Python requests http error codes

A simple, yet elegant, HTTP library. Contribute to psf/requests development by creating an account on GitHub.
.. module:: requests.models

Eager to get started? This page gives a good introduction in how to get started
with Requests.

First, make sure that:

  • Requests is :ref:`installed <install>`
  • Requests is :ref:`up-to-date <updates>`

Let’s get started with some simple examples.

Make a Request

Making a request with Requests is very simple.

Begin by importing the Requests module:

>>> import requests

Now, let’s try to get a webpage. For this example, let’s get GitHub’s public
timeline:

>>> r = requests.get('https://api.github.com/events')

Now, we have a :class:`Response <requests.Response>` object called r. We can
get all the information we need from this object.

Requests’ simple API means that all forms of HTTP request are as obvious. For
example, this is how you make an HTTP POST request:

>>> r = requests.post('https://httpbin.org/post', data={'key': 'value'})

Nice, right? What about the other HTTP request types: PUT, DELETE, HEAD and
OPTIONS? These are all just as simple:

>>> r = requests.put('https://httpbin.org/put', data={'key': 'value'})
>>> r = requests.delete('https://httpbin.org/delete')
>>> r = requests.head('https://httpbin.org/get')
>>> r = requests.options('https://httpbin.org/get')

That’s all well and good, but it’s also only the start of what Requests can
do.

Passing Parameters In URLs

You often want to send some sort of data in the URL’s query string. If
you were constructing the URL by hand, this data would be given as key/value
pairs in the URL after a question mark, e.g. httpbin.org/get?key=val.
Requests allows you to provide these arguments as a dictionary of strings,
using the params keyword argument. As an example, if you wanted to pass
key1=value1 and key2=value2 to httpbin.org/get, you would use the
following code:

>>> payload = {'key1': 'value1', 'key2': 'value2'}
>>> r = requests.get('https://httpbin.org/get', params=payload)

You can see that the URL has been correctly encoded by printing the URL:

>>> print(r.url)
https://httpbin.org/get?key2=value2&key1=value1

Note that any dictionary key whose value is None will not be added to the
URL’s query string.

You can also pass a list of items as a value:

>>> payload = {'key1': 'value1', 'key2': ['value2', 'value3']}

>>> r = requests.get('https://httpbin.org/get', params=payload)
>>> print(r.url)
https://httpbin.org/get?key1=value1&key2=value2&key2=value3

Response Content

We can read the content of the server’s response. Consider the GitHub timeline
again:

>>> import requests

>>> r = requests.get('https://api.github.com/events')
>>> r.text
'[{"repository":{"open_issues":0,"url":"https://github.com/...

Requests will automatically decode content from the server. Most unicode
charsets are seamlessly decoded.

When you make a request, Requests makes educated guesses about the encoding of
the response based on the HTTP headers. The text encoding guessed by Requests
is used when you access r.text. You can find out what encoding Requests is
using, and change it, using the r.encoding property:

>>> r.encoding
'utf-8'
>>> r.encoding = 'ISO-8859-1'

If you change the encoding, Requests will use the new value of r.encoding
whenever you call r.text. You might want to do this in any situation where
you can apply special logic to work out what the encoding of the content will
be. For example, HTML and XML have the ability to specify their encoding in
their body. In situations like this, you should use r.content to find the
encoding, and then set r.encoding. This will let you use r.text with
the correct encoding.

Requests will also use custom encodings in the event that you need them. If
you have created your own encoding and registered it with the codecs
module, you can simply use the codec name as the value of r.encoding and
Requests will handle the decoding for you.

Binary Response Content

You can also access the response body as bytes, for non-text requests:

>>> r.content
b'[{"repository":{"open_issues":0,"url":"https://github.com/...

The gzip and deflate transfer-encodings are automatically decoded for you.

The br transfer-encoding is automatically decoded for you if a Brotli library
like brotli or brotlicffi is installed.

For example, to create an image from binary data returned by a request, you can
use the following code:

>>> from PIL import Image
>>> from io import BytesIO

>>> i = Image.open(BytesIO(r.content))

JSON Response Content

There’s also a builtin JSON decoder, in case you’re dealing with JSON data:

>>> import requests

>>> r = requests.get('https://api.github.com/events')
>>> r.json()
[{'repository': {'open_issues': 0, 'url': 'https://github.com/...

In case the JSON decoding fails, r.json() raises an exception. For example, if
the response gets a 204 (No Content), or if the response contains invalid JSON,
attempting r.json() raises requests.exceptions.JSONDecodeError. This wrapper exception
provides interoperability for multiple exceptions that may be thrown by different
python versions and json serialization libraries.

It should be noted that the success of the call to r.json() does not
indicate the success of the response. Some servers may return a JSON object in a
failed response (e.g. error details with HTTP 500). Such JSON will be decoded
and returned. To check that a request is successful, use
r.raise_for_status() or check r.status_code is what you expect.

Raw Response Content

In the rare case that you’d like to get the raw socket response from the
server, you can access r.raw. If you want to do this, make sure you set
stream=True in your initial request. Once you do, you can do this:

>>> r = requests.get('https://api.github.com/events', stream=True)

>>> r.raw
<urllib3.response.HTTPResponse object at 0x101194810>

>>> r.raw.read(10)
'x1fx8bx08x00x00x00x00x00x00x03'

In general, however, you should use a pattern like this to save what is being
streamed to a file:

with open(filename, 'wb') as fd:
    for chunk in r.iter_content(chunk_size=128):
        fd.write(chunk)

Using Response.iter_content will handle a lot of what you would otherwise
have to handle when using Response.raw directly. When streaming a
download, the above is the preferred and recommended way to retrieve the
content. Note that chunk_size can be freely adjusted to a number that
may better fit your use cases.

Note

An important note about using Response.iter_content versus Response.raw.
Response.iter_content will automatically decode the gzip and deflate
transfer-encodings. Response.raw is a raw stream of bytes — it does not
transform the response content. If you really need access to the bytes as they
were returned, use Response.raw.

Custom Headers

If you’d like to add HTTP headers to a request, simply pass in a dict to the
headers parameter.

For example, we didn’t specify our user-agent in the previous example:

>>> url = 'https://api.github.com/some/endpoint'
>>> headers = {'user-agent': 'my-app/0.0.1'}

>>> r = requests.get(url, headers=headers)

Note: Custom headers are given less precedence than more specific sources of information. For instance:

  • Authorization headers set with headers= will be overridden if credentials
    are specified in .netrc, which in turn will be overridden by the auth=
    parameter. Requests will search for the netrc file at ~/.netrc, ~/_netrc,
    or at the path specified by the NETRC environment variable.
  • Authorization headers will be removed if you get redirected off-host.
  • Proxy-Authorization headers will be overridden by proxy credentials provided in the URL.
  • Content-Length headers will be overridden when we can determine the length of the content.

Furthermore, Requests does not change its behavior at all based on which custom headers are specified. The headers are simply passed on into the final request.

Note: All header values must be a string, bytestring, or unicode. While permitted, it’s advised to avoid passing unicode header values.

More complicated POST requests

Typically, you want to send some form-encoded data — much like an HTML form.
To do this, simply pass a dictionary to the data argument. Your
dictionary of data will automatically be form-encoded when the request is made:

>>> payload = {'key1': 'value1', 'key2': 'value2'}

>>> r = requests.post("https://httpbin.org/post", data=payload)
>>> print(r.text)
{
  ...
  "form": {
    "key2": "value2",
    "key1": "value1"
  },
  ...
}

The data argument can also have multiple values for each key. This can be
done by making data either a list of tuples or a dictionary with lists
as values. This is particularly useful when the form has multiple elements that
use the same key:

>>> payload_tuples = [('key1', 'value1'), ('key1', 'value2')]
>>> r1 = requests.post('https://httpbin.org/post', data=payload_tuples)
>>> payload_dict = {'key1': ['value1', 'value2']}
>>> r2 = requests.post('https://httpbin.org/post', data=payload_dict)
>>> print(r1.text)
{
  ...
  "form": {
    "key1": [
      "value1",
      "value2"
    ]
  },
  ...
}
>>> r1.text == r2.text
True

There are times that you may want to send data that is not form-encoded. If
you pass in a string instead of a dict, that data will be posted directly.

For example, the GitHub API v3 accepts JSON-Encoded POST/PATCH data:

>>> import json

>>> url = 'https://api.github.com/some/endpoint'
>>> payload = {'some': 'data'}

>>> r = requests.post(url, data=json.dumps(payload))

Please note that the above code will NOT add the Content-Type header
(so in particular it will NOT set it to application/json).

If you need that header set and you don’t want to encode the dict yourself,
you can also pass it directly using the json parameter (added in version 2.4.2)
and it will be encoded automatically:

>>> url = 'https://api.github.com/some/endpoint'
>>> payload = {'some': 'data'}
>>> r = requests.post(url, json=payload)

Note, the json parameter is ignored if either data or files is passed.

POST a Multipart-Encoded File

Requests makes it simple to upload Multipart-encoded files:

>>> url = 'https://httpbin.org/post'
>>> files = {'file': open('report.xls', 'rb')}

>>> r = requests.post(url, files=files)
>>> r.text
{
  ...
  "files": {
    "file": "<censored...binary...data>"
  },
  ...
}

You can set the filename, content_type and headers explicitly:

>>> url = 'https://httpbin.org/post'
>>> files = {'file': ('report.xls', open('report.xls', 'rb'), 'application/vnd.ms-excel', {'Expires': '0'})}

>>> r = requests.post(url, files=files)
>>> r.text
{
  ...
  "files": {
    "file": "<censored...binary...data>"
  },
  ...
}

If you want, you can send strings to be received as files:

>>> url = 'https://httpbin.org/post'
>>> files = {'file': ('report.csv', 'some,data,to,sendnanother,row,to,sendn')}

>>> r = requests.post(url, files=files)
>>> r.text
{
  ...
  "files": {
    "file": "some,data,to,send\nanother,row,to,send\n"
  },
  ...
}

In the event you are posting a very large file as a multipart/form-data
request, you may want to stream the request. By default, requests does not
support this, but there is a separate package which does —
requests-toolbelt. You should read the toolbelt’s documentation for more details about how to use it.

For sending multiple files in one request refer to the :ref:`advanced <advanced>`
section.

Warning

It is strongly recommended that you open files in :ref:`binary
mode <tut-files>`
. This is because Requests may attempt to provide
the Content-Length header for you, and if it does this value
will be set to the number of bytes in the file. Errors may occur
if you open the file in text mode.

Response Status Codes

We can check the response status code:

>>> r = requests.get('https://httpbin.org/get')
>>> r.status_code
200

Requests also comes with a built-in status code lookup object for easy
reference:

>>> r.status_code == requests.codes.ok
True

If we made a bad request (a 4XX client error or 5XX server error response), we
can raise it with
:meth:`Response.raise_for_status() <requests.Response.raise_for_status>`:

>>> bad_r = requests.get('https://httpbin.org/status/404')
>>> bad_r.status_code
404

>>> bad_r.raise_for_status()
Traceback (most recent call last):
  File "requests/models.py", line 832, in raise_for_status
    raise http_error
requests.exceptions.HTTPError: 404 Client Error

But, since our status_code for r was 200, when we call
raise_for_status() we get:

>>> r.raise_for_status()
None

All is well.

Response Headers

We can view the server’s response headers using a Python dictionary:

>>> r.headers
{
    'content-encoding': 'gzip',
    'transfer-encoding': 'chunked',
    'connection': 'close',
    'server': 'nginx/1.0.4',
    'x-runtime': '148ms',
    'etag': '"e1ca502697e5c9317743dc078f67693f"',
    'content-type': 'application/json'
}

The dictionary is special, though: it’s made just for HTTP headers. According to
RFC 7230, HTTP Header names
are case-insensitive.

So, we can access the headers using any capitalization we want:

>>> r.headers['Content-Type']
'application/json'

>>> r.headers.get('content-type')
'application/json'

It is also special in that the server could have sent the same header multiple
times with different values, but requests combines them so they can be
represented in the dictionary within a single mapping, as per
RFC 7230:

A recipient MAY combine multiple header fields with the same field name
into one «field-name: field-value» pair, without changing the semantics
of the message, by appending each subsequent field value to the combined
field value in order, separated by a comma.

Cookies

If a response contains some Cookies, you can quickly access them:

>>> url = 'http://example.com/some/cookie/setting/url'
>>> r = requests.get(url)

>>> r.cookies['example_cookie_name']
'example_cookie_value'

To send your own cookies to the server, you can use the cookies
parameter:

>>> url = 'https://httpbin.org/cookies'
>>> cookies = dict(cookies_are='working')

>>> r = requests.get(url, cookies=cookies)
>>> r.text
'{"cookies": {"cookies_are": "working"}}'

Cookies are returned in a :class:`~requests.cookies.RequestsCookieJar`,
which acts like a dict but also offers a more complete interface,
suitable for use over multiple domains or paths. Cookie jars can
also be passed in to requests:

>>> jar = requests.cookies.RequestsCookieJar()
>>> jar.set('tasty_cookie', 'yum', domain='httpbin.org', path='/cookies')
>>> jar.set('gross_cookie', 'blech', domain='httpbin.org', path='/elsewhere')
>>> url = 'https://httpbin.org/cookies'
>>> r = requests.get(url, cookies=jar)
>>> r.text
'{"cookies": {"tasty_cookie": "yum"}}'

Redirection and History

By default Requests will perform location redirection for all verbs except
HEAD.

We can use the history property of the Response object to track redirection.

The :attr:`Response.history <requests.Response.history>` list contains the
:class:`Response <requests.Response>` objects that were created in order to
complete the request. The list is sorted from the oldest to the most recent
response.

For example, GitHub redirects all HTTP requests to HTTPS:

>>> r = requests.get('http://github.com/')

>>> r.url
'https://github.com/'

>>> r.status_code
200

>>> r.history
[<Response [301]>]

If you’re using GET, OPTIONS, POST, PUT, PATCH or DELETE, you can disable
redirection handling with the allow_redirects parameter:

>>> r = requests.get('http://github.com/', allow_redirects=False)

>>> r.status_code
301

>>> r.history
[]

If you’re using HEAD, you can enable redirection as well:

>>> r = requests.head('http://github.com/', allow_redirects=True)

>>> r.url
'https://github.com/'

>>> r.history
[<Response [301]>]

Timeouts

You can tell Requests to stop waiting for a response after a given number of
seconds with the timeout parameter. Nearly all production code should use
this parameter in nearly all requests. Failure to do so can cause your program
to hang indefinitely:

>>> requests.get('https://github.com/', timeout=0.001)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
requests.exceptions.Timeout: HTTPConnectionPool(host='github.com', port=80): Request timed out. (timeout=0.001)

Note

timeout is not a time limit on the entire response download;
rather, an exception is raised if the server has not issued a
response for timeout seconds (more precisely, if no bytes have been
received on the underlying socket for timeout seconds). If no timeout is specified explicitly, requests do
not time out.

Errors and Exceptions

In the event of a network problem (e.g. DNS failure, refused connection, etc),
Requests will raise a :exc:`~requests.exceptions.ConnectionError` exception.

:meth:`Response.raise_for_status() <requests.Response.raise_for_status>` will
raise an :exc:`~requests.exceptions.HTTPError` if the HTTP request
returned an unsuccessful status code.

If a request times out, a :exc:`~requests.exceptions.Timeout` exception is
raised.

If a request exceeds the configured number of maximum redirections, a
:exc:`~requests.exceptions.TooManyRedirects` exception is raised.

All exceptions that Requests explicitly raises inherit from
:exc:`requests.exceptions.RequestException`.


Ready for more? Check out the :ref:`advanced <advanced>` section.

If you’re on the job market, consider taking this programming quiz. A substantial donation will be made to this project, if you find a job through this platform.

Watch Now This tutorial has a related video course created by the Real Python team. Watch it together with the written tutorial to deepen your understanding: Making HTTP Requests With Python

The requests library is the de facto standard for making HTTP requests in Python. It abstracts the complexities of making requests behind a beautiful, simple API so that you can focus on interacting with services and consuming data in your application.

Throughout this article, you’ll see some of the most useful features that requests has to offer as well as how to customize and optimize those features for different situations you may come across. You’ll also learn how to use requests in an efficient way as well as how to prevent requests to external services from slowing down your application.

In this tutorial, you’ll learn how to:

  • Make requests using the most common HTTP methods
  • Customize your requests’ headers and data, using the query string and message body
  • Inspect data from your requests and responses
  • Make authenticated requests
  • Configure your requests to help prevent your application from backing up or slowing down

Though I’ve tried to include as much information as you need to understand the features and examples included in this article, I do assume a very basic general knowledge of HTTP. That said, you still may be able to follow along fine anyway.

Now that that is out of the way, let’s dive in and see how you can use requests in your application!

Getting Started With requests

Let’s begin by installing the requests library. To do so, run the following command:

If you prefer to use Pipenv for managing Python packages, you can run the following:

$ pipenv install requests

Once requests is installed, you can use it in your application. Importing requests looks like this:

Now that you’re all set up, it’s time to begin your journey through requests. Your first goal will be learning how to make a GET request.

The GET Request

HTTP methods such as GET and POST, determine which action you’re trying to perform when making an HTTP request. Besides GET and POST, there are several other common methods that you’ll use later in this tutorial.

One of the most common HTTP methods is GET. The GET method indicates that you’re trying to get or retrieve data from a specified resource. To make a GET request, invoke requests.get().

To test this out, you can make a GET request to GitHub’s Root REST API by calling get() with the following URL:

>>>

>>> requests.get('https://api.github.com')
<Response [200]>

Congratulations! You’ve made your first request. Let’s dive a little deeper into the response of that request.

The Response

A Response is a powerful object for inspecting the results of the request. Let’s make that same request again, but this time store the return value in a variable so that you can get a closer look at its attributes and behaviors:

>>>

>>> response = requests.get('https://api.github.com')

In this example, you’ve captured the return value of get(), which is an instance of Response, and stored it in a variable called response. You can now use response to see a lot of information about the results of your GET request.

Status Codes

The first bit of information that you can gather from Response is the status code. A status code informs you of the status of the request.

For example, a 200 OK status means that your request was successful, whereas a 404 NOT FOUND status means that the resource you were looking for was not found. There are many other possible status codes as well to give you specific insights into what happened with your request.

By accessing .status_code, you can see the status code that the server returned:

>>>

>>> response.status_code
200

.status_code returned a 200, which means your request was successful and the server responded with the data you were requesting.

Sometimes, you might want to use this information to make decisions in your code:

if response.status_code == 200:
    print('Success!')
elif response.status_code == 404:
    print('Not Found.')

With this logic, if the server returns a 200 status code, your program will print Success!. If the result is a 404, your program will print Not Found.

requests goes one step further in simplifying this process for you. If you use a Response instance in a conditional expression, it will evaluate to True if the status code was between 200 and 400, and False otherwise.

Therefore, you can simplify the last example by rewriting the if statement:

if response:
    print('Success!')
else:
    print('An error has occurred.')

Keep in mind that this method is not verifying that the status code is equal to 200. The reason for this is that other status codes within the 200 to 400 range, such as 204 NO CONTENT and 304 NOT MODIFIED, are also considered successful in the sense that they provide some workable response.

For example, the 204 tells you that the response was successful, but there’s no content to return in the message body.

So, make sure you use this convenient shorthand only if you want to know if the request was generally successful and then, if necessary, handle the response appropriately based on the status code.

Let’s say you don’t want to check the response’s status code in an if statement. Instead, you want to raise an exception if the request was unsuccessful. You can do this using .raise_for_status():

import requests
from requests.exceptions import HTTPError

for url in ['https://api.github.com', 'https://api.github.com/invalid']:
    try:
        response = requests.get(url)

        # If the response was successful, no Exception will be raised
        response.raise_for_status()
    except HTTPError as http_err:
        print(f'HTTP error occurred: {http_err}')  # Python 3.6
    except Exception as err:
        print(f'Other error occurred: {err}')  # Python 3.6
    else:
        print('Success!')

If you invoke .raise_for_status(), an HTTPError will be raised for certain status codes. If the status code indicates a successful request, the program will proceed without that exception being raised.

Now, you know a lot about how to deal with the status code of the response you got back from the server. However, when you make a GET request, you rarely only care about the status code of the response. Usually, you want to see more. Next, you’ll see how to view the actual data that the server sent back in the body of the response.

Content

The response of a GET request often has some valuable information, known as a payload, in the message body. Using the attributes and methods of Response, you can view the payload in a variety of different formats.

To see the response’s content in bytes, you use .content:

>>>

>>> response = requests.get('https://api.github.com')
>>> response.content
b'{"current_user_url":"https://api.github.com/user","current_user_authorizations_html_url":"https://github.com/settings/connections/applications{/client_id}","authorizations_url":"https://api.github.com/authorizations","code_search_url":"https://api.github.com/search/code?q={query}{&page,per_page,sort,order}","commit_search_url":"https://api.github.com/search/commits?q={query}{&page,per_page,sort,order}","emails_url":"https://api.github.com/user/emails","emojis_url":"https://api.github.com/emojis","events_url":"https://api.github.com/events","feeds_url":"https://api.github.com/feeds","followers_url":"https://api.github.com/user/followers","following_url":"https://api.github.com/user/following{/target}","gists_url":"https://api.github.com/gists{/gist_id}","hub_url":"https://api.github.com/hub","issue_search_url":"https://api.github.com/search/issues?q={query}{&page,per_page,sort,order}","issues_url":"https://api.github.com/issues","keys_url":"https://api.github.com/user/keys","notifications_url":"https://api.github.com/notifications","organization_repositories_url":"https://api.github.com/orgs/{org}/repos{?type,page,per_page,sort}","organization_url":"https://api.github.com/orgs/{org}","public_gists_url":"https://api.github.com/gists/public","rate_limit_url":"https://api.github.com/rate_limit","repository_url":"https://api.github.com/repos/{owner}/{repo}","repository_search_url":"https://api.github.com/search/repositories?q={query}{&page,per_page,sort,order}","current_user_repositories_url":"https://api.github.com/user/repos{?type,page,per_page,sort}","starred_url":"https://api.github.com/user/starred{/owner}{/repo}","starred_gists_url":"https://api.github.com/gists/starred","team_url":"https://api.github.com/teams","user_url":"https://api.github.com/users/{user}","user_organizations_url":"https://api.github.com/user/orgs","user_repositories_url":"https://api.github.com/users/{user}/repos{?type,page,per_page,sort}","user_search_url":"https://api.github.com/search/users?q={query}{&page,per_page,sort,order}"}'

While .content gives you access to the raw bytes of the response payload, you will often want to convert them into a string using a character encoding such as UTF-8. response will do that for you when you access .text:

>>>

>>> response.text
'{"current_user_url":"https://api.github.com/user","current_user_authorizations_html_url":"https://github.com/settings/connections/applications{/client_id}","authorizations_url":"https://api.github.com/authorizations","code_search_url":"https://api.github.com/search/code?q={query}{&page,per_page,sort,order}","commit_search_url":"https://api.github.com/search/commits?q={query}{&page,per_page,sort,order}","emails_url":"https://api.github.com/user/emails","emojis_url":"https://api.github.com/emojis","events_url":"https://api.github.com/events","feeds_url":"https://api.github.com/feeds","followers_url":"https://api.github.com/user/followers","following_url":"https://api.github.com/user/following{/target}","gists_url":"https://api.github.com/gists{/gist_id}","hub_url":"https://api.github.com/hub","issue_search_url":"https://api.github.com/search/issues?q={query}{&page,per_page,sort,order}","issues_url":"https://api.github.com/issues","keys_url":"https://api.github.com/user/keys","notifications_url":"https://api.github.com/notifications","organization_repositories_url":"https://api.github.com/orgs/{org}/repos{?type,page,per_page,sort}","organization_url":"https://api.github.com/orgs/{org}","public_gists_url":"https://api.github.com/gists/public","rate_limit_url":"https://api.github.com/rate_limit","repository_url":"https://api.github.com/repos/{owner}/{repo}","repository_search_url":"https://api.github.com/search/repositories?q={query}{&page,per_page,sort,order}","current_user_repositories_url":"https://api.github.com/user/repos{?type,page,per_page,sort}","starred_url":"https://api.github.com/user/starred{/owner}{/repo}","starred_gists_url":"https://api.github.com/gists/starred","team_url":"https://api.github.com/teams","user_url":"https://api.github.com/users/{user}","user_organizations_url":"https://api.github.com/user/orgs","user_repositories_url":"https://api.github.com/users/{user}/repos{?type,page,per_page,sort}","user_search_url":"https://api.github.com/search/users?q={query}{&page,per_page,sort,order}"}'

