Размер средней ошибки выборки зависит от

Работа по теме: Выборочный метод (статитсика). Глава: 2. Ошибки выборки. ВУЗ: ИжГСХА.

При
выборочном наблюдении должна быть
обеспечена слу­чайность
отбора
единиц. Каждая единица должна иметь
равную с другими возможность быть
отобранной. Именно на этом ос­новывается
собственно-случайная выборка.

К
собственно-случайной
выборке

относится
отбор единиц из всей генеральной
совокупности (без предварительного
рас­членения ее на какие-либо группы)
посредством жеребьевки (преимущественно)
или какого-либо иного подобного спосо­ба,
например, с помощью таблицы случайных
чисел. Случай­ный
отбор —
это
отбор не беспорядочный. Принцип
случай­ности предполагает, что на
включение или исключение объ­екта из
выборки не может повлиять какой-либо
фактор, кро­ме случая. Примером
собственно-случайного
отбора
могут служить тиражи выигрышей: из
общего количества выпущен­ных билетов
наугад отбирается определенная часть
номеров, на которые приходятся выигрыши.
Причем всем номерам обеспечивается
равная возможность попадания в выборку.
При этом количество отобранных в
выборочную совокупность единиц обычно
определяется исходя из принятой доли
выборки.

Доля,
выборки

есть
отношение числа единиц выборочной
со­вокупности к числу единиц генеральной
совокупности:

Так,
при 5%-ной выборке из партии деталей в
1000 ед. объ­ем выборки п
составляет
50 ед., а при 10%-ной выборке -100 ед. и т.д.
При правильной научной организации
выборки ошибки репрезентативности
можно свести к минимальном значениям,
в результате — выборочное наблюдение
становится достаточно точным.

Собственно-случайный
отбор «в чистом виде» применяет­ся в
практике выборочного наблюдения редко,
но он является исходным среди всех
других видов отбора, в нем заключаются
и реализуются основные принципы
выборочного наблюдения.

Рассмотрим некоторые
вопросы теории выборочного метода и
формулы ошибок для простой случайной
выборки.

Применяя
выборочный метод в статистике, обычно
используют два основных вида обобщающих
показателей: среднюю
величину ко­личественного признака
и
относительную
величину альтернативного признака
(долю
или удельный вес единиц в статистической
сово­купности, которые отличаются от
всех других единиц этой сово­купности
только наличием изучаемого признака).

Выборочная
доля

(
w),
или
частость, определяется отношением числа
единиц, обладающих изучаемым признаком
т,
к
общему числу единиц выборочной
совокупности п:

w
= т/п.

Например,
если из 100 деталей выборки (и = 100), 95
деталей оказались стандартными
=95),
то выборочная доля

w
=
95 / 100 = 0,95 .

Для
характеристики надежности выборочных
показателей различают среднюю
и
предельную
ошибки выборки.

Ошибка
выборки



или,
иначе говоря, ошибка репрезента­тивности
представляет собой разность соответствующих
выбо­рочных и генеральных характеристик:

для
средней количественного признака


(1)

для
доли (альтернативного признака)


(2)

Ошибка выборки
свойственна только выборочным
наблюде­ниям. Чем больше значение
этой ошибки, тем в большей степе­ни
выборочные показатели отличаются от
соответствующих ге­неральных
показателей.

Выборочная
средняя и выборочная доля по своей сути
яв­ляются случайными
величинами,
которые
могут принимать раз­личные значения
в зависимости от того, какие единицы
сово­купности попали в выборку.
Следовательно, ошибки выборки также
являются случайными величинами и могут
принимать различные значения. Поэтому
определяют среднюю из возмож­ных
ошибок — среднюю ошибку выборки.

От
чего зависит средняя
ошибка выборки!
При
соблюдении принципа случайного отбора
средняя ошибка выборки определяется,
прежде всего объемом
выборки:
чем
больше численность при прочих равных
условиях, тем меньше величина средней
ошибки выборки. Охватывая выборочным
обследованием все большее количество
единиц генеральной совокупности, всё
более точно характеризуем всю генеральную
совокупность.

Средняя
ошибка выборки также зависит от степени
варьи­рования
изучаемого
признака. Степень варьирования, как
из­вестно, характеризуется дисперсией

или
w(1
w)

для альтернативного признака. Чем меньше
вариация признака, а следовательно, и
дисперсия, тем меньше средняя ошибка
вы­борки, и наоборот. При нулевой
дисперсии (признак не варь­ирует)
средняя ошибка выборки равна нулю, т.
е. любая еди­ница генеральной
совокупности будет совершенно точно
ха­рактеризовать всю совокупность
по этому признаку.

Зависимость
средней ошибки выборки от ее объема и
степе­ни варьирования признака
отражена в формулах, с помощью которых
можно рассчитать среднюю ошибку выборки
в услови­ях выборочного наблюдения,
когда генеральные характеристики (х,р)
неизвестны,
и следовательно, не представляется
возмож­ным нахождение реальной ошибки
выборки непосредственно по формулам
(1), (2).

При
случайном повторном отборе
средние
ошибки теоретически рассчитывают по
следующим формулам:

для
средней количественного признака


(3)

для
доли (альтернативного признака)


(4)

Поскольку
практически дисперсия признака в
генеральной совокупности

точно неизвестна, на практике пользуются

значением
дисперсии S2
,
рассчитанным
для выборочной сово­купности на
основании закона больших чисел, согласно
кото­рому выборочная совокупность
при достаточно большом объеме выборки
достаточно точно воспроизводит
характеристики гене­ральной
совокупности.

Таким
образом, расчетные формулы средней
ошиб­ки выборки

при
случайном повторном отборе будут
следующие:

для
средней количественного признака


(5)

для
доли (альтернативного признака)


(6)

Однако
дисперсия выборочной совокупности не
равна диспер­сии генеральной
совокупности, и следовательно, средние
ошибки выборки, рассчитанные по формулам
(5) и (6), будут прибли­женными. Но в
теории вероятностей доказано, что
генеральная дисперсия выражается через
выборочную следующим соотношением:


(7)

Так
как п
/
(n
-1)
при достаточно больших п
величина,
близкая к единице, то можно принять, что

=
S2,
а
следова­тельно,
в практических расчетах средних ошибок
выборки мож­но использовать формулы
(5) и (6). И только в случаях ма­лой выборки
(когда объем выборки не превышает 30)
необхо­димо учитывать коэффициент
п/(п-1)
и
исчислять среднюю
ошибку малой выборки
по
формуле:


(8)

