int
Used when an __index__ method returns something which is not an integer - non-iterator-returned (E0301)
-
__iter__ returns non-iterator
Used when an __iter__ method returns something which is not an iterable (i.e.
has no __next__ method) - invalid-length-returned (E0303)
-
__len__ does not return non-negative integer
Used when a __len__ method returns something which is not a non-negative
integer - invalid-length-hint-returned (E0310)
-
__length_hint__ does not return non-negative integer
Used when a __length_hint__ method returns something which is not a non-
negative integer - invalid-repr-returned (E0306)
-
__repr__ does not return str
Used when a __repr__ method returns something which is not a string - invalid-str-returned (E0307)
-
__str__ does not return str
Used when a __str__ method returns something which is not a string - arguments-differ (W0221)
-
%s %s %r method
Used when a method has a different number of arguments than in the
implemented interface or in an overridden method. Extra arguments with
default values are ignored. - arguments-renamed (W0237)
-
%s %s %r method
Used when a method parameter has a different name than in the implemented
interface or in an overridden method. - protected-access (W0212)
-
Access to a protected member %s of a client class
Used when a protected member (i.e. class member with a name beginning with an
underscore) is access outside the class or a descendant of the class where
it’s defined. - attribute-defined-outside-init (W0201)
-
Attribute %r defined outside __init__
Used when an instance attribute is defined outside the __init__ method. - subclassed-final-class (W0240)
-
Class %r is a subclass of a class decorated with typing.final: %r
Used when a class decorated with typing.final has been subclassed. - abstract-method (W0223)
-
Method %r is abstract in class %r but is not overridden in child class %r
Used when an abstract method (i.e. raise NotImplementedError) is not
overridden in concrete class. - overridden-final-method (W0239)
-
Method %r overrides a method decorated with typing.final which is defined in class %r
Used when a method decorated with typing.final has been overridden. - invalid-overridden-method (W0236)
-
Method %r was expected to be %r, found it instead as %r
Used when we detect that a method was overridden in a way that does not match
its base class which could result in potential bugs at runtime. - redefined-slots-in-subclass (W0244)
-
Redefined slots %r in subclass
Used when a slot is re-defined in a subclass. - signature-differs (W0222)
-
Signature differs from %s %r method
Used when a method signature is different than in the implemented interface
or in an overridden method. - bad-staticmethod-argument (W0211)
-
Static method with %r as first argument
Used when a static method has «self» or a value specified in valid-
classmethod-first-arg option or valid-metaclass-classmethod-first-arg option
as first argument. - super-without-brackets (W0245)
-
Super call without brackets
Used when a call to super does not have brackets and thus is not an actual
call and does not work as expected. - unused-private-member (W0238)
-
Unused private member `%s.%s`
Emitted when a private member of a class is defined but not used. - useless-parent-delegation (W0246)
-
Useless parent or super() delegation in method %r
Used whenever we can detect that an overridden method is useless, relying on
parent or super() delegation to do the same thing as another method from the
MRO. - non-parent-init-called (W0233)
-
__init__ method from a non direct base class %r is called
Used when an __init__ method is called on a class which is not in the direct
ancestors for the analysed class. - super-init-not-called (W0231)
-
__init__ method from base class %r is not called
Used when an ancestor class method has an __init__ method which is not called
by a derived class. - property-with-parameters (R0206)
-
Cannot have defined parameters for properties
Used when we detect that a property also has parameters, which are useless,
given that properties cannot be called with additional arguments. - useless-object-inheritance (R0205)
-
Class %r inherits from object, can be safely removed from bases in python3
Used when a class inherit from object, which under python3 is implicit, hence
can be safely removed from bases. - no-classmethod-decorator (R0202)
-
Consider using a decorator instead of calling classmethod
Used when a class method is defined without using the decorator syntax. - no-staticmethod-decorator (R0203)
-
Consider using a decorator instead of calling staticmethod
Used when a static method is defined without using the decorator syntax. - single-string-used-for-slots (C0205)
-
Class __slots__ should be a non-string iterable
Used when a class __slots__ is a simple string, rather than an iterable. - bad-classmethod-argument (C0202)
-
Class method %s should have %s as first argument
Used when a class method has a first argument named differently than the
value specified in valid-classmethod-first-arg option (default to «cls»),
recommended to easily differentiate them from regular instance methods. - bad-mcs-classmethod-argument (C0204)
-
Metaclass class method %s should have %s as first argument
Used when a metaclass class method has a first argument named differently
than the value specified in valid-metaclass-classmethod-first-arg option
(default to «mcs»), recommended to easily differentiate them from regular
instance methods. - bad-mcs-method-argument (C0203)
-
Metaclass method %s should have %s as first argument
Used when a metaclass method has a first argument named differently than the
value specified in valid-classmethod-first-arg option (default to «cls»),
recommended to easily differentiate them from regular instance methods. - method-check-failed (F0202)
-
Unable to check methods signature (%s / %s)
Used when Pylint has been unable to check methods signature compatibility for
an unexpected reason. Please report this kind if you don’t make sense of it.
Design checker#
Verbatim name of the checker is design
.
See also design checker’s options’ documentation
Design checker Messages#
- too-few-public-methods (R0903)
-
Too few public methods (%s/%s)
Used when class has too few public methods, so be sure it’s really worth it. - too-many-ancestors (R0901)
-
Too many ancestors (%s/%s)
Used when class has too many parent classes, try to reduce this to get a
simpler (and so easier to use) class. - too-many-arguments (R0913)
-
Too many arguments (%s/%s)
Used when a function or method takes too many arguments. - too-many-boolean-expressions (R0916)
-
Too many boolean expressions in if statement (%s/%s)
Used when an if statement contains too many boolean expressions. - too-many-branches (R0912)
-
Too many branches (%s/%s)
Used when a function or method has too many branches, making it hard to
follow. - too-many-instance-attributes (R0902)
-
Too many instance attributes (%s/%s)
Used when class has too many instance attributes, try to reduce this to get a
simpler (and so easier to use) class. - too-many-locals (R0914)
-
Too many local variables (%s/%s)
Used when a function or method has too many local variables. - too-many-public-methods (R0904)
-
Too many public methods (%s/%s)
Used when class has too many public methods, try to reduce this to get a
simpler (and so easier to use) class. - too-many-return-statements (R0911)
-
Too many return statements (%s/%s)
Used when a function or method has too many return statement, making it hard
to follow. - too-many-statements (R0915)
-
Too many statements (%s/%s)
Used when a function or method has too many statements. You should then split
it in smaller functions / methods.
Exceptions checker#
Verbatim name of the checker is exceptions
.