Because the decoding of bytes to a str requires an encoding scheme, requests will try to guess the encoding based on the response’s headers if you do not specify one. You can provide an explicit encoding by setting .encoding before accessing .text:

>>>

>>> response.encoding = 'utf-8' # Optional: requests infers this internally
>>> response.text
'{"current_user_url":"https://api.github.com/user","current_user_authorizations_html_url":"https://github.com/settings/connections/applications{/client_id}","authorizations_url":"https://api.github.com/authorizations","code_search_url":"https://api.github.com/search/code?q={query}{&page,per_page,sort,order}","commit_search_url":"https://api.github.com/search/commits?q={query}{&page,per_page,sort,order}","emails_url":"https://api.github.com/user/emails","emojis_url":"https://api.github.com/emojis","events_url":"https://api.github.com/events","feeds_url":"https://api.github.com/feeds","followers_url":"https://api.github.com/user/followers","following_url":"https://api.github.com/user/following{/target}","gists_url":"https://api.github.com/gists{/gist_id}","hub_url":"https://api.github.com/hub","issue_search_url":"https://api.github.com/search/issues?q={query}{&page,per_page,sort,order}","issues_url":"https://api.github.com/issues","keys_url":"https://api.github.com/user/keys","notifications_url":"https://api.github.com/notifications","organization_repositories_url":"https://api.github.com/orgs/{org}/repos{?type,page,per_page,sort}","organization_url":"https://api.github.com/orgs/{org}","public_gists_url":"https://api.github.com/gists/public","rate_limit_url":"https://api.github.com/rate_limit","repository_url":"https://api.github.com/repos/{owner}/{repo}","repository_search_url":"https://api.github.com/search/repositories?q={query}{&page,per_page,sort,order}","current_user_repositories_url":"https://api.github.com/user/repos{?type,page,per_page,sort}","starred_url":"https://api.github.com/user/starred{/owner}{/repo}","starred_gists_url":"https://api.github.com/gists/starred","team_url":"https://api.github.com/teams","user_url":"https://api.github.com/users/{user}","user_organizations_url":"https://api.github.com/user/orgs","user_repositories_url":"https://api.github.com/users/{user}/repos{?type,page,per_page,sort}","user_search_url":"https://api.github.com/search/users?q={query}{&page,per_page,sort,order}"}'

If you take a look at the response, you’ll see that it is actually serialized JSON content. To get a dictionary, you could take the str you retrieved from .text and deserialize it using json.loads(). However, a simpler way to accomplish this task is to use .json():

>>>

>>> response.json()
{'current_user_url': 'https://api.github.com/user', 'current_user_authorizations_html_url': 'https://github.com/settings/connections/applications{/client_id}', 'authorizations_url': 'https://api.github.com/authorizations', 'code_search_url': 'https://api.github.com/search/code?q={query}{&page,per_page,sort,order}', 'commit_search_url': 'https://api.github.com/search/commits?q={query}{&page,per_page,sort,order}', 'emails_url': 'https://api.github.com/user/emails', 'emojis_url': 'https://api.github.com/emojis', 'events_url': 'https://api.github.com/events', 'feeds_url': 'https://api.github.com/feeds', 'followers_url': 'https://api.github.com/user/followers', 'following_url': 'https://api.github.com/user/following{/target}', 'gists_url': 'https://api.github.com/gists{/gist_id}', 'hub_url': 'https://api.github.com/hub', 'issue_search_url': 'https://api.github.com/search/issues?q={query}{&page,per_page,sort,order}', 'issues_url': 'https://api.github.com/issues', 'keys_url': 'https://api.github.com/user/keys', 'notifications_url': 'https://api.github.com/notifications', 'organization_repositories_url': 'https://api.github.com/orgs/{org}/repos{?type,page,per_page,sort}', 'organization_url': 'https://api.github.com/orgs/{org}', 'public_gists_url': 'https://api.github.com/gists/public', 'rate_limit_url': 'https://api.github.com/rate_limit', 'repository_url': 'https://api.github.com/repos/{owner}/{repo}', 'repository_search_url': 'https://api.github.com/search/repositories?q={query}{&page,per_page,sort,order}', 'current_user_repositories_url': 'https://api.github.com/user/repos{?type,page,per_page,sort}', 'starred_url': 'https://api.github.com/user/starred{/owner}{/repo}', 'starred_gists_url': 'https://api.github.com/gists/starred', 'team_url': 'https://api.github.com/teams', 'user_url': 'https://api.github.com/users/{user}', 'user_organizations_url': 'https://api.github.com/user/orgs', 'user_repositories_url': 'https://api.github.com/users/{user}/repos{?type,page,per_page,sort}', 'user_search_url': 'https://api.github.com/search/users?q={query}{&page,per_page,sort,order}'}

The type of the return value of .json() is a dictionary, so you can access values in the object by key.

You can do a lot with status codes and message bodies. But, if you need more information, like metadata about the response itself, you’ll need to look at the response’s headers.

Query String Parameters

One common way to customize a GET request is to pass values through query string parameters in the URL. To do this using get(), you pass data to params. For example, you can use GitHub’s Search API to look for the requests library:

import requests

# Search GitHub's repositories for requests
response = requests.get(
    'https://api.github.com/search/repositories',
    params={'q': 'requests+language:python'},
)

# Inspect some attributes of the `requests` repository
json_response = response.json()
repository = json_response['items'][0]
print(f'Repository name: {repository["name"]}')  # Python 3.6+
print(f'Repository description: {repository["description"]}')  # Python 3.6+

By passing the dictionary {'q': 'requests+language:python'} to the params parameter of .get(), you are able to modify the results that come back from the Search API.

You can pass params to get() in the form of a dictionary, as you have just done, or as a list of tuples:

>>>

>>> requests.get(
...     'https://api.github.com/search/repositories',
...     params=[('q', 'requests+language:python')],
... )
<Response [200]>

You can even pass the values as bytes:

>>>

>>> requests.get(
...     'https://api.github.com/search/repositories',
...     params=b'q=requests+language:python',
... )
<Response [200]>

Query strings are useful for parameterizing GET requests. You can also customize your requests by adding or modifying the headers you send.

Other HTTP Methods

Aside from GET, other popular HTTP methods include POST, PUT, DELETE, HEAD, PATCH, and OPTIONS. requests provides a method, with a similar signature to get(), for each of these HTTP methods:

>>>

>>> requests.post('https://httpbin.org/post', data={'key':'value'})
>>> requests.put('https://httpbin.org/put', data={'key':'value'})
>>> requests.delete('https://httpbin.org/delete')
>>> requests.head('https://httpbin.org/get')
>>> requests.patch('https://httpbin.org/patch', data={'key':'value'})
>>> requests.options('https://httpbin.org/get')

Each function call makes a request to the httpbin service using the corresponding HTTP method. For each method, you can inspect their responses in the same way you did before:

>>>

>>> response = requests.head('https://httpbin.org/get')
>>> response.headers['Content-Type']
'application/json'

>>> response = requests.delete('https://httpbin.org/delete')
>>> json_response = response.json()
>>> json_response['args']
{}

Headers, response bodies, status codes, and more are returned in the Response for each method. Next you’ll take a closer look at the POST, PUT, and PATCH methods and learn how they differ from the other request types.

The Message Body

According to the HTTP specification, POST, PUT, and the less common PATCH requests pass their data through the message body rather than through parameters in the query string. Using requests, you’ll pass the payload to the corresponding function’s data parameter.

data takes a dictionary, a list of tuples, bytes, or a file-like object. You’ll want to adapt the data you send in the body of your request to the specific needs of the service you’re interacting with.

For example, if your request’s content type is application/x-www-form-urlencoded, you can send the form data as a dictionary:

>>>

>>> requests.post('https://httpbin.org/post', data={'key':'value'})
<Response [200]>

You can also send that same data as a list of tuples:

>>>

>>> requests.post('https://httpbin.org/post', data=[('key', 'value')])
<Response [200]>

If, however, you need to send JSON data, you can use the json parameter. When you pass JSON data via json, requests will serialize your data and add the correct Content-Type header for you.

httpbin.org is a great resource created by the author of requests, Kenneth Reitz. It’s a service that accepts test requests and responds with data about the requests. For instance, you can use it to inspect a basic POST request:

>>>

>>> response = requests.post('https://httpbin.org/post', json={'key':'value'})
>>> json_response = response.json()
>>> json_response['data']
'{"key": "value"}'
>>> json_response['headers']['Content-Type']
'application/json'

You can see from the response that the server received your request data and headers as you sent them. requests also provides this information to you in the form of a PreparedRequest.

Inspecting Your Request

When you make a request, the requests library prepares the request before actually sending it to the destination server. Request preparation includes things like validating headers and serializing JSON content.

You can view the PreparedRequest by accessing .request:

>>>

>>> response = requests.post('https://httpbin.org/post', json={'key':'value'})
>>> response.request.headers['Content-Type']
'application/json'
>>> response.request.url
'https://httpbin.org/post'
>>> response.request.body
b'{"key": "value"}'

Inspecting the PreparedRequest gives you access to all kinds of information about the request being made such as payload, URL, headers, authentication, and more.

So far, you’ve made a lot of different kinds of requests, but they’ve all had one thing in common: they’re unauthenticated requests to public APIs. Many services you may come across will want you to authenticate in some way.

Authentication

Authentication helps a service understand who you are. Typically, you provide your credentials to a server by passing data through the Authorization header or a custom header defined by the service. All the request functions you’ve seen to this point provide a parameter called auth, which allows you to pass your credentials.

One example of an API that requires authentication is GitHub’s Authenticated User API. This endpoint provides information about the authenticated user’s profile. To make a request to the Authenticated User API, you can pass your GitHub username and password in a tuple to get():

>>>

>>> from getpass import getpass
>>> requests.get('https://api.github.com/user', auth=('username', getpass()))
<Response [200]>

The request succeeded if the credentials you passed in the tuple to auth are valid. If you try to make this request with no credentials, you’ll see that the status code is 401 Unauthorized:

>>>

>>> requests.get('https://api.github.com/user')
<Response [401]>

When you pass your username and password in a tuple to the auth parameter, requests is applying the credentials using HTTP’s Basic access authentication scheme under the hood.

Therefore, you could make the same request by passing explicit Basic authentication credentials using HTTPBasicAuth:

>>>

>>> from requests.auth import HTTPBasicAuth
>>> from getpass import getpass
>>> requests.get(
...     'https://api.github.com/user',
...     auth=HTTPBasicAuth('username', getpass())
... )
<Response [200]>

Though you don’t need to be explicit for Basic authentication, you may want to authenticate using another method. requests provides other methods of authentication out of the box such as HTTPDigestAuth and HTTPProxyAuth.

You can even supply your own authentication mechanism. To do so, you must first create a subclass of AuthBase. Then, you implement __call__():

import requests
from requests.auth import AuthBase

class TokenAuth(AuthBase):
    """Implements a custom authentication scheme."""

    def __init__(self, token):
        self.token = token

    def __call__(self, r):
        """Attach an API token to a custom auth header."""
        r.headers['X-TokenAuth'] = f'{self.token}'  # Python 3.6+
        return r


requests.get('https://httpbin.org/get', auth=TokenAuth('12345abcde-token'))

Here, your custom TokenAuth mechanism receives a token, then includes that token in the X-TokenAuth header of your request.

Bad authentication mechanisms can lead to security vulnerabilities, so unless a service requires a custom authentication mechanism for some reason, you’ll always want to use a tried-and-true auth scheme like Basic or OAuth.

While you’re thinking about security, let’s consider dealing with SSL Certificates using requests.

SSL Certificate Verification

Any time the data you are trying to send or receive is sensitive, security is important. The way that you communicate with secure sites over HTTP is by establishing an encrypted connection using SSL, which means that verifying the target server’s SSL Certificate is critical.

The good news is that requests does this for you by default. However, there are some cases where you might want to change this behavior.

If you want to disable SSL Certificate verification, you pass False to the verify parameter of the request function:

>>>

>>> requests.get('https://api.github.com', verify=False)
InsecureRequestWarning: Unverified HTTPS request is being made. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings
  InsecureRequestWarning)
<Response [200]>

requests even warns you when you’re making an insecure request to help you keep your data safe!

Performance

When using requests, especially in a production application environment, it’s important to consider performance implications. Features like timeout control, sessions, and retry limits can help you keep your application running smoothly.

Timeouts

When you make an inline request to an external service, your system will need to wait upon the response before moving on. If your application waits too long for that response, requests to your service could back up, your user experience could suffer, or your background jobs could hang.

By default, requests will wait indefinitely on the response, so you should almost always specify a timeout duration to prevent these things from happening. To set the request’s timeout, use the timeout parameter. timeout can be an integer or float representing the number of seconds to wait on a response before timing out:

>>>

>>> requests.get('https://api.github.com', timeout=1)
<Response [200]>
>>> requests.get('https://api.github.com', timeout=3.05)
<Response [200]>

In the first request, the request will timeout after 1 second. In the second request, the request will timeout after 3.05 seconds.

You can also pass a tuple to timeout with the first element being a connect timeout (the time it allows for the client to establish a connection to the server), and the second being a read timeout (the time it will wait on a response once your client has established a connection):

>>>

>>> requests.get('https://api.github.com', timeout=(2, 5))
<Response [200]>

If the request establishes a connection within 2 seconds and receives data within 5 seconds of the connection being established, then the response will be returned as it was before. If the request times out, then the function will raise a Timeout exception:

import requests
from requests.exceptions import Timeout

try:
    response = requests.get('https://api.github.com', timeout=1)
except Timeout:
    print('The request timed out')
else:
    print('The request did not time out')

Your program can catch the Timeout exception and respond accordingly.

The Session Object

Until now, you’ve been dealing with high level requests APIs such as get() and post(). These functions are abstractions of what’s going on when you make your requests. They hide implementation details such as how connections are managed so that you don’t have to worry about them.

Underneath those abstractions is a class called Session. If you need to fine-tune your control over how requests are being made or improve the performance of your requests, you may need to use a Session instance directly.

Sessions are used to persist parameters across requests. For example, if you want to use the same authentication across multiple requests, you could use a session:

import requests
from getpass import getpass

# By using a context manager, you can ensure the resources used by
# the session will be released after use
with requests.Session() as session:
    session.auth = ('username', getpass())

    # Instead of requests.get(), you'll use session.get()
    response = session.get('https://api.github.com/user')

# You can inspect the response just like you did before
print(response.headers)
print(response.json())

Each time you make a request with session, once it has been initialized with authentication credentials, the credentials will be persisted.

The primary performance optimization of sessions comes in the form of persistent connections. When your app makes a connection to a server using a Session, it keeps that connection around in a connection pool. When your app wants to connect to the same server again, it will reuse a connection from the pool rather than establishing a new one.

Max Retries

When a request fails, you may want your application to retry the same request. However, requests will not do this for you by default. To apply this functionality, you need to implement a custom Transport Adapter.

Transport Adapters let you define a set of configurations per service you’re interacting with. For example, let’s say you want all requests to https://api.github.com to retry three times before finally raising a ConnectionError. You would build a Transport Adapter, set its max_retries parameter, and mount it to an existing Session:

import requests
from requests.adapters import HTTPAdapter
from requests.exceptions import ConnectionError

github_adapter = HTTPAdapter(max_retries=3)

session = requests.Session()

# Use `github_adapter` for all requests to endpoints that start with this URL
session.mount('https://api.github.com', github_adapter)

try:
    session.get('https://api.github.com')
except ConnectionError as ce:
    print(ce)

When you mount the HTTPAdapter, github_adapter, to session, session will adhere to its configuration for each request to https://api.github.com.

Timeouts, Transport Adapters, and sessions are for keeping your code efficient and your application resilient.

Conclusion

You’ve come a long way in learning about Python’s powerful requests library.

You’re now able to:

  • Make requests using a variety of different HTTP methods such as GET, POST, and PUT
  • Customize your requests by modifying headers, authentication, query strings, and message bodies
  • Inspect the data you send to the server and the data the server sends back to you
  • Work with SSL Certificate verification
  • Use requests effectively using max_retries, timeout, Sessions, and Transport Adapters

Because you learned how to use requests, you’re equipped to explore the wide world of web services and build awesome applications using the fascinating data they provide.

Watch Now This tutorial has a related video course created by the Real Python team. Watch it together with the written tutorial to deepen your understanding: Making HTTP Requests With Python

Перевод статьи Python’s Requests Library (Guide) от замечательной команды Real Python, которая уже не в первый раз радует нас новыми интересными и полезными материалами о языке Python. И хотя в сети есть ее переводы, я немного адаптировал ее содержимое, добавив некоторые справочные данные. Так же я добавил подраздел об использовании механизма сессий при обращении к удаленным службам, которого как я считаю не хватало в оригинале статьи для понимания некоторых затрагиваемых вопросов.

Библиотека requests в настоящее время уже давно является стандартом де-факто для реализации отправки HTTP-запросов в Python. Она элегантно абстрагирует сложность написания запросов к серверу, используя красивый и простой API, так что вы можете спокойно сосредоточиться при работе над вашим приложении на вопросах организации взаимодействия с различными удаленными службами, а также дальнейшей обработки получаемых данных.

В этой статье мы рассмотрим лишь некоторые из наиболее полезных возможностей, которые может предложить requests, а также основные способы настройки ее инструментов и оптимизации их работы для различных ситуаций, с которыми вы можете столкнуться в дальнейшем. Вы также ознакомитесь с тем, как эффективно использовать requests для предотвращения замедления работы (зависания) ваших приложений при взаимодействии с удаленными службами.

В этом руководстве вы узнаете, как:

  • отправлять запросы, используя самые распространенные HTTP методы;
  • настроить содержимое заголовков и отправляемых данных запросов, используя строку запроса и текст сообщения;
  • просмотреть содержимое ваших запросов и ответов;
  • отправлять на сервер аутентифицированные запросы;
  • корректно настроить параметры запросов таким образом, чтобы избежать резервного копирования данных или замедления работы вашего приложения.

Хотя я попытался включить в настоящее руководство столько информации, сколько нужно, чтобы понять все примеры кода, которые я включил в эту статью, но тем не менее я надеюсь, что для начала вы обладаете общими базовыми понятиями о работе протокола HTTP.

Содержание

  • Начинаем работать с requests
  • Запрос GET (GET request)
  • Ответ (response)
    • Код состояния запроса (status codes)
  • Содержимое ответа (Content)
  • Заголовки ответа (Headers)
  • Параметры строки запроса (Query String Parameters)
  • Заголовки запроса (Request Headers)
  • Другие HTTP методы запроса
  • Тело сообщения запроса
  • Инспектируем отправленный запрос
  • Использование механизма сессий (Session)
  • Аутентификация
  • Проверка подлинности SSL сертификата (SSL Certificate Verification)
  • Производительность
    • Тайм-ауты Timeouts
    • Объект сессии Session
    • Количество повторов запроса
  • Заключение

И так начнем с установки библиотеки requests. Для этого выполните в терминале консоли следующую команду:

$ pip install requests

Если же вы предпочитаете использовать Pipenv для управления пакетами Python, то можете запустить на исполнение следующую команду:

$ pipenv install requests

Установка библиотеки requests в операционной системе Windows и Linux практически не отличаются. В сети достаточно материалов, в которых описан принцип работы с пакетами Python в обеих системах. Поэтому в этой статье касаться этих вопросов мы далее не будем.

После того, как мы установили requests, мы можем ее использовать в своем приложении. Импорт библиотеки requests в ваш код выглядит следующим образом:

import requests

Теперь, когда мы все подготовили, пришло время начинать наш путь по изучению основ работы с библиотекой requests. И наша первая цель научиться отправлять HTTP-запрос GET.

Запрос GET (GET request)

Такие методы запросов, как GET и POST, определяют, действие, которое вы пытаетесь выполнить при выполнении HTTP-запроса. Помимо GET и POST, есть еще несколько других достаточно распространенных методов запросов и их мы рассмотрим в этом руководстве позже.

И так одним из самых распространенных методов HTTP-запросов является GET. Метод GET предписывает, что вы пытаетесь получить или извлечь некоторые данные из указанного ресурса. Чтобы отправить GET запрос, необходимо вызвать метод requests.get(url).

Проверим это на практике: отправим GET-запрос к GitHub Root REST API, вызвав метод get() со следующим значением параметра url:

>>> requests.get('https://api.github.com')
<Response [200]>

Отлично! Мы отправили свой первый запрос. Давайте изучим содержимое полученного ответа.

Ответ (response)

Объект Response является мощным средством для просмотра содержимого и обработки результатов наших запросов. Давайте пошлем, рассмотренный нами выше, запрос GET еще раз, но в этот раз сохраним принятое значение с объектом ответа в переменной, и затем поближе познакомиться с его атрибутами (свойствами), а также поведением:

response = requests.get('https://api.github.com')

В этом примере кода, мы используя возможности библиотеки requests, перехватили содержимое ответа удаленного сервера, возвращаемое методом get(). И далее его значение, которое находится в экземпляре объекта Response, сохраним в переменную с именем response. Теперь мы можем использовать response для того, чтобы получить различную информацию о результатах нашего GET запроса .

Код состояния запроса (status codes)

Первым битом информации, которую вы можете получить от объекта ответа Response, является код состояния запроса к серверу status codes. Код состояния информирует вас о статусе нашего запроса.

Например, статус 200 OK означает, что ваш запрос был успешным, а статус 404 NOT FOUND означает, что искомый ресурс не найден. Существует много других кодов состояния запроса, которые могут дать вам более детальное представление о том, что же все таки произошло с отправленным запросом.

Используя свойство объекта response.status_code, мы можем получить доступ к коду состояния ответа, который вернул удаленный сервер:

>>> response.status_code
200

При обращении к свойству .status_code мы получили значение 200, что означает, что наш запрос был успешным, и сервер отправил нам данные, которые мы запрашивали.

В большинстве случаев эту информацию мы будем использовать для реализации в своем коде различной логики: управлять дальнейшей работой нашего приложения:

if response.status_code == 200:
    print('Success!')
elif response.status_code == 404:
    print('Not Found.')

В соответствии с логикой этого примера кода, если сервер возвращает код состояния 200, то наша программа напечатает «Success!». Если же — 404, то напечатает “Not Found”.

Библиотека requests существенно упрощает процесс взаимодействия вашего приложения с сервером. Однако необходимо знать ее некоторые довольно специфические особенности. Так например, если мы используем экземпляр объекта Response в условном выражении, то его логическое значение приравнивается к True, если был получен код состояния запроса в диапазоне от 200 до 400, и только в противном случае False.

Поэтому мы можем упростить последний пример, переписав код оператора if следующим образом:

if response:
    print('Success!')
else:
    print('An error has occurred.')

Маленькая техническая деталь: этот тест на истинность значения показал такой результат возможным, так как в объекте Response специальный метод класса __bool__() переопределен.

Это означает то, что поведение по умолчанию объекта Response при вычислении его логического значения было переопределено для процедуры проверки кода состояния запроса.

Имейте в виду, что этот способ проверки не гарантирует, что код состояния вашего запроса успешен и равен 200. Причиной прохождения проверки на истинность является то, что запрос может получать и другие “успешные” коды состояния в диапазоне от 200 до 400. Такие, например, как 204 NO CONTENT и 304 NOT MODIFIED, которые также можно считать в определенном смысле “успешными”, так как они определяют некоторый успешно обработанный сервером ответ на запрос. Например, код 204 информирует нас, что запрос был успешным, но тело сообщения ответа сервера не ничего не содержит.

Поэтому используете этот способ проверки, если захотите узнать, был ли запрос в целом успешным, а только затем, при необходимости, обработать содержимое ответа соответствующим образом на основе значения его кода состояния.