При
случайном бесповторном отборе

в
приведенные выше формулы расчета средних
ошибок выборки необходимо подко­ренное
выражение умножить на 1-(п/N),
поскольку
в процес­се бесповторной выборки
сокращается численность единиц
ге­неральной совокупности. Следовательно,
для бесповторной вы­борки расчетные
формулы средней
ошибки выборки

примут
такой вид:

для
средней количественного признака


(9)

для
доли (альтернативного признака)


(10)

Так
как п
всегда
меньше N,
то
дополнительный множи­тель 1 — (n
/ N)
всегда
будет меньше единицы. Отсюда следу­ет,
что средняя ошибка при бесповторном
отборе всегда будет меньше, чем при
повторном. В то же время при сравнительно
небольшом проценте выборки этот множитель
близок к еди­нице (например, при 5%-ной
выборке он равен 0,95; при 2%-ной — 0,98 и
т.д.). Поэтому иногда на практике пользуются
для определения средней ошибки выборки
формулами (5) и (6) без указанного множителя,
хотя выборку и организуют как бесповторную.
Это имеет место в тех случаях, когда
число единиц генеральной совокупности
N
неизвестно
или безгра­нично, или когда п
очень
мало по сравнению с N,
и
по су­ществу, введение дополнительного
множителя, близкого по значению к
единице, практически не повлияет на
значение средней ошибки выборки.

Механическая
выборка

состоит
в том, что отбор единиц в выборочную
совокупность из генеральной, разбитой
по ней­тральному признаку на равные
интервалы (группы), произво­дится
таким образом, что из каждой такой группы
в выборку отбирается лишь одна единица.
Чтобы избежать систематиче­ской
ошибки, отбираться должна единица,
которая находится в середине каждой
группы.

При организации
механического отбора единицы совокуп­ности
предварительно располагают (обычно в
списке) в опре­деленном порядке
(например, по алфавиту, местоположению,
в порядке возрастания или убывания
значений какого-либо по­казателя, не
связанного с изучаемым свойством, и
т.д.), после чего отбирают заданное число
единиц механически, через оп­ределенный
итервал. При этом размер интервала в
генеральной совокупности равен обратному
значению доли выборки. Так, при 2%-ной
выборке отбирается и проверяется каждая
50-я единица (1 : 0,02), при 5 %-ной выборке —
каждая 20-я едини­ца (1 : 0,05), например,
сходящая со станка деталь.

При
достаточно большой совокупности
механический отбор по точности результатов
близок к собственно-случайному. По­этому
для определения средней ошибки
механической выборки используют формулы
собственно-случайной бесповторной
вы­борки (9), (10).

Для
отбора единиц из неоднородной совокупности
применя­ется, так называемая типическая
выборка,
которая
используется в тех случаях, когда все
единицы генеральной совокупности можно
разбить на несколько качественно
однородных, однотипных групп по признакам,
влияющим на изучаемые показатели.

При обследовании
предприятий такими группами могут быть,
например, отрасль и подотрасль, формы
собственности. Затем из каждой типической
группы собственно-случайной или
механической выборкой производится
индивидуальный отбор единиц в выборочную
совокупность.

Типическая выборка
обычно применяется при изучении слож­ных
статистических совокупностей. Например,
при выборочном обследовании семейных
бюджетов рабочих и служащих в отдель­ных
отраслях экономики, производительности
труда рабочих пред­приятия, представленных
отдельными группами по квалификации.

Типическая выборка
дает более точные результаты по сравнению
с другими способами отбора единиц в
выбороч­ную совокупность. Типизация
генеральной совокупности обеспечивает
репрезентативность такой выборки,
представи­тельство в ней каждой
типологической группы, что позволяет
исключить влияние межгрупповой дисперсии
на среднюю ошибку выборки,

При
определении средней
ошибки типической выборки
в
ка­честве показателя вариации выступает
средняя
из внутригрупповых дисперсий.

Среднюю
ошибку выборки
находят
по формулам:

для
средней количественного признака


(повторный отбор);
(11)


(бесповторный
отбор);
(12)

для
доли (альтернативного признака)


(повторный отбор);
(13)

(бесповторный
отбор), (14)

где


средняя
из внутригрупповых дисперсий по
вы­борочной совокупности;



средняя из внутригрупповых дисперсий
доли (альтер­нативного

признака) по
выборочной совокупности.

Серийная
выборка

предполагает
случайный отбор из генераль­ной
совокупности не отдельных единиц, а их
равновеликих групп (гнезд, серий) с тем,
чтобы в таких группах подвергать
наблюде­нию все без исключения единицы.

Применение серийной
выборки обусловлено тем, что многие
товары для их транспортировки, хранения
и продажи упаковываются в пачки, ящики
и т.п. Поэтому при контроле качества
упакованного товара рациональнее
проверить не­сколько упаковок (серий),
чем из всех упаковок отбирать не­обходимое
количество товара.

Поскольку внутри
групп (серий) обследуются все без
исключе­ния единицы, средняя ошибка
выборки (при отборе равновеликих серий)
зависит только от межгрупповой
(межсерийной) дисперсии.

Среднюю
ошибку выборки для средней количественного
при­знака

при
серийном отборе находят по формулам:


(повторный отбор);
(15)


(бесповторный
отбор),
(16)

где
r

число отобранных серий; R
общее
число серий.

Межгрупповую
дисперсию серийной выборки вычисляют
сле­дующим образом:

где


средняя i-й
серии;

общая
средняя по всей выбо­рочной совокупности.

Средняя
ошибка выборки для доли (альтернативного
при­знака)

при
серийном отборе:


(повторный отбор);
(17)


(бесповторный
отбор).
(18)

Межгрупповую
(межсерийную)
дисперсию
доли серийной вы­борки
определяют
по формуле:


(19)

где
w
i
доля
признака в i-и
серии;

общая
доля признака во всей выборочной
совокупности.

В
практике статистических обследований
помимо рассмот­ренных ранее способов
отбора применяется их комбинация
(комбинированный
отбор).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

11.2. Оценка результатов выборочного наблюдения

11.2.1. Средняя и предельная ошибки выборки. Построение доверительных границ для средней и доли

Средняя ошибка выборки показывает, насколько отклоняется в среднем параметр выборочной совокупности от соответствующего параметра генеральной. Если рассчитать среднюю из ошибок всех возможных выборок определенного вида заданного объема (n), извлеченных из одной и той же генеральной совокупности, то получим их обобщающую характеристику — среднюю ошибку выборки ( mu ).