See also exceptions checker’s options’ documentation
Exceptions checker Messages#
- bad-except-order (E0701)
-
Bad except clauses order (%s)
Used when except clauses are not in the correct order (from the more specific
to the more generic). If you don’t fix the order, some exceptions may not be
caught by the most specific handler. - catching-non-exception (E0712)
-
Catching an exception which doesn’t inherit from Exception: %s
Used when a class which doesn’t inherit from Exception is used as an
exception in an except clause. - bad-exception-cause (E0705)
-
Exception cause set to something which is not an exception, nor None
Used when using the syntax «raise … from …», where the exception cause is
not an exception, nor None. - notimplemented-raised (E0711)
-
NotImplemented raised — should raise NotImplementedError
Used when NotImplemented is raised instead of NotImplementedError - raising-bad-type (E0702)
-
Raising %s while only classes or instances are allowed
Used when something which is neither a class nor an instance is raised (i.e.
a TypeError will be raised). - raising-non-exception (E0710)
-
Raising a new style class which doesn’t inherit from BaseException
Used when a new style class which doesn’t inherit from BaseException is
raised. - misplaced-bare-raise (E0704)
-
The raise statement is not inside an except clause
Used when a bare raise is not used inside an except clause. This generates an
error, since there are no active exceptions to be reraised. An exception to
this rule is represented by a bare raise inside a finally clause, which might
work, as long as an exception is raised inside the try block, but it is
nevertheless a code smell that must not be relied upon. - duplicate-except (W0705)
-
Catching previously caught exception type %s
Used when an except catches a type that was already caught by a previous
handler. - broad-exception-caught (W0718)
-
Catching too general exception %s
If you use a nakedexcept Exception:
clause, you might end up catching
exceptions other than the ones you expect to catch. This can hide bugs or
make it harder to debug programs when unrelated errors are hidden. - raise-missing-from (W0707)
-
Consider explicitly re-raising using %s’%s from %s’
Python’s exception chaining shows the traceback of the current exception, but
also of the original exception. When you raise a new exception after another
exception was caught it’s likely that the second exception is a friendly re-
wrapping of the first exception. In such cases raise from provides a better
link between the two tracebacks in the final error. - raising-format-tuple (W0715)
-
Exception arguments suggest string formatting might be intended
Used when passing multiple arguments to an exception constructor, the first
of them a string literal containing what appears to be placeholders intended
for formatting - binary-op-exception (W0711)
-
Exception to catch is the result of a binary «%s» operation
Used when the exception to catch is of the form «except A or B:». If
intending to catch multiple, rewrite as «except (A, B):» - wrong-exception-operation (W0716)
-
Invalid exception operation. %s
Used when an operation is done against an exception, but the operation is not
valid for the exception in question. Usually emitted when having binary
operations between exceptions in except handlers. - bare-except (W0702)
-
No exception type(s) specified
A bareexcept:
clause will catchSystemExit
andKeyboardInterrupt
exceptions, making it harder to interrupt a program withControl-C
, and
can disguise other problems. If you want to catch all exceptions that signal
program errors, useexcept Exception:
(bare except is equivalent to
except BaseException:
). - broad-exception-raised (W0719)
-
Raising too general exception: %s
Raising exceptions that are too generic force you to catch exceptions
generically too. It will force you to use a nakedexcept Exception:
clause. You might then end up catching exceptions other than the ones you
expect to catch. This can hide bugs or make it harder to debug programs when
unrelated errors are hidden. - try-except-raise (W0706)
-
The except handler raises immediately
Used when an except handler uses raise as its first or only operator. This is
useless because it raises back the exception immediately. Remove the raise
operator or the entire try-except-raise block!
Format checker#
Verbatim name of the checker is format
.
See also format checker’s options’ documentation
Format checker Messages#
- bad-indentation (W0311)
-
Bad indentation. Found %s %s, expected %s
Used when an unexpected number of indentation’s tabulations or spaces has
been found. - unnecessary-semicolon (W0301)
-
Unnecessary semicolon
Used when a statement is ended by a semi-colon («;»), which isn’t necessary
(that’s python, not C ;). - missing-final-newline (C0304)
-
Final newline missing
Used when the last line in a file is missing a newline. - line-too-long (C0301)
-
Line too long (%s/%s)
Used when a line is longer than a given number of characters. - mixed-line-endings (C0327)
-
Mixed line endings LF and CRLF
Used when there are mixed (LF and CRLF) newline signs in a file. - multiple-statements (C0321)
-
More than one statement on a single line
Used when more than on statement are found on the same line. - too-many-lines (C0302)
-
Too many lines in module (%s/%s)
Used when a module has too many lines, reducing its readability. - trailing-newlines (C0305)
-
Trailing newlines
Used when there are trailing blank lines in a file. - trailing-whitespace (C0303)
-
Trailing whitespace
Used when there is whitespace between the end of a line and the newline. - unexpected-line-ending-format (C0328)
-
Unexpected line ending format. There is ‘%s’ while it should be ‘%s’.
Used when there is different newline than expected. - superfluous-parens (C0325)
-
Unnecessary parens after %r keyword
Used when a single item in parentheses follows an if, for, or other keyword.
Imports checker#
Verbatim name of the checker is imports
.
See also imports checker’s options’ documentation
Imports checker Messages#
- relative-beyond-top-level (E0402)
-
Attempted relative import beyond top-level package
Used when a relative import tries to access too many levels in the current
package. - import-error (E0401)
-
Unable to import %s
Used when pylint has been unable to import a module. - deprecated-module (W4901)
-
Deprecated module %r
A module marked as deprecated is imported. - import-self (W0406)
-
Module import itself
Used when a module is importing itself. - preferred-module (W0407)
-
Prefer importing %r instead of %r
Used when a module imported has a preferred replacement module. - reimported (W0404)
-
Reimport %r (imported line %s)
Used when a module is imported more than once. - shadowed-import (W0416)
-
Shadowed %r (imported line %s)
Used when a module is aliased with a name that shadows another import. - wildcard-import (W0401)
-
Wildcard import %s
Used when from module import * is detected. - misplaced-future (W0410)
-
__future__ import is not the first non docstring statement
Python 2.5 and greater require __future__ import to be the first non
docstring statement in the module. - cyclic-import (R0401)
-
Cyclic import (%s)
Used when a cyclic import between two or more modules is detected. - consider-using-from-import (R0402)
-
Use ‘from %s import %s’ instead
Emitted when a submodule of a package is imported and aliased with the same
name, e.g., instead ofimport concurrent.futures as futures
usefrom
.
concurrent import futures - wrong-import-order (C0411)
-
%s should be placed before %s
Used when PEP8 import order is not respected (standard imports first, then
third-party libraries, then local imports). - wrong-import-position (C0413)
-
Import «%s» should be placed at the top of the module
Used when code and imports are mixed. - useless-import-alias (C0414)
-
Import alias does not rename original package
Used when an import alias is same as original package, e.g., using import
numpy as numpy instead of import numpy as np. - import-outside-toplevel (C0415)
-
Import outside toplevel (%s)
Used when an import statement is used anywhere other than the module
toplevel. Move this import to the top of the file. - ungrouped-imports (C0412)
-
Imports from package %s are not grouped
Used when imports are not grouped by packages. - multiple-imports (C0410)
-
Multiple imports on one line (%s)
Used when import statement importing multiple modules is detected.