Допустим, вы не хотите проверять код состояния ответа в операторе if. Вместо этого вы можете генерировать исключение специального типа HTTPError, если запрос был неудачен. Сделать это можно используя метод .raise_for_status() следующим образом:

import requests
from requests.exceptions import HTTPError

for url in ['https://api.github.com', 'https://api.github.com/invalid']:
    try:
        response = requests.get(url)

        # Если запрос был успешен, то исключение Exception не возбуждается
        response.raise_for_status()
    except HTTPError as http_err:
        print(f'HTTP error occurred: {http_err}')  # Python 3.6
    except Exception as err:
        print(f'Other error occurred: {err}')  # Python 3.6
    else:
        print('Success!')

Таким образом, если вы вызываете метод .raise_for_status(), то исключение типа HTTPError будет вызываться для определенных кодов состояния (не успешных запросов к серверу). И если код состояния определяет запрос как успешный, то приложение продолжит работу без возбуждения этого исключения.

Для дальнейшего чтения: если вам не знакомы f-строки Python 3.6, то я призываю вас срочно познакомится с ими, поскольку они являются отличным способом упростить использование строковых шаблонов.

И так мы изучили некоторые приемы работы с кодами состояния ответов сервера. Однако, когда мы посылаем GET запрос, нам редко нужна информация лишь о коде состояния. Обычно мы хотим получить нечто больше. Далее мы научимся получать и обрабатывать содержимое данных, которые сервер отправляет обратно в теле ответа.

Содержимое ответа (Content)

Ответ на успешный запрос GET часто содержит в сообщении некоторую ценную информацию, известную так же, как полезное содержимое (payload). Используя атрибуты и методы объекта Response, мы можем просматривать его содержимое в различных форматах.

Чтобы получить содержимое ответа в бинарном виде, мы можем использовать свойство Response.content:

>>> response = requests.get('https://api.github.com')
>>> response.content
b'{"current_user_url":"https://api.github.com/user","current_user_authorizations_html_url":"https://github.com/settings/connections/applications{/client_id}","authorizations_url":"https://api.github.com/authorizations","code_search_url":"https://api.github.com/search/code?q={query}{&page,per_page,sort,order}","commit_search_url":"https://api.github.com/search/commits?q={query}{&page,per_page,sort,order}","emails_url":"https://api.github.com/user/emails","emojis_url":"https://api.github.com/emojis","events_url":"https://api.github.com/events","feeds_url":"https://api.github.com/feeds","followers_url":"https://api.github.com/user/followers","following_url":"https://api.github.com/user/following{/target}","gists_url":"https://api.github.com/gists{/gist_id}","hub_url":"https://api.github.com/hub","issue_search_url":"https://api.github.com/search/issues?q={query}{&page,per_page,sort,order}","issues_url":"https://api.github.com/issues","keys_url":"https://api.github.com/user/keys","notifications_url":"https://api.github.com/notifications","organization_repositories_url":"https://api.github.com/orgs/{org}/repos{?type,page,per_page,sort}","organization_url":"https://api.github.com/orgs/{org}","public_gists_url":"https://api.github.com/gists/public","rate_limit_url":"https://api.github.com/rate_limit","repository_url":"https://api.github.com/repos/{owner}/{repo}","repository_search_url":"https://api.github.com/search/repositories?q={query}{&page,per_page,sort,order}","current_user_repositories_url":"https://api.github.com/user/repos{?type,page,per_page,sort}","starred_url":"https://api.github.com/user/starred{/owner}{/repo}","starred_gists_url":"https://api.github.com/gists/starred","team_url":"https://api.github.com/teams","user_url":"https://api.github.com/users/{user}","user_organizations_url":"https://api.github.com/user/orgs","user_repositories_url":"https://api.github.com/users/{user}/repos{?type,page,per_page,sort}","user_search_url":"https://api.github.com/search/users?q={query}{&page,per_page,sort,order}"}'

Несмотря на то, что свойство Response.content предоставляет нам доступ к “сырым” байтам полезного содержимого ответа и в большинстве случаев мы будем преобразовывать их в строку с заданной кодировкой символов, например, UTF-8. Объект Response легко сделает это для нас, предоставляя доступ к свойству Response.text:

>>> response.text
'{"current_user_url":"https://api.github.com/user","current_user_authorizations_html_url":"https://github.com/settings/connections/applications{/client_id}","authorizations_url":"https://api.github.com/authorizations","code_search_url":"https://api.github.com/search/code?q={query}{&page,per_page,sort,order}","commit_search_url":"https://api.github.com/search/commits?q={query}{&page,per_page,sort,order}","emails_url":"https://api.github.com/user/emails","emojis_url":"https://api.github.com/emojis","events_url":"https://api.github.com/events","feeds_url":"https://api.github.com/feeds","followers_url":"https://api.github.com/user/followers","following_url":"https://api.github.com/user/following{/target}","gists_url":"https://api.github.com/gists{/gist_id}","hub_url":"https://api.github.com/hub","issue_search_url":"https://api.github.com/search/issues?q={query}{&page,per_page,sort,order}","issues_url":"https://api.github.com/issues","keys_url":"https://api.github.com/user/keys","notifications_url":"https://api.github.com/notifications","organization_repositories_url":"https://api.github.com/orgs/{org}/repos{?type,page,per_page,sort}","organization_url":"https://api.github.com/orgs/{org}","public_gists_url":"https://api.github.com/gists/public","rate_limit_url":"https://api.github.com/rate_limit","repository_url":"https://api.github.com/repos/{owner}/{repo}","repository_search_url":"https://api.github.com/search/repositories?q={query}{&page,per_page,sort,order}","current_user_repositories_url":"https://api.github.com/user/repos{?type,page,per_page,sort}","starred_url":"https://api.github.com/user/starred{/owner}{/repo}","starred_gists_url":"https://api.github.com/gists/starred","team_url":"https://api.github.com/teams","user_url":"https://api.github.com/users/{user}","user_organizations_url":"https://api.github.com/user/orgs","user_repositories_url":"https://api.github.com/users/{user}/repos{?type,page,per_page,sort}","user_search_url":"https://api.github.com/search/users?q={query}{&page,per_page,sort,order}"}'

Поскольку для декодирования байтов bytes в строку str требуется схема кодирования, то requests в начале попытается угадать кодировку содержимого ответа на основе его заголовков Content-Type, в том если вы предварительно их не укажете. Вы также можете указать кодировку явно, установив значение свойства объекта Response.encoding перед обращением к Response.text:

>>> response.text
'{"current_user_url":"https://api.github.com/user","current_user_authorizations_html_url":"https://github.com/settings/connections/applications{/client_id}","authorizations_url":"https://api.github.com/authorizations","code_search_url":"https://api.github.com/search/code?q={query}{&page,per_page,sort,order}","commit_search_url":"https://api.github.com/search/commits?q={query}{&page,per_page,sort,order}","emails_url":"https://api.github.com/user/emails","emojis_url":"https://api.github.com/emojis","events_url":"https://api.github.com/events","feeds_url":"https://api.github.com/feeds","followers_url":"https://api.github.com/user/followers","following_url":"https://api.github.com/user/following{/target}","gists_url":"https://api.github.com/gists{/gist_id}","hub_url":"https://api.github.com/hub","issue_search_url":"https://api.github.com/search/issues?q={query}{&page,per_page,sort,order}","issues_url":"https://api.github.com/issues","keys_url":"https://api.github.com/user/keys","notifications_url":"https://api.github.com/notifications","organization_repositories_url":"https://api.github.com/orgs/{org}/repos{?type,page,per_page,sort}","organization_url":"https://api.github.com/orgs/{org}","public_gists_url":"https://api.github.com/gists/public","rate_limit_url":"https://api.github.com/rate_limit","repository_url":"https://api.github.com/repos/{owner}/{repo}","repository_search_url":"https://api.github.com/search/repositories?q={query}{&page,per_page,sort,order}","current_user_repositories_url":"https://api.github.com/user/repos{?type,page,per_page,sort}","starred_url":"https://api.github.com/user/starred{/owner}{/repo}","starred_gists_url":"https://api.github.com/gists/starred","team_url":"https://api.github.com/teams","user_url":"https://api.github.com/users/{user}","user_organizations_url":"https://api.github.com/user/orgs","user_repositories_url":"https://api.github.com/users/{user}/repos{?type,page,per_page,sort}","user_search_url":"https://api.github.com/search/users?q={query}{&page,per_page,sort,order}"}'

Если вы обратите внимание на полученное содержимое ответа, то увидите, что оно представляет собой сериализованную строку в формате JSON. Поэтому для того, чтобы в результате получить словарь, вы можете взять строку str, полученную из свойства Response.text, и десериализовать ее с помощью метода json.loads(). Однако более простой способ выполнить эту задачу — использовать метод нашего объекта Response.json():

>>> response.json()
{'current_user_url': 'https://api.github.com/user', 'current_user_authorizations_html_url': 'https://github.com/settings/connections/applications{/client_id}', 'authorizations_url': 'https://api.github.com/authorizations', 'code_search_url': 'https://api.github.com/search/code?q={query}{&page,per_page,sort,order}', 'commit_search_url': 'https://api.github.com/search/commits?q={query}{&page,per_page,sort,order}', 'emails_url': 'https://api.github.com/user/emails', 'emojis_url': 'https://api.github.com/emojis', 'events_url': 'https://api.github.com/events', 'feeds_url': 'https://api.github.com/feeds', 'followers_url': 'https://api.github.com/user/followers', 'following_url': 'https://api.github.com/user/following{/target}', 'gists_url': 'https://api.github.com/gists{/gist_id}', 'hub_url': 'https://api.github.com/hub', 'issue_search_url': 'https://api.github.com/search/issues?q={query}{&page,per_page,sort,order}', 'issues_url': 'https://api.github.com/issues', 'keys_url': 'https://api.github.com/user/keys', 'notifications_url': 'https://api.github.com/notifications', 'organization_repositories_url': 'https://api.github.com/orgs/{org}/repos{?type,page,per_page,sort}', 'organization_url': 'https://api.github.com/orgs/{org}', 'public_gists_url': 'https://api.github.com/gists/public', 'rate_limit_url': 'https://api.github.com/rate_limit', 'repository_url': 'https://api.github.com/repos/{owner}/{repo}', 'repository_search_url': 'https://api.github.com/search/repositories?q={query}{&page,per_page,sort,order}', 'current_user_repositories_url': 'https://api.github.com/user/repos{?type,page,per_page,sort}', 'starred_url': 'https://api.github.com/user/starred{/owner}{/repo}', 'starred_gists_url': 'https://api.github.com/gists/starred', 'team_url': 'https://api.github.com/teams', 'user_url': 'https://api.github.com/users/{user}', 'user_organizations_url': 'https://api.github.com/user/orgs', 'user_repositories_url': 'https://api.github.com/users/{user}/repos{?type,page,per_page,sort}', 'user_search_url': 'https://api.github.com/search/users?q={query}{&page,per_page,sort,order}'}

Отлично, тип возвращаемого методом Response.json() значения словарь, поэтому мы можем, как обычно, получить доступ к его значениям по соответствующему ключу.

Вы можете по разному использовать информацию о коде состояния и содержимое полученного ответа сервера, но если нам нужна дополнительная информация, такая, например, как метаданные о самом ответе, то вам нужно иметь дело с заголовками полученного ответа.

Заголовки ответа сервера могут дать много полезной информации, такой, например, как тип полезного содержимого ответа, ограничение по времени, в течение которого ответ будет кэшироваться и т.д. Чтобы просмотреть содержимое заголовков, необходимо обратиться к свойству объекта Response.headers:

>>> response.headers
{'Server': 'GitHub.com', 'Date': 'Mon, 10 Dec 2018 17:49:54 GMT', 'Content-Type': 'application/json; charset=utf-8', 'Transfer-Encoding': 'chunked', 'Status': '200 OK', 'X-RateLimit-Limit': '60', 'X-RateLimit-Remaining': '59', 'X-RateLimit-Reset': '1544467794', 'Cache-Control': 'public, max-age=60, s-maxage=60', 'Vary': 'Accept', 'ETag': 'W/"7dc470913f1fe9bb6c7355b50a0737bc"', 'X-GitHub-Media-Type': 'github.v3; format=json', 'Access-Control-Expose-Headers': 'ETag, Link, Location, Retry-After, X-GitHub-OTP, X-RateLimit-Limit, X-RateLimit-Remaining, X-RateLimit-Reset, X-OAuth-Scopes, X-Accepted-OAuth-Scopes, X-Poll-Interval, X-GitHub-Media-Type', 'Access-Control-Allow-Origin': '*', 'Strict-Transport-Security': 'max-age=31536000; includeSubdomains; preload', 'X-Frame-Options': 'deny', 'X-Content-Type-Options': 'nosniff', 'X-XSS-Protection': '1; mode=block', 'Referrer-Policy': 'origin-when-cross-origin, strict-origin-when-cross-origin', 'Content-Security-Policy': "default-src 'none'", 'Content-Encoding': 'gzip', 'X-GitHub-Request-Id': 'E439:4581:CF2351:1CA3E06:5C0EA741'}

При обращении к свойству Response.headers будет возвращен схожий со словарем объект, позволяющий получить доступ к значениям заголовков полученного ответа по ключу. Например, чтобы определить тип полезного содержимого ответа, получаем доступ к значению заголовка Content-Type:

>>> response.headers['Content-Type']
'application/json; charset=utf-8'

У этого, как мы уже говорили, схожим со словарем объекте заголовков есть еще одна особенность. Спецификация HTTP определяет названия заголовков без учета регистра, это означает, что мы можем получить доступ к их значениям, совершенно не беспокоясь об регистре их наименований:

>>> response.headers['content-type']
'application/json; charset=utf-8'

Используете ли вы ключ 'content-type' или 'Content-type', вы получите одно и то же корректное значение.

Теперь когда мы ознакомились с основами работы с объектом Response , рассмотрели его наиболее полезные свойства и методы в действии. Давайте сделаем шаг назад и посмотрим, как изменяются ответы сервера при использовании параметров запроса GET , передаваемых в строке запроса.

Параметры строки запроса (Query String Parameters)

Одним из самых распространенных способов настройки запроса GET является передача серверу данных в URL строки запроса.

Обратите внимание, что GET запрос не имеет тела сообщения. Но, это не означает, что с его помощью мы не можем передать серверу никакую информацию. Это можно делать с помощью специальных GET параметров. Чтобы добавить GET параметры к запросу, нужно в конце URL-адреса поставить знак ? и после него начинать задавать их по следующему правилу: имя_параметра1=значение_параметра1&имя_параметра2=значение_параметра2. Разделителем между параметрами служит знак &.

Для передачи GET параметров запроса необходимо передать нужную информацию в именованный параметр params метода get(). Например, следующим способом вы можете использовать Search API GitHub для более узкого поиска репозитория библиотеки requests:

import requests

# Поиск requests в репозиториях GitHub
response = requests.get(
    'https://api.github.com/search/repositories',
    params={'q': 'requests+language:python'},
)

# Просматриваем значения атрибутов результатов поиска репозитория requests
json_response = response.json()
repository = json_response['items'][0]
print(f'Repository name: {repository["name"]}')  # Python 3.6+
print(f'Repository description: {repository["description"]}')  # Python 3.6+

Передав словарь {'q': 'requests+language: python'} в качестве значения параметра params метода .get(), мы таким образом скорректировали результаты, возвращаемые Search API.

Мы можем передавать значения в params метода get() как в виде словаря, как мы это только что сделали, так и в виде списка кортежей:

>>> requests.get(
...     'https://api.github.com/search/repositories',
...     params=[('q', 'requests+language:python')],
... )
<Response [200]>

Так же можно передать данные в бинарном виде bytes:

>>> requests.get(
...     'https://api.github.com/search/repositories',
...     params=b'q=requests+language:python',
... )
<Response [200]>

Строка запроса используется для передачи параметров в GET запросах. Еще одним способом управления запросами к удаленным службам, является добавление или изменение отправляемых в них заголовков.

Для того, чтобы используя requests, настроить содержимое заголовков запроса, необходимо передать словарь с соответствующими ключами и значениями HTTP-заголовков в метод .get(), а точнее в его именованный параметр headers. Например, изменим свой предыдущий поисковый запрос: добавим ключевые слова для уточнения результатов поиска, указав точно text-match текстовое соответствие для поиска (тип контента) в заголовок Accept:

import requests

response = requests.get(
    'https://api.github.com/search/repositories',
    params={'q': 'requests+language:python'},
    headers={'Accept': 'application/vnd.github.v3.text-match+json'},
)

# выведем в консоли массив всех совпадений `text-matches`,
# которые мы задали для уточнения результатов поиска
json_response = response.json()
repository = json_response['items'][0]
print(f'Text matches: {repository["text_matches"]}')

Заголовок Accept сообщает серверу, какие типы контента может обрабатывать ваше приложение. В нашем случае, поскольку вы хотите, что бы учитывались дополнительные уточняющие параметры поиска, вы устанавливаете для этого заголовка значение application / vnd.github.v3.text-match + json. Это значение является проприетарным для заголовка Accept, то есть зарезервированным GitHub для подобных случаев, и указывает на поиск содержимого в формате JSON.

Прежде чем мы ознакомимся с другими способами настройки ваших запросов, давайте слегка расширим свой кругозор, изучив другие HTTP методы, а точнее как с ними работать в requests.

Другие HTTP методы запроса

Помимо GET существуют и другие часто используемые HTTP методы, например, POST, PUT, DELETE, HEAD, PATCH и OPTIONS. И библиотека requests ожидаемо предоставляет методы, со схожей как у метода get() нотацией использования, для отправки и управления настройками каждого из этих HTTP методов запросов:

>>> requests.post('https://httpbin.org/post', data={'key':'value'})
>>> requests.put('https://httpbin.org/put', data={'key':'value'})
>>> requests.delete('https://httpbin.org/delete')
>>> requests.head('https://httpbin.org/get')
>>> requests.patch('https://httpbin.org/patch', data={'key':'value'})
>>> requests.options('https://httpbin.org/get')

В примере ниже каждый вызов соответствующего метода посылает запрос сервису httpbin, используя различные HTTP методы. И мы так же, как и ранее можем просмотреть содержимое их ответов:

>>> response = requests.head('https://httpbin.org/get')
>>> response.headers['Content-Type']
'application/json'

>>> response = requests.delete('https://httpbin.org/delete')
>>> json_response = response.json()
>>> json_response['args']
{}

Содержимое заголовков, полезного содержимого ответов, коды состояния и многие другие данные возвращаются с объектом Response для каждого вашего запроса, отправленного любым из методов.

Тело сообщения запроса

В соответствии со спецификацией HTTP протоколов, такие методы отправки запросов как POST, PUT, а так же другие менее распространенные, например PATCH, передают информацию в содержимом сообщения, а не через параметры строки запроса. Используя requests, вы можете передать полезную информацию в сообщении запроса через именованный параметр data соответствующего метода отправки.

Таким образом все отправляемые данные содержатся в самом теле вашего запроса. Кроме того, методом POST на удаленный сервер нередко загружаются файлы.

Параметр data принимает словарь, список кортежей, байтов или файлоподобный объект. В каком конкретно виде посылать данные в теле запроса вы должны выбрать самостоятельно, исходя из требований удаленной службы (сервера) с которой хотите взаимодействовать.

Например, если тип содержимого вашего запроса application / x-www-form-urlencoded, то вы можете отправить данные html формы в виде словаря:

>>> requests.post('https://httpbin.org/post', data={'key':'value'})
<Response [200]>

Вы можете отправить те же данные в виде списка кортежей следующим образом:

>>> requests.post('https://httpbin.org/post', data=[('key', 'value')])
<Response [200]>

В теле сообщения значения кодируются в виде кортежа с ключами, разделенными символом '&', и '=' между ключом и значением.

Если вам необходимо отправить данные в формате JSON, то вы должны использовать для передачи соответствующий именованный параметр json. При отправке запроса с содержимым JSON библиотека requests сама сериализует ваши данные и добавит соответствующее значение для заголовка Content-Type.

httpbin.org — отличный вспомогательный ресурс, созданный автором requests Кеннетом Рейтцем. Это сервис принимает тестовые запросы и отправляет в ответ информацию о них. Например, вы можете использовать его для проверки корректности вашего POST-запроса:

>>> response = requests.post('https://httpbin.org/post', json={'key':'value'})
>>> json_response = response.json()
>>> json_response['data']
'{"key": "value"}'
>>> json_response['headers']['Content-Type']
'application/json'

Из содержимого ответа видно, что сервер успешно обработал данные вашего запроса и послал ответ с соответствующими заголовками. Библиотека requests предоставляет возможность сохранять настройки посылаемых запросов в виде специального объекта PreparedRequest.

Инспектируем отправленный запрос

Когда вы делаете запрос, библиотека requests предварительно готовит запрос, прежде чем отправить его на целевой сервер. Подготовка запроса включает в себя такие вещи, как проверка корректности заголовков и сериализация содержимого в формате JSON.

Вы можете просмотреть содержимое подготовленного к отправке запроса, используя объект типа PreparedRequest, обратившись к свойству объекта Response.request:

>>> response = requests.post('https://httpbin.org/post', json={'key':'value'})
>>> response.request.headers['Content-Type']
'application/json'
>>> response.request.url
'https://httpbin.org/post'
>>> response.request.body
b'{"key": "value"}'

Просмотр содержимого PreparedRequest дает вам доступ ко всей информации о выполненном запросе, такой как полезное содержимое, URL, отправленные заголовки, данные аутентификации и многое другое.

В соответствии с официальной документацией объект типа PreparedRequest может использоваться и до отправки запроса. Так в следующим примере кода вначале с помощью конструктора Request(method, url, data=data, headers=headers) создается объект запроса, а затем с использованием метода Request.prepare() создается подготовленный запрос. Объект PreparedRequest может в дальнейшем, перед своей непосредственно отправкой, редактироваться в соответствии с логикой вашего приложения, а только затем отправлен с вызовом метода .send().

from requests import Request, Session

s = Session()

req = Request('POST', url, data=data, headers=headers)
prepped = req.prepare()

prepped.body = 'No, I want exactly this as the body.'

del prepped.headers['Content-Type']

resp = s.send(prepped,
    stream=stream,
    verify=verify,
    proxies=proxies,
    cert=cert,
    timeout=timeout
)

print(resp.status_code)

В этом примере кода мы можем заметить не знакомую нам строку кода: s = Session(). Дело в том, что в этом примере подготовленный запрос использовался для работы с сессионными cookie. В оригинале статьи автор почему-то опустил эту немаловажную возможность библиотеки requests: использование механизма сессий для работы с удаленными службами. Поэтому в следующем разделе мы с ним просто обязаны познакомиться ;).

Использование механизма сессий (Session)

Для организации сессионного взаимодействия вашего приложения с сервером используется объект Session, который позволяет сохранять необходимые настройки для отправки данных от запроса к запросу в течение всей текущей сессии. То есть он сохраняет и задает содержимое файлов cookie во всех запросах, сформированных с использованием текущего экземпляра объекта Session, и гарантирует использование выделенного пула соединений при дальнейшем взаимодействии с сервером. Объект Sesson поддерживает любые методы запросов из состава API requests.

И так давайте сохраним некоторые данные cookie в запросе:

import requests

s = requests.Session()

s.get('https://httpbin.org/cookies/set/sessioncookie/123456789')
r = s.get('https://httpbin.org/cookies')

print(r.text)
# '{"cookies": {"sessioncookie": "123456789"}}'

В примере кода выше мы обратились к API httpbin.org для установки и поддержания соединения в течение сессии с указанным значением sessioncookie.

Механизм сессий также можно применять для предварительной установки значений некоторых настроек по умолчанию и дальнейшем их использовании при отправке запросов. Это делается путем изменения соответствующих свойств объекта Session:

import requests

s = requests.Session()
s.auth = ('user', 'pass')
s.headers.update({'x-test': 'true'})

# both 'x-test' and 'x-test2' are sent
s.get('https://httpbin.org/headers', headers={'x-test2': 'true'})

Все данные, которые вы затем будете передавать методу запроса, будут объединены с установленными значениями текущего сеанса сессии. При этом те параметры, которые вы будете передавать в метод запроса переопределят параметры сеанса сессии, которые мы задали по умолчанию.