В теории выборочного наблюдения выведены формулы для определения  mu , которые индивидуальны для разных способов отбора (повторного и бесповторного), типов используемых выборок и видов оцениваемых статистических показателей.

Например, если применяется повторная собственно случайная выборка, то  mu определяется как:

— при оценивании среднего значения признака;

— если признак альтернативный, и оценивается доля.

При бесповторном собственно случайном отборе в формулы вносится поправка (1 — n/N):

— для среднего значения признака;

— для доли.

Вероятность получения именно такой величины ошибки всегда равна 0,683. На практике же предпочитают получать данные с большей вероятностью, но это приводит к возрастанию величины ошибки выборки.

Предельная ошибка выборки (Delta) равна t-кратному числу средних ошибок выборки (в теории выборки принято коэффициент t называть коэффициентом доверия):

Delta =t mu.

Если ошибку выборки увеличить в два раза (t = 2), то получим гораздо большую вероятность того, что она не превысит определенного предела (в нашем случае — двойной средней ошибки) — 0,954. Если взять t = 3, то доверительная вероятность составит 0,997 — практически достоверность.

Уровень предельной ошибки выборки зависит от следующих факторов:

  • степени вариации единиц генеральной совокупности;
  • объема выборки;
  • выбранных схем отбора (бесповторный отбор дает меньшую величину ошибки);
  • уровня доверительной вероятности.

Если объем выборки больше 30, то значение t определяется по таблице нормального распределения, если меньше — по таблице распределения Стьюдента.

Приведем некоторые значения коэффициента доверия из таблицы нормального распределения.

Таблица
11.2.

Значение доверительной вероятности P 0,683 0,954 0,997
Значение коэффициента доверия t 1,0 2,0 3,0

Доверительный интервал для среднего значения признака и для доли в генеральной совокупности устанавливается следующим образом:

Итак, определение границ генеральной средней и доли состоит из следующих этапов:

Ошибки выборки при различных видах отбора

  1. Собственно случайная и механическая выборка. Средняя ошибка собственно случайной и механической выборки находятся по формулам, представленным в табл. 11.3.

Таблица
11.3.
Формулы для расчета средней ошибки собственно случайной и механической выборки ( mu )

где sigma^{2} — дисперсия признака в выборочной совокупности.

Пример 11.2. Для изучения уровня фондоотдачи было проведено выборочное обследование 90 предприятий из 225 методом случайной повторной выборки, в результате которого получены данные, представленные в таблице.

Таблица
11.4.

Уровень фондоотдачи, руб. До 1,4 1,4-1,6 1,6-1,8 1,8-2,0 2,0-2,2 2,2 и выше Итого
Количество предприятий 13 15 17 15 16 14 90

В рассматриваемом примере имеем 40%-ную выборку (90 : 225 = 0,4, или 40%). Определим ее предельную ошибку и границы для среднего значения признака в генеральной совокупности по шагам алгоритма:

  1. По результатам выборочного обследования рассчитаем среднее значение и дисперсию в выборочной совокупности:

Таблица
11.5.

Результаты наблюдения Расчетные значения
уровень фондоотдачи, руб., xi количество предприятий, fi середина интервала, xixb4 xixb4fi xixb42fi
До 1,4 13 1,3 16,9 21,97
1,4-1,6 15 1,5 22,5 33,75
1,6-1,8 17 1,7 28,9 49,13
1,8-2,0 15 1,9 28,5 54,15
2,0-2,2 16 2,1 33,6 70,56
2,2 и выше 14 2,3 32,2 74,06
Итого 90 162,6 303,62

Выборочная средняя

Выборочная дисперсия изучаемого признака

  1. Определяем среднюю ошибку повторной случайной выборки

  2. Зададим вероятность, на уровне которой будем говорить о величине предельной ошибки выборки. Чаще всего она принимается равной 0,999; 0,997; 0,954.

Для наших данных определим предельную ошибку выборки, например, с вероятностью 0,954. По таблице значений вероятности функции нормального распределения (см. выдержку из нее, приведенную в Приложении 1) находим величину коэффициента доверия t, соответствующего вероятности 0,954. При вероятности 0,954 коэффициент t равен 2.

  1. Предельная ошибка выборки с вероятностью 0,954 равна

    delta_{x}= tmu_{x}= 2*0.035 = 0.07

  2. Найдем доверительные границы для среднего значения уровня фондоотдачи в генеральной совокупности

Таким образом, в 954 случаях из 1000 среднее значение фондоотдачи будет не выше 1,88 руб. и не ниже 1,74 руб.

Выше была использована повторная схема случайного отбора. Посмотрим, изменятся ли результаты обследования, если предположить, что отбор осуществлялся по схеме бесповторного отбора. В этом случае расчет средней ошибки проводится по формуле

Тогда при вероятности равной 0,954 величина предельной ошибки выборки составит:

delta_{x}= tmu_{x}= 2*0.027 = 0.054

Доверительные границы для среднего значения признака при бесповторном случайном отборе будут иметь следующие значения:

Сравнив результаты двух схем отбора, можно сделать вывод о том, что применение бесповторной случайной выборки дает более точные результаты по сравнению с применением повторного отбора при одной и той же доверительной вероятности. При этом, чем больше объем выборки, тем существеннее сужаются границы значений средней при переходе от одной схемы отбора к другой.

По данным примера определим, в каких границах находится доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., в генеральной совокупности:

  1. рассчитаем выборочную долю.

Количество предприятий в выборке с уровнем фондоотдачи, не превышающим значения 2,0 руб., составляет 60 единиц. Тогда

m = 60, n = 90, w = m/n = 60 : 90 = 0,667;

  1. рассчитаем дисперсию доли в выборочной совокупности

sigma_{w}^{2}= w(1 - w) = 0,667(1 - 0,667) = 0,222;

  1. средняя ошибка выборки при использовании повторной схемы отбора составит

Если предположить, что была использована бесповторная схема отбора, то средняя ошибка выборки с учетом поправки на конечность совокупности составит

  1. зададим доверительную вероятность и определим предельную ошибку выборки.

При значении вероятности Р = 0,997 по таблице нормального распределения получаем значение для коэффициента доверия t = 3 (см. выдержку из нее, приведенную в Приложении 1):

delta_{x}= tmu_{x}= 3*0.04 = 0.12

  1. установим границы для генеральной доли с вероятностью 0,997:

Таким образом, с вероятностью 0,997 можно утверждать, что в генеральной совокупности доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., не меньше, чем 54,7%, и не больше 78,7%.

  1. Типическая выборка. При типической выборке генеральная совокупность объектов разбита на k групп, тогда

N1 + N2 + … + Ni + … + Nk = N.