Imports checker Reports#
- RP0401
-
External dependencies
- RP0402
-
Modules dependencies graph
Lambda-Expressions checker#
Verbatim name of the checker is lambda-expressions
.
Lambda-Expressions checker Messages#
- unnecessary-lambda-assignment (C3001)
-
Lambda expression assigned to a variable. Define a function using the «def» keyword instead.
Used when a lambda expression is assigned to variable rather than defining a
standard function with the «def» keyword. - unnecessary-direct-lambda-call (C3002)
-
Lambda expression called directly. Execute the expression inline instead.
Used when a lambda expression is directly called rather than executing its
contents inline.
Logging checker#
Verbatim name of the checker is logging
.
See also logging checker’s options’ documentation
Logging checker Messages#
- logging-format-truncated (E1201)
-
Logging format string ends in middle of conversion specifier
Used when a logging statement format string terminates before the end of a
conversion specifier. - logging-too-few-args (E1206)
-
Not enough arguments for logging format string
Used when a logging format string is given too few arguments. - logging-too-many-args (E1205)
-
Too many arguments for logging format string
Used when a logging format string is given too many arguments. - logging-unsupported-format (E1200)
-
Unsupported logging format character %r (%#02x) at index %d
Used when an unsupported format character is used in a logging statement
format string. - logging-format-interpolation (W1202)
-
Use %s formatting in logging functions
Used when a logging statement has a call form of «logging.<logging
method>(format_string.format(format_args…))». Use another type of string
formatting instead. You can use % formatting but leave interpolation to the
logging function by passing the parameters as arguments. If logging-fstring-
interpolation is disabled then you can use fstring formatting. If logging-
not-lazy is disabled then you can use % formatting as normal. - logging-fstring-interpolation (W1203)
-
Use %s formatting in logging functions
Used when a logging statement has a call form of «logging.<logging
method>(f»…»)».Use another type of string formatting instead. You can use %
formatting but leave interpolation to the logging function by passing the
parameters as arguments. If logging-format-interpolation is disabled then you
can use str.format. If logging-not-lazy is disabled then you can use %
formatting as normal. - logging-not-lazy (W1201)
-
Use %s formatting in logging functions
Used when a logging statement has a call form of «logging.<logging
method>(format_string % (format_args…))». Use another type of string
formatting instead. You can use % formatting but leave interpolation to the
logging function by passing the parameters as arguments. If logging-fstring-
interpolation is disabled then you can use fstring formatting. If logging-
format-interpolation is disabled then you can use str.format.
Method Args checker#
Verbatim name of the checker is method_args
.
See also method_args checker’s options’ documentation
Method Args checker Messages#
- positional-only-arguments-expected (E3102)
-
`%s()` got some positional-only arguments passed as keyword arguments: %s
Emitted when positional-only arguments have been passed as keyword arguments.
Remove the keywords for the affected arguments in the function call. This
message can’t be emitted when using Python < 3.8. - missing-timeout (W3101)
-
Missing timeout argument for method ‘%s’ can cause your program to hang indefinitely
Used when a method needs a ‘timeout’ parameter in order to avoid waiting for
a long time. If no timeout is specified explicitly the default value is used.
For example for ‘requests’ the program will never time out (i.e. hang
indefinitely).
Metrics checker#
Verbatim name of the checker is metrics
.
Metrics checker Reports#
- RP0701
-
Raw metrics
Miscellaneous checker#
Verbatim name of the checker is miscellaneous
.
See also miscellaneous checker’s options’ documentation
Miscellaneous checker Messages#
- fixme (W0511)
-
Used when a warning note as FIXME or XXX is detected.
- use-symbolic-message-instead (I0023)
-
Used when a message is enabled or disabled by id.
Modified Iteration checker#
Verbatim name of the checker is modified_iteration
.
Modified Iteration checker Messages#
- modified-iterating-dict (E4702)
-
Iterated dict ‘%s’ is being modified inside for loop body, iterate through a copy of it instead.
Emitted when items are added or removed to a dict being iterated through.
Doing so raises a RuntimeError. - modified-iterating-set (E4703)
-
Iterated set ‘%s’ is being modified inside for loop body, iterate through a copy of it instead.
Emitted when items are added or removed to a set being iterated through.
Doing so raises a RuntimeError. - modified-iterating-list (W4701)
-
Iterated list ‘%s’ is being modified inside for loop body, consider iterating through a copy of it instead.
Emitted when items are added or removed to a list being iterated through.
Doing so can result in unexpected behaviour, that is why it is preferred to
use a copy of the list.
Nested Min Max checker#
Verbatim name of the checker is nested_min_max
.
Nested Min Max checker Messages#
- nested-min-max (W3301)
-
Do not use nested call of ‘%s’; it’s possible to do ‘%s’ instead
Nested callsmin(1, min(2, 3))
can be rewritten asmin(1, 2, 3)
.
Newstyle checker#
Verbatim name of the checker is newstyle
.
Newstyle checker Messages#
- bad-super-call (E1003)
-
Bad first argument %r given to super()
Used when another argument than the current class is given as first argument
of the super builtin.
Nonascii-Checker checker#
Verbatim name of the checker is nonascii-checker
.
Nonascii-Checker checker Messages#
- non-ascii-file-name (W2402)
-
%s name «%s» contains a non-ASCII character. PEP 3131 only allows non-ascii identifiers, not file names.
Some editors don’t support non-ASCII file names properly. Even though Python
supports UTF-8 files since Python 3.5 this isn’t recommended for
interoperability. Further reading: —
https://peps.python.org/pep-0489/#export-hook-name —
https://peps.python.org/pep-0672/#confusing-features —
https://bugs.python.org/issue20485 - non-ascii-name (C2401)
-
%s name «%s» contains a non-ASCII character, consider renaming it.