Обратите внимание, что параметры, которые мы передаем в метод перед отправкой, не будут сохраняться между отдельными запросами, даже при работе в текущем сеансе сессии, даже если мы используем один и тот же тип метода запроса (в примере ниже это GET запрос). Как видно из результатов выполнения кода из примера ниже: мы отправляем данные cookie, передавая их методу отправки, только с первым запросом GET, но не со вторым:

import requests

s = requests.Session()

r = s.get('https://httpbin.org/cookies', cookies={'from-my': 'browser'})
print(r.text)
# '{"cookies": {"from-my": "browser"}}'

r = s.get('https://httpbin.org/cookies')
print(r.text)
# '{"cookies": {}}'

Если вы хотите непосредственно управлять файлами cookie в течение текущего сеанса, используйте методы утилиты объекта Cookie, для установки соответствующих свойств объекта Session.cookies. Следующий пример кода иллюстрирует способ посылки двух запросов в течение сессии с заданными значениями файлов cookies:

import requests

s = requests.Session()
s.cookies.set('from-my', 'browser')

r = s.get('https://httpbin.org/cookies')
print(r.text)
# '{"cookies": {"from-my": "browser"}}'

r = s.get('https://httpbin.org/cookies')
print(r.text)
# '{"cookies": {"from-my": "browser"}}'

И так мы рассмотрели несколько разновидностей отправляемых запросов, однако у них есть одно ограничение: они не позволяют отправлять аутентифицированные запросы к публичным API. Многие удаленные службы, с которыми вы можете столкнуться, требуют, чтобы вы каким-либо образом предоставляли аутентификационную информацию о себе.

Аутентификация

Как вам уже, вероятно, известно аутентификация по сути помогает удаленному сервису понять, кто вы. Как правило, вы предоставляете серверу свои учетные данные, передавая их через содержимое заголовка авторизации Authorization или любого другого пользовательского заголовка, заранее определенного удаленной службой. Все методы отправки запросов, с которыми мы ознакомились ранее, предоставляют пользователю возможность передавать значение именованному параметру auth, который позволяет передавать учетные данные для авторизации.

Одним из примеров такого API, взаимодействие с которым требуется аутентификация, является GitHub Authenticated User API. Эта точка доступа сервиса GitHub предоставляет информацию о профиле зарегистрированных пользователей. Чтобы сделать запрос к API авторизованного пользователя, вы можете передать свои имя пользователя GitHub и пароль в метод get(), предварительно упаковав их в кортеж:

>>> from getpass import getpass
>>> requests.get('https://api.github.com/user', auth=('username', getpass()))
<Response [200]>

Запрос будет успешно обработан сервером, при условии что учетные данные, которые вы передали в кортеже параметру auth, действительны. Если же вы попытаетесь передать этот запрос без учетных данных, то увидите, что результатом его выполнения будет получение ответа с кодом состояния 401 Unauthorized:

>>> requests.get('https://api.github.com/user')
<Response [401]>

Когда вы передаете параметру auth свои данные (имя пользователя и пароль) , при отправке запроса библиотека requests учитывает эти учетные данные, используя основную схему аутентификации доступа Basic access authentication scheme HTTP протокола.

Следующим способом с помощью объекта HTTPBasicAuth, вы можете послать тот же запрос, но уже явно передав свои учетные данные, используя механизм Basic authentication:

>>> from requests.auth import HTTPBasicAuth
>>> from getpass import getpass
>>> requests.get(
...     'https://api.github.com/user',
...     auth=HTTPBasicAuth('username', getpass())
... )
<Response [200]>

В общем случае можно конечно явно не указывать Basic authentication в качестве основного способа аутентификации при отправке вашего запроса, вы можете реализовать эту процедуру любым другим способом. requests так же предоставляет другие методы аутентификации “из коробки”, например, дайджест-аутентификация HTTPDigestAuth или прокси-аутентификация HTTPProxyAuth.

Вы даже можете разработать свой собственный механизм аутентификации с удаленной службой и затем использовать его в ваших приложениях. Для этого вы должны сначала создать подкласс от основного AuthBase, а затем реализовать в объявлении своего класса собственный метод __call __ ():

import requests

from requests.auth import AuthBase

class TokenAuth(AuthBase):
    """Реализуем собственный способ аутентификации"""

    def __init__(self, token):
        self.token = token

    def __call__(self, r):
        """Подключаем к токену API свой заголовок аутентификации"""
        r.headers['X-TokenAuth'] = f'{self.token}'  # Python 3.6+
        return r

requests.get('https://httpbin.org/get', auth=TokenAuth('12345abcde-token'))

Здесь ваш настраиваемый механизм TokenAuth получает токен, а затем включает этот токен в заголовок X-TokenAuth вашего запроса.

При реализации собственных способов аутентификации помните, что простые механизмы проверки подлинности могут привести к уязвимостям безопасности, поэтому, если удаленной службе по какой-либо причине не требуется настраиваемый механизм проверки подлинности, всегда используйте проверенные схемы аутентификации, такие как Basic authentication или OAuth.

И так пока мы задумались о безопасности, давайте рассмотрим вопросы применения в ваших запросах SSL-сертификатов.

Проверка подлинности SSL сертификата (SSL Certificate Verification)

Всякий раз, когда данные, которые вы пытаетесь отправить или получить, являются конфиденциальными, вы начинаете думать о вопросах их безопасности. Вы общаетесь с защищенными сайтами используя протокол HTTP, устанавливая шифрованное соединение с использованием SSL, это означает, что проверка SSL-сертификата целевого сервера имеет решающее значение.

Хорошей новостью является то, что используя в ваших проектах библиотеку requests, она делает это для вас по умолчанию. Тем не менее в некоторых случаях вы можете захотеть изменить или немножко подкорректировать это поведение.

И так если вы захотите отключить проверку SSL-сертификата на удаленном сервере, достаточно передать значение False в именованный параметр verify:

>>> requests.get('https://api.github.com', verify=False)
InsecureRequestWarning: Unverified HTTPS request is being made. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings
InsecureRequestWarning

<Response [200]>

Запрос успешен, и как мы видим, requests даже предупреждают вас о том, что вы отправили небезопасный запрос, чтобы помочь вам сохранить ваши данные в безопасности!

Примечание: requests использует другой отдельный пакет certifi для предоставления сертификатов. Это позволяет библиотеке requests знать, каким организациям, выпускающим сертификаты, можно доверять. Поэтому вам следует как можно чаще обновлять пакет certifi, установленный в вашей системе, чтобы обеспечить максимальную безопасность ваших соединений.

Производительность

При использовании requests, особенно при работе ваших приложений непосредственно в production environment среде, важно учитывать влияние производительности. Такие возможности приложения, как контроль над времени ожидания ответа сервера, сессиями и ограничение повторных попыток обращения к удаленным службам, помогут обеспечить бесперебойную и устойчивую работу вашего приложения.

Тайм-ауты Timeouts

Допустим ваше приложение отправляет запрос к некоторой удаленной службе, далее основной поток выполнения кода будет приостановлен, пока приложение будет дождаться ответа на отправленный запрос, и лишь после его получения продолжит свою работу. Конечно, если ваше приложение будет слишком долго ожидать ответ от сервера, то это может привести к следующим негативным последствиям: незавершенные запросы к удаленным службам могут автоматически сохраняться и накапливаться в памяти, пострадает отзывчивость интерфейса приложения на действия пользователя, а фоновые задания могут просто зависнуть.

Уточнение для тех, кто пока не сталкивался с этой проблемой. При выполнении синхронного кода каждая операция ожидает окончания предыдущей, то есть код выполняется строго последовательно в одном потоке. Поэтому приложение может зависнуть, если какая-то операция выполняется слишком долго.

Асинхронный код убирает блокирующую операцию из основного потока программы в отдельный, так что она продолжает выполняться, но в другой области памяти, а основной поток продолжает выполнение кода приложения.

По умолчанию requests будет ждать ответа на запрос от сервера до бесконечности, поэтому рекомендуется практически во всех случаях указывать интервал ожидания, чтобы избежать всех, перечисленных выше, негативных последствий. Чтобы установить интервал времени ожидания запроса, используйте именованный параметр timeout. Значение timeout может быть целым числом или числом с плавающей запятой, задающее количество секунд ожидания ответа от сервера до истечения времени ожидания:

>>> requests.get('https://api.github.com', timeout=1)
<Response [200]>
>>> requests.get('https://api.github.com', timeout=3.05)
<Response [200]>

В первом запросе время ожидания истекает через 1 секунду. Во втором — через 3,05 секунды.

Рекомендуется устанавливать timeout чуть больше 3 секунд, что определяется величиной кратной длительности по умолчанию окна повторной передачи TCP-пакетов.

В качестве значения параметра timeout можно так же передать кортеж, состоящий из двух значений (connect, read). Его первый элемент connect определяет тайм-аут соединения (время, которое выделяется на установление соединения с удаленным сервером), а второй read — тайм-аут чтения (время, ожидания ответа от сервера, после того, как соединение было установлено):

>>> requests.get('https://api.github.com', timeout=(2, 5))
<Response [200]>

И так если наш запрос устанавливает соединение с сервером в течение 2 секунд и получает от него данные в течение 5 секунд после установления соединения, то содержимое ответа сервера будет возвращено, как это было и раньше. Если же время ожидания истекло, то будет генерироваться исключение типа Timeout:

import requests
from requests.exceptions import Timeout

try:
    response = requests.get('https://api.github.com', timeout=1)
except Timeout:
    print('The request timed out')
else:
    print('The request did not time out')

Таким образом, при необходимости код вашего приложения может перехватить исключение Timeout и обработать его соответствующим образом.

Объект сессии Session

До сих пор мы имели дело с сетевыми интерфейсами запросов и API высокого уровня, такими как методы get() и post(). Эти методы абстрагирует пользователя от того, что происходит “под капотом” библиотеки, когда мы отправляем запросы. Они скрывают детали реализации, такие как управление соединениями, так что нам не приходится об этом задумывать при написании своих приложений.

Одну из основных ролей при абстрагировании пользователя от деталей работы библиотеки, играет класс Session. Если вы хотите осуществлять непосредственный контроль над выполнением запросов, а так же повысить их производительность, то вам необходимо использовать все возможности экземпляров класса Session.

Как мы уже знаем, сессии используются для сохранения некоторого набора настроек от запроса к запросу при обращении к какое-либо удаленной службе. Например, если вы хотите использовать одни и те же данные аутентификации в течение определенного периода времени для отправки нескольких запросов, то можете использовать сессии следующим образом:

import requests
from getpass import getpass

# Используем менеджер контекста так как в случае завершении работы сессии
# все использующиеся ресурсы будут автоматически освобождены
with requests.Session() as session:
    session.auth = ('username', getpass())

    # вместо requests.get(), используем session.get()
    response = session.get('https://api.github.com/user')

# просматриваем содержимое ответа
print(response.headers)
print(response.json())

Каждый раз, когда вы делаете запрос в течение сессии, начиная с того момента, как он был инициализирован с вашими учетными данными аутентификации, эти данные будут сохраняться в течении всей сессии, то есть пока вы используете текущий экземпляр класса Session.

Первичная оптимизация производительности с использованием механизма сессий происходит по причине того, что устанавливается постоянное соединение с сервером. Когда ваше приложение устанавливает соединение с сервером, используя сессии, происходит сохранение текущего соединения в общем пуле сервера. И когда ваше приложение снова захочет подключиться к тому же серверу, то будет повторно использоваться соединение из пула, а не устанавливать новое. Это позволяет сократить время обращения за данными к удаленной службе, что конечно же отражается на производительности вашего приложения.

Количество повторов запроса

В случае если ваш запрос по той или иной причине был неудачен, то вы можете указать приложению повторить тот же запрос заданное число раз. Однако requests не будет это делать для вас по умолчанию. Чтобы использовать эту возможность, необходимо реализовать свой так называемый транспортный адаптер Transport Adapter.

Транспортные адаптеры позволяют вам определить набор конфигураций (настроек) для взаимодействия с конкретной удаленной службой. Допустим, вы хотите, чтобы все запросы к точке доступа https://api.github.com повторялись три раза, прежде чем, наконец, будет генерироваться исключение типа ConnectionError.

import requests
from requests.adapters import HTTPAdapter
from requests.exceptions import ConnectionError

github_adapter = HTTPAdapter(max_retries=3)

session = requests.Session()

# Используйте `github_adapter` для всех запросов к конечным точкам, 
# которые начинаются с этого URL
session.mount('https://api.github.com', github_adapter)

try:
    session.get('https://api.github.com')
except ConnectionError as ce:
    print(ce)

В тех случаях, когда вы используете объект github_adapter класса HTTPAdapter в текущей сессии, в объекте session будут сохраняться заданные вами свойства конфигурации для каждого запроса, отправляемого по адресу https://api.github.com.

Вызов метода монтирования регистрирует новый экземпляр транспортного адаптера для указанного префикса (подстроки адреса). После его подключения любой HTTP-запрос, выполненный с использованием этой сессии, URL-адрес которого начинается с указанного префикса, будет использовать транспортный адаптер github_adapter. При создании нового объекта класса HTTPAdapter именованному параметру max_retries передается значение 3, количество повторов запроса, после чего будет генерироваться исключение ConnectionError. С другими настройками транспортных адаптеров, а так же, для каких целей могут использоваться, вы можете ознакомиться в официальной документации.

Заключение

И так мы прошли долгий путь в изучении возможностей Python библиотеки requests.

Теперь вы умеете:

  1. Отправлять запросы, используя различные методы протокола HTTP, такие как GET, POST и т.д.
  2. Управлять отправляемыми запросами с помощью настроек, изменять их заголовки, данные аутентификации, строку запроса и полезное содержимое сообщений.
  3. Просматривать и обрабатывать данные, которые вы отправляете на сервер, а так же данные, которые сервер посылает вам обратно.
  4. Использовать процедуру проверки SSL-сертификатов в ходе взаимодействия с удаленным сервером.
  5. Эффективно использовать различные возможности requests для повышения эффективности и производительности ваших приложений, например, max_retries, timeout, Sessions и Transport Adapters.

Поскольку теперь мы познакомились, с использованием библиотеки requests то, у вас появилась отличная возможность самостоятельно исследовать особенности взаимодействия с различными веб-сервисами и создавать потрясающие приложения, используя полезные данные, которые они предоставляют по вашим запросам.

Библиотека requests является стандартным инструментом для составления HTTP-запросов в Python. Простой и аккуратный API значительно облегчает трудоемкий процесс создания запросов. Таким образом, можно сосредоточиться на взаимодействии со службами и использовании данных в приложении.

Содержание статьи

  • Python установка библиотеки requests
  • Python библиотека Requests метод GET
  • Объект Response получение ответа на запрос в Python
  • HTTP коды состояний
  • Получить содержимое страницы в Requests
  • HTTP заголовки в Requests
  • Python Requests параметры запроса
  • Настройка HTTP заголовка запроса (headers)
  • Примеры HTTP методов в Requests
  • Python Requests тело сообщения
  • Python Requests анализ запроса
  • Python Requests аутентификация HTTP AUTH
  • Python Requests проверка SSL сертификата
  • Python Requests производительность приложений
  • Объект Session в Requests
  • HTTPAdapter — Максимальное количество повторов запроса в Requests

В данной статье представлены наиболее полезные особенности requests. Показано, как изменить и приспособить requests к различным ситуациям, с которыми программисты сталкиваются чаще всего. Здесь также даются советы по эффективному использованию requests и предотвращению влияния сторонних служб, которые могут сильно замедлить работу используемого приложения. Мы использовали библиотек requests в уроке по парсингу html через библиотеку BeautifulSoup.

Ключевые аспекты инструкции:

  • Создание запросов при помощи самых популярных HTTP методов;
  • Редактирование заголовков запросов и данных при помощи строки запроса и содержимого сообщения;
  • Анализ данных запросов и откликов;
  • Создание авторизированных запросов;
  • Настройка запросов для предотвращения сбоев и замедления работы приложения.

В статье собран оптимальный набор информации, необходимый для понимания данных примеров и особенностей их использования. Информация представлена в доступной в форме. Тем не менее, стоит иметь в виду, что для оптимального разбора инструкции потребуются хотя бы базовые знания HTTP.

Далее будут показаны наиболее эффективные методы использования requests в разрабатываемом приложении.

Python установка библиотеки requests

Для начала работы потребуется установить библиотеку requests. Для этого используется следующая команда.

Есть вопросы по Python?

На нашем форуме вы можете задать любой вопрос и получить ответ от всего нашего сообщества!

Telegram Чат & Канал

Вступите в наш дружный чат по Python и начните общение с единомышленниками! Станьте частью большого сообщества!

Паблик VK

Одно из самых больших сообществ по Python в социальной сети ВК. Видео уроки и книги для вас!

Тем, кто для работы с пакетами Python, использует виртуальную среду Pipenv, необходимо использовать немного другую команду.

$ pipenv install requests

Сразу после установки requests можно полноценно использовать в приложении. Импорт requests производится следующим образом.

Таким образом, все подготовительные этапы для последующего использования requests завершены. Начинать изучение requests лучше всего с того, как сделать запрос GET.

Python библиотека Requests метод GET

Такие HTTP методы, как GET и POST, определяют, какие действия будут выполнены при создании HTTP запроса. Помимо GET и POST для этой задачи могут быть использованы некоторые другие методы. Далее они также будут описаны в руководстве.

GET является одним из самых популярных HTTP методов. Метод GET указывает на то, что происходит попытка извлечь данные из определенного ресурса. Для того, чтобы выполнить запрос GET, используется requests.get().

Для проверки работы команды будет выполнен запрос GET в отношении Root REST API на GitHub. Для указанного ниже URL вызывается метод get().

requests.get(‘https://api.github.com’)

<Response [200]>

Если никакие python ошибки не возникло, вас можно поздравить – первый запрос успешно выполнен. Далее будет рассмотрен ответ на данный запрос, который можно получить при помощи объекта Response.

Объект Response получение ответа на запрос в Python

Response представляет собой довольно мощный объект для анализа результатов запроса. В качестве примера будет использован предыдущий запрос, только на этот раз результат будет представлен в виде переменной. Таким образом, получится лучше изучить его атрибуты и особенности использования.

response = requests.get(‘https://api.github.com’)

В данном примере при помощи get() захватывается определенное значение, что является частью объекта Response, и помещается в переменную под названием response. Теперь можно использовать переменную response для того, чтобы изучить данные, которые были получены в результате запроса GET.

HTTP коды состояний

Самыми первыми данными, которые будут получены через Response, будут коды состояния. Коды состояния сообщают о статусе запроса.

Например, статус 200 OK значит, что запрос успешно выполнен. А вот статус 404 NOT FOUND говорит о том, что запрашиваемый ресурс не был найден. Существует множество других статусных кодов, которые могут сообщить важную информацию, связанную с запросом.

Используя .status_code, можно увидеть код состояния, который возвращается с сервера.

>>> response.status_code

200

.status_code вернул значение 200. Это значит, что запрос был выполнен успешно, а сервер ответил, отобразив запрашиваемую информацию.

В некоторых случаях необходимо использовать полученную информацию для написания программного кода.

if response.status_code == 200:

    print(‘Success!’)

elif response.status_code == 404:

    print(‘Not Found.’)

В таком случае, если с сервера будет получен код состояния 200, тогда программа выведет значение Success!. Однако, если от сервера поступит код 404, тогда программа выведет значение Not Found.
requests может значительно упростить весь процесс. Если использовать Response в условных конструкциях, то при получении кода состояния в промежутке от 200 до 400, будет выведено значение True. В противном случае отобразится значение False.

Последний пример можно упростить при помощи использования оператора if.

if response:

    print(‘Success!’)

else:

    print(‘An error has occurred.’)

Стоит иметь в виду, что данный способ не проверяет, имеет ли статусный код точное значение 200. Причина заключается в том, что другие коды в промежутке от 200 до 400, например, 204 NO CONTENT и 304 NOT MODIFIED, также считаются успешными в случае, если они могут предоставить действительный ответ.

К примеру, код состояния 204 говорит о том, что ответ успешно получен, однако в полученном объекте нет содержимого. Можно сказать, что для оптимально эффективного использования способа необходимо убедиться, что начальный запрос был успешно выполнен. Требуется изучить код состояния и в случае необходимости произвести необходимые поправки, которые будут зависеть от значения полученного кода.

Допустим, если при использовании оператора if вы не хотите проверять код состояния, можно расширить диапазон исключений для неудачных результатов запроса. Это можно сделать при помощи использования .raise_for_status().

import requests

from requests.exceptions import HTTPError

for url in [‘https://api.github.com’, ‘https://api.github.com/invalid’]:

    try:

        response = requests.get(url)

        # если ответ успешен, исключения задействованы не будут

        response.raise_for_status()

    except HTTPError as http_err:

        print(f‘HTTP error occurred: {http_err}’)  # Python 3.6

    except Exception as err:

        print(f‘Other error occurred: {err}’)  # Python 3.6

    else:

        print(‘Success!’)

В случае вызова исключений через .raise_for_status() к некоторым кодам состояния применяется HTTPError. Когда код состояния показывает, что запрос успешно выполнен, программа продолжает работу без применения политики исключений.

На заметку. Для более продуктивной работы в Python 3.6 будет не лишним изучить f-строки. Не стоит пренебрегать ими, так как это отличный способ упростить форматирование строк.

Анализ способов использования кодов состояния, полученных с сервера, является неплохим стартом для изучения requests. Тем не менее, при создании запроса GET, значение кода состояния является не самой важной информацией, которую хочет получить программист. Обычно запрос производится для извлечения более содержательной информации. В дальнейшем будет показано, как добраться до актуальных данных, которые сервер высылает отправителю в ответ на запрос.

Зачастую ответ на запрос GET содержит весьма ценную информацию. Она находится в теле сообщения и называется пейлоад (payload). Используя атрибуты и методы библиотеки Response, можно получить пейлоад в различных форматах.

Для того, чтобы получить содержимое запроса в байтах, необходимо использовать .content.

>>> response = requests.get(‘https://api.github.com’)

>>> response.content

b‘{«current_user_url»:»https://api.github.com/user»,»current_user_authorizations_html_url»:»https://github.com/settings/connections/applications{/client_id}»,»authorizations_url»:»https://api.github.com/authorizations»,»code_search_url»:»https://api.github.com/search/code?q={query}{&page,per_page,sort,order}»,»commit_search_url»:»https://api.github.com/search/commits?q={query}{&page,per_page,sort,order}»,»emails_url»:»https://api.github.com/user/emails»,»emojis_url»:»https://api.github.com/emojis»,»events_url»:»https://api.github.com/events»,»feeds_url»:»https://api.github.com/feeds»,»followers_url»:»https://api.github.com/user/followers»,»following_url»:»https://api.github.com/user/following{/target}»,»gists_url»:»https://api.github.com/gists{/gist_id}»,»hub_url»:»https://api.github.com/hub»,»issue_search_url»:»https://api.github.com/search/issues?q={query}{&page,per_page,sort,order}»,»issues_url»:»https://api.github.com/issues»,»keys_url»:»https://api.github.com/user/keys»,»notifications_url»:»https://api.github.com/notifications»,»organization_repositories_url»:»https://api.github.com/orgs/{org}/repos{?type,page,per_page,sort}»,»organization_url»:»https://api.github.com/orgs/{org}»,»public_gists_url»:»https://api.github.com/gists/public»,»rate_limit_url»:»https://api.github.com/rate_limit»,»repository_url»:»https://api.github.com/repos/{owner}/{repo}»,»repository_search_url»:»https://api.github.com/search/repositories?q={query}{&page,per_page,sort,order}»,»current_user_repositories_url»:»https://api.github.com/user/repos{?type,page,per_page,sort}»,»starred_url»:»https://api.github.com/user/starred{/owner}{/repo}»,»starred_gists_url»:»https://api.github.com/gists/starred»,»team_url»:»https://api.github.com/teams»,»user_url»:»https://api.github.com/users/{user}»,»user_organizations_url»:»https://api.github.com/user/orgs»,»user_repositories_url»:»https://api.github.com/users/{user}/repos{?type,page,per_page,sort}»,»user_search_url»:»https://api.github.com/search/users?q={query}{&page,per_page,sort,order}»}’

Использование .content обеспечивает доступ к чистым байтам ответного пейлоада, то есть к любым данным в теле запроса. Однако, зачастую требуется конвертировать полученную информацию в строку в кодировке UTF-8. response делает это при помощи .text.