Объем извлекаемых из каждой типической группы единиц зависит от принятого способа отбора; их общее количество образует необходимый объем выборки

n1 + n2 + … + ni + … + nk = n.

Существуют следующие два способа организации отбора внутри типической группы: пропорциональной объему типических групп и пропорциональной степени колеблемости значений признака у единиц наблюдения в группах. Рассмотрим первый из них, как наиболее часто используемый.

Отбор, пропорциональный объему типических групп, предполагает, что в каждой из них будет отобрано следующее число единиц совокупности:

n = ni · Ni/N

где ni — количество извлекаемых единиц для выборки из i-й типической группы;

n — общий объем выборки;

Ni — количество единиц генеральной совокупности, составивших i-ю типическую группу;

N — общее количество единиц генеральной совокупности.

Отбор единиц внутри групп происходит в виде случайной или механической выборки.

Формулы для оценивания средней ошибки выборки для среднего и доли представлены в табл. 11.6.

Таблица
11.6.
Формулы для расчета средней ошибки выборки (mu) при использовании типического отбора, пропорционального объему типических групп

Здесь sigma^{2} — средняя из групповых дисперсий типических групп.

Пример 11.3. В одном из московских вузов проведено выборочное обследование студентов с целью определения показателя средней посещаемости вузовской библиотеки одним студентом за семестр. Для этого была использована 5%-ная бесповторная типическая выборка, типические группы которой соответствуют номеру курса. При отборе, пропорциональном объему типических групп, получены следующие данные:

Таблица
11.7.

Номер курса Всего студентов, чел., Ni Обследовано в результате выборочного наблюдения, чел., ni Среднее число посещений библиотеки одним студентом за семестр, xi Внутригрупповая выборочная дисперсия, sigma_{i}^{2}
1 650 33 11 6
2 610 31 8 15
3 580 29 5 18
4 360 18 6 24
5 350 17 10 12
Итого 2 550 128 8

Число студентов, которое необходимо обследовать на каждом курсе, рассчитаем следующим образом:

  • общий объем выборочной совокупности:

    n = 2550/130*5 =128 (чел.);

  • количество единиц, отобранных из каждой типической группы:

аналогично для других групп:

n2 = 31 (чел.);

n3 = 29 (чел.);

n4 = 18 (чел.);

n5 = 17 (чел.).

Проведем необходимые расчеты.

  1. Выборочная средняя, исходя из значений средних типических групп, составит:

  2. Средняя из внутригрупповых дисперсий

  3. Средняя ошибка выборки:

    С вероятностью 0,954 находим предельную ошибку выборки:

    delta_{x} = tmu_{x} = 2*0.334 = 0.667

  4. Доверительные границы для среднего значения признака в генеральной совокупности:

Таким образом, с вероятностью 0,954 можно утверждать, что один студент за семестр посещает вузовскую библиотеку в среднем от семи до девяти раз.

  1. Малая выборка. В связи с небольшим объемом выборочной совокупности те формулы для определения ошибок выборки, которые использовались нами ранее при «больших» выборках, становятся неподходящими и требуют корректировки.

Среднюю ошибку малой выборки определяют по формуле

Предельная ошибка малой выборки:

delta_{MB}= tmu_{MB}

Распределение значений выборочных средних всегда имеет нормальный закон распределения (или приближается к нему) при п > 100, независимо от характера распределения генеральной совокупности. Однако в случае малых выборок действует иной закон распределения — распределение Стьюдента. В этом случае коэффициент доверия находится по таблице t-распределения Стьюдента в зависимости от величины доверительной вероятности Р и объема выборки п. В Приложении 1 приводится фрагмент таблицы t-распределения Стьюдента, представленной в виде зависимости доверительной вероятности от объема выборки и коэффициента доверия t.

Пример 11.4. Предположим, что выборочное обследование восьми студентов академии показало, что на подготовку к контрольной работе по статистике они затратили следующее количество часов: 8,5; 8,0; 7,8; 9,0; 7,2; 6,2; 8,4; 6,6.

Оценим выборочные средние затраты времени и построим доверительный интервал для среднего значения признака в генеральной совокупности, приняв доверительную вероятность равной 0,95.

  1. Среднее значение признака в выборке равно

  2. Значение среднего квадратического отклонения составляет

  3. Средняя ошибка выборки:

  4. Значение коэффициента доверия t = 2,365 для п = 8 и Р = 0,95 .
  5. Предельная ошибка выборки:

    delta_{MB}= tmu_{MB}=2,365*0,344 = 0,81356 ~ 0,81 (ч)

  6. Доверительный интервал для среднего значения признака в генеральной совокупности:

То есть с вероятностью 0,95 можно утверждать, что затраты времени студента на подготовку к контрольной работе находятся в пределах от 6,9 до 8,5 ч.

11.2.2. Определение численности выборочной совокупности

Перед непосредственным проведением выборочного наблюдения всегда решается вопрос, сколько единиц исследуемой совокупности необходимо отобрать для обследования. Формулы для определения численности выборки выводят из формул предельных ошибок выборки в соответствии со следующими исходными положениями (табл. 11.7):

  1. вид предполагаемой выборки;
  2. способ отбора (повторный или бесповторный);
  3. выбор оцениваемого параметра (среднего значения признака или доли).

Кроме того, следует заранее определиться со значением доверительной вероятности, устраивающей потребителя информации, и с размером допустимой предельной ошибки выборки.

Таблица
11.8.
Формулы для определения численности выборочной совокупности

Примечание: при использовании приведенных в таблице формул рекомендуется получаемую численность выборки округлять в большую сторону для обеспечения некоторого запаса в точности.

Пример 11.5. Рассчитаем, сколько из 507 промышленных предприятий следует проверить налоговой инспекции, чтобы с вероятностью 0,997 определить долю предприятий с нарушениями в уплате налогов. По данным прошлого аналогичного обследования величина среднего квадратического отклонения составила 0,15; размер ошибки выборки предполагается получить не выше, чем 0,05.

При использовании повторного случайного отбора следует проверить

При бесповторном случайном отборе потребуется проверить

Как видим, использование бесповторного отбора позволяет проводить обследование гораздо меньшего числа объектов.

Пример 11.6. Планируется провести обследование заработной платы на предприятиях отрасли методом случайного бесповторного отбора. Какова должна быть численность выборочной совокупности, если на момент обследования в отрасли число занятых составляло 100 000 чел.? Предельная ошибка выборки не должна превышать 100 руб. с вероятностью 0,954. По результатам предыдущих обследований заработной платы в отрасли известно, что среднее квадратическое отклонение составляет 500 руб.