Used when the name contains at least one non-ASCII unicode character. See
https://peps.python.org/pep-0672/#confusing-features for a background why
this could be bad. If your programming guideline defines that you are
programming in English, then there should be no need for non ASCII characters
in Python Names. If not you can simply disable this check. - non-ascii-module-import (C2403)
-
%s name «%s» contains a non-ASCII character, use an ASCII-only alias for import.
Used when the name contains at least one non-ASCII unicode character. See
https://peps.python.org/pep-0672/#confusing-features for a background why
this could be bad. If your programming guideline defines that you are
programming in English, then there should be no need for non ASCII characters
in Python Names. If not you can simply disable this check.
Refactoring checker#
Verbatim name of the checker is refactoring
.
See also refactoring checker’s options’ documentation
Refactoring checker Messages#
- simplifiable-condition (R1726)
-
Boolean condition ‘%s’ may be simplified to ‘%s’
Emitted when a boolean condition is able to be simplified. - condition-evals-to-constant (R1727)
-
Boolean condition ‘%s’ will always evaluate to ‘%s’
Emitted when a boolean condition can be simplified to a constant value. - simplify-boolean-expression (R1709)
-
Boolean expression may be simplified to %s
Emitted when redundant pre-python 2.5 ternary syntax is used. - consider-using-in (R1714)
-
Consider merging these comparisons with ‘in’ by using ‘%s %sin (%s)’. Use a set instead if elements are hashable.
To check if a variable is equal to one of many values, combine the values
into a set or tuple and check if the variable is contained «in» it instead of
checking for equality against each of the values. This is faster and less
verbose. - consider-merging-isinstance (R1701)
-
Consider merging these isinstance calls to isinstance(%s, (%s))
Used when multiple consecutive isinstance calls can be merged into one. - use-dict-literal (R1735)
-
Consider using ‘%s’ instead of a call to ‘dict’.
Emitted when using dict() to create a dictionary instead of a literal ‘{ …
}’. The literal is faster as it avoids an additional function call. - consider-using-max-builtin (R1731)
-
Consider using ‘%s’ instead of unnecessary if block
Using the max builtin instead of a conditional improves readability and
conciseness. - consider-using-min-builtin (R1730)
-
Consider using ‘%s’ instead of unnecessary if block
Using the min builtin instead of a conditional improves readability and
conciseness. - consider-using-sys-exit (R1722)
-
Consider using ‘sys.exit’ instead
Contrary to ‘exit()’ or ‘quit()’, ‘sys.exit’ does not rely on the site module
being available (as the ‘sys’ module is always available). - consider-using-with (R1732)
-
Consider using ‘with’ for resource-allocating operations
Emitted if a resource-allocating assignment or call may be replaced by a
‘with’ block. By using ‘with’ the release of the allocated resources is
ensured even in the case of an exception. - super-with-arguments (R1725)
-
Consider using Python 3 style super() without arguments
Emitted when calling the super() builtin with the current class and instance.
On Python 3 these arguments are the default and they can be omitted. - use-list-literal (R1734)
-
Consider using [] instead of list()
Emitted when using list() to create an empty list instead of the literal [].
The literal is faster as it avoids an additional function call. - consider-using-dict-comprehension (R1717)
-
Consider using a dictionary comprehension
Emitted when we detect the creation of a dictionary using the dict() callable
and a transient list. Although there is nothing syntactically wrong with this
code, it is hard to read and can be simplified to a dict comprehension. Also
it is faster since you don’t need to create another transient list - consider-using-generator (R1728)
-
Consider using a generator instead ‘%s(%s)’
If your container can be large using a generator will bring better
performance. - consider-using-set-comprehension (R1718)
-
Consider using a set comprehension
Although there is nothing syntactically wrong with this code, it is hard to
read and can be simplified to a set comprehension. Also it is faster since
you don’t need to create another transient list - consider-using-get (R1715)
-
Consider using dict.get for getting values from a dict if a key is present or a default if not
Using the builtin dict.get for getting a value from a dictionary if a key is
present or a default if not, is simpler and considered more idiomatic,
although sometimes a bit slower - consider-using-join (R1713)
-
Consider using str.join(sequence) for concatenating strings from an iterable
Using str.join(sequence) is faster, uses less memory and increases
readability compared to for-loop iteration. - consider-using-ternary (R1706)
-
Consider using ternary (%s)
Used when one of known pre-python 2.5 ternary syntax is used. - consider-swap-variables (R1712)
-
Consider using tuple unpacking for swapping variables
You do not have to use a temporary variable in order to swap variables. Using
«tuple unpacking» to directly swap variables makes the intention more clear. - trailing-comma-tuple (R1707)
-
Disallow trailing comma tuple
In Python, a tuple is actually created by the comma symbol, not by the
parentheses. Unfortunately, one can actually create a tuple by misplacing a
trailing comma, which can lead to potential weird bugs in your code. You
should always use parentheses explicitly for creating a tuple. - stop-iteration-return (R1708)
-
Do not raise StopIteration in generator, use return statement instead
According to PEP479, the raise of StopIteration to end the loop of a
generator may lead to hard to find bugs. This PEP specify that raise
StopIteration has to be replaced by a simple return statement - inconsistent-return-statements (R1710)
-
Either all return statements in a function should return an expression, or none of them should.
According to PEP8, if any return statement returns an expression, any return
statements where no value is returned should explicitly state this as return
None, and an explicit return statement should be present at the end of the
function (if reachable) - redefined-argument-from-local (R1704)
-
Redefining argument with the local name %r
Used when a local name is redefining an argument, which might suggest a
potential error. This is taken in account only for a handful of name binding
operations, such as for iteration, with statement assignment and exception
handler assignment. - chained-comparison (R1716)
-
Simplify chained comparison between the operands
This message is emitted when pylint encounters boolean operation like «a < b
and b < c», suggesting instead to refactor it to «a < b < c» - simplifiable-if-expression (R1719)
-
The if expression can be replaced with %s
Used when an if expression can be replaced with ‘bool(test)’ or simply ‘test’
if the boolean cast is implicit. - simplifiable-if-statement (R1703)
-
The if statement can be replaced with %s
Used when an if statement can be replaced with ‘bool(test)’. - too-many-nested-blocks (R1702)
-
Too many nested blocks (%s/%s)
Used when a function or a method has too many nested blocks. This makes the
code less understandable and maintainable. - no-else-break (R1723)
-
Unnecessary «%s» after «break», %s
Used in order to highlight an unnecessary block of code following an if
containing a break statement. As such, it will warn when it encounters an
else following a chain of ifs, all of them containing a break statement. - no-else-continue (R1724)
-
Unnecessary «%s» after «continue», %s
Used in order to highlight an unnecessary block of code following an if
containing a continue statement. As such, it will warn when it encounters an
else following a chain of ifs, all of them containing a continue statement. - no-else-raise (R1720)
-
Unnecessary «%s» after «raise», %s
Used in order to highlight an unnecessary block of code following an if
containing a raise statement. As such, it will warn when it encounters an
else following a chain of ifs, all of them containing a raise statement. - no-else-return (R1705)
-
Unnecessary «%s» after «return», %s
Used in order to highlight an unnecessary block of code following an if
containing a return statement. As such, it will warn when it encounters an
else following a chain of ifs, all of them containing a return statement. - unnecessary-dict-index-lookup (R1733)
-
Unnecessary dictionary index lookup, use ‘%s’ instead
Emitted when iterating over the dictionary items (key-item pairs) and
accessing the value by index lookup. The value can be accessed directly
instead. - unnecessary-list-index-lookup (R1736)
-
Unnecessary list index lookup, use ‘%s’ instead
Emitted when iterating over an enumeration and accessing the value by index
lookup. The value can be accessed directly instead. - unnecessary-comprehension (R1721)
-
Unnecessary use of a comprehension, use %s instead.
