Репарация ошибочно спаренных нуклеотидов

Повышение чувствительности к ингибиторам PD-1 может быть связано с нарушением репарации ошибочно спаренных нуклеотидов в опухоли: результаты исследования 2 фазы

Новости онкологии

30.06.2015

«Checkpoints» ингибиторы блокируют рецепторы, связывание с которыми приводит к дезактивации цитотоксических Т-лимфоцитов. В частности, блокирование супрессорного рецептора PD-1 на Т-клетках сопровождается повышением активности лимфоцитов. Моноклональное анти-PD-1 антитело пембролизумаб одобрено для лечения пациентов с метастатической меланомой. Отмечено, что при некоторых опухолях (меланома, почечно-клеточный рак, рак легкого) наблюдается высокая частота ответов на терапию анти-PD-1 антителами. При других же опухолях (колоректальный рак) только 1 из 33 пациентов отвечает на терапию. Авторы исследования, результаты которого опубликованы в New England Journal of Medicine, предположили, что всему виной репарация ошибочно спаренных нуклеотидов в опухоли.

Репарация ошибочно спаренных нуклеотидов – система обнаружения и репарации вставок, пропусков и ошибочных спариваний нуклеотидов, возникающих в процессе репликации и рекомбинации ДНК, а также в результате некоторых типов повреждений ДНК. Другими словами, это система, «исправляющая» нарушения ДНК. Ранее было показано, что опухоли, в которых существуют нарушения в этой системе, больше инфильтрированы лимфоцитами и чувствительны к противоопухолевому иммунному ответу. То есть при нарушении в системе репарации ДНК происходит активация иммунной системы с целью уничтожения поврежденной клетки. Например, при меланоме из-за ультрафиолетового воздействия происходит нарушение системы репарации ошибочно спаренных нуклеотидов, также как и при раке легкого, для которого факторами, нарушающими репарацию, являются компоненты табачного дыма.

В клиническое исследование 2 фазы был включен 41 пациент с метастатическими опухолями с нарушением репарации ошибочно спаренных нуклеотидов или без него. В исследовании было 3 группы:

  1. больные метастатическим колоректальным раком (КР) с нарушениями в системе репарации;
  2. больные метастатическим КР без нарушений в системе репарации;
  3. пациенты с другими метастатическими опухолями, содержащими нарушения в системе репарации.

Группы были сопоставимы по всем факторам, кроме медианы возраста (46, 61, 57 лет в группах 1, 2, 3 соответственно, Р=0,02).

Пембролизумаб назначался внутривенно в дозе 10 мг/кг каждые 14 дней. Главными критериями эффективности были частота ответов на лечение (оценка ответа по критериям для ингибиторов Checkpoints; иммунообусловленные ответы) и выживаемость без прогрессирования болезни (ВБП) в течение 20 недель.

  Группа 1 (n=11)
КР с нарушением репарации
Группа 2 (n=21)
КР без нарушения репарации
Группа 3 (n=9)
Другие опухоли с нарушением репарации
Частота ответов 40% (4 из 10) 0% (0 из 18) 71% (5 из 7)
ВБП в течение 20 недель 78% (7 из 9) 11% (2 из 18) 64% (4 из 6)
Медиана ВБП Не достигнута 2,2 мес.1 5,4 мес.
Медиана общей выживаемости Не достигнута 5,0 мес.2 Не достигнута

1 Отличия в пользу группы 1 достоверны, HR=0,10 (P<0.001)
2 Отличия в пользу группы 1 достоверны, HR=0,22 (P=0,05)

При полногеномном секвенировании были выявлены в среднем 1782 соматические мутации на одну опухоль в группе с нарушением репарации ошибочно спаренных нуклеотидов и только 73 мутации – в группе без нарушения репарации (P=0,007). Повышение частоты мутаций в опухоли приводило к лучшим результатам ВБП при назначении пембролизумаба (P=0,02).

Авторы делают вывод, что статус репарации ошибочно спаренных нуклеотидов влияет на чувствительность опухоли к терапии пембролизумабом.

Источник: Dung T. Le et al. N Engl J Med 2015; 372:2509-2520. June 25, 2015. DOI: 10.1056/NEJMoa1500596.

Механизмы исправления ошибок во время репликации ДНК и ее репарация вследствие повреждений на протяжении всего жизненного цикла клетки.

Основные моменты:

  • Клетки имеют различные механизмы предотвращения возникновения мутаций – необратимых изменений в ДНК

  • В процессе синтеза ДНК, большинство ДНК-полимераз «проверяют свою работу» и проводят замену бо́льшей части ошибочно вставленных нуклеотидов. Этот процесс можно назвать исправлением ошибок.

  • Сразу после синтеза ДНК любые оставшиеся ошибочные нуклеотиды обнаруживаются и заменяются в так называемом процессе репарации ошибочно спаренных нуклеотидов.

  • Если ДНК повреждена, она может быть восстановлена с помощью различных механизмов, например, путём прямой репарации, эксцизионной репарации или путём восстановления двухцепочечных разрывов

    • пострепликативной репарации.

Введение

Как ДНК связана с раком? Рак возникает при неконтролируемом делении клеток, когда игнорируются клеточные «стоп»-сигналы, что приводит к образованию опухоли. Это неправильное поведение клеток вызвано накопившимися мутациями — необратимыми изменениями последовательности ДНК клетки.

