Проверка на ошибку python

In this beginner tutorial you'll learn what exceptions are good for in Python. You'll see how to raise exceptions and how to handle them with "try/except" blocks.

Watch Now This tutorial has a related video course created by the Real Python team. Watch it together with the written tutorial to deepen your understanding: Raising and Handling Python Exceptions

A Python program terminates as soon as it encounters an error. In Python, an error can be a syntax error or an exception. In this article, you will see what an exception is and how it differs from a syntax error. After that, you will learn about raising exceptions and making assertions. Then, you’ll finish with a demonstration of the try and except block.

An introduction to exceptions in Python

Exceptions versus Syntax Errors

Syntax errors occur when the parser detects an incorrect statement. Observe the following example:

>>> print( 0 / 0 ))
  File "<stdin>", line 1
    print( 0 / 0 ))
                  ^
SyntaxError: invalid syntax

The arrow indicates where the parser ran into the syntax error. In this example, there was one bracket too many. Remove it and run your code again:

>>> print( 0 / 0)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

This time, you ran into an exception error. This type of error occurs whenever syntactically correct Python code results in an error. The last line of the message indicated what type of exception error you ran into.

Instead of showing the message exception error, Python details what type of exception error was encountered. In this case, it was a ZeroDivisionError. Python comes with various built-in exceptions as well as the possibility to create self-defined exceptions.

Raising an Exception

We can use raise to throw an exception if a condition occurs. The statement can be complemented with a custom exception.

Illustration of  raise statement usage

If you want to throw an error when a certain condition occurs using raise, you could go about it like this:

x = 10
if x > 5:
    raise Exception('x should not exceed 5. The value of x was: {}'.format(x))

When you run this code, the output will be the following:

Traceback (most recent call last):
  File "<input>", line 4, in <module>
Exception: x should not exceed 5. The value of x was: 10

The program comes to a halt and displays our exception to screen, offering clues about what went wrong.

The AssertionError Exception

Instead of waiting for a program to crash midway, you can also start by making an assertion in Python. We assert that a certain condition is met. If this condition turns out to be True, then that is excellent! The program can continue. If the condition turns out to be False, you can have the program throw an AssertionError exception.

Python assert statement

Have a look at the following example, where it is asserted that the code will be executed on a Linux system:

import sys
assert ('linux' in sys.platform), "This code runs on Linux only."

If you run this code on a Linux machine, the assertion passes. If you were to run this code on a Windows machine, the outcome of the assertion would be False and the result would be the following:

Traceback (most recent call last):
  File "<input>", line 2, in <module>
AssertionError: This code runs on Linux only.

In this example, throwing an AssertionError exception is the last thing that the program will do. The program will come to halt and will not continue. What if that is not what you want?

The try and except Block: Handling Exceptions

The try and except block in Python is used to catch and handle exceptions. Python executes code following the try statement as a “normal” part of the program. The code that follows the except statement is the program’s response to any exceptions in the preceding try clause.

Diagram showing try and except statements

As you saw earlier, when syntactically correct code runs into an error, Python will throw an exception error. This exception error will crash the program if it is unhandled. The except clause determines how your program responds to exceptions.

The following function can help you understand the try and except block:

def linux_interaction():
    assert ('linux' in sys.platform), "Function can only run on Linux systems."
    print('Doing something.')

The linux_interaction() can only run on a Linux system. The assert in this function will throw an AssertionError exception if you call it on an operating system other then Linux.

You can give the function a try using the following code:

try:
    linux_interaction()
except:
    pass

The way you handled the error here is by handing out a pass. If you were to run this code on a Windows machine, you would get the following output:

You got nothing. The good thing here is that the program did not crash. But it would be nice to see if some type of exception occurred whenever you ran your code. To this end, you can change the pass into something that would generate an informative message, like so:

try:
    linux_interaction()
except:
    print('Linux function was not executed')

Execute this code on a Windows machine:

Linux function was not executed

When an exception occurs in a program running this function, the program will continue as well as inform you about the fact that the function call was not successful.

What you did not get to see was the type of error that was thrown as a result of the function call. In order to see exactly what went wrong, you would need to catch the error that the function threw.

The following code is an example where you capture the AssertionError and output that message to screen:

try:
    linux_interaction()
except AssertionError as error:
    print(error)
    print('The linux_interaction() function was not executed')

Running this function on a Windows machine outputs the following:

Function can only run on Linux systems.
The linux_interaction() function was not executed

The first message is the AssertionError, informing you that the function can only be executed on a Linux machine. The second message tells you which function was not executed.

In the previous example, you called a function that you wrote yourself. When you executed the function, you caught the AssertionError exception and printed it to screen.

Here’s another example where you open a file and use a built-in exception:

try:
    with open('file.log') as file:
        read_data = file.read()
except:
    print('Could not open file.log')

If file.log does not exist, this block of code will output the following:

This is an informative message, and our program will still continue to run. In the Python docs, you can see that there are a lot of built-in exceptions that you can use here. One exception described on that page is the following:

Exception FileNotFoundError

Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.

To catch this type of exception and print it to screen, you could use the following code:

try:
    with open('file.log') as file:
        read_data = file.read()
except FileNotFoundError as fnf_error:
    print(fnf_error)

In this case, if file.log does not exist, the output will be the following:

[Errno 2] No such file or directory: 'file.log'

You can have more than one function call in your try clause and anticipate catching various exceptions. A thing to note here is that the code in the try clause will stop as soon as an exception is encountered.

Look at the following code. Here, you first call the linux_interaction() function and then try to open a file:

try:
    linux_interaction()
    with open('file.log') as file:
        read_data = file.read()
except FileNotFoundError as fnf_error:
    print(fnf_error)
except AssertionError as error:
    print(error)
    print('Linux linux_interaction() function was not executed')

If the file does not exist, running this code on a Windows machine will output the following:

Function can only run on Linux systems.
Linux linux_interaction() function was not executed

Inside the try clause, you ran into an exception immediately and did not get to the part where you attempt to open file.log. Now look at what happens when you run the code on a Linux machine:

[Errno 2] No such file or directory: 'file.log'

Here are the key takeaways:

  • A try clause is executed up until the point where the first exception is encountered.
  • Inside the except clause, or the exception handler, you determine how the program responds to the exception.
  • You can anticipate multiple exceptions and differentiate how the program should respond to them.
  • Avoid using bare except clauses.

The else Clause

In Python, using the else statement, you can instruct a program to execute a certain block of code only in the absence of exceptions.

Diagram of try, except, and else statements in Python

Look at the following example:

try:
    linux_interaction()
except AssertionError as error:
    print(error)
else:
    print('Executing the else clause.')

If you were to run this code on a Linux system, the output would be the following:

Doing something.
Executing the else clause.

Because the program did not run into any exceptions, the else clause was executed.