Instead of using an identity comprehension, consider using the list, dict or
set constructor. It is faster and simpler. - use-a-generator (R1729)
-
Use a generator instead ‘%s(%s)’
Comprehension inside of ‘any’, ‘all’, ‘max’, ‘min’ or ‘sum’ is unnecessary. A
generator would be sufficient and faster. - useless-return (R1711)
-
Useless return at end of function or method
Emitted when a single «return» or «return None» statement is found at the end
of function or method definition. This statement can safely be removed
because Python will implicitly return None - use-implicit-booleaness-not-comparison (C1803)
-
‘%s’ can be simplified to ‘%s’ as an empty %s is falsey
Used when Pylint detects that collection literal comparison is being used to
check for emptiness; Use implicit booleaness instead of a collection classes;
empty collections are considered as false - unneeded-not (C0113)
-
Consider changing «%s» to «%s»
Used when a boolean expression contains an unneeded negation. - consider-iterating-dictionary (C0201)
-
Consider iterating the dictionary directly instead of calling .keys()
Emitted when the keys of a dictionary are iterated through the.keys()
method or when.keys()
is used for a membership check. It is enough to
iterate through the dictionary itself,for key in dictionary
. For
membership checks,if key in dictionary
is faster. - consider-using-dict-items (C0206)
-
Consider iterating with .items()
Emitted when iterating over the keys of a dictionary and accessing the value
by index lookup. Both the key and value can be accessed by iterating using
the .items() method of the dictionary instead. - consider-using-enumerate (C0200)
-
Consider using enumerate instead of iterating with range and len
Emitted when code that iterates with range and len is encountered. Such code
can be simplified by using the enumerate builtin. - use-implicit-booleaness-not-len (C1802)
-
Do not use `len(SEQUENCE)` without comparison to determine if a sequence is empty
Used when Pylint detects that len(sequence) is being used without explicit
comparison inside a condition to determine if a sequence is empty. Instead of
coercing the length to a boolean, either rely on the fact that empty
sequences are false or compare the length against a scalar. - consider-using-f-string (C0209)
-
Formatting a regular string which could be a f-string
Used when we detect a string that is being formatted with format() or % which
could potentially be a f-string. The use of f-strings is preferred. Requires
Python 3.6 andpy-version >= 3.6
. - use-maxsplit-arg (C0207)
-
Use %s instead
Emitted when accessing only the first or last element of str.split(). The
first and last element can be accessed by using str.split(sep, maxsplit=1)[0]
or str.rsplit(sep, maxsplit=1)[-1] instead. - use-sequence-for-iteration (C0208)
-
Use a sequence type when iterating over values
When iterating over values, sequence types (e.g.,lists
,tuples
,
ranges
) are more efficient thansets
.
Similarities checker#
Verbatim name of the checker is similarities
.
See also similarities checker’s options’ documentation
Similarities checker Messages#
- duplicate-code (R0801)
-
Similar lines in %s files
Indicates that a set of similar lines has been detected among multiple file.
This usually means that the code should be refactored to avoid this
duplication.
Similarities checker Reports#
- RP0801
-
Duplication
Spelling checker#
Verbatim name of the checker is spelling
.
See also spelling checker’s options’ documentation
Spelling checker Messages#
- invalid-characters-in-docstring (C0403)
-
Invalid characters %r in a docstring
Used when a word in docstring cannot be checked by enchant. - wrong-spelling-in-comment (C0401)
-
Wrong spelling of a word ‘%s’ in a comment:
Used when a word in comment is not spelled correctly. - wrong-spelling-in-docstring (C0402)
-
Wrong spelling of a word ‘%s’ in a docstring:
Used when a word in docstring is not spelled correctly.
Stdlib checker#
Verbatim name of the checker is stdlib
.
Stdlib checker Messages#
- invalid-envvar-value (E1507)
-
%s does not support %s type argument
Env manipulation functions support only string type arguments. See
https://docs.python.org/3/library/os.html#os.getenv. - singledispatch-method (E1519)
-
singledispatch decorator should not be used with methods, use singledispatchmethod instead.
singledispatch should decorate functions and not class/instance methods. Use
singledispatchmethod for those cases. - singledispatchmethod-function (E1520)
-
singledispatchmethod decorator should not be used with functions, use singledispatch instead.
singledispatchmethod should decorate class/instance methods and not
functions. Use singledispatch for those cases. - bad-open-mode (W1501)
-
«%s» is not a valid mode for open.
Python supports: r, w, a[, x] modes with b, +, and U (only with r) options.
See https://docs.python.org/3/library/functions.html#open - invalid-envvar-default (W1508)
-
%s default type is %s. Expected str or None.
Env manipulation functions return None or str values. Supplying anything
different as a default may cause bugs. See
https://docs.python.org/3/library/os.html#os.getenv. - method-cache-max-size-none (W1518)
-
‘lru_cache(maxsize=None)’ or ‘cache’ will keep all method args alive indefinitely, including ‘self’
By decorating a method with lru_cache or cache the ‘self’ argument will be
linked to the function and therefore never garbage collected. Unless your
instance will never need to be garbage collected (singleton) it is
recommended to refactor code to avoid this pattern or add a maxsize to the
cache. The default value for maxsize is 128. - subprocess-run-check (W1510)
-
‘subprocess.run’ used without explicitly defining the value for ‘check’.