На самом деле, ошибки в процессе репликации и повреждения ДНК возникают в клетках нашего тела постоянно. Однако в большинстве случаев они не приводят к раку и даже не вызывают мутаций, такие ошибки обычно обнаруживаются и исправляются в процессе репарации ДНК. Если же повреждение исправить не удаётся, то в клетке включается механизм самоуничтожения — (апоптоз), который предотвращает передачу поврежденной ДНК дочерним клеткам.

Мутации возникают и передаются дочерним клеткам только тогда, когда эти механизмы не справляются. В частности, рак возникает в случае накопившихся в одной клетке мутаций генов, связанных с делением.

В этой статье мы подробно рассмотрим механизмы, используемые клетками для исправления ошибок, которые возникают в процессе репликации. К ним относятся:

  • Исправление ошибок – процесс, который возникает во время репликации ДНК.

  • Репарация ошибочно спаренных нуклеотидов, которая происходит сразу же после репликации ДНК.

  • Механизмы репарации, которые выявляют и исправляют повреждения ДНК на протяжении всего клеточного цикла

Исправление ошибок

ДНК-полимеразы — это ферменты, участвующие в репликации ДНК. Во время копирования ДНК большинство ДНК-полимераз «проверяют», корректный ли нуклеотид они добавляют. Этот процесс называется исправлением ошибок. Если полимераза обнаружит, что был добавлен неправильный нуклеотид, она сразу же удалит и заменит его и только после этого продолжит синтез ДНКstart superscript, 1, end superscript.

Репарация ошибочно спаренных нуклеотидов

Процесс исправления избавляет от основной массы ошибок, но не от всех. После создания новой ДНК запускается механизм репарации ошибочно спаренных нуклеотидов — удаления и замены ошибочно спаренных нуклеотидов, оставшихся в результате репликации. Исправление несоответствий между парами оснований также может включать в себя исправление небольших вставок и делеций, возникающих вследствие «соскальзывания» полимеразы с исходной цепи squared.

Как происходит восстановление неправильно спаренных нуклеотидов? Во-первых, белковый комплекс распознаёт неправильно спаренный нуклеотид и связывается с ним. Другой комплекс разрезает ДНК в области несовпадения, а ещё одна группа ферментов отщепляет некорректный нуклеотид вместе с небольшим участком вокруг него. Затем ДНК-полимераза заполняет этот пробел правильными нуклеотидами, а фермент ДНК-лигаза сшивает разрывы в цепиsquared.

Удивительно: как белки, участвующие в восстановлении ДНК, определяют, «кто прав» во время репарации ошибочно спаренных нуклеотидов? То есть, когда два основания неправильно соединены (как G (гуанин) и T (тимин) на рисунке выше), какое из этих двух оснований должно быть удалено и заменено?

У бактерий можно отличить исходную и дочернюю цепи ДНК по метилированным основаниям. На исходной цепи ДНК есть метильные (minus, start text, C, H, end text, start subscript, 3, end subscript) группы, присоединенные к некоторым из ее оснований, а у дочерней цепи таких групп еще нетcubed.

У эукариот процессы, позволяющие идентифицировать исходную цепь при устранении несоответствий, включают распознавание одноцепочечных разрывов, которые обнаруживаются только у дочерней цепи cubed.

Механизмы репарации ДНК

С ДНК может что-нибудь случиться практически в любой момент жизни клетки, а не только во время репликации. Фактически, ДНК постоянно повреждается из-за воздействия внешних факторов: ультрафиолетового излучения и радиации, химических веществ, не говоря уже о спонтанных процессах, которые протекают даже без вмешательства окружающей среды!start superscript, 4, end superscript

К счастью, наши клетки имеют механизмы восстановления, с помощью которых они находят и исправляют большинство повреждений ДНК. Можно выделить несколько типов репарации:

  • Прямая репарация. Некоторые повреждения ДНК, вызванные химическими реакциями, могут быть «исправлены» находящимися в клетке ферментами.

  • Эксцизионная репарация. Повреждение одного или нескольких нуклеотидов ДНК часто исправляется удалением и заменой поврежденного участка. При эксцизионной репарации оснований удаляется только поврежденное основание. В случае эксцизионной репарации нуклеотидов, как и в случае репарации ошибочно спаренных нуклеотидов, которое мы рассмотрели выше, удаляются целиком нуклеотиды.

  • Репарация двухцепочечных разрывов: Существуют два основных способа: негомологичное соединение концов и гомологичная рекомбинация. Они используются для восстановления двухцепочечных разрывов ДНК (когда вся хромосома разделяется на две части).

Прямая репарация

В некоторых случаях клетка может исправить повреждение ДНК, обратив вызвавшую его реакцию. Дело в том, что «повреждение ДНК» — это, как правило, присоединение к ней лишней группы в результате химической реакции.

Например, гуанин (G) может подвергаться реакции с присоединением метильной (minus, start text, C, H, end text, start subscript, 3, end subscript) группы к атому кислорода в азотистом основании. Если это не исправить, метил-содержащий гуанин будет связываться с тимином (Т), а не с цитозином (С) во время репликации ДНК. К счастью, у людей и многих других организмов есть фермент, который может удалить метильную группу, обратив реакцию, и тем самым вернуть азотистое основание в нормальное состояниеstart superscript, 5, end superscript.