You can also try to run code inside the else clause and catch possible exceptions there as well:

try:
    linux_interaction()
except AssertionError as error:
    print(error)
else:
    try:
        with open('file.log') as file:
            read_data = file.read()
    except FileNotFoundError as fnf_error:
        print(fnf_error)

If you were to execute this code on a Linux machine, you would get the following result:

Doing something.
[Errno 2] No such file or directory: 'file.log'

From the output, you can see that the linux_interaction() function ran. Because no exceptions were encountered, an attempt to open file.log was made. That file did not exist, and instead of opening the file, you caught the FileNotFoundError exception.

Cleaning Up After Using finally

Imagine that you always had to implement some sort of action to clean up after executing your code. Python enables you to do so using the finally clause.

Diagram explaining try except else finally statements

Have a look at the following example:

try:
    linux_interaction()
except AssertionError as error:
    print(error)
else:
    try:
        with open('file.log') as file:
            read_data = file.read()
    except FileNotFoundError as fnf_error:
        print(fnf_error)
finally:
    print('Cleaning up, irrespective of any exceptions.')

In the previous code, everything in the finally clause will be executed. It does not matter if you encounter an exception somewhere in the try or else clauses. Running the previous code on a Windows machine would output the following:

Function can only run on Linux systems.
Cleaning up, irrespective of any exceptions.

Summing Up

After seeing the difference between syntax errors and exceptions, you learned about various ways to raise, catch, and handle exceptions in Python. In this article, you saw the following options:

  • raise allows you to throw an exception at any time.
  • assert enables you to verify if a certain condition is met and throw an exception if it isn’t.
  • In the try clause, all statements are executed until an exception is encountered.
  • except is used to catch and handle the exception(s) that are encountered in the try clause.
  • else lets you code sections that should run only when no exceptions are encountered in the try clause.
  • finally enables you to execute sections of code that should always run, with or without any previously encountered exceptions.

Hopefully, this article helped you understand the basic tools that Python has to offer when dealing with exceptions.

Watch Now This tutorial has a related video course created by the Real Python team. Watch it together with the written tutorial to deepen your understanding: Raising and Handling Python Exceptions

How do you test that a Python function throws an exception?

How does one write a test that fails only if a function doesn’t throw
an expected exception?

Short Answer:

Use the self.assertRaises method as a context manager:

    def test_1_cannot_add_int_and_str(self):
        with self.assertRaises(TypeError):
            1 + '1'

Demonstration

The best practice approach is fairly easy to demonstrate in a Python shell.

The unittest library

In Python 2.7 or 3:

import unittest

In Python 2.6, you can install a backport of 2.7’s unittest library, called unittest2, and just alias that as unittest:

import unittest2 as unittest

Example tests

Now, paste into your Python shell the following test of Python’s type-safety:

class MyTestCase(unittest.TestCase):
    def test_1_cannot_add_int_and_str(self):
        with self.assertRaises(TypeError):
            1 + '1'
    def test_2_cannot_add_int_and_str(self):
        import operator
        self.assertRaises(TypeError, operator.add, 1, '1')

Test one uses assertRaises as a context manager, which ensures that the error is properly caught and cleaned up, while recorded.

We could also write it without the context manager, see test two. The first argument would be the error type you expect to raise, the second argument, the function you are testing, and the remaining args and keyword args will be passed to that function.

I think it’s far more simple, readable, and maintainable to just to use the context manager.

Running the tests

To run the tests:

unittest.main(exit=False)

In Python 2.6, you’ll probably need the following:

unittest.TextTestRunner().run(unittest.TestLoader().loadTestsFromTestCase(MyTestCase))

And your terminal should output the following:

..
----------------------------------------------------------------------
Ran 2 tests in 0.007s

OK
<unittest2.runner.TextTestResult run=2 errors=0 failures=0>

And we see that as we expect, attempting to add a 1 and a '1' result in a TypeError.


For more verbose output, try this:

unittest.TextTestRunner(verbosity=2).run(unittest.TestLoader().loadTestsFromTestCase(MyTestCase))

При выполнении заданий к главам вы скорее всего нередко сталкивались с возникновением различных ошибок. На этой главе мы изучим подход, который позволяет обрабатывать ошибки после их возникновения.

Напишем программу, которая будет считать обратные значения для целых чисел из заданного диапазона и выводить их в одну строку с разделителем «;». Один из вариантов кода для решения этой задачи выглядит так:

print(";".join(str(1 / x) for x in range(int(input()), int(input()) + 1)))

Программа получилась в одну строчку за счёт использования списочных выражений. Однако при вводе диапазона чисел, включающем в себя 0 (например, от -1 до 1), программа выдаст следующую ошибку:

ZeroDivisionError: division by zero

В программе произошла ошибка «деление на ноль». Такая ошибка, возникающая при выполнении программы и останавливающая её работу, называется исключением.

Попробуем в нашей программе избавиться от возникновения исключения деления на ноль. Пусть при попадании 0 в диапазон чисел, обработка не производится и выводится сообщение «Диапазон чисел содержит 0». Для этого нужно проверить до списочного выражения наличие нуля в диапазоне:

interval = range(int(input()), int(input()) + 1)
if 0 in interval:
    print("Диапазон чисел содержит 0.")
else:
    print(";".join(str(1 / x) for x in interval))

Теперь для диапазона, включающего в себя 0, например, от -2 до 2, исключения ZeroDivisionError не возникнет. Однако при вводе строки, которую невозможно преобразовать в целое число (например, «a»), будет вызвано другое исключение:

ValueError: invalid literal for int() with base 10: 'a'

Произошло исключение ValueError. Для борьбы с этой ошибкой нам придётся проверить, что строка состоит только из цифр. Сделать это нужно до преобразования в число. Тогда наша программа будет выглядеть так:

start = input()
end = input()
# Метод lstrip("-"), удаляющий символы "-" в начале строки, нужен для учёта
# отрицательных чисел, иначе isdigit() вернёт для них False
if not (start.lstrip("-").isdigit() and end.lstrip("-").isdigit()):
    print("Необходимо ввести два числа.")
else:
    interval = range(int(start), int(end) + 1)
    if 0 in interval:
        print("Диапазон чисел содержит 0.")
    else:
        print(";".join(str(1 / x) for x in interval))

Теперь наша программа работает без ошибок и при вводе строк, которые нельзя преобразовать в целое число.

Подход, который был нами применён для предотвращения ошибок, называется «Look Before You Leap» (LBYL), или «посмотри перед прыжком». В программе, реализующей такой подход, проверяются возможные условия возникновения ошибок до исполнения основного кода.

Подход LBYL имеет недостатки. Программу из примера стало сложнее читать из-за вложенного условного оператора. Проверка условия, что строка может быть преобразована в число, выглядит даже сложнее, чем списочное выражение. Вложенный условный оператор не решает поставленную задачу, а только лишь проверяет входные данные на корректность. Легко заметить, что решение основной задачи заняло меньше времени, чем составление условий проверки корректности входных данных.

Существует другой подход для работы с ошибками: «Easier to Ask Forgiveness than Permission» (EAFP) или «проще извиниться, чем спрашивать разрешение». В этом подходе сначала исполняется код, а в случае возникновения ошибок происходит их обработка. Подход EAFP реализован в Python в виде обработки исключений.