>>> response.text

‘{«current_user_url»:»https://api.github.com/user»,»current_user_authorizations_html_url»:»https://github.com/settings/connections/applications{/client_id}»,»authorizations_url»:»https://api.github.com/authorizations»,»code_search_url»:»https://api.github.com/search/code?q={query}{&page,per_page,sort,order}»,»commit_search_url»:»https://api.github.com/search/commits?q={query}{&page,per_page,sort,order}»,»emails_url»:»https://api.github.com/user/emails»,»emojis_url»:»https://api.github.com/emojis»,»events_url»:»https://api.github.com/events»,»feeds_url»:»https://api.github.com/feeds»,»followers_url»:»https://api.github.com/user/followers»,»following_url»:»https://api.github.com/user/following{/target}»,»gists_url»:»https://api.github.com/gists{/gist_id}»,»hub_url»:»https://api.github.com/hub»,»issue_search_url»:»https://api.github.com/search/issues?q={query}{&page,per_page,sort,order}»,»issues_url»:»https://api.github.com/issues»,»keys_url»:»https://api.github.com/user/keys»,»notifications_url»:»https://api.github.com/notifications»,»organization_repositories_url»:»https://api.github.com/orgs/{org}/repos{?type,page,per_page,sort}»,»organization_url»:»https://api.github.com/orgs/{org}»,»public_gists_url»:»https://api.github.com/gists/public»,»rate_limit_url»:»https://api.github.com/rate_limit»,»repository_url»:»https://api.github.com/repos/{owner}/{repo}»,»repository_search_url»:»https://api.github.com/search/repositories?q={query}{&page,per_page,sort,order}»,»current_user_repositories_url»:»https://api.github.com/user/repos{?type,page,per_page,sort}»,»starred_url»:»https://api.github.com/user/starred{/owner}{/repo}»,»starred_gists_url»:»https://api.github.com/gists/starred»,»team_url»:»https://api.github.com/teams»,»user_url»:»https://api.github.com/users/{user}»,»user_organizations_url»:»https://api.github.com/user/orgs»,»user_repositories_url»:»https://api.github.com/users/{user}/repos{?type,page,per_page,sort}»,»user_search_url»:»https://api.github.com/search/users?q={query}{&page,per_page,sort,order}»}’

Декодирование байтов в строку требует наличия определенной модели кодировки. По умолчанию requests попытается узнать текущую кодировку, ориентируясь по заголовкам HTTP. Указать необходимую кодировку можно при помощи добавления .encoding перед .text.

>>> response.encoding = ‘utf-8’ # Optional: requests infers this internally

>>> response.text

‘{«current_user_url»:»https://api.github.com/user»,»current_user_authorizations_html_url»:»https://github.com/settings/connections/applications{/client_id}»,»authorizations_url»:»https://api.github.com/authorizations»,»code_search_url»:»https://api.github.com/search/code?q={query}{&page,per_page,sort,order}»,»commit_search_url»:»https://api.github.com/search/commits?q={query}{&page,per_page,sort,order}»,»emails_url»:»https://api.github.com/user/emails»,»emojis_url»:»https://api.github.com/emojis»,»events_url»:»https://api.github.com/events»,»feeds_url»:»https://api.github.com/feeds»,»followers_url»:»https://api.github.com/user/followers»,»following_url»:»https://api.github.com/user/following{/target}»,»gists_url»:»https://api.github.com/gists{/gist_id}»,»hub_url»:»https://api.github.com/hub»,»issue_search_url»:»https://api.github.com/search/issues?q={query}{&page,per_page,sort,order}»,»issues_url»:»https://api.github.com/issues»,»keys_url»:»https://api.github.com/user/keys»,»notifications_url»:»https://api.github.com/notifications»,»organization_repositories_url»:»https://api.github.com/orgs/{org}/repos{?type,page,per_page,sort}»,»organization_url»:»https://api.github.com/orgs/{org}»,»public_gists_url»:»https://api.github.com/gists/public»,»rate_limit_url»:»https://api.github.com/rate_limit»,»repository_url»:»https://api.github.com/repos/{owner}/{repo}»,»repository_search_url»:»https://api.github.com/search/repositories?q={query}{&page,per_page,sort,order}»,»current_user_repositories_url»:»https://api.github.com/user/repos{?type,page,per_page,sort}»,»starred_url»:»https://api.github.com/user/starred{/owner}{/repo}»,»starred_gists_url»:»https://api.github.com/gists/starred»,»team_url»:»https://api.github.com/teams»,»user_url»:»https://api.github.com/users/{user}»,»user_organizations_url»:»https://api.github.com/user/orgs»,»user_repositories_url»:»https://api.github.com/users/{user}/repos{?type,page,per_page,sort}»,»user_search_url»:»https://api.github.com/search/users?q={query}{&page,per_page,sort,order}»}’

Если присмотреться к ответу, можно заметить, что его содержимое является сериализированным JSON контентом. Воспользовавшись словарем, можно взять полученные из .text строки str и провести с ними обратную сериализацию при помощи использования json.loads(). Есть и более простой способ, который требует применения .json().

>>> response.json()

{‘current_user_url’: ‘https://api.github.com/user’, ‘current_user_authorizations_html_url’: ‘https://github.com/settings/connections/applications{/client_id}’, ‘authorizations_url’: ‘https://api.github.com/authorizations’, ‘code_search_url’: ‘https://api.github.com/search/code?q={query}{&page,per_page,sort,order}’, ‘commit_search_url’: ‘https://api.github.com/search/commits?q={query}{&page,per_page,sort,order}’, ’emails_url’: ‘https://api.github.com/user/emails’, ’emojis_url’: ‘https://api.github.com/emojis’, ‘events_url’: ‘https://api.github.com/events’, ‘feeds_url’: ‘https://api.github.com/feeds’, ‘followers_url’: ‘https://api.github.com/user/followers’, ‘following_url’: ‘https://api.github.com/user/following{/target}’, ‘gists_url’: ‘https://api.github.com/gists{/gist_id}’, ‘hub_url’: ‘https://api.github.com/hub’, ‘issue_search_url’: ‘https://api.github.com/search/issues?q={query}{&page,per_page,sort,order}’, ‘issues_url’: ‘https://api.github.com/issues’, ‘keys_url’: ‘https://api.github.com/user/keys’, ‘notifications_url’: ‘https://api.github.com/notifications’, ‘organization_repositories_url’: ‘https://api.github.com/orgs/{org}/repos{?type,page,per_page,sort}’, ‘organization_url’: ‘https://api.github.com/orgs/{org}’, ‘public_gists_url’: ‘https://api.github.com/gists/public’, ‘rate_limit_url’: ‘https://api.github.com/rate_limit’, ‘repository_url’: ‘https://api.github.com/repos/{owner}/{repo}’, ‘repository_search_url’: ‘https://api.github.com/search/repositories?q={query}{&page,per_page,sort,order}’, ‘current_user_repositories_url’: ‘https://api.github.com/user/repos{?type,page,per_page,sort}’, ‘starred_url’: ‘https://api.github.com/user/starred{/owner}{/repo}’, ‘starred_gists_url’: ‘https://api.github.com/gists/starred’, ‘team_url’: ‘https://api.github.com/teams’, ‘user_url’: ‘https://api.github.com/users/{user}’, ‘user_organizations_url’: ‘https://api.github.com/user/orgs’, ‘user_repositories_url’: ‘https://api.github.com/users/{user}/repos{?type,page,per_page,sort}’, ‘user_search_url’: ‘https://api.github.com/search/users?q={query}{&page,per_page,sort,order}’}

Тип полученного значения из .json(), является словарем. Это значит, что доступ к его содержимому можно получить по ключу.

Коды состояния и тело сообщения предоставляют огромный диапазон возможностей. Однако, для их оптимального использования требуется изучить метаданные и заголовки HTTP.

HTTP заголовки ответов на запрос могут предоставить определенную полезную информацию. Это может быть тип содержимого ответного пейлоада, а также ограничение по времени для кеширования ответа. Для просмотра HTTP заголовков загляните в атрибут .headers.

>>> response.headers

{‘Server’: ‘GitHub.com’, ‘Date’: ‘Mon, 10 Dec 2018 17:49:54 GMT’, ‘Content-Type’: ‘application/json; charset=utf-8’, ‘Transfer-Encoding’: ‘chunked’, ‘Status’: ‘200 OK’, ‘X-RateLimit-Limit’: ’60’, ‘X-RateLimit-Remaining’: ’59’, ‘X-RateLimit-Reset’: ‘1544467794’, ‘Cache-Control’: ‘public, max-age=60, s-maxage=60’, ‘Vary’: ‘Accept’, ‘ETag’: ‘W/»7dc470913f1fe9bb6c7355b50a0737bc»‘, ‘X-GitHub-Media-Type’: ‘github.v3; format=json’, ‘Access-Control-Expose-Headers’: ‘ETag, Link, Location, Retry-After, X-GitHub-OTP, X-RateLimit-Limit, X-RateLimit-Remaining, X-RateLimit-Reset, X-OAuth-Scopes, X-Accepted-OAuth-Scopes, X-Poll-Interval, X-GitHub-Media-Type’, ‘Access-Control-Allow-Origin’: ‘*’, ‘Strict-Transport-Security’: ‘max-age=31536000; includeSubdomains; preload’, ‘X-Frame-Options’: ‘deny’, ‘X-Content-Type-Options’: ‘nosniff’, ‘X-XSS-Protection’: ‘1; mode=block’, ‘Referrer-Policy’: ‘origin-when-cross-origin, strict-origin-when-cross-origin’, ‘Content-Security-Policy’: «default-src ‘none'», ‘Content-Encoding’: ‘gzip’, ‘X-GitHub-Request-Id’: ‘E439:4581:CF2351:1CA3E06:5C0EA741’}

.headers возвращает словарь, что позволяет получить доступ к значению заголовка HTTP по ключу. Например, для просмотра типа содержимого ответного пейлоада, требуется использовать Content-Type.

>>> response.headers[‘Content-Type’]

‘application/json; charset=utf-8’

У объектов словарей в качестве заголовков есть своим особенности. Специфика HTTP предполагает, что заголовки не чувствительны к регистру. Это значит, что при получении доступа к заголовкам можно не беспокоится о том, использованы строчным или прописные буквы.

>>> response.headers[‘content-type’]

‘application/json; charset=utf-8’

При использовании ключей 'content-type' и 'Content-Type' результат будет получен один и тот же.

Это была основная информация, требуемая для работы с Response. Были задействованы главные атрибуты и методы, а также представлены примеры их использования. В дальнейшем будет показано, как изменится ответ после настройки запроса GET.

Python Requests параметры запроса

Наиболее простым способом настроить запрос GET является передача значений через параметры строки запроса в URL. При использовании метода get(), данные передаются в params. Например, для того, чтобы посмотреть на библиотеку requests можно использовать Search API на GitHub.

import requests

# Поиск местонахождения для запросов на GitHub

response = requests.get(

    ‘https://api.github.com/search/repositories’,

    params={‘q’: ‘requests+language:python’},

)

# Анализ некоторых атрибутов местонахождения запросов

json_response = response.json()

repository = json_response[‘items’][0]

print(f‘Repository name: {repository[«name»]}’)  # Python 3.6+

print(f‘Repository description: {repository[«description»]}’)  # Python 3.6+

Передавая словарь {'q': 'requests+language:python'} в параметр params, который является частью .get(), можно изменить ответ, что был получен при использовании Search API.

Можно передать параметры в get() в форме словаря, как было показано выше. Также можно использовать список кортежей.

>>> requests.get(

...     ‘https://api.github.com/search/repositories’,

...     params=[(‘q’, ‘requests+language:python’)],

... )

<Response [200]>

Также можно передать значение в байтах.

>>> requests.get(

...     ‘https://api.github.com/search/repositories’,

...     params=b‘q=requests+language:python’,

... )

<Response [200]>

Строки запроса полезны для уточнения параметров в запросах GET. Также можно настроить запросы при помощи добавления или изменения заголовков отправленных сообщений.

Для изменения HTTP заголовка требуется передать словарь данного HTTP заголовка в get() при помощи использования параметра headers. Например, можно изменить предыдущий поисковой запрос, подсветив совпадения в результате. Для этого в заголовке Accept медиа тип уточняется при помощи text-match.

import requests

response = requests.get(

    ‘https://api.github.com/search/repositories’,

    params={‘q’: ‘requests+language:python’},

    headers={‘Accept’: ‘application/vnd.github.v3.text-match+json’},

)

# просмотр нового массива `text-matches` с предоставленными данными

# о поиске в пределах результатов

json_response = response.json()

repository = json_response[‘items’][0]

print(f‘Text matches: {repository[«text_matches»]}’)

Заголовок Accept сообщает серверу о типах контента, который можно использовать в рассматриваемом приложении. Здесь подразумевается, что все совпадения будут подсвечены, для чего в заголовке используется значение application/vnd.github.v3.text-match+json. Это уникальный заголовок Accept для GitHub. В данном случае содержимое представлено в специальном JSON формате.

Перед более глубоким изучением способов редактирования запросов, будет не лишним остановиться на некоторых других методах HTTP.

Примеры HTTP методов в Requests

Помимо GET, большой популярностью пользуются такие методы, как POST, PUT, DELETE, HEAD, PATCH и OPTIONS. Для каждого из этих методов существует своя сигнатура, которая очень похожа на метод get().

>>> requests.post(‘https://httpbin.org/post’, data={‘key’:‘value’})

>>> requests.put(‘https://httpbin.org/put’, data={‘key’:‘value’})

>>> requests.delete(‘https://httpbin.org/delete’)

>>> requests.head(‘https://httpbin.org/get’)

>>> requests.patch(‘https://httpbin.org/patch’, data={‘key’:‘value’})

>>> requests.options(‘https://httpbin.org/get’)

Каждая функция создает запрос к httpbin сервису, используя при этом ответный HTTP метод. Результат каждого метода можно изучить способом, который был использован в предыдущих примерах.

>>> response = requests.head(‘https://httpbin.org/get’)

>>> response.headers[‘Content-Type’]

‘application/json’

>>> response = requests.delete(‘https://httpbin.org/delete’)

>>> json_response = response.json()

>>> json_response[‘args’]

{}

При использовании каждого из данных методов в Response могут быть возвращены заголовки, тело запроса, коды состояния и многие другие аспекты. Методы POST, PUT и PATCH в дальнейшем будут описаны более подробно.

Python Requests тело сообщения

В соответствии со спецификацией HTTP запросы POST, PUT и PATCH передают информацию через тело сообщения, а не через параметры строки запроса. Используя requests, можно передать данные в параметр data.

В свою очередь data использует словарь, список кортежей, байтов или объект файла. Это особенно важно, так как может возникнуть необходимость адаптации отправляемых с запросом данных в соответствии с определенными параметрами сервера.

К примеру, если тип содержимого запроса application/x-www-form-urlencoded, можно отправить данные формы в виде словаря.

>>> requests.post(‘https://httpbin.org/post’, data={‘key’:‘value’})

<Response [200]>

Ту же самую информацию также можно отправить в виде списка кортежей.

>>> requests.post(‘https://httpbin.org/post’, data=[(‘key’, ‘value’)])

<Response [200]>

В том случае, если требуется отравить данные JSON, можно использовать параметр json. При передачи данных JSON через json, requests произведет сериализацию данных и добавит правильный Content-Type заголовок.

Стоит взять на заметку сайт httpbin.org. Это чрезвычайно полезный ресурс, созданный человеком, который внедрил использование requests – Кеннетом Рейтцом. Данный сервис предназначен для тестовых запросов. Здесь можно составить пробный запрос и получить ответ с требуемой информацией. В качестве примера рассмотрим базовый запрос с использованием POST.

>>> response = requests.post(‘https://httpbin.org/post’, json={‘key’:‘value’})

>>> json_response = response.json()

>>> json_response[‘data’]

‘{«key»: «value»}’

>>> json_response[‘headers’][‘Content-Type’]

‘application/json’

Здесь видно, что сервер получил данные и HTTP заголовки, отправленные вместе с запросом. requests также предоставляет информацию в форме PreparedRequest.

Python Requests анализ запроса

При составлении запроса стоит иметь в виду, что перед его фактической отправкой на целевой сервер библиотека requests выполняет определенную подготовку. Подготовка запроса включает в себя такие вещи, как проверка заголовков и сериализация содержимого JSON.

Если открыть .request, можно просмотреть PreparedRequest.

>>> response = requests.post(‘https://httpbin.org/post’, json={‘key’:‘value’})

>>> response.request.headers[‘Content-Type’]

‘application/json’

>>> response.request.url

‘https://httpbin.org/post’

>>> response.request.body

b‘{«key»: «value»}’

Проверка PreparedRequest открывает доступ ко всей информации о выполняемом запросе. Это может быть пейлоад, URL, заголовки, аутентификация и многое другое.

У всех описанных ранее типов запросов была одна общая черта – они представляли собой неаутентифицированные запросы к публичным API. Однако, подобающее большинство служб, с которыми может столкнуться пользователь, запрашивают аутентификацию.

Python Requests аутентификация HTTP AUTH

Аутентификация помогает сервису понять, кто вы. Как правило, вы предоставляете свои учетные данные на сервер, передавая данные через заголовок Authorization или пользовательский заголовок, определенной службы. Все функции запроса, которые вы видели до этого момента, предоставляют параметр с именем auth, который позволяет вам передавать свои учетные данные.

Одним из примеров API, который требует аутентификации, является Authenticated User API на GitHub. Это конечная точка веб-сервиса, которая предоставляет информацию о профиле аутентифицированного пользователя. Чтобы отправить запрос API-интерфейсу аутентифицированного пользователя, вы можете передать свое имя пользователя и пароль на GitHub через кортеж в get().

>>> from getpass import getpass

>>> requests.get(‘https://api.github.com/user’, auth=(‘username’, getpass()))

<Response [200]>

Запрос выполнен успешно, если учетные данные, которые вы передали в кортеже auth, действительны. Если вы попытаетесь сделать этот запрос без учетных данных, вы увидите, что код состояния 401 Unauthorized.

>>> requests.get(‘https://api.github.com/user’)

<Response [401]>

Когда вы передаете имя пользователя и пароль в кортеже параметру auth, вы используете учетные данные при помощи базовой схемы аутентификации HTTP.

Таким образом, вы можете создать тот же запрос, передав подробные учетные данные базовой аутентификации, используя HTTPBasicAuth.

>>> from requests.auth import HTTPBasicAuth

>>> from getpass import getpass

>>> requests.get(

...     ‘https://api.github.com/user’,

...     auth=HTTPBasicAuth(‘username’, getpass())

... )

<Response [200]>

Хотя вам не нужно явно указывать обычную аутентификацию, может потребоваться аутентификация с использованием другого метода. requests предоставляет другие методы аутентификации, например, HTTPDigestAuth и HTTPProxyAuth.

Вы даже можете предоставить свой собственный механизм аутентификации. Для этого необходимо сначала создать подкласс AuthBase. Затем происходит имплементация __call__().

import requests

from requests.auth import AuthBase

class TokenAuth(AuthBase):

    «»»Implements a custom authentication scheme.»»»

    def __init__(self, token):

        self.token = token

    def __call__(self, r):

        «»»Attach an API token to a custom auth header.»»»

        r.headers[‘X-TokenAuth’] = f‘{self.token}’  # Python 3.6+

        return r

requests.get(‘https://httpbin.org/get’, auth=TokenAuth(‘12345abcde-token’))

Здесь пользовательский механизм TokenAuth получает специальный токен. Затем этот токен включается заголовок X-TokenAuth запроса.

Плохие механизмы аутентификации могут привести к уязвимостям безопасности, поэтому, если службе по какой-то причине не нужен настраиваемый механизм аутентификации, вы всегда можете использовать проверенную схему аутентификации, такую как Basic или OAuth.

Пока вы думаете о безопасности, давайте рассмотрим использование requests в SSL сертификатах.

Python Requests проверка SSL сертификата

Всякий раз, когда данные, которые вы пытаетесь отправить или получить, являются конфиденциальными, безопасность важна. Вы общаетесь с защищенными сайтами через HTTP, устанавливая зашифрованное соединение с использованием SSL, что означает, что проверка SSL сертификата целевого сервера имеет решающее значение.

Хорошей новостью является то, что requests по умолчанию все делает сам. Однако в некоторых случаях необходимо внести определенные поправки.

Если требуется отключить проверку SSL-сертификата, параметру verify функции запроса можно присвоить значение False.

>>> requests.get(‘https://api.github.com’, verify=False)

InsecureRequestWarning: Unverified HTTPS request is being made. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advancedusage.html#ssl-warnings

  InsecureRequestWarning)

<Response [200]>

В случае небезопасного запроса requests предупреждает о возможности потери информации и просит сохранить данные или отказаться от запроса.

Примечание. Для предоставления сертификатов requests использует пакет, который вызывается certifi. Это дает понять requests, каким ответам можно доверять. Поэтому вам следует часто обновлять certifi, чтобы обеспечить максимальную безопасность ваших соединений.

Python Requests производительность приложений

При использовании requests, особенно в среде приложений, важно учитывать влияние на производительность. Такие функции, как контроль таймаута, сеансы и ограничения повторных попыток, могут помочь обеспечить бесперебойную работу приложения.

Таймауты

Когда вы отправляете встроенный запрос во внешнюю службу, вашей системе нужно будет дождаться ответа, прежде чем двигаться дальше. Если ваше приложение слишком долго ожидает ответа, запросы к службе могут быть сохранены, пользовательский интерфейс может пострадать или фоновые задания могут зависнуть.

По умолчанию в requests на ответ время не ограничено, и весь процесс может занять значительный промежуток. По этой причине вы всегда должны указывать время ожидания, чтобы такого не происходило. Чтобы установить время ожидания запроса, используйте параметр timeout. timeout может быть целым числом или числом с плавающей точкой, представляющим количество секунд ожидания ответа до истечения времени ожидания.

>>> requests.get(‘https://api.github.com’, timeout=1)

<Response [200]>

>>> requests.get(‘https://api.github.com’, timeout=3.05)

<Response [200]>

В первом примере запрос истекает через 1 секунду. Во втором примере запрос истекает через 3,05 секунды.

Вы также можете передать кортеж. Это – таймаут соединения (время, за которое клиент может установить соединение с сервером), а второй – таймаут чтения (время ожидания ответа, как только ваш клиент установил соединение):

>>> requests.get(‘https://api.github.com’, timeout=(2, 5))

<Response [200]>

Если запрос устанавливает соединение в течение 2 секунд и получает данные в течение 5 секунд после установления соединения, то ответ будет возвращен, как это было раньше. Если время ожидания истекло, функция вызовет исключение Timeout.

import requests

from requests.exceptions import Timeout

try:

    response = requests.get(‘https://api.github.com’, timeout=1)

except Timeout:

    print(‘The request timed out’)

else:

    print(‘The request did not time out’)

Ваша программа может поймать исключение Timeout и ответить соответственно.

Объект Session в Requests

До сих пор вы имели дело с requests API высокого уровня, такими как get() и post(). Эти функции являются абстракцией того, что происходит, когда вы делаете свои запросы. Они скрывают детали реализации, такие как управление соединениями, так что вам не нужно о них беспокоиться.

Под этими абстракциями находится класс под названием Session. Если вам необходимо настроить контроль над выполнением запросов или повысить производительность ваших запросов, вам может потребоваться использовать Session напрямую.

Сессии используются для сохранения параметров в запросах.