Следовательно, для решения поставленной задачи необходимо включить в выборку не менее 100 человек.

3. Ошибки выборки

Каждая единица при выборочном наблюдении должна иметь равную с другими возможность быть отобранной – это является основой собственнослучайной выборки.

Собственнослучайная выборка – это отбор единиц из всей генеральной совокупности посредством жеребьевки или другим подобным способом.

Принципом случайности является то, что на включение или исключение объекта из выборки не может повлиять любой фактор, кроме случая.

Доля выборки – это отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

Собственнослучайный отбор в чистом виде является исходным среди всех других видов отбора, в нем заключаются и реализуются основные принципы выборочного статистического наблюдения.

Два основных вида обобщающих показателей, которые используют в выборочном методе – это средняя величина количественного признака и относительная величина альтернативного признака.

Выборочная доля (w), или частность, определяется отношением числа единиц, обладающих изучаемым признаком m, к общему числу единиц выборочной совокупности (n):

Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки.

Ошибка выборки, ее еще называют ошибкой репрезентативности, представляет собой разность соответствующих выборочных и генеральных характеристик:

1) для средней количественного признака:

?х =|х – х|;

2) для доли (альтернативного признака):

?w =|х – p|.

Только выборочным наблюдениям присуща ошибка выборки

Выборочная средняя и выборочная доля – это случайные величины, принимающие различные значения в зависимости от единиц изучаемой статистической совокупности, которые попали в выборку. Соответственно ошибки выборки – тоже случайные величины и также могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок – среднюю ошибку выборки.

Средняя ошибка выборки определяется объемом выборки: чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки. Охватывая выборочным обследованием все большее количество единиц генеральной совокупности, все более точно характеризуем всю генеральную совокупность.

Средняя ошибка выборки зависит от степени варьирования изучаемого признака, в свою очередь степень варьирования характеризуется дисперсией ?2 или w(l – w) – для альтернативного признака. Чем меньше вариация признака и дисперсия, тем меньше средняя ошибка выборки, и наоборот.

При случайном повторном отборе средние ошибки теоретически рассчитывают по следующим формулам:

1) для средней количественного признака:

где ?2 – средняя величина дисперсии количественного признака.

2) для доли (альтернативного признака):

Так как дисперсия признака в генеральной совокупности ?2 точно неизвестна, на практике пользуются значением дисперсии S2 , рассчитанным для выборочной совокупности на основании закона больших чисел, согласно которому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики генеральной совокупности.

Формулы средней ошибки выборки при случайном повторном отборе следующие. Для средней величины количественного признака: генеральная дисперсия выражается через выборную следующим соотношением:

где S2 – значение дисперсии.

Механическая выборка – это отбор единиц в выборочную совокупность из генеральной, которая разбита по нейтральному признаку на равные группы; производится так, что из каждой такой группы в выборку отбирается лишь одна единица.

При механическом отборе единицы изучаемой статистической совокупности предварительно располагают в определенном порядке, после чего отбирают заданное число единиц механически через определенный интервал. При этом размер интервала в генеральной совокупности равен обратному значению доли выборки.

При достаточно большой совокупности механический отбор по точности результатов близок к собственнослучайному Поэтому для определения средней ошибки механической выборки используют формулы собственнослучайной бесповторной выборки.

Для отбора единиц из неоднородной совокупности применяется так называемая типическая выборка, используется, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, от которых зависят изучаемые показатели.

Затем из каждой типической группы собственнослучайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая выборка обычно применяется при изучении сложных статистических совокупностей.

Типическая выборка дает более точные результаты. Типизация генеральной совокупности обеспечивает репрезентативность такой выборки, представительство в ней каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки. Поэтому при определении средней ошибки типической выборки в качестве показателя вариации выступает средняя из внутригрупповых дисперсий.

Серийная выборка предполагает случайный отбор из генеральной совокупности равновеликих групп для того, чтобы в таких группах подвергать наблюдению все без исключения единицы.

Поскольку внутри групп (серий) обследуются все без исключения единицы, средняя ошибка выборки (при отборе равновеликих серий) зависит только от межгрупповой (межсерийной) дисперсии.

Данный текст является ознакомительным фрагментом.

Читайте также

Ошибки резидента

Ошибки резидента
Относиться к ошибкам можно по-разному: можно бояться их совершить и переживать из-за каждой из них, можно радоваться своим ошибкам и кризисам, как указателям на пути к успеху и личным победам. Неизменно в ошибках только одно – за них приходится платить.

Формирование выборки

Формирование выборки
Процедура выборки является неотъемлемым этапом проекта внутреннего аудита. Она подробно описана в различных источниках, посвященных теме аудита. Однако во многом такие описания носят академичный характер. Предлагаю заострить внимание на тех

Ошибки в инвестициях – это ошибки инвесторов

Ошибки в инвестициях – это ошибки инвесторов
Сейчас я больше, чем когда бы то ни было, убежден в том, что все ошибки в инвестициях на самом деле ошибки инвесторов.Инвестиции не совершают ошибок. В отличие от инвесторов.Инвестирование – это выбор. Именно об этой

29. Определение необходимой численности выборки

29. Определение необходимой численности выборки
Одним из научных принципов в теории выбороч–ного метода является обеспечение достаточного чи–сла отобранных единиц.Уменьшение стандартной ошибки выборки всег–да связано с увеличением объема выборки. Расчет

30. Способы отбора и виды выборки. Собственно случайная выборка

30. Способы отбора и виды выборки. Собственно случайная выборка
В теории выборочного метода разработаны раз–личные способы отбора и виды выборки, обеспечи–вающие репрезентативность. Под способом отбора понимают порядок отбора единиц из генеральной со–вокупности.

31. Механическая и типическая выборки

31. Механическая и типическая выборки
При чисто механической выборке вся ге–неральная совокупность единиц должна быть прежде всего представлена в виде списка единиц отбора, со–ставленного в каком-то нейтральном по отношению к изучаемому признаку порядке. Затем список

32. Серийная и комбинированная выборки

32. Серийная и комбинированная выборки
Серийная (гнездовая) выборка – это такой вид формирования выборочной совокупности, когда в случайном порядке отбираются не единицы, подле–жащие обследованию, а группы единиц (серии, гнез–да). Внутри отобранных серий (гнезд)

33. Многоступенчатая, многофазная и взаимопроникающая выборки.