Исключения в Python являются классами ошибок. В Python есть много стандартных исключений. Они имеют определённую иерархию за счёт механизма наследования классов. В документации Python версии 3.10.8 приводится следующее дерево иерархии стандартных исключений:

BaseException
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception
      +-- StopIteration
      +-- StopAsyncIteration
      +-- ArithmeticError
      |    +-- FloatingPointError
      |    +-- OverflowError
      |    +-- ZeroDivisionError
      +-- AssertionError
      +-- AttributeError
      +-- BufferError
      +-- EOFError
      +-- ImportError
      |    +-- ModuleNotFoundError
      +-- LookupError
      |    +-- IndexError
      |    +-- KeyError
      +-- MemoryError
      +-- NameError
      |    +-- UnboundLocalError
      +-- OSError
      |    +-- BlockingIOError
      |    +-- ChildProcessError
      |    +-- ConnectionError
      |    |    +-- BrokenPipeError
      |    |    +-- ConnectionAbortedError
      |    |    +-- ConnectionRefusedError
      |    |    +-- ConnectionResetError
      |    +-- FileExistsError
      |    +-- FileNotFoundError
      |    +-- InterruptedError
      |    +-- IsADirectoryError
      |    +-- NotADirectoryError
      |    +-- PermissionError
      |    +-- ProcessLookupError
      |    +-- TimeoutError
      +-- ReferenceError
      +-- RuntimeError
      |    +-- NotImplementedError
      |    +-- RecursionError
      +-- SyntaxError
      |    +-- IndentationError
      |         +-- TabError
      +-- SystemError
      +-- TypeError
      +-- ValueError
      |    +-- UnicodeError
      |         +-- UnicodeDecodeError
      |         +-- UnicodeEncodeError
      |         +-- UnicodeTranslateError
      +-- Warning
           +-- DeprecationWarning
           +-- PendingDeprecationWarning
           +-- RuntimeWarning
           +-- SyntaxWarning
           +-- UserWarning
           +-- FutureWarning
           +-- ImportWarning
           +-- UnicodeWarning
           +-- BytesWarning
           +-- EncodingWarning
           +-- ResourceWarning

Для обработки исключения в Python используется следующий синтаксис:

try:
    <код , который может вызвать исключения при выполнении>
except <классисключения_1>:
    <код обработки исключения>
except <классисключения_2>:
    <код обработки исключения>
...
else:
    <код выполняется, если не вызвано исключение в блоке try>
finally:
    <код , который выполняется всегда>

Блок try содержит код, в котором нужно обработать исключения, если они возникнут. При возникновении исключения интерпретатор последовательно проверяет в каком из блоков except обрабатывается это исключение. Исключение обрабатывается в первом блоке except, обрабатывающем класс этого исключения или базовый класс возникшего исключения. Необходимо учитывать иерархию исключений для определения порядка их обработки в блоках except. Начинать обработку исключений следует с более узких классов исключений. Если начать с более широкого класса исключения, например, Exception, то всегда при возникновении исключения будет срабатывать первый блок except. Сравните два следующих примера. В первом порядок обработки исключений указан от производных классов к базовым, а во втором – наоборот.

try:
    print(1 / int(input()))
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")
except Exception:
    print("Неизвестная ошибка.")

При вводе значений «0» и «a» получим ожидаемый соответствующий возникающим исключениям вывод:

Невозможно преобразовать строку в число.

и

Ошибка деления на ноль.

Второй пример:

try:
    print(1 / int(input()))
except Exception:
    print("Неизвестная ошибка.")
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")

При вводе значений «0» и «a» получим в обоих случаях неинформативный вывод:

Неизвестная ошибка.

Необязательный блок else выполняет код в случае, если в блоке try не вызвано исключение. Добавим блок else в пример для вывода сообщения об успешном выполнении операции:

try:
    print(1 / int(input()))
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")
except Exception:
    print("Неизвестная ошибка.")
else:
    print("Операция выполнена успешно.")

Теперь при вводе корректного значения, например, «5», вывод программы будет следующим:

2.0
Операция выполнена успешно.

Блок finally выполняется всегда, даже если возникло какое-то исключение, не учтённое в блоках except или код в этих блоках сам вызвал какое-либо исключение. Добавим в нашу программу вывод строки «Программа завершена» в конце программы даже при возникновении исключений:

try:
    print(1 / int(input()))
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")
except Exception:
    print("Неизвестная ошибка.")
else:
    print("Операция выполнена успешно.")
finally:
    print("Программа завершена.")

Перепишем код, созданный с применением подхода LBYL, для первого примера из этой главы с использованием обработки исключений:

try:
    print(";".join(str(1 / x) for x in range(int(input()), int(input()) + 1)))
except ZeroDivisionError:
    print("Диапазон чисел содержит 0.")
except ValueError:
    print("Необходимо ввести два числа.")

Теперь наша программа читается намного легче. При этом создание кода для обработки исключений не заняло много времени и не потребовало проверки сложных условий.

Исключения можно принудительно вызывать с помощью оператора raise. Этот оператор имеет следующий синтаксис:

raise <класс исключения>(параметры)

В качестве параметра можно, например, передать строку с сообщением об ошибке.

В Python можно создавать свои собственные исключения. Синтаксис создания исключения такой же, как и у создания класса. При создании исключения его необходимо наследовать от какого-либо стандартного класса-исключения.

Напишем программу, которая выводит сумму списка целых чисел, и вызывает исключение, если в списке чисел есть хотя бы одно чётное или отрицательное число. Создадим свои классы исключений:

  • NumbersError – базовый класс исключения;
  • EvenError – исключение, которое вызывается при наличии хотя бы одного чётного числа;
  • NegativeError – исключение, которое вызывается при наличии хотя бы одного отрицательного числа.
class NumbersError(Exception):
    pass


class EvenError(NumbersError):
    pass


class NegativeError(NumbersError):
    pass


def no_even(numbers):
    if all(x % 2 != 0 for x in numbers):
        return True
    raise EvenError("В списке не должно быть чётных чисел")


def no_negative(numbers):
    if all(x >= 0 for x in numbers):
        return True
    raise NegativeError("В списке не должно быть отрицательных чисел")


def main():
    print("Введите числа в одну строку через пробел:")
    try:
        numbers = [int(x) for x in input().split()]
        if no_negative(numbers) and no_even(numbers):
            print(f"Сумма чисел равна: {sum(numbers)}.")
    except NumbersError as e:  # обращение к исключению как к объекту
        print(f"Произошла ошибка: {e}.")
    except Exception as e:
        print(f"Произошла непредвиденная ошибка: {e}.")

        
if __name__ == "__main__":
    main()

Обратите внимание: в программе основной код выделен в функцию main. А код вне функций содержит только условный оператор и вызов функции main при выполнении условия __name__ == "__main__". Это условие проверяет, запущен ли файл как самостоятельная программа или импортирован как модуль.

Любая программа, написанная на языке программирования Python может быть импортирована как модуль в другую программу. В идеологии Python импортировать модуль – значит полностью его выполнить. Если основной код модуля содержит вызовы функций, ввод или вывод данных без использования указанного условия __name__ == "__main__", то произойдёт полноценный запуск программы. А это не всегда удобно, если из модуля нужна только отдельная функция или какой-либо класс.