Например, если вы хотите использовать одну и ту же аутентификацию для нескольких запросов, вы можете использовать сеанс:

import requests

from getpass import getpass

# используя менеджер контента, можно убедиться, что ресурсы, применимые

# во время сессии будут свободны после использования

with requests.Session() as session:

    session.auth = (‘username’, getpass())

    # Instead of requests.get(), you’ll use session.get()

    response = session.get(‘https://api.github.com/user’)

# здесь можно изучить ответ

print(response.headers)

print(response.json())

Каждый раз, когда вы делаете запрос session, после того как он был инициализирован с учетными данными аутентификации, учетные данные будут сохраняться.

Первичная оптимизация производительности сеансов происходит в форме постоянных соединений. Когда ваше приложение устанавливает соединение с сервером с помощью Session, оно сохраняет это соединение в пуле соединений. Когда ваше приложение снова хочет подключиться к тому же серверу, оно будет использовать соединение из пула, а не устанавливать новое.

HTTPAdapter — Максимальное количество повторов запроса в Requests

В случае сбоя запроса возникает необходимость сделать повторный запрос. Однако requests не будет делать это самостоятельно. Для применения функции повторного запроса требуется реализовать собственный транспортный адаптер.

Транспортные адаптеры позволяют определить набор конфигураций для каждой службы, с которой вы взаимодействуете. Предположим, вы хотите, чтобы все запросы к https://api.github.com были повторены три раза, прежде чем, наконец, появится ConnectionError. Для этого нужно построить транспортный адаптер, установить его параметр max_retries и подключить его к существующему объекту Session.

import requests

from requests.adapters import HTTPAdapter

from requests.exceptions import ConnectionError

github_adapter = HTTPAdapter(max_retries=3)

session = requests.Session()

# использование `github_adapter` для всех запросов, которые начинаются с указанным URL

session.mount(‘https://api.github.com’, github_adapter)

try:

    session.get(‘https://api.github.com’)

except ConnectionError as ce:

    print(ce)

При установке HTTPAdapter, github_adapter к session, session будет придерживаться своей конфигурации для каждого запроса к https://api.github.com.

Таймауты, транспортные адаптеры и сессии предназначены для обеспечения эффективности используемого кода и стабильности приложения.

Заключение

Изучение библиотеки Python requests является очень трудоемким процессом.

После разбора данных в статье примеров можно научиться тому, как:

  • Создавать запросы, используя различные методы HTTPGET, POST и PUT;
  • Настраивать свои запросы, изменив заголовки, аутентификацию, строки запросов и тела сообщений;
  • Проверять данные, которые были отправлены на сервер, а также те данные, которые сервер отправил обратно;
  • Работать с проверкой SSL сертификата;
  • Эффективно использовать requests, max_retries, timeout, Sessions и транспортные адаптеры.

Грамотное использование requests позволит наиболее эффективно настроить разрабатываемые приложения, исследуя широкий спектр веб-сервисов и данных, опубликованных на них.

  • Данная статья является переводом статьи: Python’s Requests Library (Guide)
  • Изображение статьи принадлежит сайту © RealPython

Являюсь администратором нескольких порталов по обучению языков программирования Python, Golang и Kotlin. В составе небольшой команды единомышленников, мы занимаемся популяризацией языков программирования на русскоязычную аудиторию. Большая часть статей была адаптирована нами на русский язык и распространяется бесплатно.

E-mail: vasile.buldumac@ati.utm.md

Образование
Universitatea Tehnică a Moldovei (utm.md)

  • 2014 — 2018 Технический Университет Молдовы, ИТ-Инженер. Тема дипломной работы «Автоматизация покупки и продажи криптовалюты используя технический анализ»
  • 2018 — 2020 Технический Университет Молдовы, Магистр, Магистерская диссертация «Идентификация человека в киберпространстве по фотографии лица»

Requests — это модуль для языка Python, который используют для упрощения работы с HTTP-запросами. Он удобнее и проще встроенного Urllib настолько, что даже в документации Python рекомендовано использовать Requests.

Установка библиотеки Requests

Самый простой вариант установки сторонних пакетов в Python — использовать pip — систему управления пакетами. Обычно pip предустанавливается вместе с интерпретатором. Если его нет — можно скачать. Для этого нужно ввести в командную строку:

Linux / MacOS

python -m ensurepip --upgrade

Windows

py -m ensurepip --upgrade

Когда pip установлен, для установки модуля Requests нужно ввести команду:

pip install requests

Как настроить библиотеку Requests. Библиотека не требует дополнительной настройки — ею можно сразу же пользоваться.

Начало работы. Давайте рассмотрим пример простейшего запроса в модуле Requests:

import requests # делаем запрос на чтение страницы https://sky.pro/media/
response = requests.get('https://sky.pro/media/')
print(response.ok)  # проверяем успешен ли запрос?
print(response.text)  # выводим полученный ответ на экран

А вот как сделать то же самое, но при помощи встроенной библиотеки Urllib:

from urllib.request import urlopen

# открываем запрос на чтение страницы http://sky.pro/media
with urlopen('http://sky.pro/media') as response:
   response_status = response.status  # сохраняем статус запроса в переменную
   html = response.read()  # вычитываем ответ в переменную

print(response_status == 200)  # проверяем успешен ли запрос
print(html.decode())  # выводим полученный ответ на экран

Модуль Requests в Python упрощает и автоматизирует многие действия, которые в стандартной библиотеке надо делать самостоятельно. Именно за это её любят и используют многие разработчики.

Давайте разберёмся, как работать с Requests, и из чего состоят HTTP-запросы.

Методы HTTP-запросов

HTTP — это протокол передачи информации в интернете. Он описывает правила и формат общения между двумя сторонами. Например, как браузеру описать запрос, а серверу — сформировать ответ. HTTP — это текстовый протокол, поэтому его может прочитать и человек.

Давайте разберем простейший запрос:

GET /media/ HTTP/1.1
Host: sky.pro

Первая строка формирует запрос: мы говорим серверу, что хотим прочитать (GET) ресурс по адресу /media/. В конце указывается версия протокола: HTTP/1.1.

Начиная со второй строки передается дополнительная информация, которая называется заголовками. Она опциональная — кроме заголовка Host. Он указывает домен, на котором находится запрашиваемый ресурс.

HTTP-ответ выглядит аналогично:

HTTP/1.1 200 OK
Content-Type: text/html
<тело ответа>

В первой строке указывается версия протокола и код ответа — статус, который описывает результат запроса. В следующих строках, так же, как и в запросе, перечисляются заголовки. В данном случае сервер говорит, что в ответе находится HTML-страница (Content-Type: text/html).

И в самом конце находится тело ответа: файл, HTML-страница или ничего. Браузер отрисовывает тело ответа — это уже то, что видит человек, когда загружает страницу.

Методы HTTP-запросов нужны, чтобы объяснить серверу, какое действие мы хотим совершить над ресурсом. Ресурс — это цель HTTP-запроса. Это может быть документ, фотография или просто веб-страница.

Разберем на примерах распространённые методы — в чём их суть и чем они отличаются. Важно: ниже разбираются механизмы работы каждого метода в том виде, в котором они описаны в спецификации. На практике поведение может отличаться, но такое встречается нечасто.

OPTIONS

Метод OPTIONS нужен, чтобы спросить сервер о том, какие методы поддерживает ресурс. Он редко используется напрямую, обычно вызывается браузером автоматически. Поддерживается не всеми сайтами/ресурсами. Пример:

HTTP-ответ выглядит аналогично:

import requests
response = requests.options('https://httpbin.org')
print(response.text)  # будет пустым
print(response.headers['Allow'])  # 'HEAD, GET, OPTIONS'

GET

GET — самый распространённый HTTP-метод. Его используют для чтения интернет-ресурса. Браузер отправляет метод GET, когда мы открываем какой-либо сайт. Пример:

import requests
response = requests.get('https://httpbin.org/get')
print(response.text)

POST

Метод POST используют для отправки на сервер данных, которые передаются в теле запроса. Для этого при вызове requests.post() надо указать аргумент data, который принимает на вход словарь, список кортежей, байты или файл.

Если для передачи данных используется формат JSON, вместо data можно указать json. Это просто удобная конвенция, которая правильно формирует отправляемый запрос. Пример:

import requests
data_response = requests.post('https://httpbin.org/post', data={'foo': 'bar'})
print(data_response.text)  # переданные данные находятся по ключу form
json_response = requests.post('https://httpbin.org/post', json={'foo': 'bar'})
print(data_response.text)  # ключ form пустой, теперь данные лежат в json

HEAD

Этот метод очень похож на GET — с той лишь разницей, что HEAD возвращает пустое тело ответа. Он нужен, когда нужно посмотреть только на заголовки, не загружая ответ целиком.

Например, мы хотим иметь свежую версию PDF-файла с расписанием автобусов. Файл хранится на каком-то сайте и периодически обновляется. Вместо того, чтобы каждый раз скачивать и сверять файл вручную, можно использовать метод HEAD. Он поможет быстро проверить дату изменения файла по заголовкам ответа.

import requests
response = requests.get('https://httpbin.org/head')
print(response.text)  # ответ будет пустым
print(response.headers)

PUT

Метод PUT очень похож на POST — с той разницей, что несколько последовательных вызовов PUT должны приводить к одному и тому же результату.

POST этого не гарантирует и может привести к неожиданным результатам, например к дублированию созданной сущности.

import requests
response = requests.put('https://httpbin.org/put', data={'foo': 'bar'})
print(response.text)

PATCH

PATCH аналогичен методу POST, но с двумя отличиями: он используется для частичных изменений ресурса и его нельзя использовать в HTML-формах.

В теле запроса передается набор модификаций, которые надо применить.

import requests
response = requests.patch('https://httpbin.org/patch', data={'foo': 'bar'})
print(response.text)

DELETE

Метод используется для удаления ресурса. Поддерживает передачу данных, однако не требует её: тело запроса может быть пустым.

Как и PUT, последовательный вызов DELETE должен приводить к одному и тому же результату.

import requests
response = requests.delete('https://httpbin.org/delete')
print(response.text)

HTTP-коды состояний

Каждый ответ HTTP-запроса обязательно имеет код состояния — трехзначное число, которое как-то характеризует полученный результат. По этому коду можно понять, всё ли успешно отработало, и если произошла ошибка, то почему.

Всего выделяют пять групп кодов состояний:

1хх-коды.

К этой группе относятся информационные коды состояний. Они сообщают клиенту о промежуточном статусе запроса и не являются финальным результатом.

Их немного, и останавливаться на них мы не будем, потому что они встречаются нечасто.

2хх-коды.

Коды из этой группы означают, что запрос принят и обработан сервером без ошибок:

  • 200 OK — запрос выполнен успешно. Чаще всего встречается именно это число.
  • 201 Created — в результате запроса был создан новый ресурс. Как правило, этим кодом отвечают на POST- и иногда PUT-запросы.
  • 202 Accepted — запрос принят, но ещё не выполнен. Используется, когда по какой-то причине сервер не может выполнить его сразу. Например, если обработку делает какой-то сторонний процесс, который выполняется раз в день.
  • 204 No Content — указывает, что тело ответа пустое, но заголовки могут содержать полезную информацию. Не используется с методом HEAD, поскольку ответ на него всегда должен быть пустым.

3хх-коды.

Это группа кодов перенаправления. Это значит, что клиенту нужно сделать какое-то действие, чтобы запрос продолжил выполняться:

  • 301 Moved Permanently — URL запрашиваемого ресурса изменился, новый URL содержится в ответе.
  • 302 Found — аналогичен предыдущему коду. Отличие в том, что URL изменился временно. При этом статусе состояния поисковые системы не будут менять ссылку в своей поисковой выдаче на новую.
  • 304 Not Modified — означает, что содержимое ресурса было закешировано, его содержимое не поменялось и запрос можно не продолжать.

4хх-коды.

Это коды ошибок, которые допустил клиент при формировании запроса:

  • 400 Bad Request — запрос сформирован с ошибкой, поэтому сервер не может его обработать. Причин может быть много, но чаще всего ошибку надо искать в теле запроса.
  • 401 Unauthorized — для продолжения необходимо залогиниться.
  • 403 Forbidden — пользователь залогинен, но у него нет прав для доступа к ресурсу.
  • 404 Not Found — всем известный код: страница не найдена. Некоторые сайты могут возвращать 404 вместо 403, чтобы скрыть информацию от неавторизованных пользователей.
  • 405 Method Not Allowed — данный ресурс не поддерживает метод запроса. Например, так бывает, если разработчик хочет отправить PUT-запрос на ресурс, который его не поддерживает.
  • 429 Too Many Requests — означает, что сработал защитный механизм: он ограничивает слишком частые запросы от одного пользователя. Таким образом защищаются от DDoS- или brute-force-атак.

5хх-коды.

Это ошибки, которые возникли на сервере во время выполнения запроса:

  • 500 Internal Server Error — на сервере произошла неожиданная ошибка. Как правило, происходит из-за того, что в коде сервера возникает исключение.
  • 502 Bad Gateway — возникает, если на сервере используется обратный прокси, который не смог достучаться до приложения.
  • 503 Service Unavailable — сервер пока не готов обработать запрос. В ответе также может содержаться информация о том, когда сервис станет доступен.
  • 504 Gateway Timeout — эта ошибка означает, что обратный прокси не смог получить ответ за отведенное время (обычно — 60 секунд).

Заголовки, текст ответа и файлы Cookie

Теперь рассмотрим, как работать с запросами и ответами в Requests. Чтобы увидеть результат HTTP-запроса, можно использовать один из трех способов.

Выбор способа зависит от того, какие данные мы получили. В непонятной ситуации можно использовать атрибут text, который возвращает содержимое в виде строки:

import requests
response = requests.get('https://httpbin.org/get')
print(response.text)

Если заранее известно, что ответ будет в формате JSON, можно использовать одноименный атрибут, который автоматически распарсит ответ и вернет его в виде словаря:

json_response = response.json()
print(json_response)

Обратите внимание, как изменится вывод функции print().

Наконец, если ответом на запрос является файл, стоит использовать атрибут content, который возвращает байты:

import requests
response = requests.get('https://httpbin.org/image/jpeg')
print(response.content)

Попробуйте вывести на экран response.text для предыдущего запроса и сравните результат.

Заголовок — это дополнительная информация, которой обмениваются клиент и сервер. В заголовках могут содержаться: размер ответа (Content-Length), формат передаваемых данных (Content-Type) или информация о клиенте (User-Agent).

Полный список очень длинный, знать их все необязательно, а часть и вовсе подставляется автоматом. Например, модуль Requests зачастую сам проставляет Content-Type — формат передаваемых данных.

Заголовок состоит из названия и значения, которые разделяются двоеточием, поэтому удобнее всего передавать их в виде словаря. Рассмотрим на примере, как это работает:

import requests
response = requests.get('https://httpbin.org/image', headers={'Accept': 'image/jpeg'})
print(response.headers)

Здесь мы передали заголовок, который указывает, в каком формате мы хотим получить изображение. Попробуйте поменять значение на image/png и посмотрите, как изменится ответ.

Так же можно посмотреть и на заголовки запроса:

print(response.request.headers)

Обратите внимание, что Requests сам подставил информацию о клиенте — User-Agent.

Cookie (куки) — это информация, которую сервер отправляет браузеру для хранения. Они позволяют зафиксировать некоторое состояние. Например, в куки может храниться информация о том, что пользователь уже залогинен. Она хранится в браузере и передается на сервер при каждом запросе, поэтому нам не нужно каждый раз проходить авторизацию заново.

Работать с куками в модуле Requests очень просто:

import requests
response = requests.get('https://httpbin.org/cookies', cookies={'foo': 'bar'})
print(response.text)

Посмотреть, какие куки пришли от сервера, можно при помощи атрибута cookies объекта Response:

print(response.cookies)

Как отправлять запросы при помощи Python Requests

Рассмотрим несколько частых примеров использования модуля Requests, чтобы понять, как отправлять запросы.

Скачивание файлов

import requests
response = requests.get('https://www.python.org/static/img/python-logo.png')
with open('python_logo.png', 'wb') as image:
    image.write(response.content)

Выше описан не самый эффективный способ скачивания файлов. Если файл окажется большого размера, код выше загрузит результат целиком в оперативную память. В лучшем случае программа упадет с ошибкой, в худшем — всё намертво зависнет.

Вот как это можно исправить:

import requests
response = requests.get('https://www.python.org/static/img/python-logo@2x.png', stream=True)

with open('python_logo.png', 'wb') as image:
    for chunk in response.iter_content(chunk_size=1024):
        image.write(chunk)

В этом варианте мы используем параметр stream=True, который открывает соединение, но не скачивает содержимое. Затем мы задаем размер чанка — кусочка информации, который будет скачиваться за одну итерацию цикла, и делаем его равным 1 Кб (1024 байт). Модуль Requests сам закрывает соединение после прочтения последнего чанка.

Чтобы заранее узнать размер файла, можно воспользоваться методом HEAD. Эта информация передается в заголовке ‘Content-Length’ и исчисляется в байтах.

import requests
head_response = requests.head('https://www.python.org/static/img/python-logo@2x.png')
image_size = int(head_response.headers['Content-Length'])
print('Размер загружаемого файла: {0} кб'.format(image_size / 1024))

Авторизация на сайте

Рассмотрим два способа авторизации, которые встречаются чаще всего: Basic Auth и Bearer Auth. В обоих случаях механизм очень похожий — запрос должен передать заголовок ‘Authorization’ с каким-то значением. Для Basic Auth — это логин и пароль, закодированные в base64, для Bearer — токен, который мы получили на сайте заранее.

Для базовой авторизации у модуля Requests есть очень удобный параметр auth=, который делает всю работу за нас:

import requests
response = requests.get('https://httpbin.org/basic-auth/foo/bar')
print(response.status_code)  # 401
response = requests.get('https://httpbin.org/basic-auth/foo/bar', auth=('foo', 'bar'))
print(response.status_code)  # 200
print(response.request.headers[‘Authorization’])  # 'Basic Zm9vOmJhcg=='

Обратите внимание, что модуль Requests сам добавил заголовок Authorization и подставил туда закодированные логин и пароль.

Для Bearer Auth нам придется добавлять его самостоятельно:

import requests
response = requests.get('https://httpbin.org/bearer')
print(response.status_code)  # 401
headers = {'Authorization': 'Bearer some_token'}
response = requests.get('https://httpbin.org/bearer', headers=headers)
print(response.status_code)  # 200

У каждого API своя спецификация — вместо Bearer может быть Token или что-то другое. Поэтому важно внимательно читать документацию сервиса.

Мультискачивание

Напишем код, который умеет скачивать сразу несколько файлов. Для этого вынесем работу с модулем Requests в отдельную функцию и параметризируем место сохранения файла.

Не забывайте про сохранение файла по чанкам, чтобы крупные файлы не загружались в память целиком.

import requests
def download_file(url, save_path):
    response = requests.get(url, stream=True)
    with open(save_path, 'wb') as file:
        for chunk in response.iter_content(chunk_size=1024):
            file.write(chunk)
download_list = [
    'https://cdn.pixabay.com/photo/2022/04/10/19/33/house-7124141_1280.jpg',
    'https://cdn.pixabay.com/photo/2022/08/05/18/50/houseplant-7367379_1280.jpg',
    'https://cdn.pixabay.com/photo/2022/06/09/04/53/ride-7251713_1280.png',
]

for url in download_list:
    save_path = url.split('/')[-1]
    download_file(url, save_path)

Заключение

Модуль Requests — мощный инструмент, с которым разработчик может сделать сложный HTTP-запрос всего в пару строк. У него интуитивно понятный интерфейс, поэтому он так популярен в сообществе Python.

С помощью модуля реквест можно выполнить множество функций: от авторизации на сайте до скачивания нескольких файлов одновременно.

Содержание

  1. Quickstart¶
  2. Make a Request¶
  3. Passing Parameters In URLs¶
  4. Response Content¶
  5. Binary Response Content¶
  6. JSON Response Content¶
  7. Raw Response Content¶
  8. Custom Headers¶
  9. More complicated POST requests¶
  10. POST a Multipart-Encoded File¶
  11. Response Status Codes¶
  12. Response Headers¶
  13. Cookies¶
  14. Redirection and History¶
  15. Timeouts¶
  16. Errors and Exceptions¶
  17. Developer Interface¶
  18. Main Interface¶
  19. Exceptions¶
  20. Request Sessions¶
  21. Lower-Level Classes¶
  22. Lower-Lower-Level Classes¶
  23. Authentication¶
  24. Encodings¶
  25. Cookies¶
  26. Status Code Lookup¶
  27. Migrating to 1.x¶
  28. API Changes¶
  29. Licensing¶
  30. Migrating to 2.x¶
  31. API Changes¶
  32. Behavioural Changes¶
  33. Stay Informed

Quickstart¶

Eager to get started? This page gives a good introduction in how to get started with Requests.

First, make sure that:

Let’s get started with some simple examples.

Make a Request¶

Making a request with Requests is very simple.

Begin by importing the Requests module:

Now, let’s try to get a webpage. For this example, let’s get GitHub’s public timeline:

Now, we have a Response object called r . We can get all the information we need from this object.

Requests’ simple API means that all forms of HTTP request are as obvious. For example, this is how you make an HTTP POST request:

Nice, right? What about the other HTTP request types: PUT, DELETE, HEAD and OPTIONS? These are all just as simple:

That’s all well and good, but it’s also only the start of what Requests can do.

Passing Parameters In URLs¶

You often want to send some sort of data in the URL’s query string. If you were constructing the URL by hand, this data would be given as key/value pairs in the URL after a question mark, e.g. httpbin.org/get?key=val . Requests allows you to provide these arguments as a dictionary of strings, using the params keyword argument. As an example, if you wanted to pass key1=value1 and key2=value2 to httpbin.org/get , you would use the following code:

You can see that the URL has been correctly encoded by printing the URL:

Note that any dictionary key whose value is None will not be added to the URL’s query string.

You can also pass a list of items as a value:

Response Content¶

We can read the content of the server’s response. Consider the GitHub timeline again:

Requests will automatically decode content from the server. Most unicode charsets are seamlessly decoded.

When you make a request, Requests makes educated guesses about the encoding of the response based on the HTTP headers. The text encoding guessed by Requests is used when you access r.text . You can find out what encoding Requests is using, and change it, using the r.encoding property:

If you change the encoding, Requests will use the new value of r.encoding whenever you call r.text . You might want to do this in any situation where you can apply special logic to work out what the encoding of the content will be. For example, HTML and XML have the ability to specify their encoding in their body. In situations like this, you should use r.content to find the encoding, and then set r.encoding . This will let you use r.text with the correct encoding.

Requests will also use custom encodings in the event that you need them. If you have created your own encoding and registered it with the codecs module, you can simply use the codec name as the value of r.encoding and Requests will handle the decoding for you.

Binary Response Content¶

You can also access the response body as bytes, for non-text requests:

The gzip and deflate transfer-encodings are automatically decoded for you.

The br transfer-encoding is automatically decoded for you if a Brotli library like brotli or brotlicffi is installed.

For example, to create an image from binary data returned by a request, you can use the following code:

JSON Response Content¶

There’s also a builtin JSON decoder, in case you’re dealing with JSON data:

In case the JSON decoding fails, r.json() raises an exception. For example, if the response gets a 204 (No Content), or if the response contains invalid JSON, attempting r.json() raises requests.exceptions.JSONDecodeError . This wrapper exception provides interoperability for multiple exceptions that may be thrown by different python versions and json serialization libraries.

It should be noted that the success of the call to r.json() does not indicate the success of the response. Some servers may return a JSON object in a failed response (e.g. error details with HTTP 500). Such JSON will be decoded and returned. To check that a request is successful, use r.raise_for_status() or check r.status_code is what you expect.

Raw Response Content¶

In the rare case that you’d like to get the raw socket response from the server, you can access r.raw . If you want to do this, make sure you set stream=True in your initial request. Once you do, you can do this:

In general, however, you should use a pattern like this to save what is being streamed to a file:

Using Response.iter_content will handle a lot of what you would otherwise have to handle when using Response.raw directly. When streaming a download, the above is the preferred and recommended way to retrieve the content. Note that chunk_size can be freely adjusted to a number that may better fit your use cases.

An important note about using Response.iter_content versus Response.raw . Response.iter_content will automatically decode the gzip and deflate transfer-encodings. Response.raw is a raw stream of bytes – it does not transform the response content. If you really need access to the bytes as they were returned, use Response.raw .