33. Многоступенчатая, многофазная и взаимопроникающая выборки.
Особенность многоступенчатой выборки со–стоит в том, что выборочная совокупность формиру–ется постепенно, по ступеням отбора. На первой ступени с помощью заранее определенного спосо–ба и вида отбора

3. Определение необходимой численности выборки

3. Определение необходимой численности выборки
Одним из научных принципов в теории выборочного метода является обеспечение достаточного числа отобранных единиц. Теоретически необходимость соблюдения этого принципа представлена в доказательствах предельных теорем

4. Способы отбора и виды выборки

4. Способы отбора и виды выборки
В теории выборочного метода разработаны различные способы отбора и виды выборки, обеспечивающие репрезентативность. Под способом отбора понимают порядок отбора единиц из генеральной совокупности. Различают два способа отбора: повторный

36. Ошибки выборки

36. Ошибки выборки
Собственнослучайная выборка – это отбор единиц из всей генеральной совокупности посредством жеребьевки или другим подобным способом. Принципом случайности является то, что на включение или исключение объекта из выборки не может повлиять любой фактор,

Лексические ошибки

Лексические ошибки
1. Неправильное использование слов и терминовОсновная масса ошибок в деловых письмах относится к лексическим. Недостаточная грамотность приводит не только к курьезной бессмыслице, но и абсурду.Отдельные термины и профессиональные жаргонные слова

5 Наши ошибки

5
Наши ошибки
Мы настаиваем: выбранный курс рыночных реформ был верным. И они вовсе не потерпели неудачу, они только еще раз споткнулись. Но ошибки и упущения были. Это и наши ошибки, и ошибки руководства страны, которые мы не сумели предотвратить. Ошибки — во многом

Важность размера выборки

Важность размера выборки
Как я уже говорил, люди склонны уделять слишком много внимания редким случаям возникновения какого-то феномена, несмотря на то что со статистической точки зрения из нескольких случаев невозможно извлечь много информации. Это – основная причина

Репрезентативные выборки

Репрезентативные выборки
Репрезентативность наших тестов для целей предсказания будущего определяется двумя факторами:– Количество рынков: тесты, проводимые на различных рынках, будут, скорее всего, включать рынки с разной степенью волатильности типов

Размер выборки

Размер выборки
Концепция размера выборки проста: для того чтобы делать статистически достоверные заключения, нужно иметь достаточно большую выборку. Чем меньше выборка, тем грубее выводы, которые можно сделать; чем выборка больше, тем выводы качественнее. Нет никакого

Средние ошибки повторной и бесповторной выборки

Средняя ошибка выборки

Средняя ошибка выборки представляет из себя такое расхождение между средними выборочной и генеральной совокупностями, которое не превышает ±б (дельта).

На основании теоремы Чебышева П. Л. величина средней ошибки при случайном повторном отборе в контрольных работах по статистике рассчитывается по формуле (для среднего количественного признака):

Средняя ошибка выборки

где числитель — дисперсия признака х в выборочной совокупности;
n — численность выборочной совокупности.

Для альтернативного признака формула средней ошибки выборки для доли по теореме Я. Бернулли рассчитывается по формуле:

формула средней ошибки для альтернативного признака

где р(1- р) — дисперсия доли признака в генеральной совокупности;
n — объем выборки.

Вследствие, того что дисперсия признака в генеральной совокупности точно не известна, на практике используют значение дисперсии, которое рассчитано для выборочной совокупности на основании закона больших чисел. Согласно данному закону выборочная совокупность при большом объеме выборки достаточно точно воспроизводит характеристики генеральной совокупности.

Поэтому расчетные формулы средней ошибки при случайном повторном отборе будут выглядеть таким образом:

1. Для среднего количественного признака:

средняя ошибка при случайном повторном отборе

где S^2 — дисперсия признака х в выборочной совокупности;
n — объем выборки.

2. Для доли (альтернативного признака):

средняя ошибка при случайном повторном отборе для альтернативного признака

где w (1 — w) — дисперсия доли изучаемого признака в выборочной совокупности.

В теории вероятностей было показано, что генеральная дисперсия выражается через выборочную согласно формуле:

генеральная дисперсия

В случаях малой выборки, когда её объем меньше 30, необходимо учитывать коэффициент n/(n-1). Тогда среднюю ошибку малой выборки рассчитывают по формуле:

средняя ошибка малой выборки

Так как в процессе бесповторной выборки сокращается численность единиц генеральной совокупности, то в представленных выше формулах расчета средних ошибок выборки нужно подкоренное выражение умножить на 1- (n/N).

Расчетные формулы для такого вида выборки будут выглядеть так:

1. Для средней количественного признака:

средняя ошибка безповторной выборки

где N — объем генеральной совокупности; n — объем выборки.

2. Для доли (альтернативного признака):

средняя ошибка безповторной выборки для альтернативного признака

где 1- (n/N) — доля единиц генеральной совокупности, не попавших в выборку.

Поскольку n всегда меньше N, то дополнительный множитель 1 — (n/N) всегда будет меньше единицы. Это означает, что средняя ошибка при бесповторном отборе всегда будет меньше, чем при повторном. Когда доля единиц генеральной совокупности, которые не попали в выборку, существенная, то величина 1 — (n/N) близка к единице и тогда расчет средней ошибки производится по общей формуле.

Средняя ошибка зависит от следующих факторов:

1. При выполнении принципа случайного отбора средняя ошибка выборки определяется во-первых объемом выборки: чем больше численность, тем меньше величины средней ошибки выборки. Генеральная совокупность характеризуется точнее тогда, когда больше единиц данной совокупности охватывает выборочное наблюдение

2. Средняя ошибка также зависит от степени варьирования признака. Степень варьирования характеризуется дисперсией. Чем меньше вариация признака (дисперсия), тем меньше средняя ошибка выборки. При нулевой дисперсии (признак не варьируется) средняя ошибка выборки равна нулю, таким образом, любая единица генеральной совокупности будет характеризовать всю совокупность по этому признаку.

Источник: Балинова B.C. Статистика в вопросах и ответах: Учеб. пособие. — М.: ТК. Велби, Изд-во Проспект, 2004. — 344 с.

2. Виды отбора.

3. Ошибки выборки, определение объема выборочной совокупности.

4. Способы распространения выборочных характеристик.

1. Понятие выборочного наблюдения, репрезентативность выборочного наблюдения.

1. Выборочное наблюдение  несложное наблюдение, при котором обследуется не вся совокупность, а лишь часть, отобранная по определенным правилам выборки и обеспечивающая получение данных, характеризующих всю совокупность в целом.