Эксцизионная репарация оснований

Эксцизионная репарация оснований — это механизм, используемый для обнаружения и удаления определенных типов поврежденных азотистых оснований. Ключевую роль в нем играет группа ферментов, называемых гликозилазами. Каждая гликозилаза обнаруживает и удаляет определенный вид поврежденных оснований.

Например, в процессе реакции дезаминирования цитозин может превратиться в урацил — основание, обычно встречающееся только в РНК. Во время репликации ДНК урацил будет соединяться с аденином, а не с гуанином (в отличие от цитозина), поэтому такое превращение может привести к возникновению мутацииstart superscript, 5, end superscript.

Для предотвращения подобных изменений гликозилаза, являющаяся частью сигнального пути эксцизионной репарации, обнаруживает и удаляет дезаминированные цитозины. После того, как основание было удалено, удаляется и оставшаяся часть нуклеотида, а другие ферменты заполняют пробелstart superscript, 6, end superscript.

Эксцизионная репарация нуклеотидов

Эксцизионная репарация нуклеотидов — это еще один способ удаления и замены поврежденных оснований. В результате нее обнаруживаются и корректируются повреждения, которые искажают форму двойной спирали ДНК. Например, азотистые основания могут измениться, присоединив к себе громоздкие группы атомов, в частности, в результате воздействия химических веществ, содержащихся в сигаретном дымеstart superscript, 7, end superscript.

Эксцизионная репарация нуклеотидов также используется для устранения повреждений, вызванных ультрафиолетовым излучением, например, при получении солнечного ожога. Под воздействием УФ-излучения цитозин и тимин могут вступать в реакцию с соседними основаниями, которые также являются цитозином или тимином, образуя при этом связи, изменяющие форму двойной спирали и вызывающие ошибки в процессе репликации ДНК. Наиболее распространенный тип таких связей — тиминовый димер — он состоит из двух тиминовых оснований, вступающих в реакцию друг с другом и образующих химическую связьstart superscript, 8, end superscript.

При эксцизионной репарации нуклеотидов поврежденные нуклеотиды удаляются вместе с соседними нуклеотидами. В этом процессе хеликаза (фермент, раскручивающий ДНК) раскрывает ДНК, образуя пузырь, а ферменты, разрезающие ДНК, отсекают поврежденную часть пузыря. Полимераза заполняет пробел, а лигаза сшивает разрыв в цепиstart superscript, 9, end superscript.

Репарация двухцепочечных разрывов

Некоторые факторы окружающей среды, например, радиация, могут вызывать разрывы обеих цепочек ДНК (разделение хромосомы на две части). Такие повреждения ДНК, если верить комиксам, ведут к появлению супергероев, но могут встречаться и после реальных катастроф, например, Чернобыльской.

Двухцепочечные разрывы опасны, потому что большие сегменты хромосом и сотни содержащихся в них генов могут быть потеряны, если разрыв не будет восстановлен. Существует два способа восстановления двухцепочечных разрывов ДНК: негомологичное соединение концов и гомологичная рекомбинация.

При негомологичном соединении концов два разорванных конца хромосомы просто склеиваются обратно. Этот механизм восстановления является «грубым» и неточным, в результате в месте разрыва, как правило, либо теряются нуклеотиды, либо добавляются лишние, что может привести к мутациям. Но это в любом случае лучше потери целого фрагмента хромосомыstart superscript, 10, end superscript.

При гомологичной рекомбинации для восстановления разрыва используется фрагмент из гомологичной хромосомы, который соответствует поврежденной хромосоме (или из сестринской хроматиды, если ДНК была реплицирована). В этом процессе две хромосомы объединяются, и неповрежденная область гомологичной хромосомы или хроматиды используется в качестве матрицы для замены поврежденной области. Гомологичная рекомбинация работает «чище», точнее, чем негомологичное соединение концов, и обычно не приводит к образованию мутацийstart superscript, 11, end superscript.

Репарация ДНК и заболевания человека

Доказательства важности механизмов репарации получены на основе генетических заболеваний человека. Во многих случаях мутации в генах, которые кодируют белки, участвующие в репарации, связаны с наследственным раком. Например:

  • Наследственный неполипозный колоректальный рак (также называемый синдромом Линча) вызван мутациями в генах, кодирующих белки, которые участвуют в репарации ошибочно спаренных нуклеотидовstart superscript, 12, comma, 13, end superscript. Поскольку такие нуклеотиды не восстанавливаются, у людей, страдающих этим синдромом, мутации накапливаются гораздо быстрее, чем у здоровых. Это может привести к развитию опухолей толстой кишки.

  • Люди с пигментной ксеродермой очень чувствительны к ультрафиолетовому излучению. Это вызвано мутациями в белках, участвующих в эксцизионной репарации нуклеотидов. Когда они не функционируют, димеры тимина и другие виды повреждений, вызванные ультрафиолетовым излучением, перестают восстанавливаться. У людей с пигментной ксеродермой после нескольких минут пребывания на солнце могут возникнуть сильные солнечные ожоги, и около половины из них заболевают раком кожи в возрасте до 10 лет, если только они не избегают солнечных лучейstart superscript, 14, end superscript.