При изучении модуля itertools, мы говорили о том, как импортировать модуль в программу. Покажем ещё раз два способа импорта на примере собственного модуля.

Для импорта модуля из файла, например example_module.py, нужно указать его имя, если он находится в той же папке, что и импортирующая его программа:

import example_module

Если требуется отдельный компонент модуля, например функция или класс, то импорт можно осуществить так:

from example_module import some_function, ExampleClass

Обратите внимание: при втором способе импортированные объекты попадают в пространство имён новой программы. Это означает, что они будут объектами новой программы, и в программе не должно быть других объектов с такими же именами.

How to Handle Exceptions in Python: A Detailed Visual Introduction

Welcome! In this article, you will learn how to handle exceptions in Python.

In particular, we will cover:

  • Exceptions
  • The purpose of exception handling
  • The try clause
  • The except clause
  • The else clause
  • The finally clause
  • How to raise exceptions

Are you ready? Let’s begin! 😀

1️⃣ Intro to Exceptions

We will start with exceptions:

  • What are they?
  • Why are they relevant?
  • Why should you handle them?

According to the Python documentation:

Errors detected during execution are called exceptions and are not unconditionally fatal.

Exceptions are raised when the program encounters an error during its execution. They disrupt the normal flow of the program and usually end it abruptly. To avoid this, you can catch them and handle them appropriately.

You’ve probably seen them during your programming projects.

If you’ve ever tried to divide by zero in Python, you must have seen this error message:

>>> a = 5/0
Traceback (most recent call last):
  File "<pyshell#1>", line 1, in <module>
    a = 5/0
ZeroDivisionError: division by zero

If you tried to index a string with an invalid index, you definitely got this error message:

>>> a = "Hello, World"
>>> a[456]
Traceback (most recent call last):
  File "<pyshell#3>", line 1, in <module>
    a[456]
IndexError: string index out of range

These are examples of exceptions.

🔹 Common Exceptions

There are many different types of exceptions, and they are all raised in particular situations. Some of the exceptions that you will most likely see as you work on your projects are:

  • IndexError — raised when you try to index a list, tuple, or string beyond the permitted boundaries. For example:
>>> num = [1, 2, 6, 5]
>>> num[56546546]
Traceback (most recent call last):
  File "<pyshell#7>", line 1, in <module>
    num[56546546]
IndexError: list index out of range
  • KeyError — raised when you try to access the value of a key that doesn’t exist in a dictionary. For example:
>>> students = {"Nora": 15, "Gino": 30}
>>> students["Lisa"]
Traceback (most recent call last):
  File "<pyshell#9>", line 1, in <module>
    students["Lisa"]
KeyError: 'Lisa'
  • NameError — raised when a name that you are referencing in the code doesn’t exist. For example:
>>> a = b
Traceback (most recent call last):
  File "<pyshell#10>", line 1, in <module>
    a = b
NameError: name 'b' is not defined
  • TypeError — raised when an operation or function is applied to an object of an inappropriate type. For example:
>>> (5, 6, 7) * (1, 2, 3)
Traceback (most recent call last):
  File "<pyshell#12>", line 1, in <module>
    (5, 6, 7) * (1, 2, 3)
TypeError: can't multiply sequence by non-int of type 'tuple'
  • ZeroDivisionError — raised when you try to divide by zero.
>>> a = 5/0
Traceback (most recent call last):
  File "<pyshell#13>", line 1, in <module>
    a = 5/0
ZeroDivisionError: division by zero

💡 Tips: To learn more about other types of built-in exceptions, please refer to this article in the Python Documentation.

🔸 Anatomy of an Exception

I’m sure that you must have noticed a general pattern in these error messages. Let’s break down their general structure piece by piece:

image-8

First, we find this line (see below). A traceback is basically a list detailing the function calls that were made before the exception was raised.

The traceback helps you during the debugging process because you can analyze the sequence of function calls that resulted in the exception:

Traceback (most recent call last):

Then, we see this line (see below) with the path to the file and the line that raised the exception. In this case, the path was the Python shell <pyshell#0> since the example was executed directly in IDLE.

File "<pyshell#0>", line 1, in <module>
   a - 5/0

💡 Tip: If the line that raised the exception belongs to a function, <module>  is replaced by the name of the function.

Finally, we see a descriptive message detailing the type of exception and providing additional information to help us debug the code:

NameError: name 'a' is not defined

2️⃣ Exception Handling: Purpose & Context

You may ask: why would I want to handle exceptions? Why is this helpful for me? By handling exceptions, you can provide an alternative flow of execution to avoid crashing your program unexpectedly.

🔹 Example: User Input

Imagine what would happen if a user who is working with your program enters an invalid input. This would raise an exception because an invalid operation was performed during the process.

If your program doesn’t handle this correctly, it will crash suddenly and the user will have a very disappointing experience with your product.

But if you do handle the exception, you will be able to provide an alternative to improve the experience of the user.

Perhaps you could display a descriptive message asking the user to enter a valid input, or you could provide a default value for the input. Depending on the context, you can choose what to do when this happens, and this is the magic of error handling. It can save the day when unexpected things happen. ⭐️

🔸 What Happens Behind the Scenes?

Basically, when we handle an exception, we are telling the program what to do if the exception is raised. In that case, the «alternative» flow of execution will come to the rescue. If no exceptions are raised, the code will run as expected.

image-10

3️⃣ Time to Code: The try … except Statement

Now that you know what exceptions are and why you should we handle them, we will start diving into the built-in tools that the Python languages offers for this purpose.

First, we have the most basic statement: try … except.

Let’s illustrate this with a simple example. We have this small program that asks the user to enter the name of a student to display his/her age:

students = {"Nora": 15, "Gino": 30}

def print_student_age():
    name = input("Please enter the name of the student: ")
    print(students[name])

print_student_age()

Notice how we are not validating user input at the moment, so the user might enter invalid values (names that are not in the dictionary) and the consequences would be catastrophic because the program would crash if a KeyError is raised:

# User Input
Please enter the name of the student: "Daniel"

# Error Message
Traceback (most recent call last):
  File "<path>", line 15, in <module>
    print_student_age()
  File "<path>", line 13, in print_student_age
    print(students[name])
KeyError: '"Daniel"'

🔹 Syntax

We can handle this nicely using try … except. This is the basic syntax:

image-11

In our example, we would add the try … except statement within the function. Let’s break this down piece by piece:

students = {"Nora": 15, "Gino": 30}

def print_student_age():
    while True:
        try:
            name = input("Please enter the name of the student: ")
            print(students[name])
            break
        except:
            print("This name is not registered")
    

print_student_age()

If we «zoom in», we see the try … except statement:

try:
	name = input("Please enter the name of the student: ")
	print(students[name])
	break
except:
	print("This name is not registered")
  • When the function is called, the try clause will run. If no exceptions are raised, the program will run as expected.
  • But if an exception is raised in the try clause, the flow of execution will immediately jump to the except clause to handle the exception.