Thecheck
keyword is set to False by default. It means the process
launched bysubprocess.run
can exit with a non-zero exit code and fail
silently. It’s better to set it explicitly to make clear what the error-
handling behavior is. - forgotten-debug-statement (W1515)
-
Leaving functions creating breakpoints in production code is not recommended
Calls to breakpoint(), sys.breakpointhook() and pdb.set_trace() should be
removed from code that is not actively being debugged. - redundant-unittest-assert (W1503)
-
Redundant use of %s with constant value %r
The first argument of assertTrue and assertFalse is a condition. If a
constant is passed as parameter, that condition will be always true. In this
case a warning should be emitted. - shallow-copy-environ (W1507)
-
Using copy.copy(os.environ). Use os.environ.copy() instead.
os.environ is not a dict object but proxy object, so shallow copy has still
effects on original object. See https://bugs.python.org/issue15373 for
reference. - boolean-datetime (W1502)
-
Using datetime.time in a boolean context.
Using datetime.time in a boolean context can hide subtle bugs when the time
they represent matches midnight UTC. This behaviour was fixed in Python 3.5.
See https://bugs.python.org/issue13936 for reference. This message can’t be
emitted when using Python >= 3.5. - deprecated-argument (W4903)
-
Using deprecated argument %s of method %s()
The argument is marked as deprecated and will be removed in the future. - deprecated-class (W4904)
-
Using deprecated class %s of module %s
The class is marked as deprecated and will be removed in the future. - deprecated-decorator (W4905)
-
Using deprecated decorator %s()
The decorator is marked as deprecated and will be removed in the future. - deprecated-method (W4902)
-
Using deprecated method %s()
The method is marked as deprecated and will be removed in the future. - unspecified-encoding (W1514)
-
Using open without explicitly specifying an encoding
It is better to specify an encoding when opening documents. Using the system
default implicitly can create problems on other operating systems. See
https://peps.python.org/pep-0597/ - subprocess-popen-preexec-fn (W1509)
-
Using preexec_fn keyword which may be unsafe in the presence of threads
The preexec_fn parameter is not safe to use in the presence of threads in
your application. The child process could deadlock before exec is called. If
you must use it, keep it trivial! Minimize the number of libraries you call
into. See https://docs.python.org/3/library/subprocess.html#popen-constructor - bad-thread-instantiation (W1506)
-
threading.Thread needs the target function
The warning is emitted when a threading.Thread class is instantiated without
the target function being passed as a kwarg or as a second argument. By
default, the first parameter is the group param, not the target param.
String checker#
Verbatim name of the checker is string
.
See also string checker’s options’ documentation
String checker Messages#
- bad-string-format-type (E1307)
-
Argument %r does not match format type %r
Used when a type required by format string is not suitable for actual
argument type - format-needs-mapping (E1303)
-
Expected mapping for format string, not %s
Used when a format string that uses named conversion specifiers is used with
an argument that is not a mapping. - truncated-format-string (E1301)
-
Format string ends in middle of conversion specifier
Used when a format string terminates before the end of a conversion
specifier. - missing-format-string-key (E1304)
-
Missing key %r in format string dictionary
Used when a format string that uses named conversion specifiers is used with
a dictionary that doesn’t contain all the keys required by the format string. - mixed-format-string (E1302)
-
Mixing named and unnamed conversion specifiers in format string
Used when a format string contains both named (e.g. ‘%(foo)d’) and unnamed
(e.g. ‘%d’) conversion specifiers. This is also used when a named conversion
specifier contains * for the minimum field width and/or precision. - too-few-format-args (E1306)
-
Not enough arguments for format string
Used when a format string that uses unnamed conversion specifiers is given
too few arguments - bad-str-strip-call (E1310)
-
Suspicious argument in %s.%s call
The argument to a str.{l,r,}strip call contains a duplicate character, - too-many-format-args (E1305)
-
Too many arguments for format string
Used when a format string that uses unnamed conversion specifiers is given
too many arguments. - bad-format-character (E1300)
-
Unsupported format character %r (%#02x) at index %d
Used when an unsupported format character is used in a format string. - anomalous-unicode-escape-in-string (W1402)
-
Anomalous Unicode escape in byte string: ‘%s’. String constant might be missing an r or u prefix.
Used when an escape like u is encountered in a byte string where it has no
effect. - anomalous-backslash-in-string (W1401)
-
Anomalous backslash in string: ‘%s’. String constant might be missing an r prefix.
Used when a backslash is in a literal string but not as an escape. - duplicate-string-formatting-argument (W1308)
-
Duplicate string formatting argument %r, consider passing as named argument
Used when we detect that a string formatting is repeating an argument instead
of using named string arguments - format-combined-specification (W1305)
-
Format string contains both automatic field numbering and manual field specification
Used when a PEP 3101 format string contains both automatic field numbering
(e.g. ‘{}’) and manual field specification (e.g. ‘{0}’). - bad-format-string-key (W1300)
-
Format string dictionary key should be a string, not %s
Used when a format string that uses named conversion specifiers is used with
a dictionary whose keys are not all strings. - implicit-str-concat (W1404)
-
Implicit string concatenation found in %s
String literals are implicitly concatenated in a literal iterable definition
: maybe a comma is missing ? - bad-format-string (W1302)
-
Invalid format string
Used when a PEP 3101 format string is invalid. - missing-format-attribute (W1306)
-
Missing format attribute %r in format specifier %r
Used when a PEP 3101 format string uses an attribute specifier ({0.length}),
but the argument passed for formatting doesn’t have that attribute. - missing-format-argument-key (W1303)
-
Missing keyword argument %r for format string
Used when a PEP 3101 format string that uses named fields doesn’t receive one
or more required keywords. - inconsistent-quotes (W1405)
-
Quote delimiter %s is inconsistent with the rest of the file
Quote delimiters are not used consistently throughout a module (with
allowances made for avoiding unnecessary escaping). - redundant-u-string-prefix (W1406)
-
The u prefix for strings is no longer necessary in Python >=3.0
Used when we detect a string with a u prefix. These prefixes were necessary
in Python 2 to indicate a string was Unicode, but since Python 3.0 strings
are Unicode by default. - unused-format-string-argument (W1304)
-
Unused format argument %r
Used when a PEP 3101 format string that uses named fields is used with an
argument that is not required by the format string. - unused-format-string-key (W1301)
-
Unused key %r in format string dictionary
Used when a format string that uses named conversion specifiers is used with
a dictionary that contains keys not required by the format string. - f-string-without-interpolation (W1309)
-
Using an f-string that does not have any interpolated variables
Used when we detect an f-string that does not use any interpolation
variables, in which case it can be either a normal string or a bug in the
code. - format-string-without-interpolation (W1310)
-
Using formatting for a string that does not have any interpolated variables
Used when we detect a string that does not have any interpolation variables,
in which case it can be either a normal string without formatting or a bug in
the code. - invalid-format-index (W1307)
-
Using invalid lookup key %r in format specifier %r
Used when a PEP 3101 format string uses a lookup specifier ({a[1]}), but the
argument passed for formatting doesn’t contain or doesn’t have that key as an
attribute.