рис.1 Модифицированные азотистые основания ДНК, удаляемые ДНК–гликозилазами: а – урацил; б – гипоксантин; в – 5–гидроксицитозин; г – 2,5-диамино-4-формамидопиримидин; д – 7,8-дигидро-8-оксогуанин; е – мочевина; ж – тимингликоль; з – 5-формилурацил; и – 5-гидроксиметилурацил; к – 3-метиладенин; л – 7-метилгуанин; м – 2-метилцитозин [Партушев, 2000].

АP-эндонуклеаза создает ник (одноцепочечный разрав) с 3’-ОН и 5’-dRP концами. Для большинства млекопитающих характерен
тип BER репарации с включением одного нуклеотида. В этом случае ДНК-полимераза β вставляет 1 нуклеотид в 3’-конец праймера и затем удаляет 5’-dRP фрагмент с помощью своей dRP-лиазной активности. Получившийся ник сшивается ДНК-лигазой. Альтернативным является путь так называемой длинно-заплаточной BER репарации. Он реализуется в тех случаях, когда 5’-dRP фрагмент модифицирован и не может быть удален с помощью ДНК–полимеразы β. В этом случае Pol β проводит синтез ДНК с вытеснением запирающей цепи, 2 — 13 нуклеотидов. Образующийся в результате свисающий 5’-конец ДНК выщепляется флэпэндонуклеазой FEN1. Pol бета, Pol дельтаи Pol епсилон могут вести ситнез ДНК во время длинно-заплаточной репарации. Идентичность полимераз, вовлеченных в этот процесс in vitro, еще не ясна, но показано, что Pol β всегда инициирует синтез ДНК.
Зависимость того, какой из путей BER реализуется, определяется бифункциональными ДНК-гликозилазами, которые имеют дополнительную
АP-лиазную активность. При комбинации ДНК-гликозилазной, АP-лиазной и АP-эндонуклеазной активностей внутри одного фермента в поврежденной цепи ДНК образуется однонуклеотидная брешь с 3’-ОН и 5’-P концами, которую может застроить Pol β.
Дополнительная сложность в понимании механизмов переключения внутри BER состоит в том, что две новые полимеразы Pol i и Pol лямбда также имеют dRP-лиазнуюактивность. Таким образом, можно предположить, что они, как и Pol бета, являются участниками тех процессов репарации, где необходимо выщепление dRP фрагмента. Pol лямбда является близким гомологом Pol бета со сходными ферментативными свойствами. Также как и Pol бета, она лишена 3’—>5’экзонуклеазной активности и имеет низкую процессивность синтеза на частичном ДНК-дуплексе, содержащем свисающий 5’-участок матрицы, процессивный синтез возможен в брешах с 5’-P концами. Таким образом, Pol лямбда является подходящим кандидатом для BER синтеза. Более того,
Pol лямбда заменяет Pol бета в реконструированных BER системах, репарирующих урацил-содержащие ДНК, iv vitro. Однако, клетки мышей Pol лямбда -/- не чувствительны к обработке перекисью или метилметансульфонатом, агентам, которые, помимо других типов повреждений, продуцируют АР-сайты и окисленные формы оснований. Отсюда можно заключить, что Pol лямбда не является необходимой для BER в клетках, где есть, Pol дельта и Pol епсилон. Интересно, что Pol лямбда может эффективно процессировать ДНК при очень низкой концентрации dNTP (около 1 мкМ), что может означать ее участие в любых клеточных процессах в фазе G0 при низкой концентрации dNTP. В поддержку этой гипотезы выступает тот факт, что экспрессия Pol лямбда зависит от клеточного цикла, и наибольшее количества белка экспрессируется при переходе из S- в М-фазу и в спокойных клетках.
Pol i принадлежит к Y семейству полимераз. Основная функция полимераз этого семейства – утилизация ДНК-повреждений, блокирующих работу репликативных ДНК-полимераз. Однако,
исходя из некоторых свойств Pol i, можно предположить, что этот фермент является участником альтернативного процесса BER репарации. Pol i обладает низкой поцессивностью, лишена 3’>5’экзонуклеазной активности и способна застраивать брешь в 1 — 5 нуклеотидов iv vitro. Pol i может замещать Pol бета в реконструированных системах BER, репарирующих урацил-содержащие ДНК, iv vitro, благодаря наличию dRP-лиазной и ДНК-полимеразной активностей. Кинетические исследования реакции нуклеотидного встраивания овыявили дополнительные данные, свидетельствующие в пользу того, что Pol i может принимать участие в репарации. Pol i вставляет dTMP напротив А в ДНК-матрицу с большей эффективностью, чем любой другой дезоксинуклеозидмонофосфат, при этом точность ДНК-синтеза сопоставима с параметрами для Pol бета. Основываясь на этих данных, можно предположить, что Pol i – участник BER репарации оснований уридина, который образуется после встраивания dUMP напротив А во время ошибочной репликации. Pol i также
может вставлять dGМP напротив Т со скоростями, близкими к скорости включения корректного нуклеотида. Более того, на матрице, содержащей 2 или более последовательных Т, вторым встраиваемым нуклеотидом оказался dGMP. Подобные результаты служат основой для гипотезы, что Pol i может быть участником альтернативной BER репарации в тех слсучаях, когда dG был ошибочно удален гликозилазой из G-T или G-U некомплементарной пары, образовавшейся в результате дезаминации 5-метилцитозина или цитозина. Возможная роль Pol i в трансляции синтеза ДНК и процессе соматических гипермутаций рассмотрена ниже.
Возможность участия пяти ядерных полимераз в BER, три из которых обладают dRP-лиазной активностью, была мало изучена в клетках и на модельных животных, лишенных более чем одной полимеразы. Поэтому данные о субстратной специфичности и взаимодействии полимеразо-акцепторных белков, необходимых в BER, недостаточны. Помимо BER репарации, Pol бетта принимает участие в репарации одноцепочечных разрывов; функционирование
этого процесса нарушено у пациентов с наследственной спинномозговой атаксией. Одноцепочечные разрывы генерируются эндогенными или экзогенными агентами. Такие разрывы часто содержат однонуклеотидные бреши с 3’ и/или 5’ модифицированными концами, то есть очень похожи на субстраты BER. Так вот, интересно посмотреть, способны ли другие полимеразы с подобным набором исходных данных (Pol i и Pol лямбда) принимать участие в репарации одноцепочечных разрывов.
Четвертой ДНК-полимеразой в клетках человека, обладающей dRP-лиазной активностью, является митохондриальная ДНК-полимераза гамма. Pol гамма – единственная ДНК-полимераза, обнаруженная в митохондриях, следовательно, она ответственна за все преобразованиях ДНК, происходящие в этой органелле. Митохондрия является объектом интенсивного повреждения ДНК активными формами кислорода, генерируемыми во время окислительного фосфорилирования. Эти повреждения эффективно репарируются набором митохондриальных белков, которые включают в себя АP-эндонуклеазу, Pol гамма,
мтДНК-лигазу. Сам процесс репарации сходен с однонуклеотидным процессом BER в ядерной ДНК.