💡 Note: This code is contained within a while loop to continue asking for user input if the value is invalid. This is an example:

Please enter the name of the student: "Lulu"
This name is not registered
Please enter the name of the student: 

This is great, right? Now we can continue asking for user input if the value is invalid.

At the moment, we are handling all possible exceptions with the same except clause. But what if we only want to handle a specific type of exception? Let’s see how we could do this.

🔸 Catching Specific Exceptions

Since not all types of exceptions are handled in the same way, we can specify which exceptions we would like to handle with this syntax:

image-15

This is an example. We are handling the ZeroDivisionError exception in case the user enters zero as the denominator:

def divide_integers():
    while True:
        try:
            a = int(input("Please enter the numerator: "))
            b = int(input("Please enter the denominator: "))
            print(a / b)
        except ZeroDivisionError:
            print("Please enter a valid denominator.")


divide_integers()

This would be the result:

# First iteration
Please enter the numerator: 5
Please enter the denominator: 0
Please enter a valid denominator. 

# Second iteration
Please enter the numerator: 5
Please enter the denominator: 2
2.5

We are handling this correctly. But… if another type of exception is raised, the program will not handle it gracefully.

Here we have an example of a ValueError because one of the values is a float, not an int:

Please enter the numerator: 5
Please enter the denominator: 0.5
Traceback (most recent call last):
  File "<path>", line 53, in <module>
    divide_integers()
  File "<path>", line 47, in divide_integers
    b = int(input("Please enter the denominator: "))
ValueError: invalid literal for int() with base 10: '0.5'

We can customize how we handle different types of exceptions.

🔹 Multiple Except Clauses

To do this, we need to add multiple except clauses to handle different types of exceptions differently.

According to the Python Documentation:

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one handler will be executed.

In this example, we have two except clauses. One of them handles ZeroDivisionError and the other one handles ValueError, the two types of exceptions that could be raised in this try block.

def divide_integers():
    while True:
        try:
            a = int(input("Please enter the numerator: "))
            b = int(input("Please enter the denominator: "))
            print(a / b)
        except ZeroDivisionError:
            print("Please enter a valid denominator.")
        except ValueError:
            print("Both values have to be integers.")


divide_integers() 

💡 Tip: You have to determine which types of exceptions might be raised in the try block to handle them appropriately.

🔸 Multiple Exceptions, One Except Clause

You can also choose to handle different types of exceptions with the same except clause.

According to the Python Documentation:

An except clause may name multiple exceptions as a parenthesized tuple.

This is an example where we catch two exceptions (ZeroDivisionError and ValueError) with the same except clause:

def divide_integers():
    while True:
        try:
            a = int(input("Please enter the numerator: "))
            b = int(input("Please enter the denominator: "))
            print(a / b)
        except (ZeroDivisionError, ValueError):
            print("Please enter valid integers.")

divide_integers()

The output would be the same for the two types of exceptions because they are handled by the same except clause:

Please enter the numerator: 5
Please enter the denominator: 0
Please enter valid integers.
Please enter the numerator: 0.5
Please enter valid integers.
Please enter the numerator: 

🔹 Handling Exceptions Raised by Functions Called in the try Clause

An interesting aspect of exception handling is that if an exception is raised in a function that was previously called in the try clause of another function and the function itself does not handle it, the caller will handle it if there is an appropriate except clause.

According to the Python Documentation:

Exception handlers don’t just handle exceptions if they occur immediately in the try clause, but also if they occur inside functions that are called (even indirectly) in the try clause.

Let’s see an example to illustrate this:

def f(i):
    try:
        g(i)
    except IndexError:
        print("Please enter a valid index")

def g(i):
    a = "Hello"
    return a[i]

f(50)

We have the f function and the g function. f calls g in the try clause. With the argument 50, g will raise an IndexError because the index 50 is not valid for the string a.

But g itself doesn’t handle the exception. Notice how there is no try … except statement in the g function. Since it doesn’t handle the exception, it «sends» it to f to see if it can handle it, as you can see in the diagram below:

image-16

Since f does know how to handle an IndexError, the situation is handled gracefully and this is the output:

Please enter a valid index

💡 Note: If f had not handled the exception, the program would have ended abruptly with the default error message for an IndexError.

🔸 Accessing Specific Details of Exceptions

Exceptions are objects in Python, so you can assign the exception that was raised to a variable. This way, you can print the default description of the exception and access its arguments.

According to the Python Documentation:

The except clause may specify a variable after the exception name. The variable is bound to an exception instance with the arguments stored in instance.args.

Here we have an example (see below) were we assign the instance of ZeroDivisionError to the variable e. Then, we can use this variable within the except clause to access the type of the exception, its message, and arguments.

def divide_integers():
    while True:
        try:
            a = int(input("Please enter the numerator: "))
            b = int(input("Please enter the denominator: "))
            print(a / b)
        # Here we assign the exception to the variable e
        except ZeroDivisionError as e:
            print(type(e))
            print(e)
            print(e.args)

divide_integers()

The corresponding output would be:

Please enter the numerator: 5
Please enter the denominator: 0

# Type
<class 'ZeroDivisionError'>

# Message
division by zero

# Args
('division by zero',)

💡 Tip: If you are familiar with special methods, according to the Python Documentation: «for convenience, the exception instance defines __str__() so the arguments can be printed directly without having to reference .args

4️⃣ Now Let’s Add: The «else» Clause

The else clause is optional, but it’s a great tool because it lets us execute code that should only run if no exceptions were raised in the try clause.

image-17

According to the Python Documentation:

The tryexcept statement has an optional else clause, which, when present, must follow all except clauses. It is useful for code that must be executed if the try clause does not raise an exception.

Here is an example of the use of the else clause:

def divide_integers():
    while True:
        try:
            a = int(input("Please enter the numerator: "))
            b = int(input("Please enter the denominator: "))
            result = a / b
        except (ZeroDivisionError, ValueError):
            print("Please enter valid integers. The denominator can't be zero")
        else:
            print(result)

divide_integers()

If no exception are raised, the result is printed:

Please enter the numerator: 5
Please enter the denominator: 5
1.0

But if an exception is raised, the result is not printed:

Please enter the numerator: 5
Please enter the denominator: 0
Please enter valid integers. The denominator can't be zero

💡 Tip: According to the Python Documentation:

The use of the else clause is better than adding additional code to the try clause because it avoids accidentally catching an exception that wasn’t raised by the code being protected by the tryexcept statement.

5️⃣ The «finally» Clause

The finally clause is the last clause in this sequence. It is optional, but if you include it, it has to be the last clause in the sequence. The finally clause is always executed, even if an exception was raised in the try clause.  

image-19

According to the Python Documentation:

If a finally clause is present, the finally clause will execute as the last task before the try statement completes. The finally clause runs whether or not the try statement produces an exception.

The finally clause is usually used to perform «clean-up» actions that should always be completed. For example, if we are working with a file in the try clause, we will always need to close the file, even if an exception was raised when we were working with the data.