Threading checker#
Verbatim name of the checker is threading
.
Threading checker Messages#
- useless-with-lock (W2101)
-
‘%s()’ directly created in ‘with’ has no effect
Used when a new lock instance is created by using with statement which has no
effect. Instead, an existing instance should be used to acquire lock.
Typecheck checker#
Verbatim name of the checker is typecheck
.
See also typecheck checker’s options’ documentation
Typecheck checker Messages#
- unsupported-assignment-operation (E1137)
-
%r does not support item assignment
Emitted when an object does not support item assignment (i.e. doesn’t define
__setitem__ method). - unsupported-delete-operation (E1138)
-
%r does not support item deletion
Emitted when an object does not support item deletion (i.e. doesn’t define
__delitem__ method). - invalid-unary-operand-type (E1130)
-
Emitted when a unary operand is used on an object which does not support this
type of operation. - unsupported-binary-operation (E1131)
-
Emitted when a binary arithmetic operation between two operands is not
supported. - no-member (E1101)
-
%s %r has no %r member%s
Used when a variable is accessed for a nonexistent member. - not-callable (E1102)
-
%s is not callable
Used when an object being called has been inferred to a non callable object. - unhashable-member (E1143)
-
‘%s’ is unhashable and can’t be used as a %s in a %s
Emitted when a dict key or set member is not hashable (i.e. doesn’t define
__hash__ method). - await-outside-async (E1142)
-
‘await’ should be used within an async function
Emitted when await is used outside an async function. - redundant-keyword-arg (E1124)
-
Argument %r passed by position and keyword in %s call
Used when a function call would result in assigning multiple values to a
function parameter, one value from a positional argument and one from a
keyword argument. - assignment-from-no-return (E1111)
-
Assigning result of a function call, where the function has no return
Used when an assignment is done on a function call but the inferred function
doesn’t return anything. - assignment-from-none (E1128)
-
Assigning result of a function call, where the function returns None
Used when an assignment is done on a function call but the inferred function
returns nothing but None. - not-context-manager (E1129)
-
Context manager ‘%s’ doesn’t implement __enter__ and __exit__.
Used when an instance in a with statement doesn’t implement the context
manager protocol(__enter__/__exit__). - repeated-keyword (E1132)
-
Got multiple values for keyword argument %r in function call
Emitted when a function call got multiple values for a keyword. - invalid-metaclass (E1139)
-
Invalid metaclass %r used
Emitted whenever we can detect that a class is using, as a metaclass,
something which might be invalid for using as a metaclass. - missing-kwoa (E1125)
-
Missing mandatory keyword argument %r in %s call
Used when a function call does not pass a mandatory keyword-only argument. - no-value-for-parameter (E1120)
-
No value for argument %s in %s call
Used when a function call passes too few arguments. - not-an-iterable (E1133)
-
Non-iterable value %s is used in an iterating context
Used when a non-iterable value is used in place where iterable is expected - not-a-mapping (E1134)
-
Non-mapping value %s is used in a mapping context
Used when a non-mapping value is used in place where mapping is expected - invalid-sequence-index (E1126)
-
Sequence index is not an int, slice, or instance with __index__
Used when a sequence type is indexed with an invalid type. Valid types are
ints, slices, and objects with an __index__ method. - invalid-slice-index (E1127)
-
Slice index is not an int, None, or instance with __index__
Used when a slice index is not an integer, None, or an object with an
__index__ method. - invalid-slice-step (E1144)
-
Slice step cannot be 0
Used when a slice step is 0 and the object doesn’t implement a custom
__getitem__ method. - too-many-function-args (E1121)
-
Too many positional arguments for %s call
Used when a function call passes too many positional arguments. - unexpected-keyword-arg (E1123)
-
Unexpected keyword argument %r in %s call
Used when a function call passes a keyword argument that doesn’t correspond
to one of the function’s parameter names. - dict-iter-missing-items (E1141)
-
Unpacking a dictionary in iteration without calling .items()
Emitted when trying to iterate through a dict without calling .items() - unsupported-membership-test (E1135)
-
Value ‘%s’ doesn’t support membership test
Emitted when an instance in membership test expression doesn’t implement
membership protocol (__contains__/__iter__/__getitem__). - unsubscriptable-object (E1136)
-
Value ‘%s’ is unsubscriptable
Emitted when a subscripted value doesn’t support subscription (i.e. doesn’t
define __getitem__ method or __class_getitem__ for a class). - keyword-arg-before-vararg (W1113)
-
Keyword argument before variable positional arguments list in the definition of %s function
When defining a keyword argument before variable positional arguments, one
can end up in having multiple values passed for the aforementioned parameter
in case the method is called with keyword arguments. - non-str-assignment-to-dunder-name (W1115)
-
Non-string value assigned to __name__
Emitted when a non-string value is assigned to __name__ - arguments-out-of-order (W1114)
-
Positional arguments appear to be out of order
Emitted when the caller’s argument names fully match the parameter names in
the function signature but do not have the same order. - isinstance-second-argument-not-valid-type (W1116)
-
Second argument of isinstance is not a type
Emitted when the second argument of an isinstance call is not a type. - c-extension-no-member (I1101)
-
%s %r has no %r member%s, but source is unavailable. Consider adding this module to extension-pkg-allow-list if you want to perform analysis based on run-time introspection of living objects.
Used when a variable is accessed for non-existent member of C extension. Due
to unavailability of source static analysis is impossible, but it may be
performed by introspecting living objects in run-time.
Unicode Checker checker#
Verbatim name of the checker is unicode_checker
.
Unicode Checker checker Messages#
- bidirectional-unicode (E2502)
-
Contains control characters that can permit obfuscated code executed differently than displayed
bidirectional unicode are typically not displayed characters required to
display right-to-left (RTL) script (i.e. Chinese, Japanese, Arabic, Hebrew,
…) correctly. So can you trust this code? Are you sure it displayed
correctly in all editors? If you did not write it or your language is not
RTL, remove the special characters, as they could be used to trick you into
executing code, that does something else than what it looks like. More
Information: https://en.wikipedia.org/wiki/Bidirectional_text
https://trojansource.codes/ - invalid-character-backspace (E2510)
-
Invalid unescaped character backspace, use «b» instead.