Таблица. ДНК-гликозилазы и эндонуклеазы клеток микроорганизмов и человека, участвующие в BER.

В универсальном механизме эксцизионной репарации как прокариоты, так и эукариоты гидролизуют 3–5-ю фосфодиэфирную связь с 3′-конца отповреждения. При этом прокариоты гидролизуют также 8-ю связьот 5’-конца измененного нуклеотида, тогда как у эукариотических организмовпроисходит одноцепочечный разрыв на расстоянии 21–25 нуклеотидов отповреждения со стороны его 5’-конца. Таким образом, прокариоты удаляютизмененный нуклеотид в составе 12–13-членных олигомеров, тогда как
эукариоты – в составе одноцепочечных фрагментов ДНК длиной в 27–29 нуклеотидов. Ферментная система, вносящая такие двойные одноцепочечные
разрывы, получила название эксцизионной нуклеазы (эксцинуклеазы). Образующаяся в молекуле репарируемой ДНК одноцепочечная брешь далее заполняется с помощью ДНК-полимеразы, а фосфодиэфирная связь в остающемся одноцепочечном разрыве восстанавливается ДНК-лигазой.

NER устраняет ДНК-повреждения посредством вырезания олигонуклеотида, содержащего это повреждение, с образованием бреши в ДНК размером ~ 30 нуклеотидов. Эта брешь застраивается одной или двумя полимеразами В семейства Pol дельта или Pol епсилон. Любая из этих ДНК-полимераз способна застраивать подобную брешь в реконструированной системе, содержащей очищенные белки млекопитающих, in vitro. При изучении NER в системе фибробластов человека с нарушенной проницаемостью и в ядерном экстракте HeLa клеток обнаружили, что обе полимеразы необходимы для восстановления ДНК после УФ-облучения. Исследования
в дрожжевых системах показали, что та или другая ДНК-полимераза существенно дополняют репарацию УФ-поврежденной ДНК. Более поздние исследования показали, что оба фермента необходимы для эффективной NER репарации в дрожжевых экстрактах. Pol дельта и Pol епсилон способны вести процессивный синтез ДНК при наличии дополнительного фактора PCNA, который «надевается» на ДНК с помощью пятисубъединичного комплекса RFC. Репарационный синтез как Pol дельта, так и Pol епсилон также требует присутствия этих факторов процессивности.