Here is an example of the finally clause:

def divide_integers():
    while True:
        try:
            a = int(input("Please enter the numerator: "))
            b = int(input("Please enter the denominator: "))
            result = a / b
        except (ZeroDivisionError, ValueError):
            print("Please enter valid integers. The denominator can't be zero")
        else:
            print(result)
        finally:
            print("Inside the finally clause")

divide_integers()

This is the output when no exceptions were raised:

Please enter the numerator: 5
Please enter the denominator: 5
1.0
Inside the finally clause

This is the output when an exception was raised:

Please enter the numerator: 5
Please enter the denominator: 0
Please enter valid integers. The denominator can't be zero
Inside the finally clause

Notice how the finally clause always runs.

❗️Important: remember that the else clause and the finally clause are optional, but if you decide to include both, the finally clause has to be the last clause in the sequence.

6️⃣ Raising Exceptions

Now that you know how to handle exceptions in Python, I would like to share with you this helpful tip: you can also choose when to raise exceptions in your code.

This can be helpful for certain scenarios. Let’s see how you can do this:

image-20

This line will raise a ValueError with a custom message.

Here we have an example (see below) of a function that prints the value of the items of a list or tuple, or the characters in a string. But you decided that you want the list, tuple, or string to be of length 5. You start the function with an if statement that checks if the length of the argument data is 5. If it isn’t, a ValueError exception is raised:

def print_five_items(data):
    
    if len(data) != 5:
        raise ValueError("The argument must have five elements")
    
    for item in data:
        print(item)

print_five_items([5, 2])

The output would be:

Traceback (most recent call last):
  File "<path>", line 122, in <module>
    print_five_items([5, 2])
  File "<path>", line 117, in print_five_items
    raise ValueError("The argument must have five elements")
ValueError: The argument must have five elements

Notice how the last line displays the descriptive message:

ValueError: The argument must have five elements

You can then choose how to handle the exception with a try … except statement. You could add an else clause and/or a finally clause. You can customize it to fit your needs.

🔹 Helpful Resources

  • Exceptions
  • Handling Exceptions
  • Defining Clean-up Actions

I hope you enjoyed reading my article and found it helpful. Now you have the necessary tools to handle exceptions in Python and you can use them to your advantage when you write Python code. ? Check out my online courses. You can follow me on Twitter.

⭐️ You may enjoy my other freeCodeCamp /news articles:

  • The @property Decorator in Python: Its Use Cases, Advantages, and Syntax
  • Data Structures 101: Graphs — A Visual Introduction for Beginners
  • Data Structures 101: Arrays — A Visual Introduction for Beginners


Learn to code for free. freeCodeCamp’s open source curriculum has helped more than 40,000 people get jobs as developers. Get started

Обработка ошибок увеличивает отказоустойчивость кода, защищая его от потенциальных сбоев, которые могут привести к преждевременному завершению работы.

Синтаксис обработки исключений

Прежде чем переходить к обсуждению того, почему обработка исключений так важна, и рассматривать встроенные в Python исключения, важно понять, что есть тонкая грань между понятиями ошибки и исключения.

Ошибку нельзя обработать, а исключения Python обрабатываются при выполнении программы. Ошибка может быть синтаксической, но существует и много видов исключений, которые возникают при выполнении и не останавливают программу сразу же. Ошибка может указывать на критические проблемы, которые приложение и не должно перехватывать, а исключения — состояния, которые стоит попробовать перехватить. Ошибки — вид непроверяемых и невозвратимых ошибок, таких как OutOfMemoryError, которые не стоит пытаться обработать.

Обработка исключений делает код более отказоустойчивым и помогает предотвращать потенциальные проблемы, которые могут привести к преждевременной остановке выполнения. Представьте код, который готов к развертыванию, но все равно прекращает работу из-за исключения. Клиент такой не примет, поэтому стоит заранее обработать конкретные исключения, чтобы избежать неразберихи.

Ошибки могут быть разных видов:

  • Синтаксические
  • Недостаточно памяти
  • Ошибки рекурсии
  • Исключения

Разберем их по очереди.

Синтаксические ошибки (SyntaxError)

Синтаксические ошибки часто называют ошибками разбора. Они возникают, когда интерпретатор обнаруживает синтаксическую проблему в коде.

Рассмотрим на примере.

a = 8
b = 10
c = a b
File "", line 3
 c = a b
       ^
SyntaxError: invalid syntax

Стрелка вверху указывает на место, где интерпретатор получил ошибку при попытке исполнения. Знак перед стрелкой указывает на причину проблемы. Для устранения таких фундаментальных ошибок Python будет делать большую часть работы за программиста, выводя название файла и номер строки, где была обнаружена ошибка.

Недостаточно памяти (OutofMemoryError)

Ошибки памяти чаще всего связаны с оперативной памятью компьютера и относятся к структуре данных под названием “Куча” (heap). Если есть крупные объекты (или) ссылки на подобные, то с большой долей вероятности возникнет ошибка OutofMemory. Она может появиться по нескольким причинам:

  • Использование 32-битной архитектуры Python (максимальный объем выделенной памяти невысокий, между 2 и 4 ГБ);
  • Загрузка файла большого размера;
  • Запуск модели машинного обучения/глубокого обучения и много другое;

Обработать ошибку памяти можно с помощью обработки исключений — резервного исключения. Оно используется, когда у интерпретатора заканчивается память и он должен немедленно остановить текущее исполнение. В редких случаях Python вызывает OutofMemoryError, позволяя скрипту каким-то образом перехватить самого себя, остановить ошибку памяти и восстановиться.

Но поскольку Python использует архитектуру управления памятью из языка C (функция malloc()), не факт, что все процессы восстановятся — в некоторых случаях MemoryError приведет к остановке. Следовательно, обрабатывать такие ошибки не рекомендуется, и это не считается хорошей практикой.

Ошибка рекурсии (RecursionError)

Эта ошибка связана со стеком и происходит при вызове функций. Как и предполагает название, ошибка рекурсии возникает, когда внутри друг друга исполняется много методов (один из которых — с бесконечной рекурсией), но это ограничено размером стека.

Все локальные переменные и методы размещаются в стеке. Для каждого вызова метода создается стековый кадр (фрейм), внутрь которого помещаются данные переменной или результат вызова метода. Когда исполнение метода завершается, его элемент удаляется.

Чтобы воспроизвести эту ошибку, определим функцию recursion, которая будет рекурсивной — вызывать сама себя в бесконечном цикле. В результате появится ошибка StackOverflow или ошибка рекурсии, потому что стековый кадр будет заполняться данными метода из каждого вызова, но они не будут освобождаться.

def recursion():
    return recursion()

recursion()
---------------------------------------------------------------------------

RecursionError                            Traceback (most recent call last)

 in 
----> 1 recursion()


 in recursion()
      1 def recursion():
----> 2     return recursion()


... last 1 frames repeated, from the frame below ...


 in recursion()
      1 def recursion():
----> 2     return recursion()


RecursionError: maximum recursion depth exceeded

Ошибка отступа (IndentationError)

Эта ошибка похожа по духу на синтаксическую и является ее подвидом. Тем не менее она возникает только в случае проблем с отступами.