При проведении выборочного наблюдения нельзя получить абсолютно точные данные, как при сплошном, т. к. обследованию подвергается не вся совокупность, а ее часть. Поэтому при проведении выборочного наблюдения неизбежна некоторая свойственная ему погрешность, ошибка.

Ошибки, свойственные выборочному наблюдению, называются ошибками репрезентативности, т. е. представительства. Они характеризуют размер расхождения между данными выборочного наблюдения и всей совокупности.

Ошибки репрезентативности делятся на случайные и систематические.

Случайные ошибки возникают вследствие того, что выборочная совокупность недостаточно точно воспроизводит совокупность, вследствие несплошного характера наблюдения. Случайные ошибки м. б. доведены до незначительных размеров, а главное размеры и пределы их можно определить с достаточной точностью на основании закона больших чисел и теории вероятности.

Систематические ошибки возникают в результате нарушения принципа случайности отбора единиц совокупности для наблюдения.

Вся совокупность единиц, из которой производится отбор, называется генеральной совокупностью и обозначается буквой N. Часть генеральной совокупности, попавшая в выборку, называется выборочной совокупностью и обозначается n.

Обобщающие показатели генеральной совокупности  средняя, дисперсия, доля  называются генеральными и соответственно обозначаются  доля отнесения М единиц, обладающих определенным признаком, ко всей численности генеральной совокупности, т. е. М/N.

Обобщающие характеристики в выборочной совокупности называются выборочными и обозначаются соответственно x*,  частость  отношение числа единиц, обладающих данным признаком, в выборочной совокупности n, т. е.

Теория выборочного метода дает возможность определить случайные ошибки обобщающих характеристик в выборочной совокупности.

Ошибка репрезентативности  разность между выборочной средней и генеральной средней при достаточно большом числе наблюдений будет сколько угодно малой, т. е.

где абсолютная величина расхождения между генеральной средней и выборочной средней, составляющая ошибку репрезентативности.

— среднее квадратическое отклонение вариантов выборочной средней от генеральной средней (средняя ошибка выборки). Она зависит от колеблемости признака в генеральной совокупности и числа отобранных единиц n: . Величина m зависит также от способа образования выборочной совокупности, т. к. между средней ошибкой выборки и n числом отбираемых единиц существует обратно пропорциональная связь. Отсюда вытекает следующее правило: если надо уменьшить ошибку выборки, например, в 3 раза, необходимо увеличить объем выборки в девять раз.

Увеличение колеблемости признака в генеральной совокупности влечет за собой увеличение среднего квадратического отклонения, и следовательно и ошибки выборки.

Доказано, что соотношение между дисперсиями генеральной и выборочной совокупностей выражаются формулой:

, т. к. при больших n приближается к 1, то

Средняя ошибка выборки показывает, какие возможны отклонения характеристик выборочной совокупности от соответствующих характеристик генеральной совокупности. Однако о величине этой ошибки можно судить с определенной вероятностью, на величину которой указывает коэффициент доверия t.

Величина обозначается называется предельной ошибкой выборки. Следовательно предельная ошибка выборки определяется формулой = . С увеличением t увеличивается вероятность нашего утверждения, но вместе с тем увеличивается и величина ошибки.

2. Виды и схемы отбора.

Формирование выборочной совокупности из генеральной может осуществляться по-разному: в зависимости от вида и схемы отбора, и т. д. От их особенностей зависит размер ошибки и методы определения. Различаются 4 вида отбора:

1.  собственно-случайный

2.  механический

3.  типический

4.  серийный (гнездовой)

Собственно-случайный отбор  включение единиц совокупности осуществляется наудачу. Наиболее распространенным способом отбора в случайной выборке является жеребьевка, при которой на каждую единицу заготавливают билет с порядковым номером. Затем в случайном порядке отбирают необходимое количество единиц совокупности. При этих условиях каждая из них имеет одинаковую вероятность попасть в выборку.

Механический отбор  вся совокупность разбивается на равные по объему группы по случайному признаку. Затем из каждой группы случайно отбирается одна единица.

Типичный отбор  совокупность расчленяется по существенному, типическому признаку на качественно однородные, однотипные группы. Затем из каждой группы случайным или механическим способом отбирается количество единиц, пропорциональное удельному весу группы во всей совокупности.

Типический отбор дает более точные результаты чем случайный или механический, потому что при нем в выборку в такой же пропорции как и в генеральной совокупности, попадают представители всех типических групп.

Серийный отбор (гнездовой)  отбору подлежат не отдельные единицы совокупности, а целые группы, серии, гнезда, отобранные случайным или механическим способом. В каждой такой группе, серии проводится сплошное наблюдение, а результаты переносятся на всю совокупность.

Точность выборки зависит и от схемы отбора. Выборка м. б. проведена по схеме повторного или бесповторного отбора.

Повторный отбор  каждая отобранная единица или серия возвращается во всю совокупность и может вновь попасть в выборку.

Бесповторный отбор  каждая обследованная единица не возвращается в совокупность и не м. б. подвергнута повторному обследованию. Бесповторный отбор дает более точные результаты, т. к. при одном и том же объеме выборки наблюдение охватывает большее количество единиц изучаемой совокупности.

Обе схемы отбора могут применяться в сочетании с разными видами отбора, за исключением механического, который всегда бывает бесповторным.

3. Ошибки выборки, определение объема выборочной совокупности

Для суждения о праве распространения данных выборочного наблюдения на генеральную совокупность определяют величину ошибок между сводимыми показателями выборочной и генеральной совокупностей.

Обычно сопоставляют такие показатели:

1. Среднюю выборочной совокупности со средней генеральной совокупности, в результате чего получаем ошибку средней.

2. Частость выборочной совокупности с долей генеральной совокупности, что дает возможность определить ошибку частостей:

Разность между показателями выборочной и генеральной совокупностей называется ошибкой репрезентативности. Если эти показатели достаточно близки, то выборка считается репрезентативной.

Выборочная средняя и частость являются переменными величинами, т. е. могут принимать различные значения в зависимости от того, какие единицы совокупности попали в выборку. Следовательно, ошибки выборки также являются переменными величинами и также могут принимать различные значения в зависимости от единиц совокупности, попавшие в выборку. Вот почему определяется средняя из возможных ошибок, которая обозначается буквой . Величина зависит от степени колеблемости значений признака в генеральной совокупности и от численности выборки n. Степень колеблемости в генеральной совокупности определяется средним квадратом отклонений или дисперсией . Из математических теорем и закона больших чисел следует, что при случайном отборе, проведенном по системе повторной выборки, между и п существует следующая зависимость:

Ошибка выборочного наблюдения  это разность между величиной параметра в генеральной совокупности и его величиной, вычисленной по результатам выборочного наблюдения

Чебышев доказал, что при достаточно большом числе независимых наблюдений можно с вероятностью, близкой к единице утверждать, что отклонение выборочной средней от генеральной будет сколь угодно малым.