If you’d like to add HTTP headers to a request, simply pass in a dict to the headers parameter.

For example, we didn’t specify our user-agent in the previous example:

Note: Custom headers are given less precedence than more specific sources of information. For instance:

Authorization headers set with headers= will be overridden if credentials are specified in .netrc , which in turn will be overridden by the auth= parameter. Requests will search for the netrc file at

/_netrc , or at the path specified by the NETRC environment variable.

Authorization headers will be removed if you get redirected off-host.

Proxy-Authorization headers will be overridden by proxy credentials provided in the URL.

Content-Length headers will be overridden when we can determine the length of the content.

Furthermore, Requests does not change its behavior at all based on which custom headers are specified. The headers are simply passed on into the final request.

Note: All header values must be a string , bytestring, or unicode. While permitted, it’s advised to avoid passing unicode header values.

More complicated POST requests¶

Typically, you want to send some form-encoded data — much like an HTML form. To do this, simply pass a dictionary to the data argument. Your dictionary of data will automatically be form-encoded when the request is made:

The data argument can also have multiple values for each key. This can be done by making data either a list of tuples or a dictionary with lists as values. This is particularly useful when the form has multiple elements that use the same key:

There are times that you may want to send data that is not form-encoded. If you pass in a string instead of a dict , that data will be posted directly.

For example, the GitHub API v3 accepts JSON-Encoded POST/PATCH data:

Please note that the above code will NOT add the Content-Type header (so in particular it will NOT set it to application/json ).

If you need that header set and you don’t want to encode the dict yourself, you can also pass it directly using the json parameter (added in version 2.4.2) and it will be encoded automatically:

Note, the json parameter is ignored if either data or files is passed.

POST a Multipart-Encoded File¶

Requests makes it simple to upload Multipart-encoded files:

You can set the filename, content_type and headers explicitly:

If you want, you can send strings to be received as files:

In the event you are posting a very large file as a multipart/form-data request, you may want to stream the request. By default, requests does not support this, but there is a separate package which does — requests-toolbelt . You should read the toolbelt’s documentation for more details about how to use it.

For sending multiple files in one request refer to the advanced section.

It is strongly recommended that you open files in binary mode . This is because Requests may attempt to provide the Content-Length header for you, and if it does this value will be set to the number of bytes in the file. Errors may occur if you open the file in text mode.

Response Status Codes¶

We can check the response status code:

Requests also comes with a built-in status code lookup object for easy reference:

If we made a bad request (a 4XX client error or 5XX server error response), we can raise it with Response.raise_for_status() :

But, since our status_code for r was 200 , when we call raise_for_status() we get:

We can view the server’s response headers using a Python dictionary:

The dictionary is special, though: it’s made just for HTTP headers. According to RFC 7230, HTTP Header names are case-insensitive.

So, we can access the headers using any capitalization we want:

It is also special in that the server could have sent the same header multiple times with different values, but requests combines them so they can be represented in the dictionary within a single mapping, as per RFC 7230:

A recipient MAY combine multiple header fields with the same field name into one “field-name: field-value” pair, without changing the semantics of the message, by appending each subsequent field value to the combined field value in order, separated by a comma.

Cookies¶

If a response contains some Cookies, you can quickly access them:

To send your own cookies to the server, you can use the cookies parameter:

Cookies are returned in a RequestsCookieJar , which acts like a dict but also offers a more complete interface, suitable for use over multiple domains or paths. Cookie jars can also be passed in to requests:

Redirection and History¶

By default Requests will perform location redirection for all verbs except HEAD.

We can use the history property of the Response object to track redirection.

The Response.history list contains the Response objects that were created in order to complete the request. The list is sorted from the oldest to the most recent response.

For example, GitHub redirects all HTTP requests to HTTPS:

If you’re using GET, OPTIONS, POST, PUT, PATCH or DELETE, you can disable redirection handling with the allow_redirects parameter:

If you’re using HEAD, you can enable redirection as well:

Timeouts¶

You can tell Requests to stop waiting for a response after a given number of seconds with the timeout parameter. Nearly all production code should use this parameter in nearly all requests. Failure to do so can cause your program to hang indefinitely:

timeout is not a time limit on the entire response download; rather, an exception is raised if the server has not issued a response for timeout seconds (more precisely, if no bytes have been received on the underlying socket for timeout seconds). If no timeout is specified explicitly, requests do not time out.

Errors and Exceptions¶

In the event of a network problem (e.g. DNS failure, refused connection, etc), Requests will raise a ConnectionError exception.

Response.raise_for_status() will raise an HTTPError if the HTTP request returned an unsuccessful status code.

If a request times out, a Timeout exception is raised.

If a request exceeds the configured number of maximum redirections, a TooManyRedirects exception is raised.

All exceptions that Requests explicitly raises inherit from requests.exceptions.RequestException .

Ready for more? Check out the advanced section.

If you’re on the job market, consider taking this programming quiz. A substantial donation will be made to this project, if you find a job through this platform.

Requests is an elegant and simple HTTP library for Python, built for human beings. You are currently looking at the documentation of the development release.

Источник

Developer Interface¶

This part of the documentation covers all the interfaces of Requests. For parts where Requests depends on external libraries, we document the most important right here and provide links to the canonical documentation.

Main Interface¶

All of Requests’ functionality can be accessed by these 7 methods. They all return an instance of the Response object.

Constructs and sends a Request .

Sends a HEAD request.

Parameters:
  • method – method for the new Request object.
  • url – URL for the new Request object.
  • params – (optional) Dictionary, list of tuples or bytes to send in the body of the Request .
  • data – (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the Request .
  • json – (optional) A JSON serializable Python object to send in the body of the Request .
  • headers – (optional) Dictionary of HTTP Headers to send with the Request .
  • cookies – (optional) Dict or CookieJar object to send with the Request .
  • files – (optional) Dictionary of ‘name’: file-like-objects (or <‘name’: file-tuple>) for multipart encoding upload. file-tuple can be a 2-tuple (‘filename’, fileobj) , 3-tuple (‘filename’, fileobj, ‘content_type’) or a 4-tuple (‘filename’, fileobj, ‘content_type’, custom_headers) , where ‘content-type’ is a string defining the content type of the given file and custom_headers a dict-like object containing additional headers to add for the file.
  • auth – (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth.
  • timeout (floatortuple) – (optional) How many seconds to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) tuple.
  • allow_redirects (bool) – (optional) Boolean. Enable/disable GET/OPTIONS/POST/PUT/PATCH/DELETE/HEAD redirection. Defaults to True .
  • proxies – (optional) Dictionary mapping protocol to the URL of the proxy.
  • verify – (optional) Either a boolean, in which case it controls whether we verify the server’s TLS certificate, or a string, in which case it must be a path to a CA bundle to use. Defaults to True .
  • stream – (optional) if False , the response content will be immediately downloaded.
  • cert – (optional) if String, path to ssl client cert file (.pem). If Tuple, (‘cert’, ‘key’) pair.
Returns:
Parameters:
  • url – URL for the new Request object.
  • **kwargs – Optional arguments that request takes.
Returns:

requests. get ( url, params=None, **kwargs ) [source] ¶

Sends a GET request.

Parameters:
  • url – URL for the new Request object.
  • params – (optional) Dictionary, list of tuples or bytes to send in the body of the Request .
  • **kwargs – Optional arguments that request takes.
Returns:

requests. post ( url, data=None, json=None, **kwargs ) [source] ¶

Sends a POST request.

Parameters:
  • url – URL for the new Request object.
  • data – (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the Request .
  • json – (optional) json data to send in the body of the Request .
  • **kwargs – Optional arguments that request takes.
Returns:

requests. put ( url, data=None, **kwargs ) [source] ¶

Sends a PUT request.

Parameters:
  • url – URL for the new Request object.
  • data – (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the Request .
  • json – (optional) json data to send in the body of the Request .
  • **kwargs – Optional arguments that request takes.
Returns:

requests. patch ( url, data=None, **kwargs ) [source] ¶

Sends a PATCH request.

Parameters:
  • url – URL for the new Request object.
  • data – (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the Request .
  • json – (optional) json data to send in the body of the Request .
  • **kwargs – Optional arguments that request takes.
Returns:

requests. delete ( url, **kwargs ) [source] ¶

Sends a DELETE request.

Exceptions¶

There was an ambiguous exception that occurred while handling your request.

exception requests. ConnectionError ( *args, **kwargs ) [source] ¶

A Connection error occurred.

exception requests. HTTPError ( *args, **kwargs ) [source] ¶

An HTTP error occurred.

exception requests. URLRequired ( *args, **kwargs ) [source] ¶

A valid URL is required to make a request.

exception requests. TooManyRedirects ( *args, **kwargs ) [source] ¶

Too many redirects.

exception requests. ConnectTimeout ( *args, **kwargs ) [source] ¶

The request timed out while trying to connect to the remote server.

Requests that produced this error are safe to retry.

exception requests. ReadTimeout ( *args, **kwargs ) [source] ¶

The server did not send any data in the allotted amount of time.

The request timed out.

Catching this error will catch both ConnectTimeout and ReadTimeout errors.

Request Sessions¶

A Requests session.

Provides cookie persistence, connection-pooling, and configuration.

Or as a context manager:

Default Authentication tuple or object to attach to Request .

SSL client certificate default, if String, path to ssl client cert file (.pem). If Tuple, (‘cert’, ‘key’) pair.

Closes all adapters and as such the session

A CookieJar containing all currently outstanding cookies set on this session. By default it is a RequestsCookieJar , but may be any other cookielib.CookieJar compatible object.

Sends a DELETE request. Returns Response object.

Parameters:
  • url – URL for the new Request object.
  • **kwargs – Optional arguments that request takes.
Returns:
Parameters:
  • url – URL for the new Request object.
  • **kwargs – Optional arguments that request takes.
Return type:

get ( url, **kwargs ) [source] ¶

Sends a GET request. Returns Response object.

Parameters:
  • url – URL for the new Request object.
  • **kwargs – Optional arguments that request takes.
Return type:

get_adapter ( url ) [source] ¶

Returns the appropriate connection adapter for the given URL.

Return type: requests.adapters.BaseAdapter

get_redirect_target ( resp ) ¶

Receives a Response. Returns a redirect URI or None

Sends a HEAD request. Returns Response object.

Parameters:
  • url – URL for the new Request object.
  • **kwargs – Optional arguments that request takes.
Return type:

headers = None¶

A case-insensitive dictionary of headers to be sent on each Request sent from this Session .

Maximum number of redirects allowed. If the request exceeds this limit, a TooManyRedirects exception is raised. This defaults to requests.models.DEFAULT_REDIRECT_LIMIT, which is 30.

Check the environment and merge it with some settings.

Return type: dict

mount ( prefix, adapter ) [source] ¶

Registers a connection adapter to a prefix.

Adapters are sorted in descending order by prefix length.

Sends a OPTIONS request. Returns Response object.

Parameters:
  • url – URL for the new Request object.
  • **kwargs – Optional arguments that request takes.
Return type:

params = None¶

Dictionary of querystring data to attach to each Request . The dictionary values may be lists for representing multivalued query parameters.

Sends a PATCH request. Returns Response object.

Parameters:
  • url – URL for the new Request object.
  • data – (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the Request .
  • **kwargs – Optional arguments that request takes.
Return type:

post ( url, data=None, json=None, **kwargs ) [source] ¶

Sends a POST request. Returns Response object.

Parameters:
  • url – URL for the new Request object.
  • data – (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the Request .
  • json – (optional) json to send in the body of the Request .
  • **kwargs – Optional arguments that request takes.
Return type:

prepare_request ( request ) [source] ¶

Constructs a PreparedRequest for transmission and returns it. The PreparedRequest has settings merged from the Request instance and those of the Session .

Parameters: request – Request instance to prepare with this session’s settings.
Return type: requests.PreparedRequest

proxies = None¶

Dictionary mapping protocol or protocol and host to the URL of the proxy (e.g. <‘http’: ‘foo.bar:3128’, ‘http://host.name’: ‘foo.bar:4012’>) to be used on each Request .

Sends a PUT request. Returns Response object.

Parameters:
  • url – URL for the new Request object.
  • data – (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the Request .
  • **kwargs – Optional arguments that request takes.
Return type:

rebuild_auth ( prepared_request, response ) ¶

When being redirected we may want to strip authentication from the request to avoid leaking credentials. This method intelligently removes and reapplies authentication where possible to avoid credential loss.

rebuild_method ( prepared_request, response ) ¶

When being redirected we may want to change the method of the request based on certain specs or browser behavior.

rebuild_proxies ( prepared_request, proxies ) ¶

This method re-evaluates the proxy configuration by considering the environment variables. If we are redirected to a URL covered by NO_PROXY, we strip the proxy configuration. Otherwise, we set missing proxy keys for this URL (in case they were stripped by a previous redirect).

This method also replaces the Proxy-Authorization header where necessary.

Return type: dict

request ( method, url, params=None, data=None, headers=None, cookies=None, files=None, auth=None, timeout=None, allow_redirects=True, proxies=None, hooks=None, stream=None, verify=None, cert=None, json=None ) [source] ¶

Constructs a Request , prepares it and sends it. Returns Response object.

Parameters:
  • method – method for the new Request object.
  • url – URL for the new Request object.
  • params – (optional) Dictionary or bytes to be sent in the query string for the Request .
  • data – (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the Request .
  • json – (optional) json to send in the body of the Request .
  • headers – (optional) Dictionary of HTTP Headers to send with the Request .
  • cookies – (optional) Dict or CookieJar object to send with the Request .
  • files – (optional) Dictionary of ‘filename’: file-like-objects for multipart encoding upload.
  • auth – (optional) Auth tuple or callable to enable Basic/Digest/Custom HTTP Auth.
  • timeout (floatortuple) – (optional) How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) tuple.
  • allow_redirects (bool) – (optional) Set to True by default.
  • proxies – (optional) Dictionary mapping protocol or protocol and hostname to the URL of the proxy.
  • stream – (optional) whether to immediately download the response content. Defaults to False .
  • verify – (optional) Either a boolean, in which case it controls whether we verify the server’s TLS certificate, or a string, in which case it must be a path to a CA bundle to use. Defaults to True .
  • cert – (optional) if String, path to ssl client cert file (.pem). If Tuple, (‘cert’, ‘key’) pair.
Return type:

resolve_redirects ( resp, req, stream=False, timeout=None, verify=True, cert=None, proxies=None, yield_requests=False, **adapter_kwargs ) ¶

Receives a Response. Returns a generator of Responses or Requests.

Send a given PreparedRequest.

Return type: requests.Response

should_strip_auth ( old_url, new_url ) ¶

Decide whether Authorization header should be removed when redirecting

Stream response content default.

Trust environment settings for proxy configuration, default authentication and similar.

SSL Verification default.

Lower-Level Classes¶

A user-created Request object.

Used to prepare a PreparedRequest , which is sent to the server.

Parameters:
  • method – HTTP method to use.
  • url – URL to send.
  • headers – dictionary of headers to send.
  • files – dictionary of files to multipart upload.
  • data – the body to attach to the request. If a dictionary or list of tuples [(key, value)] is provided, form-encoding will take place.
  • json – json for the body to attach to the request (if files or data is not specified).
  • params – URL parameters to append to the URL. If a dictionary or list of tuples [(key, value)] is provided, form-encoding will take place.
  • auth – Auth handler or (user, pass) tuple.
  • cookies – dictionary or CookieJar of cookies to attach to this request.
  • hooks – dictionary of callback hooks, for internal usage.

Deregister a previously registered hook. Returns True if the hook existed, False if not.

Constructs a PreparedRequest for transmission and returns it.

Properly register a hook.

class requests. Response [source] ¶

The Response object, which contains a server’s response to an HTTP request.

The apparent encoding, provided by the chardet library.

Releases the connection back to the pool. Once this method has been called the underlying raw object must not be accessed again.

Note: Should not normally need to be called explicitly.

Content of the response, in bytes.

A CookieJar of Cookies the server sent back.

The amount of time elapsed between sending the request and the arrival of the response (as a timedelta). This property specifically measures the time taken between sending the first byte of the request and finishing parsing the headers. It is therefore unaffected by consuming the response content or the value of the stream keyword argument.

Encoding to decode with when accessing r.text.

Case-insensitive Dictionary of Response Headers. For example, headers[‘content-encoding’] will return the value of a ‘Content-Encoding’ response header.

A list of Response objects from the history of the Request. Any redirect responses will end up here. The list is sorted from the oldest to the most recent request.

True if this Response one of the permanent versions of redirect.

True if this Response is a well-formed HTTP redirect that could have been processed automatically (by Session.resolve_redirects ).

iter_content ( chunk_size=1, decode_unicode=False ) [source] ¶

Iterates over the response data. When stream=True is set on the request, this avoids reading the content at once into memory for large responses. The chunk size is the number of bytes it should read into memory. This is not necessarily the length of each item returned as decoding can take place.

chunk_size must be of type int or None. A value of None will function differently depending on the value of stream . stream=True will read data as it arrives in whatever size the chunks are received. If stream=False, data is returned as a single chunk.

If decode_unicode is True, content will be decoded using the best available encoding based on the response.

iter_lines ( chunk_size=512, decode_unicode=False, delimiter=None ) [source] ¶

Iterates over the response data, one line at a time. When stream=True is set on the request, this avoids reading the content at once into memory for large responses.

This method is not reentrant safe.

Returns the json-encoded content of a response, if any.

Parameters: **kwargs – Optional arguments that json.loads takes.
Raises: ValueError – If the response body does not contain valid json.

links ¶

Returns the parsed header links of the response, if any.

Returns a PreparedRequest for the next request in a redirect chain, if there is one.

Returns True if status_code is less than 400, False if not.

This attribute checks if the status code of the response is between 400 and 600 to see if there was a client error or a server error. If the status code is between 200 and 400, this will return True. This is not a check to see if the response code is 200 OK .

Raises stored HTTPError , if one occurred.

Textual reason of responded HTTP Status, e.g. “Not Found” or “OK”.

The PreparedRequest object to which this is a response.

Integer Code of responded HTTP Status, e.g. 404 or 200.

Content of the response, in unicode.

If Response.encoding is None, encoding will be guessed using chardet .

The encoding of the response content is determined based solely on HTTP headers, following RFC 2616 to the letter. If you can take advantage of non-HTTP knowledge to make a better guess at the encoding, you should set r.encoding appropriately before accessing this property.

Final URL location of Response.

Lower-Lower-Level Classes¶

The fully mutable PreparedRequest object, containing the exact bytes that will be sent to the server.

Generated from either a Request object or manually.

request body to send to the server.

deregister_hook ( event, hook ) ¶

Deregister a previously registered hook. Returns True if the hook existed, False if not.

dictionary of HTTP headers.

dictionary of callback hooks, for internal usage.

HTTP verb to send to the server.

Build the path URL to use.

Prepares the entire request with the given parameters.

Prepares the given HTTP auth data.

Prepares the given HTTP body data.

Prepare Content-Length header based on request method and body

Prepares the given HTTP cookie data.

This function eventually generates a Cookie header from the given cookies using cookielib. Due to cookielib’s design, the header will not be regenerated if it already exists, meaning this function can only be called once for the life of the PreparedRequest object. Any subsequent calls to prepare_cookies will have no actual effect, unless the “Cookie” header is removed beforehand.

Prepares the given HTTP headers.

Prepares the given hooks.

Prepares the given HTTP method.

Prepares the given HTTP URL.

Properly register a hook.

HTTP URL to send the request to.

class requests.adapters. BaseAdapter [source] ¶

The Base Transport Adapter

Cleans up adapter specific items.

Sends PreparedRequest object. Returns Response object.

Parameters:
  • request – The PreparedRequest being sent.
  • stream – (optional) Whether to stream the request content.
  • timeout (floatortuple) – (optional) How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) tuple.
  • verify – (optional) Either a boolean, in which case it controls whether we verify the server’s TLS certificate, or a string, in which case it must be a path to a CA bundle to use
  • cert – (optional) Any user-provided SSL certificate to be trusted.
  • proxies – (optional) The proxies dictionary to apply to the request.

class requests.adapters. HTTPAdapter ( pool_connections=10, pool_maxsize=10, max_retries=0, pool_block=False ) [source]¶

The built-in HTTP Adapter for urllib3.

Provides a general-case interface for Requests sessions to contact HTTP and HTTPS urls by implementing the Transport Adapter interface. This class will usually be created by the Session class under the covers.

Parameters:
  • pool_connections – The number of urllib3 connection pools to cache.
  • pool_maxsize – The maximum number of connections to save in the pool.
  • max_retries – The maximum number of retries each connection should attempt. Note, this applies only to failed DNS lookups, socket connections and connection timeouts, never to requests where data has made it to the server. By default, Requests does not retry failed connections. If you need granular control over the conditions under which we retry a request, import urllib3’s Retry class and pass that instead.
  • pool_block – Whether the connection pool should block for connections.

Add any headers needed by the connection. As of v2.0 this does nothing by default, but is left for overriding by users that subclass the HTTPAdapter .

This should not be called from user code, and is only exposed for use when subclassing the HTTPAdapter .

Parameters:
  • request – The PreparedRequest to add headers to.
  • kwargs – The keyword arguments from the call to send().

build_response ( req, resp ) [source]¶

Builds a Response object from a urllib3 response. This should not be called from user code, and is only exposed for use when subclassing the HTTPAdapter

Parameters:
  • req – The PreparedRequest used to generate the response.
  • resp – The urllib3 response object.
Return type:

cert_verify ( conn, url, verify, cert ) [source] ¶

Verify a SSL certificate. This method should not be called from user code, and is only exposed for use when subclassing the HTTPAdapter .

Parameters:
  • conn – The urllib3 connection object associated with the cert.
  • url – The requested URL.
  • verify – Either a boolean, in which case it controls whether we verify the server’s TLS certificate, or a string, in which case it must be a path to a CA bundle to use
  • cert – The SSL certificate to verify.

close ( ) [source]¶

Disposes of any internal state.

Currently, this closes the PoolManager and any active ProxyManager, which closes any pooled connections.

Returns a urllib3 connection for the given URL. This should not be called from user code, and is only exposed for use when subclassing the HTTPAdapter .

Parameters:
  • url – The URL to connect to.
  • proxies – (optional) A Requests-style dictionary of proxies used on this request.
Return type:

init_poolmanager ( connections, maxsize, block=False, **pool_kwargs ) [source] ¶

Initializes a urllib3 PoolManager.

This method should not be called from user code, and is only exposed for use when subclassing the HTTPAdapter .

Parameters:
  • connections – The number of urllib3 connection pools to cache.
  • maxsize – The maximum number of connections to save in the pool.
  • block – Block when no free connections are available.
  • pool_kwargs – Extra keyword arguments used to initialize the Pool Manager.

proxy_headers ( proxy ) [source]¶

Returns a dictionary of the headers to add to any request sent through a proxy. This works with urllib3 magic to ensure that they are correctly sent to the proxy, rather than in a tunnelled request if CONNECT is being used.

This should not be called from user code, and is only exposed for use when subclassing the HTTPAdapter .

Parameters: proxy – The url of the proxy being used for this request.
Return type: dict

proxy_manager_for ( proxy, **proxy_kwargs ) [source] ¶

Return urllib3 ProxyManager for the given proxy.

This method should not be called from user code, and is only exposed for use when subclassing the HTTPAdapter .

Parameters:
  • proxy – The proxy to return a urllib3 ProxyManager for.
  • proxy_kwargs – Extra keyword arguments used to configure the Proxy Manager.
Returns:

request_url ( request, proxies ) [source] ¶

Obtain the url to use when making the final request.

If the message is being sent through a HTTP proxy, the full URL has to be used. Otherwise, we should only use the path portion of the URL.

This should not be called from user code, and is only exposed for use when subclassing the HTTPAdapter .

Parameters:
  • request – The PreparedRequest being sent.
  • proxies – A dictionary of schemes or schemes and hosts to proxy URLs.
Return type:

send ( request, stream=False, timeout=None, verify=True, cert=None, proxies=None ) [source] ¶

Sends PreparedRequest object. Returns Response object.