Эксцизионная репарация нуклеотидов: введение
ЭР — эксцизионная репарация ДНК; ЭР-комплекс включает ПАРП , XRCC1 , ДНК-лигазу III и ДНК-полимеразу бета .
Два пути осуществления NER:
1. Гидролиз фосфодиэфирной связи по 3′- или 5′- концу на некотором расстоянии от ошибочно спаренного (поврежденного) нуклеотида, который далее целиком удаляется под действием 5′->3′- (или 3′->5′-) экзонуклеазы, гидролизующей
цепь ДНК нуклеотид за нуклеотидом в соответствующем направлении от первоначального одноцепочечного разрыва в репарируемой ДНК. Образующаяся брешь далее заполняется ДНК-полимеразой. Такой механизм репарации реализуется у E. coli и человека для вырезания неповрежденных (немодифицированных) ошибочно спаренных нуклеотидов. Механизм последовательного эндо- и экзонуклеазного расщепления ДНК не используется для удаления поврежденных (измененных) нуклеотидов. Это связано с тем, что такие нуклеотиды часто являются ингибиторами экзонуклеаз.
2. Функционирует у всех исследованных видов организмов и заключается в использовании ферментной системы, которая вносит одноцепочечные разрывы по обе стороны от поврежденного нуклеотида на некотором расстоянии от него с последующим удалением одноцепочечного фрагмента ДНК, содержащего измененный нуклеотид.
Гидролизуется 3-5-фосфодиэфирную связь с 3′-конца от повреждения. При этом прокариоты гидролизуют также 8-связь от 5′-конца
измененного нуклеотида, тогда как у эукариотических организмов происходит одноцепочечный разрыв на расстоянии 21-25 нуклеотидов от повреждения со стороны его 5′-конца. Таким образом, прокариоты удаляют измененный нуклеотид в составе 12-13-членных олигомеров, тогда как эукариоты — в составе одноцепочечных фрагментов ДНК длиной в 27-29 нуклеотидов. Ферментная система, вносящая такие двойные одноцепочечные разрывы, получила название эксцизионной нуклеазы (эксцинуклеазы) . Образующаяся в молекуле репарируемой ДНК одноцепочечная брешь далее заполняется с помощью ДНК-полимеразы, а фосфодиэфирная связь в остающемся одноцепочечном разрыве восстанавливается ДНК-лигазой.
В отличие от ЭРО и прямых реверсий, которые специфичны к достаточно узкому кругу повреждений ДНК, система ЭРН, хотя и с разной эффективностью, удаляет все возможные повреждения, и потому роль ее в поддержании стабильности генома велика. ЭРН детально изучена у E. coli и активно изучается в клетках
дрожжей и человека, причем в последних благодаря раскрытию генетической природы таких заболеваний, как пигментная ксеродерма ( ХР ), синдром Кокейна ( СS ) и заболевания трихотиодистрофия ( ТТD)
В ЭРН задействовано 6-8 генов у E. coli и до 30 у человека.
Если повреждение в транскрибируемой (матричной) нити ДНК задерживает продвижение РНК-полимеразы, то специальный белковый фактор TRCF ( transcription-repair coupling factor ) сталкивает РНК-полимеразу и связывает с этим местом комплекс ферментов репарации. См. Сопряжение транскрипции и репарации ДНК у E/coli.
Ферментный ансамбль осуществляющий первые 3 стадии процесса NER называется эксцинуклеазой.
В системе эксцизионной репарации ДНК путем удаления нуклеотидов поврежденные азотистые основания вырезаются в составе олигонуклеотидов.
NER: регуляция
Для клеток животных не характерен SOS-ответ, свойственный клеткам E. coli и представляющий собой суммарную реакцию бактериальной клетки на повреждение ДНК различными агентами,
проявляющийся в усилении транскрипции генов NER. Посттрансляционные модификации белков репарации, происходящие в ответ на повреждение ДНК, не влияют на активность эксцинуклеазы человека.
Обнаружено, что повреждения ДНК стабилизирует белок р53- белок-супрессор опухолевого роста, являющийся регулятором транскрипции. Имеются данные о том, что белок р53 может взаимодействовать с белками XPB и RPA, необходимыми для NER. Однако клетки с инактивированными генами р53 (p53(-/-)), как и клетки дикого типа, эффективно удаляют из поврежденной ДНК два основных фотопродукта, возникающих под действием УФ-света, и обладают такой же устойчивостью к УФ. Поэтому считается, что белок р53 не оказывает прямого влияния на NER. Белки Cdk7 и циклин H, которые образуют Cdk-активирующую киназу, входят в состав комплекса TFIIH, что позволяет предполагать наличие связи репарации ДНК с фазами клеточного цикла.
ЭРН (NER): сопряжение с транскрипцией (ТЭРН)
Транскрибируемые последовательности нуклеотидов ДНК, особенно
в матричной цепи, репарируются с большей скоростью, чем нетранскрибируемые последовательности. В клетках больных с синдромом Кокайна не наблюдается такой асимметрии в репарации.
В клетках E. coli белковый фактор, кодируемый геном mfd и сопрягающий транскрипцию и репарацию, замещает остановившиеся перед повреждением молекулы РНК-полимеразы, что приводит к диссоциации транскрипционного комплекса. При этом он привлекает экзонуклеазный репаративный комплекс к поврежденному участку ДНК. См. Сопряжение транскрипции и репарации ДНК (ТЭРН) у E/coli
В клетках животных ген CSB кодирует белок с молекулярной массой 160 кДа, который содержит хеликазный домен и, возможно, выполняет те же функции, что и белок Mfd у E. coli . На основе поведения клеток с мутантными генами белков CSA и CSB разработана модель механизма, с помощью которого обеспечивается асимметричная репарация цепей ДНК. В соответствии с этой моделью РНК-полимераза II , остановившаяся в процессе транскрипции
перед поврежденным участком ДНК, распознается комплексом CSA-CSB и перемещается в сторону от повреждения без разрушения четвертичной структуры транскрипционного комплекса. Одновременно комплекс CSA-CSB привлекает компоненты репаративной системы XPA и TFIIH к месту повреждения ДНК и помогает сборке эксцинуклеазного комплекса. Нуклеотиды поврежденной цепи вырезаются, и брешь репарируется. После этого РНК-полимераза в составе транскрипционного комплекса продолжает транскрипцию.