Пример:

for i in range(10):
    print('Привет Мир!')
  File "", line 2
    print('Привет Мир!')
        ^
IndentationError: expected an indented block

Исключения

Даже если синтаксис в инструкции или само выражение верны, они все равно могут вызывать ошибки при исполнении. Исключения Python — это ошибки, обнаруживаемые при исполнении, но не являющиеся критическими. Скоро вы узнаете, как справляться с ними в программах Python. Объект исключения создается при вызове исключения Python. Если скрипт не обрабатывает исключение явно, программа будет остановлена принудительно.

Программы обычно не обрабатывают исключения, что приводит к подобным сообщениям об ошибке:

Ошибка типа (TypeError)

a = 2
b = 'PythonRu'
a + b
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

 in 
      1 a = 2
      2 b = 'PythonRu'
----> 3 a + b


TypeError: unsupported operand type(s) for +: 'int' and 'str'

Ошибка деления на ноль (ZeroDivisionError)

10 / 0
---------------------------------------------------------------------------

ZeroDivisionError                         Traceback (most recent call last)

 in 
----> 1 10 / 0


ZeroDivisionError: division by zero

Есть разные типы исключений в Python и их тип выводится в сообщении: вверху примеры TypeError и ZeroDivisionError. Обе строки в сообщениях об ошибке представляют собой имена встроенных исключений Python.

Оставшаяся часть строки с ошибкой предлагает подробности о причине ошибки на основе ее типа.

Теперь рассмотрим встроенные исключения Python.

Встроенные исключения

BaseException
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception
      +-- StopIteration
      +-- StopAsyncIteration
      +-- ArithmeticError
      |    +-- FloatingPointError
      |    +-- OverflowError
      |    +-- ZeroDivisionError
      +-- AssertionError
      +-- AttributeError
      +-- BufferError
      +-- EOFError
      +-- ImportError
      |    +-- ModuleNotFoundError
      +-- LookupError
      |    +-- IndexError
      |    +-- KeyError
      +-- MemoryError
      +-- NameError
      |    +-- UnboundLocalError
      +-- OSError
      |    +-- BlockingIOError
      |    +-- ChildProcessError
      |    +-- ConnectionError
      |    |    +-- BrokenPipeError
      |    |    +-- ConnectionAbortedError
      |    |    +-- ConnectionRefusedError
      |    |    +-- ConnectionResetError
      |    +-- FileExistsError
      |    +-- FileNotFoundError
      |    +-- InterruptedError
      |    +-- IsADirectoryError
      |    +-- NotADirectoryError
      |    +-- PermissionError
      |    +-- ProcessLookupError
      |    +-- TimeoutError
      +-- ReferenceError
      +-- RuntimeError
      |    +-- NotImplementedError
      |    +-- RecursionError
      +-- SyntaxError
      |    +-- IndentationError
      |         +-- TabError
      +-- SystemError
      +-- TypeError
      +-- ValueError
      |    +-- UnicodeError
      |         +-- UnicodeDecodeError
      |         +-- UnicodeEncodeError
      |         +-- UnicodeTranslateError
      +-- Warning
           +-- DeprecationWarning
           +-- PendingDeprecationWarning
           +-- RuntimeWarning
           +-- SyntaxWarning
           +-- UserWarning
           +-- FutureWarning
           +-- ImportWarning
           +-- UnicodeWarning
           +-- BytesWarning
           +-- ResourceWarning

Прежде чем переходить к разбору встроенных исключений быстро вспомним 4 основных компонента обработки исключения, как показано на этой схеме.

  • Try: он запускает блок кода, в котором ожидается ошибка.
  • Except: здесь определяется тип исключения, который ожидается в блоке try (встроенный или созданный).
  • Else: если исключений нет, тогда исполняется этот блок (его можно воспринимать как средство для запуска кода в том случае, если ожидается, что часть кода приведет к исключению).
  • Finally: вне зависимости от того, будет ли исключение или нет, этот блок кода исполняется всегда.

В следующем разделе руководства больше узнаете об общих типах исключений и научитесь обрабатывать их с помощью инструмента обработки исключения.

Ошибка прерывания с клавиатуры (KeyboardInterrupt)

Исключение KeyboardInterrupt вызывается при попытке остановить программу с помощью сочетания Ctrl + C или Ctrl + Z в командной строке или ядре в Jupyter Notebook. Иногда это происходит неумышленно и подобная обработка поможет избежать подобных ситуаций.

В примере ниже если запустить ячейку и прервать ядро, программа вызовет исключение KeyboardInterrupt. Теперь обработаем исключение KeyboardInterrupt.

try:
    inp = input()
    print('Нажмите Ctrl+C и прервите Kernel:')
except KeyboardInterrupt:
    print('Исключение KeyboardInterrupt')
else:
    print('Исключений не произошло')

Исключение KeyboardInterrupt

Стандартные ошибки (StandardError)

Рассмотрим некоторые базовые ошибки в программировании.

Арифметические ошибки (ArithmeticError)

  • Ошибка деления на ноль (Zero Division);
  • Ошибка переполнения (OverFlow);
  • Ошибка плавающей точки (Floating Point);

Все перечисленные выше исключения относятся к классу Arithmetic и вызываются при ошибках в арифметических операциях.

Деление на ноль (ZeroDivisionError)

Когда делитель (второй аргумент операции деления) или знаменатель равны нулю, тогда результатом будет ошибка деления на ноль.

try:  
    a = 100 / 0
    print(a)
except ZeroDivisionError:  
    print("Исключение ZeroDivisionError." )
else:  
    print("Успех, нет ошибок!")
Исключение ZeroDivisionError.

Переполнение (OverflowError)

Ошибка переполнение вызывается, когда результат операции выходил за пределы диапазона. Она характерна для целых чисел вне диапазона.

try:  
    import math
    print(math.exp(1000))
except OverflowError:  
    print("Исключение OverFlow.")
else:  
    print("Успех, нет ошибок!")
Исключение OverFlow.

Ошибка утверждения (AssertionError)

Когда инструкция утверждения не верна, вызывается ошибка утверждения.

Рассмотрим пример. Предположим, есть две переменные: a и b. Их нужно сравнить. Чтобы проверить, равны ли они, необходимо использовать ключевое слово assert, что приведет к вызову исключения Assertion в том случае, если выражение будет ложным.

try:  
    a = 100
    b = "PythonRu"
    assert a == b
except AssertionError:  
    print("Исключение AssertionError.")
else:  
    print("Успех, нет ошибок!")

Исключение AssertionError.

Ошибка атрибута (AttributeError)

При попытке сослаться на несуществующий атрибут программа вернет ошибку атрибута. В следующем примере можно увидеть, что у объекта класса Attributes нет атрибута с именем attribute.

class Attributes(obj):
    a = 2
    print(a)

try:
    obj = Attributes()
    print(obj.attribute)
except AttributeError:
    print("Исключение AttributeError.")