Moves the cursor back, so the character after it will overwrite the character
before. - invalid-character-carriage-return (E2511)
-
Invalid unescaped character carriage-return, use «r» instead.
Moves the cursor to the start of line, subsequent characters overwrite the
start of the line. - invalid-character-esc (E2513)
-
Invalid unescaped character esc, use «x1B» instead.
Commonly initiates escape codes which allow arbitrary control of the
terminal. - invalid-character-nul (E2514)
-
Invalid unescaped character nul, use «0» instead.
Mostly end of input for python. - invalid-character-sub (E2512)
-
Invalid unescaped character sub, use «x1A» instead.
Ctrl+Z «End of text» on Windows. Some programs (such as type) ignore the rest
of the file after it. - invalid-character-zero-width-space (E2515)
-
Invalid unescaped character zero-width-space, use «u200B» instead.
Invisible space character could hide real code execution. - invalid-unicode-codec (E2501)
-
UTF-16 and UTF-32 aren’t backward compatible. Use UTF-8 instead
For compatibility use UTF-8 instead of UTF-16/UTF-32. See also
https://bugs.python.org/issue1503789 for a history of this issue. And
https://softwareengineering.stackexchange.com/questions/102205/should-
utf-16-be-considered-harmful for some possible problems when using UTF-16 for
instance. - bad-file-encoding (C2503)
-
PEP8 recommends UTF-8 as encoding for Python files
PEP8 recommends UTF-8 default encoding for Python files. See
https://peps.python.org/pep-0008/#source-file-encoding
Unnecessary-Dunder-Call checker#
Verbatim name of the checker is unnecessary-dunder-call
.
Unnecessary-Dunder-Call checker Messages#
- unnecessary-dunder-call (C2801)
-
Unnecessarily calls dunder method %s. %s.
Used when a dunder method is manually called instead of using the
corresponding function/method/operator.
Unnecessary Ellipsis checker#
Verbatim name of the checker is unnecessary_ellipsis
.
Unnecessary Ellipsis checker Messages#
- unnecessary-ellipsis (W2301)
-
Unnecessary ellipsis constant
Used when the ellipsis constant is encountered and can be avoided. A line of
code consisting of an ellipsis is unnecessary if there is a docstring on the
preceding line or if there is a statement in the same scope.
Unsupported Version checker#
Verbatim name of the checker is unsupported_version
.
Unsupported Version checker Messages#
- using-f-string-in-unsupported-version (W2601)
-
F-strings are not supported by all versions included in the py-version setting
Used when the py-version set by the user is lower than 3.6 and pylint
encounters a f-string. - using-final-decorator-in-unsupported-version (W2602)
-
typing.final is not supported by all versions included in the py-version setting
Used when the py-version set by the user is lower than 3.8 and pylint
encounters atyping.final
decorator.
Variables checker#
Verbatim name of the checker is variables
.
See also variables checker’s options’ documentation
Variables checker Messages#
- unpacking-non-sequence (E0633)
-
Attempting to unpack a non-sequence%s
Used when something which is not a sequence is used in an unpack assignment - invalid-all-format (E0605)
-
Invalid format for __all__, must be tuple or list
Used when __all__ has an invalid format. - potential-index-error (E0643)
-
Invalid index for iterable length
Emitted when an index used on an iterable goes beyond the length of that
iterable. - invalid-all-object (E0604)
-
Invalid object %r in __all__, must contain only strings
Used when an invalid (non-string) object occurs in __all__. - no-name-in-module (E0611)
-
No name %r in module %r
Used when a name cannot be found in a module. - undefined-variable (E0602)
-
Undefined variable %r
Used when an undefined variable is accessed. - undefined-all-variable (E0603)
-
Undefined variable name %r in __all__
Used when an undefined variable name is referenced in __all__. - used-before-assignment (E0601)
-
Using variable %r before assignment
Emitted when a local variable is accessed before its assignment took place.
Assignments in try blocks are assumed not to have occurred when evaluating
associated except/finally blocks. Assignments in except blocks are assumed
not to have occurred when evaluating statements outside the block, except
when the associated try block contains a return statement. - cell-var-from-loop (W0640)
-
Cell variable %s defined in loop
A variable used in a closure is defined in a loop. This will result in all
closures using the same value for the closed-over variable. - global-variable-undefined (W0601)
-
Global variable %r undefined at the module level
Used when a variable is defined through the «global» statement but the
variable is not defined in the module scope. - self-cls-assignment (W0642)
-
Invalid assignment to %s in method
Invalid assignment to self or cls in instance or class method respectively. - unbalanced-dict-unpacking (W0644)
-
Possible unbalanced dict unpacking with %s: left side has %d label%s, right side has %d value%s
Used when there is an unbalanced dict unpacking in assignment or for loop - unbalanced-tuple-unpacking (W0632)
-
Possible unbalanced tuple unpacking with sequence %s: left side has %d label%s, right side has %d value%s
Used when there is an unbalanced tuple unpacking in assignment - possibly-unused-variable (W0641)
-
Possibly unused variable %r
Used when a variable is defined but might not be used. The possibility comes
from the fact that locals() might be used, which could consume or not the
said variable - redefined-builtin (W0622)
-
Redefining built-in %r
Used when a variable or function override a built-in. - redefined-outer-name (W0621)
-
Redefining name %r from outer scope (line %s)
Used when a variable’s name hides a name defined in an outer scope or except
handler. - unused-import (W0611)
-
Unused %s
Used when an imported module or variable is not used. - unused-argument (W0613)
-
Unused argument %r
Used when a function or method argument is not used. - unused-wildcard-import (W0614)
-
Unused import(s) %s from wildcard import of %s
Used when an imported module or variable is not used from a ‘from X import
*’ style import. - unused-variable (W0612)
-
Unused variable %r
Used when a variable is defined but not used. - global-variable-not-assigned (W0602)
-
Using global for %r but no assignment is done
When a variable defined in the global scope is modified in an inner scope,
the ‘global’ keyword is required in the inner scope only if there is an
assignment operation done in the inner scope. - undefined-loop-variable (W0631)
-
Using possibly undefined loop variable %r
Used when a loop variable (i.e. defined by a for loop or a list comprehension
or a generator expression) is used outside the loop. - global-statement (W0603)
-
Using the global statement
Used when you use the «global» statement to update a global variable. Pylint
discourages its usage. That doesn’t mean you cannot use it! - global-at-module-level (W0604)
-
Using the global statement at the module level
Used when you use the «global» statement at the module level since it has no
effect.