NER: механизм
Процесс NER можно разделить на четыре этапа: а) распознавание поврежденного участка ДНК; б) двойное надрезание (инцизия) цепи ДНК по обеим сторонам поврежденного участка и его удаление (эксцизия); в) заполнение бреши в процессе репаративного синтеза; г) лигирование оставшегося одноцепочечного разрыва ДНК.
NER человека распознает и удаляет одиночные ошибочно спаренные нуклеотиды, а также петли длиной в 1-3 нуклеотида. NER человека способна различать цепи ДНК в случае распознавания поврежденных
нуклеотидов. Показано, что при наличии в ДНК димеров тимина циклобутанового типа вырезание нуклеотидов происходит исключительно из поврежденной цепи. Механизм такого распознавания в настоящее время неизвестен, как и молекулярный механизм узнавания самих поврежденных оснований. Система способна распознавать повреждения как сильно, так и слабо деформирующие вторичную структуру ДНК. При этом не обнаружена линейная зависимость между коэффициентом специфичности нуклеазы (kcat/km) и уровнем деформации двойной спирали ДНК. Показано, что в процессе распознавания участвуют белковые комплексы XPA/RPA, которые преимущественно связываются с поврежденной ДНК, и TFIIH, обладающий АTP-зависимой ДНК-расплетающей активностью. Последний взаимодействует с поврежденным участком ДНК и по аналогии с соответствующим механизмом у E. coli локально раскручивает ДНК, создавая основной преинцизионный комплекс с поврежденной ДНК.
Установлено, что три фермента репарации, обладающие узкой
субстратной специфичностью: ДНК-фотолиаза (удаление пиримидиновых димеров), урацилгликозилаза (удаление урацила из ДНК) и экзонуклеаза III (гидролиз ДНК в AP-сайтах), втягивают поврежденный участок из двойной спирали в полость фермента, что приводит кофактор или аминокислотные остатки активного центра этих ферментов в непосредственный контакт с расщепляемыми связями ДНК. Не исключено, что система эксцинуклеазы действует таким же образом.
Основные этапы функционирования NER, следующие за распознаванием поврежденного участка ДНК, представлены на рис. I.59. После связывания комплекса XPA-RPA с измененным участком ДНК, XPA взаимодействует с комплексом TFIIH, который создает преинцизионный комплекс, что сопряжено с гидролизом ATP. ATP-зависимое расплетание ДНК комплексом TFIIH подготавливает ее к взаимодействию с двумя XP-белками, обладающими нуклеазной активностью. XPG связывается с TFIIH и вносит одноцепочечный разрыв с 3′-конца повреждения. Аналогично комплекс ERCC1-XPF
взаимодействует с XPA в составе преинцизионного комплекса и способствует одноцепочечному разрыву с 5′-конца повреждения. Образование обоих разрывов является ATP-зависимым, и их расположение на ДНК высокоспецифично. Как правило, происходят разрывы 5-й и 24-й фосфодиэфирных связей соответственно от 3′- и 5′-концов поврежденных участков. Однако расположение точек разрывов может варьироваться.
Таким образом, в результате подобных одноцепочечных надрезов ДНК может освобождаться фрагмент длиной 24-32 нуклеотида с преобладанием фрагментов длиной 27-29 нуклеотидов. На расположение сайтов одноцепочечных разрывов влияют характер повреждения и последовательности нуклеотидов (контекст), окружающих поврежденный участок. Ту же самую картину инцизии обнаруживают in vivo в ооцитах Xenopus и у Schizosaccharomyces pombe. На этом основании делают вывод об универсальном механизме эксцизионной репарации у эукариот.
Репаративный синтез ДНК у человека является PCNA-зависимым,
т.е. может осуществляться с участием ДНК-полимераз Polдельта и Polэпсилон. PCNA связывается с системой праймер-матрица под действием фактора репликации RFC, откуда следует, что последний также участвует в репаративном синтезе ДНК. В опытах с бесклеточными системами моноклональные антитела к Polдельта специфически подавляют репаративный синтез. Однако оказалось, что в тех же высокоочищенных бесклеточных системах вместо Polдельта с аналогичным эффектом могут быть использованы Polэпсилон и даже фрагмент Кленова ДНК-полимеразы I E. coli. Это означает, что реконструированные из очищенных компонентов бесклеточные системы лишь в ограниченной степени имитируют биохимические процессы, происходящие в живых клетках. Считается, что обе ДНК-полимеразы — Polдельта и Polэпсилон участвуют в репаративном синтезе ДНК у человека.
ПАРП: модели управления процессом эксцизионной репарации ДНК
ПАРП — один из первых ядерных факторов, распознающих повреждение ДНК , и поэтому в идеальном случае управляет запуском механизма
репарации ДНК в живых клетках с места повреждения ДНК. Эта модель поддерживается идентификацией ЭР -комплекса, включающего ПАРП , XRCC1 , ДНК-лигазу III и ДНК-полимеразу бета . Присутствие ПАРП в таком мультипротеиновом комплексе доказывает, что этот фермент может направлять аппарат репарации ДНК к сайтам повреждения ДНК in vivo и облегчает осуществление репарации по этому пути.
XRCC1-белок действует как молекулярные «леса», формируя ЭР-комплекс путем индивидуального взаимодействия с каждым компонентом. С тех пор, как была обнаружена возможность поли(АДФ-рибозил)ирования XRCC1-белка in vitro, можно предположить, что ПАРП способен регулировать активность комплекса путем модифицирования XRCC1-белка in vivo и нарушать его способность взаимодействовать с другими компонентами комплекса. Было показано, что сверхэкспрессия XRCC1-белка подавляет активность ПАРП в живых клетках.
Аналогично ДНК-лигаза III ингибирует активность ПАРП in vitro, когда ее количества превышают количества ПАРП.