2
Исключение AttributeError.

Ошибка импорта (ModuleNotFoundError)

Ошибка импорта вызывается при попытке импортировать несуществующий (или неспособный загрузиться) модуль в стандартном пути или даже при допущенной ошибке в имени.

import nibabel
---------------------------------------------------------------------------

ModuleNotFoundError                       Traceback (most recent call last)

 in 
----> 1 import nibabel


ModuleNotFoundError: No module named 'nibabel'

Ошибка поиска (LookupError)

LockupError выступает базовым классом для исключений, которые происходят, когда key или index используются для связывания или последовательность списка/словаря неверна или не существует.

Здесь есть два вида исключений:

  • Ошибка индекса (IndexError);
  • Ошибка ключа (KeyError);

Ошибка ключа

Если ключа, к которому нужно получить доступ, не оказывается в словаре, вызывается исключение KeyError.

try:  
    a = {1:'a', 2:'b', 3:'c'}  
    print(a[4])  
except LookupError:  
    print("Исключение KeyError.")
else:  
    print("Успех, нет ошибок!")

Исключение KeyError.

Ошибка индекса

Если пытаться получить доступ к индексу (последовательности) списка, которого не существует в этом списке или находится вне его диапазона, будет вызвана ошибка индекса (IndexError: list index out of range python).

try:
    a = ['a', 'b', 'c']  
    print(a[4])  
except LookupError:  
    print("Исключение IndexError, индекс списка вне диапазона.")
else:  
    print("Успех, нет ошибок!")
Исключение IndexError, индекс списка вне диапазона.

Ошибка памяти (MemoryError)

Как уже упоминалось, ошибка памяти вызывается, когда операции не хватает памяти для выполнения.

Ошибка имени (NameError)

Ошибка имени возникает, когда локальное или глобальное имя не находится.

В следующем примере переменная ans не определена. Результатом будет ошибка NameError.

try:
    print(ans)
except NameError:  
    print("NameError: переменная 'ans' не определена")
else:  
    print("Успех, нет ошибок!")
NameError: переменная 'ans' не определена

Ошибка выполнения (Runtime Error)

Ошибка «NotImplementedError»
Ошибка выполнения служит базовым классом для ошибки NotImplemented. Абстрактные методы определенного пользователем класса вызывают это исключение, когда производные методы перезаписывают оригинальный.

class BaseClass(object):
    """Опередляем класс"""
    def __init__(self):
        super(BaseClass, self).__init__()
    def do_something(self):
	# функция ничего не делает
        raise NotImplementedError(self.__class__.__name__ + '.do_something')

class SubClass(BaseClass):
    """Реализует функцию"""
    def do_something(self):
        # действительно что-то делает
        print(self.__class__.__name__ + ' что-то делает!')

SubClass().do_something()
BaseClass().do_something()

SubClass что-то делает!



---------------------------------------------------------------------------

NotImplementedError                       Traceback (most recent call last)

 in 
     14
     15 SubClass().do_something()
---> 16 BaseClass().do_something()


 in do_something(self)
      5     def do_something(self):
      6         # функция ничего не делает
----> 7         raise NotImplementedError(self.__class__.__name__ + '.do_something')
      8
      9 class SubClass(BaseClass):


NotImplementedError: BaseClass.do_something

Ошибка типа (TypeError)

Ошибка типа вызывается при попытке объединить два несовместимых операнда или объекта.

В примере ниже целое число пытаются добавить к строке, что приводит к ошибке типа.

try:
    a = 5
    b = "PythonRu"
    c = a + b
except TypeError:
    print('Исключение TypeError')
else:
    print('Успех, нет ошибок!')

Исключение TypeError

Ошибка значения (ValueError)

Ошибка значения вызывается, когда встроенная операция или функция получают аргумент с корректным типом, но недопустимым значением.

В этом примере встроенная операция float получат аргумент, представляющий собой последовательность символов (значение), что является недопустимым значением для типа: число с плавающей точкой.

try:
    print(float('PythonRu'))
except ValueError:
    print('ValueError: не удалось преобразовать строку в float: 'PythonRu'')
else:
    print('Успех, нет ошибок!')
ValueError: не удалось преобразовать строку в float: 'PythonRu'

Пользовательские исключения в Python

В Python есть много встроенных исключений для использования в программе. Но иногда нужно создавать собственные со своими сообщениями для конкретных целей.

Это можно сделать, создав новый класс, который будет наследовать из класса Exception в Python.

class UnAcceptedValueError(Exception):   
    def __init__(self, data):    
        self.data = data
    def __str__(self):
        return repr(self.data)

Total_Marks = int(input("Введите общее количество баллов: "))
try:
    Num_of_Sections = int(input("Введите количество разделов: "))
    if(Num_of_Sections < 1):
        raise UnAcceptedValueError("Количество секций не может быть меньше 1")
except UnAcceptedValueError as e:
    print("Полученная ошибка:", e.data)

Введите общее количество баллов: 10
Введите количество разделов: 0
Полученная ошибка: Количество секций не может быть меньше 1

В предыдущем примере если ввести что-либо меньше 1, будет вызвано исключение. Многие стандартные исключения имеют собственные исключения, которые вызываются при возникновении проблем в работе их функций.

Недостатки обработки исключений в Python

У использования исключений есть свои побочные эффекты, как, например, то, что программы с блоками try-except работают медленнее, а количество кода возрастает.

Дальше пример, где модуль Python timeit используется для проверки времени исполнения 2 разных инструкций. В stmt1 для обработки ZeroDivisionError используется try-except, а в stmt2if. Затем они выполняются 10000 раз с переменной a=0. Суть в том, чтобы показать разницу во времени исполнения инструкций. Так, stmt1 с обработкой исключений занимает больше времени чем stmt2, который просто проверяет значение и не делает ничего, если условие не выполнено.

Поэтому стоит ограничить использование обработки исключений в Python и применять его в редких случаях. Например, когда вы не уверены, что будет вводом: целое или число с плавающей точкой, или не уверены, существует ли файл, который нужно открыть.

import timeit
setup="a=0"
stmt1 = '''
try:
    b=10/a
except ZeroDivisionError:
    pass'''

stmt2 = '''
if a!=0:
    b=10/a'''

print("time=",timeit.timeit(stmt1,setup,number=10000))
print("time=",timeit.timeit(stmt2,setup,number=10000))

time= 0.003897680000136461
time= 0.0002797570000439009

Выводы!

Как вы могли увидеть, обработка исключений помогает прервать типичный поток программы с помощью специального механизма, который делает код более отказоустойчивым.

Обработка исключений — один из основных факторов, который делает код готовым к развертыванию. Это простая концепция, построенная всего на 4 блоках: try выискивает исключения, а except их обрабатывает.

Очень важно поупражняться в их использовании, чтобы сделать свой код более отказоустойчивым.

Понравилась статья? Поделить с друзьями:
  • Проверка на ошибки эссе
  • Проверка на ошибки украинского языка
  • Проверка на ошибки пунктуальные
  • Проверка на ошибки индизайн
  • Проверка на ошибки англ язык