Authentication¶

Base class that all auth implementations derive from

class requests.auth. HTTPBasicAuth ( username, password ) [source] ¶

Attaches HTTP Basic Authentication to the given Request object.

class requests.auth. HTTPDigestAuth ( username, password ) [source] ¶

Attaches HTTP Digest Authentication to the given Request object.

Encodings¶

Returns encodings from given content string.

Parameters:
  • request – The PreparedRequest being sent.
  • stream – (optional) Whether to stream the request content.
  • timeout (floatortupleorurllib3 Timeout object) – (optional) How long to wait for the server to send data before giving up, as a float, or a (connect timeout, read timeout) tuple.
  • verify – (optional) Either a boolean, in which case it controls whether we verify the server’s TLS certificate, or a string, in which case it must be a path to a CA bundle to use
  • cert – (optional) Any user-provided SSL certificate to be trusted.
  • proxies – (optional) The proxies dictionary to apply to the request.
Return type:
Parameters: content – bytestring to extract encodings from.

requests.utils. get_encoding_from_headers ( headers ) [source] ¶

Returns encodings from given HTTP Header Dict.

Parameters: headers – dictionary to extract encoding from.
Return type: str

requests.utils. get_unicode_from_response ( r ) [source] ¶

Returns the requested content back in unicode.

Parameters: r – Response object to get unicode content from.
  1. charset from content-type
  2. fall back and replace all unicode characters
Return type: str

Cookies¶

Returns a key/value dictionary from a CookieJar.

Parameters: cj – CookieJar object to extract cookies from.
Return type: dict

requests.utils. add_dict_to_cookiejar ( cj, cookie_dict ) [source] ¶

Returns a CookieJar from a key/value dictionary.

Parameters:
  • cj – CookieJar to insert cookies into.
  • cookie_dict – Dict of key/values to insert into CookieJar.
Return type:

requests.cookies. cookiejar_from_dict ( cookie_dict, cookiejar=None, overwrite=True ) [source] ¶

Returns a CookieJar from a key/value dictionary.

Parameters:
  • cookie_dict – Dict of key/values to insert into CookieJar.
  • cookiejar – (optional) A cookiejar to add the cookies to.
  • overwrite – (optional) If False, will not replace cookies already in the jar with new ones.
Return type:

class requests.cookies. RequestsCookieJar ( policy=None ) [source] ¶

Compatibility class; is a cookielib.CookieJar, but exposes a dict interface.

This is the CookieJar we create by default for requests and sessions that don’t specify one, since some clients may expect response.cookies and session.cookies to support dict operations.

Requests does not use the dict interface internally; it’s just for compatibility with external client code. All requests code should work out of the box with externally provided instances of CookieJar , e.g. LWPCookieJar and FileCookieJar .

Unlike a regular CookieJar, this class is pickleable.

dictionary operations that are normally O(1) may be O(n).

Add correct Cookie: header to request (urllib.request.Request object).

The Cookie2 header is also added unless policy.hide_cookie2 is true.

Clear some cookies.

Invoking this method without arguments will clear all cookies. If given a single argument, only cookies belonging to that domain will be removed. If given two arguments, cookies belonging to the specified path within that domain are removed. If given three arguments, then the cookie with the specified name, path and domain is removed.

Raises KeyError if no matching cookie exists.

Discard all expired cookies.

You probably don’t need to call this method: expired cookies are never sent back to the server (provided you’re using DefaultCookiePolicy), this method is called by CookieJar itself every so often, and the .save() method won’t save expired cookies anyway (unless you ask otherwise by passing a true ignore_expires argument).

Discard all session cookies.

Note that the .save() method won’t save session cookies anyway, unless you ask otherwise by passing a true ignore_discard argument.

Return a copy of this RequestsCookieJar.

extract_cookies ( response, request ) ¶

Extract cookies from response, where allowable given the request.

Dict-like get() that also supports optional domain and path args in order to resolve naming collisions from using one cookie jar over multiple domains.

operation is O(n), not O(1).

Takes as an argument an optional domain and path and returns a plain old Python dict of name-value pairs of cookies that meet the requirements.

Return type: dict

get_policy ( ) [source] ¶

Return the CookiePolicy instance used.

Dict-like items() that returns a list of name-value tuples from the jar. Allows client-code to call dict(RequestsCookieJar) and get a vanilla python dict of key value pairs.

keys() and values().

Dict-like iteritems() that returns an iterator of name-value tuples from the jar.

iterkeys() and itervalues().

Dict-like iterkeys() that returns an iterator of names of cookies from the jar.

itervalues() and iteritems().

Dict-like itervalues() that returns an iterator of values of cookies from the jar.

iterkeys() and iteritems().

Dict-like keys() that returns a list of names of cookies from the jar.

values() and items().

Utility method to list all the domains in the jar.

Utility method to list all the paths in the jar.

make_cookies ( response, request ) ¶

Return sequence of Cookie objects extracted from response object.

Returns True if there are multiple domains in the jar. Returns False otherwise.

Return type: bool

pop ( k [ , d ] ) → v, remove specified key and return the corresponding value.¶

If key is not found, d is returned if given, otherwise KeyError is raised.

popitem ( ) → (k, v), remove and return some (key, value) pair¶

as a 2-tuple; but raise KeyError if D is empty.

Dict-like set() that also supports optional domain and path args in order to resolve naming collisions from using one cookie jar over multiple domains.

Set a cookie, without checking whether or not it should be set.

set_cookie_if_ok ( cookie, request ) ¶

Set a cookie if policy says it’s OK to do so.

setdefault ( k [ , d ] ) → D.get(k,d), also set D[k]=d if k not in D¶ update ( other ) [source] ¶

Updates this jar with cookies from another CookieJar or dict-like

Dict-like values() that returns a list of values of cookies from the jar.

There are two cookies that meet the criteria specified in the cookie jar. Use .get and .set and include domain and path args in order to be more specific.

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

Status Code Lookup¶

The codes object defines a mapping from common names for HTTP statuses to their numerical codes, accessible either as attributes or as dictionary items.

Some codes have multiple names, and both upper- and lower-case versions of the names are allowed. For example, codes.ok , codes.OK , and codes.okay all correspond to the HTTP status code 200.

  • 100: continue
  • 101: switching_protocols
  • 102: processing
  • 103: checkpoint
  • 122: uri_too_long , request_uri_too_long
  • 200: ok , okay , all_ok , all_okay , all_good , o/ , ✓
  • 201: created
  • 202: accepted
  • 203: non_authoritative_info , non_authoritative_information
  • 204: no_content
  • 205: reset_content , reset
  • 206: partial_content , partial
  • 207: multi_status , multiple_status , multi_stati , multiple_stati
  • 208: already_reported
  • 226: im_used
  • 300: multiple_choices
  • 301: moved_permanently , moved , o-
  • 302: found
  • 303: see_other , other
  • 304: not_modified
  • 305: use_proxy
  • 306: switch_proxy
  • 307: temporary_redirect , temporary_moved , temporary
  • 308: permanent_redirect , resume_incomplete , resume
  • 400: bad_request , bad
  • 401: unauthorized
  • 402: payment_required , payment
  • 403: forbidden
  • 404: not_found , -o-
  • 405: method_not_allowed , not_allowed
  • 406: not_acceptable
  • 407: proxy_authentication_required , proxy_auth , proxy_authentication
  • 408: request_timeout , timeout
  • 409: conflict
  • 410: gone
  • 411: length_required
  • 412: precondition_failed , precondition
  • 413: request_entity_too_large
  • 414: request_uri_too_large
  • 415: unsupported_media_type , unsupported_media , media_type
  • 416: requested_range_not_satisfiable , requested_range , range_not_satisfiable
  • 417: expectation_failed
  • 418: im_a_teapot , teapot , i_am_a_teapot
  • 421: misdirected_request
  • 422: unprocessable_entity , unprocessable
  • 423: locked
  • 424: failed_dependency , dependency
  • 425: unordered_collection , unordered
  • 426: upgrade_required , upgrade
  • 428: precondition_required , precondition
  • 429: too_many_requests , too_many
  • 431: header_fields_too_large , fields_too_large
  • 444: no_response , none
  • 449: retry_with , retry
  • 450: blocked_by_windows_parental_controls , parental_controls
  • 451: unavailable_for_legal_reasons , legal_reasons
  • 499: client_closed_request
  • 500: internal_server_error , server_error , /o , ✗
  • 501: not_implemented
  • 502: bad_gateway
  • 503: service_unavailable , unavailable
  • 504: gateway_timeout
  • 505: http_version_not_supported , http_version
  • 506: variant_also_negotiates
  • 507: insufficient_storage
  • 509: bandwidth_limit_exceeded , bandwidth
  • 510: not_extended
  • 511: network_authentication_required , network_auth , network_authentication

Migrating to 1.x¶

This section details the main differences between 0.x and 1.x and is meant to ease the pain of upgrading.

API Changes¶

Response.json is now a callable and not a property of a response.

The Session API has changed. Sessions objects no longer take parameters. Session is also now capitalized, but it can still be instantiated with a lowercase session for backwards compatibility.

All request hooks have been removed except ‘response’.

Authentication helpers have been broken out into separate modules. See requests-oauthlib and requests-kerberos.

The parameter for streaming requests was changed from prefetch to stream and the logic was inverted. In addition, stream is now required for raw response reading.

The config parameter to the requests method has been removed. Some of these options are now configured on a Session such as keep-alive and maximum number of redirects. The verbosity option should be handled by configuring logging.

Licensing¶

One key difference that has nothing to do with the API is a change in the license from the ISC license to the Apache 2.0 license. The Apache 2.0 license ensures that contributions to Requests are also covered by the Apache 2.0 license.

Migrating to 2.x¶

Compared with the 1.0 release, there were relatively few backwards incompatible changes, but there are still a few issues to be aware of with this major release.

For more details on the changes in this release including new APIs, links to the relevant GitHub issues and some of the bug fixes, read Cory’s blog on the subject.

API Changes¶

There were a couple changes to how Requests handles exceptions. RequestException is now a subclass of IOError rather than RuntimeError as that more accurately categorizes the type of error. In addition, an invalid URL escape sequence now raises a subclass of RequestException rather than a ValueError .

Lastly, httplib.IncompleteRead exceptions caused by incorrect chunked encoding will now raise a Requests ChunkedEncodingError instead.

The proxy API has changed slightly. The scheme for a proxy URL is now required.

Behavioural Changes¶

  • Keys in the headers dictionary are now native strings on all Python versions, i.e. bytestrings on Python 2 and unicode on Python 3. If the keys are not native strings (unicode on Python 2 or bytestrings on Python 3) they will be converted to the native string type assuming UTF-8 encoding.
  • Values in the headers dictionary should always be strings. This has been the project’s position since before 1.0 but a recent change (since version 2.11.0) enforces this more strictly. It’s advised to avoid passing header values as unicode when possible.

Requests is an elegant and simple HTTP library for Python, built for human beings. You are currently looking at the documentation of the development release.

Stay Informed

Receive updates on new releases and upcoming projects.

Источник

The clear, simple syntax of Python makes it an ideal language to interact with REST APIs, and in typical Python fashion, there’s a library made specifically to provide that functionality: Requests. Python Requests is a powerful tool that provides the simple elegance of Python to make HTTP requests to any API in the world. At Nylas, we built our REST APIs for email, calendar, and contacts on Python, and we process over 500 million API requests a day, so naturally, we depend a ton on the Python Requests library.

In this guide, we’ll take a comprehensive look at making HTTP requests with Python Requests and learn how to use this functionality to integrate with REST APIs.

Contents:

  • The roles of HTTP, APIs, and REST
  • How to use Python Requests with REST APIs
  • How to authenticate to a REST API
  • How to handle HTTP errors with Python Requests
  • How to make robust API Requests 

The Roles of HTTP, APIs, and REST

An Application Programming Interface (API) is a web service that grants access to specific data and methods that other applications can access – and sometimes edit – via standard HTTP protocols, just like a website. This simplicity makes it easy to quickly integrate APIs into a wide variety of applications. REpresentational State Transfer (REST), is probably the most popular architectural style of APIs for web services. It consists of a set of guidelines designed to simplify client / server communication. REST APIs make data access much more straightforward and logical.

The Request

When you want to interact with data via a REST API, this is called a request. A request is made up of the following components:

Endpoint – The URL that delineates what data you are interacting with. Similar to how a web page URL is tied to a specific page, an endpoint URL is tied to a specific resource within an API.

Method – Specifies how you’re interacting with the resource located at the provided endpoint. REST APIs can provide methods to enable full Create, Read, Update, and Delete (CRUD) functionality. Here are common methods most REST APIs provide:

  • GET – Retrieve data
  • PUT – Replace data
  • POST – Create data
  • DELETE – Delete data

Data – If you’re using a method that involves changing data in a REST API, you’ll need to include a data payload with the request that includes all data that will be created or modified.

Headers – Contain any metadata that needs to be included with the request, such as authentication tokens, the content type that should be returned, and any caching policies.

The Response

When you perform a request, you’ll get a response from the API. Just like in the request, it’ll have a response header and response data, if applicable. The response header consists of useful metadata about the response, while the response data returns what you actually requested. This can be any sort of data, as it’s really dependent on the API. The text is usually returned as JSON, but other markdown languages like XML are also possible. 

Let’s look at a simple example of a request and a response. In the terminal, we’ll use curl to make a GET request to the Open Notify API. This is a simple, yet nifty API that has information about astronauts that are currently in space:

curl -X GET "http://api.open-notify.org/astros.json"

You should see a response in JSON format that lists data about these astronauts, at the time of this article there are three people on a historic trip to the International Space Station:

{
  "number": 3,
  "message": "success",
  "people": [
    {
      "craft": "ISS",
      "name": "Chris Cassidy"
    }, 
    {
      "craft": "ISS",
      "name": "Anatoly Ivanishin"
    }, 
    {
      "craft": "ISS",
      "name": "Ivan Vagner"
    }
  ]
}

How to Use Python Requests with REST APIs

Now, let’s take a look at what it takes to integrate with a REST API using Python Requests. First, you’ll need to have the necessary software; make sure you have Python and pip installed on your machine. Then, head over to the command line and install the python requests module with pip:

pip install requests

Now you’re ready to start using Python Requests to interact with a REST API, make sure you import the Requests library into any scripts you want to use it in:

import requests

How Request Data With GET

The GET method is used to access data for a specific resource from a REST API; Python Requests includes a function to do exactly this.

import requests
response = requests.get("http://api.open-notify.org/astros.json")
print(response)
>>>> Response<200>

The response object contains all the data sent from the server in response to your GET request, including headers and the data payload. When this code example prints the response object to the console it simply returns the name of the object’s class and the status code the request returned (more on status codes later).

While this information might be useful, you’re most likely interested in the content of the request itself, which can be accessed in a few ways:

response.content() # Return the raw bytes of the data payload
response.text() # Return a string representation of the data payload
response.json() # This method is convenient when the API returns JSON

How to Use Query Parameters 

Queries can be used to filter the data that an API returns, and these are added as query parameters that are appended to the endpoint URL. With Python Requests, this is handled via the params argument, which accepts a dictionary object; let’s see what that looks like when we use the Open Notify API to GET an estimate for when the ISS will fly over a specified point:

query = {'lat':'45', 'lon':'180'}
response = requests.get('http://api.open-notify.org/iss-pass.json', params=query)
print(response.json())

The print command would return something that looks like this:

{
  'message': 'success',
  'request': {
    'altitude': 100,
    'datetime': 1590607799,
    'latitude': 45.0,
    'longitude': 180.0,
    'passes': 5
  },
  'response': [
    {'duration': 307, 'risetime': 1590632341},
    {'duration': 627, 'risetime': 1590637934},
    {'duration': 649, 'risetime': 1590643725},
    {'duration': 624, 'risetime': 1590649575},
    {'duration': 643, 'risetime': 1590655408}
  ]
}

How to Create and Modify Data With POST and PUT

In a similar manner as the query parameters, you can use the data argument to add the associated data for PUT and POST method requests.

# Create a new resource
response = requests.post('https://httpbin.org/post', data = {'key':'value'})

# Update an existing resource
requests.put('https://httpbin.org/put', data = {'key':'value'})

Experience Nylas REST APIs Using Python

Get a quick demonstration on how to make your first API call in minutes with Nylas using Python.

How to Access REST Headers

You can also retrieve metadata from the response via headers. For example, to view the date of the response, just specify that with the `headers` property:

print(response.headers["date"]) 
>>>> 'Wed, 11 June 2020 19:32:24 GMT'

For open APIs, that covers the basics. However, many APIs can’t be used by just anyone. For those, let’s go over how to authenticate to REST APIs.

How to Authenticate to a REST API

So far you’ve seen how to interact with open REST APIs that don’t require any authorization. However, many REST APIs require you to authenticate to them before you can access specific endpoints, particularly if they deal with sensitive data. 

There are a few common authentication methods for REST APIs that can be handled with Python Requests. The simplest way is to pass your username and password to the appropriate endpoint as HTTP Basic Auth; this is equivalent to typing your username and password into a website.

requests.get(
  'https://api.github.com/user', 
  auth=HTTPBasicAuth('username', 'password')
)

A more secure method is to get an access token that acts as an equivalent to a username/password combination; the method to get an access token varies widely from API to API, but the most common framework for API authentication is OAuth. Here at Nylas, we use three-legged OAuth to grant an access token for user accounts that is restricted to scopes that define the specific data and functionality that can be accessed. This process is demonstrated in the Nylas Hosted Auth service.Illustration of the Nylas Hosted Auth service that integrates with 100% of email, calendar, and contacts providers, including Google

Once you have an access token, you can provide it as a bearer token in the request header: this is the most secure way to authenticate to a REST API with an access token:

my_headers = {'Authorization' : 'Bearer {access_token}'}
response = requests.get('http://httpbin.org/headers', headers=my_headers)

There are quite a few other methods to authenticate to a REST API, including digest, Kerberos, NTLM, and AuthBase. The use of these depends on the architecture decisions of the REST API producer.

Use Sessions to Manage Access Tokens 

Session objects come in handy when working with Python Requests as a tool to persist parameters that are needed for making multiple requests within a single session, like access tokens. Also, managing session cookies can provide a nice performance increase because you don’t need to open a new connection for every request.

session = requests.Session()
session.headers.update({'Authorization': 'Bearer {access_token}'})
response = session.get('https://httpbin.org/headers')

How to Handle HTTP Errors With Python Requests

API calls don’t always go as planned, and there’s a multitude of reasons why API requests might fail that could be the fault of either the server or the client. If you’re going to use a REST API, you need to understand how to handle the errors they output when things go wrong to make your code more robust. This section covers everything you need to know about handling HTTP errors with Python Requests.

The Basics of HTTP Status Codes

Before we dive into the specifics of Python Requests, we first need to take a step back and understand what HTTP status codes are and how they relate to errors you might encounter.

All status codes fall into one of five categories. 

  • 1xx Informational – Indicates that a request has been received and that the client should continue to make the requests for the data payload. You likely won’t need to worry about these status codes while working with Python Requests.
  • 2xx Successful – Indicates that a requested action has been received, understood, and accepted. You can use these codes to verify the existence of data before attempting to act on it.
  • 3xx Redirection – Indicates that the client must make an additional action to complete the request like accessing the resource via a proxy or a different endpoint. You may need to make additional requests, or modify your requests to deal with these codes.
  • 4xx Client Error – Indicates problems with the client, such as a lack of authorization, forbidden access, disallowed methods, or attempts to access nonexistent resources. This usually indicates configuration errors on the client application.
  • 5xx Server Error – Indicates problems with the server that provides the API. There are a large variety of server errors and they often require the API provider to resolve.

How to Check for HTTP Errors With Python Requests

The response objects has a status_code attribute that can be used to check for any errors the API might have reported. The next example shows how to use this attribute to check for successful and 404 not found HTTP status codes, and you can use this same format for all HTTP status codes.

response = requests.get("http://api.open-notify.org/astros.json")
if (response.status_code == 200):
    print("The request was a success!")
    # Code here will only run if the request is successful
elif (response.status_code == 404:
    print("Result not found!")
    # Code here will react to failed requests

To see this in action, try removing the last letter from the URL endpoint, the API should return a 404 status code.

If you want requests to raise an exception for all error codes (4xx and 5xx), you can use the raise_for_status() function and catch specific errors using Requests built-in exceptions. This next example accomplishes the same thing as the previous code example.

try:
    response = requests.get('http://api.open-notify.org/astros.json')
    response.raise_for_status()
    # Additional code will only run if the request is successful
except requests.exceptions.HTTPError as error:
    print(error)
    # This code will run if there is a 404 error.

TooManyRedirects 

Something that is often indicated by 3xx HTTP status codes is the requirement to redirect to a different location for the resource you’re requesting. This can sometimes result in a situation where you end up with an infinite redirect loop. The Python Requests module has the TooManyRedirects error that you can use to handle this problem. To resolve this problem, it’s likely the URL you’re using to access the resource is wrong and needs to be changed.

try:
    response = requests.get('http://api.open-notify.org/astros.json')
    response.raise_for_status()
    # Code here will only run if the request is successful
except requests.exceptions.TooManyRedirects as error:
    print(error)

You can optionally use the request options to set the maximum number of redirects:

response = requests.get('http://api.open-notify.org/astros.json', max_redirects=2)

Or disable redirecting completely within your request options:

response = requests.get('http://api.open-notify.org/astros.json', allow_redirects=False)

ConnectionError

So far, we’ve only looked at errors that come from an active server. What happens if you don’t receive a response from the server at all? Connection errors can occur for many different reasons, including a DNS failure, refused connection, internet connectivity issues or latency somewhere in the network. Python Requests offers the ConnectionError exception that indicates when your client is unable to connect to the server. 

try:
    response = requests.get('http://api.open-notify.org/astros.json') 
    # Code here will only run if the request is successful
except requests.ConnectionError as error:
    print(error)

This type of error might be temporary, or permanent. In the former scenario, you should retry the request again to see if there is a different result. In the latter scenario, you should make sure you’re able to deal with a prolonged inability to access data from the API, and it might require you to investigate your own connectivity issues.

Timeout 

Timeout errors occur when you’re able to connect to the API server, but it doesn’t complete the request within the allotted amount of time. Similar to the other errors we’ve looked at, Python Requests can handle this error with a Timeout exception:   

try:
    response = requests.get('http://api.open-notify.org/astros.json', timeout=0.00001)
    # Code here will only run if the request is successful
except requests.Timeout as error:
    print(error)

In this example, the timeout was set as a fraction of a second via the request options. Most APIs are unable to respond this quickly, so the code will produce a timeout exception. You can avoid this error by setting longer timeouts for your script, optimizing your requests to be smaller, or setting up a retry loop for the request. This can also sometimes indicate a problem with the API provider. One final solution is to incorporate asynchronous API calls to  prevent your code from stopping while it waits for larger responses.

How to Make Robust API Requests

 As we’ve seen, the Requests module elegantly handles common API request errors by utilizing  exception handling in Python. If we put all of the errors we’ve talked about together, we have a rather seamless way to handle any HTTP request error that comes our way:

try:
    response = requests.get('http://api.open-notify.org/astros.json', timeout=5)
    response.raise_for_status()
    # Code here will only run if the request is successful
except requests.exceptions.HTTPError as errh:
    print(errh)
except requests.exceptions.ConnectionError as errc:
    print(errc)
except requests.exceptions.Timeout as errt:
    print(errt)
except requests.exceptions.RequestException as err:
    print(err)

Experience Nylas REST APIs Using Python

Sign up for a Nylas developer account and make your first API call in minutes using Python.

Learn More About Python

If you’ve made it this far, congrats! You’re well on your way to becoming a Python Requests wizard for whom no REST API is too great a match. Want to keep learning? We have tons of knowledgable Python experts here at Nylas, and we have in-depth content on our blog about packaging and deploying Python code to production, and using environment variables to make your Python code more secure.

Don’t miss the action and watch our livestream Coding with Nylas:

Понравилась статья? Поделить с друзьями:
  • Python requests get ssl cert verification error
  • Python requests error handler
  • Python requests error 403
  • Python requests connection error
  • Python requests 500 error