, величину  называют средней ошибкой выборки.

Соотношение между дисперсиями генеральной и выборочной совокупности выражается формулой

Если выборочное наблюдение применяется для определения доли признака, то средняя ошибка доли исчисляется по формуле

, т. к. дисперсия альтернативного признака , где p  доля единиц совокупности, обладающих данным признаком, а q  не обладающим данным признаком.

В этих формулах и pq  характеристики генеральной совокупности, которые при выборочном наблюдении неизвестны. На практике их заменяют аналогичными характеристиками выборочной совокупности, что вполне правомерно, т. к. основано на законе больших чисел, по которому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики генеральной совокупности.

При бесповторном отборе средняя ошибка выборки равна

, а ошибка доли , где N  численность единиц генеральной совокупности.

Множитель  всегда меньше единицы, т. к. n < N. Поэтому величина средней ошибки выборки при бесповторном отборе меньше чем при повторном.

Для решения практических задач выборочного обследования средней ошибки выборки недостаточно, потому что при исчислении ошибки конкретной выборки фактическая ошибка м. б. больше или меньше средней ошибки выборки . Поэтому пользуются не средней, а предельной ошибкой выборки, т. е. пределами, за которые не выйдет фактическая ошибка выборки.

Предельная ошибка выборки зависит от того, с какой вероятностью должна гарантироваться ошибка выборки. Уровень вероятности определяется на основе теорем Чебышева и Ляпунова при помощи специального коэффициента t.

Если предельную ошибку выборки обозначить буквой , то , где t  коэффициент, зависящий от вероятности, с которой гарантируется ошибка выборки. Он называется еще коэффициентом доверия. Чтобы определить величину вероятности для различных значений t на практике пользуются готовой таблицей.

Систематизируем формулы для определения предельной ошибки средней и доли

Схема отбора

Предельная ошибка выборки

Для средней

Для доли

Повторный отбор

Бесповторный отбор

Из формул видно, что предельная ошибка выборки прямо пропорциональна коэффициенту t, дисперсии и обратно пропорциональна корню квадратному из численности выборки.

Дисперсия  величина конкретная, свойственная данной совокупности. Обычно она неизвестна, а известна *, которой и заменяют величину , потому что в силу действия закона больших чисел при достаточно большом объеме выборки n распределение признака x в выборочной совокупности близко воспроизводит распределение этого признака в генеральной совокупности.

Ошибка выборки зависит и от ее объема n. Чем больше объем выборки, тем меньше предельная ошибка (при данных и t)

Рассмотренные формулы средней и предельной ошибки и доли применяются при случайном и механическом видах отбора.

При типическом отборе предельная ошибка выборки и доли определяется по формулам:

Схема отбора

Предельная ошибка выборки

Для средней

Для доли

Повторный отбор

Бесповторный отбор

т. е. при типичном отборе надо брать средние из внутригрупповых дисперсий и доли, полученные по каждой типической группе.

Из этих формул видно, что при типическом отборе в отличие от случайного исключается влияние межгрупповой вариации на точность выборки, т. к. в выборку обязательно попадают представители всех групп в тех же пропорциях, что и в генеральной совокупности. Ошибка выборки при типичном отборе зависит только от средней из внутригрупповых дисперсий, а не от общей дисперсии, как при случайном отборе т. к.

, откуда

Следовательно ошибка выборки при типическом отборе всегда меньше ошибки выборки, проведенной случайным отбором.

При серийном отборе каждая серия рассматривается как единица совокупности, и мерой колеблемости будет межсерийная выборочная дисперсия, т. е. средний квадрат отклонений серийных средних от общей выборочной средней:

, где  средняя по каждой серии, x*  общая выборочная средняя, s  число отобранных серий.

Предельная ошибка выборки и доли при серийном отборе с равновеликими сериями определяется по формулам, где S  общее число серий в генеральной совокупности.

Схема отбора

Предельная ошибка выборки

Для средней

Для доли

Повторный отбор

Бесповторный отбор

Выборочное наблюдение, объем которого превышает 20 единиц, называется малой выборкой. Для определения средней и предельной ошибок при малой выборке пользуются теми же формулами, что и при большой, но только с некоторыми особенностями, так , а .

Кроме того, в случае малой выборки действует особый закон распределения величин t, и при определении вероятности учитывается не только коэффициент t, но и объем выборки n.

Необходимая численность выборки (n) определяется на основе формул предельной ошибки выборки.

Если выборка повторная, то при случайном и механическом отборах определяется по формуле

, при бесповторном отборе

4. Способы распространения выборочных характеристик.

Есть два способа распространения выборочных характеристик на всю совокупность  прямой пересчет и способ коэффициентов

Способ прямого пересчета заключается в том, что средние или частости выборочной совокупности умножаются на числа единиц генеральной совокупности.

Когда выборочное обследование проводится в целях уточнения данных сплошного наблюдения, применяется способ коэффициентов. В этом случае данные сплошного наблюдения сопоставляют с данными выборочного наблюдения и устанавливают процент расхождения между ними, т. е. процент надоучета или переучета. Коэффициенты, полученные в результате такого сопоставления, используются для внесения поправок в данные сплошного учета.

Пример.

1) способ прямого пересчета

Для определения качества продукции проверено 500 изделий из 10000. В результате чего установлено, что средний % изделий 3-го сорта всей партии будет находиться в пределах 6,1-13,9%. Способом прямого пересчета определяем, что обще кол-во изделий 3-го сорта всей партии составит от 610 до 1390

10000*0,061= 610

10000*0,139 = 1390

2) способ коэффициентов

Пример

Необходимо определить численность выборки, которая позволила бы оценить долю брака в партии продукции с точностью до 2%, с вероятностью Р =0,954. Партия состоит из 10000 изделий

,

, P =0,954, t =2

pq=0,25 (p=0,5; q=0,5)

Понравилась статья? Поделить с друзьями:
  • Размер случайной ошибки выборки
  • Размер растра превышает допустимый максимальный размер компас как исправить
  • Размер ошибки выборки для признака зависит от
  • Размер нетграфа кс го как изменить
  • Размер изображения слишком мал как исправить