ПАРП может также рекрутировать факторы репарации ДНК путем модификации хроматиновых белков. Длинные цепи ПАР действительно способны направить ферменты репарации к сайтам разрывов ДНК значительно быстрее, нежели если они ищут повреждение сами по всему ядру. Такая модель согласуется с активностью ПАРП перед и/или после удаления поврежденных оснований.
NER: структура и функции белков
В табл. I.21 суммированы свойства белков животных, участвующих в NER. Большинство этих белков существует in vivo в виде комплексов, поэтому ферментативные активности, обнаруживаемые у отдельных белков в очищенном состоянии, могут не иметь прямого отношения к их функциям в системе NER.
XPA — белок с молекулярной массой 31 кДа, обладает доменом типа «цинковые пальцы», участвует в распознавании поврежденного участка ДНК, взаимодействует с другими компонентами системы и может функционировать в качестве фактора нуклеации для экзонуклеазы. XPA взаимодействует своим N-концевым доменом
с гетеродимером ERCC1-XPF, а С-концевым доменом — с TFIIH.
Белок RPA (HSSB) образует комплекс с XPA и усиливает его специфичность в отношении поврежденной ДНК. RPA (HSSB) — тример, состоящий из белковых субъединиц р70, р34 и р11, необходим для репликации ДНК и репаративного синтеза, а также для прохождения этапа двойного надреза ДНК во время эксцизионной репарации. Он обладает умеренным сродством к поврежденной ДНК.
TFIIH — олигомерный комплекс, в состав которого входят белки р89, р80, р62, р44, р41, р38 и р34. Этот белковый комплекс был открыт как один из семи основных факторов транскрипции, необходимых для эффективного функционирования РНК-полимеразы II . Субъединица р89 идентична белку репаративного комплекса XPB. Обнаружено отсутствие функциональной комплементации между бесклеточными экстрактами клеток с мутантными белками XPB и XPD, определяемой по восстановлению репарирующей активности в смешанных экстрактах. Комплекс TFIIH представляет собой
фактор репаративной системы. Белки XPB и XPD являются ДНК-зависимыми АТРазами, обладают хеликазными доменами и могут (как и сам фактор TFIIH) вызывать диссоциацию гибридов, образованных между короткими фрагментами ДНК и одноцепочечной ДНК.
XPC — белок с молекулярной массой около 125 кДа, существует в виде гетеродимера в комплексе с белком р58, который является гомологом белка Rad23 дрожжей (HHR23B). XPC слабо связывается с TFIIH и очень прочно — с одноцепочечной ДНК.
ERCC1/XPF — прочный белковый комплекс, с которым взаимодействует белок XPA, обладающий эндонуклеазной активностью, специфичной в отношении одноцепочечной ДНК.
XPG — белковый комплекс, обладающий эндонуклеазной активностью, специфичной в отношении одноцепочечной ДНК; вовлекается в эксцизионный комплекс посредством взаимодействия с TFIIH и RPA.
ЭРН (NER): генетика
Гены NER E. coli, uvrA, uvrB и uvrC не обнаруживают гомологии с соответствующими генами человека. Гены NER дрожжей и человека
высокогомологичны, и энзимология эксцизионной репарации также обладает большим сходством. По крайней мере, три заболевания у человека вызываются генетическими нарушениями системы эксцизионной репарации: пигментная ксеродерма, синдром Кокейна и трихотиодистрофия.
Кожа больных пигментной ксеродермой обладает повышенной чувствительностью к дневному свету, что проявляется в виде фотодерматозов, включая рак кожи. В ряде случаев отмечены аномалии нервной системы, причиной которых являются мутации в одном из семи генов: XPA, XPB, XPC, XPD, XPE, XPF, XPG. Однако описаны больные с классическими симптомами пигментной ксеродермы, но с ненарушенной системой NER. Для клеток этих больных характерны изменения в так называемой пострепликативной репарации .
Больным с синдромом Кокейна присущи нарушения роста, умственная отсталость, катаракты, повышенная чувствительность к свету с сопутствующими дерматозами. Обнаружены мутации в двух группах генов, приводящие к этому заболеванию. У больных
с мутантными генами CS-A или CS-B клетки способны нормально репарировать УФ-повреждения ДНК. У другой группы больных обнаружены мутации в генах XPB, XPD или XPG.
У больных трихотиодистрофией со смешанными симптомами выявлены мутации в генах XPB или XPD. Классические симптомы этого заболевания, по-видимому, являются следствием мутации в гене транскрипционного фактора TFIIH.
Получение мутантов с измененной NER у грызунов позволило разбить такие гены на 11 групп комплементации, большинство из которых соответствует группам комплементации XP и CS человека. Часть соответствующих генов человека удалось клонировать, используя их способность исправлять (комплементировать) генетические дефекты в культивируемых мутантных клетках грызунов. Эти гены получили название кросс-комплементирующих генов эксцизионной репарации ( ERCC — excision repair cross complementing ). Среди них гены XPE и ERCC6-ERCC11 не требовались для прохождения основных реакций эксцизионной репарации, и их функция неизвестна.

Эксцизионная репарация нуклеотидов (ЭРН) E. coli
У E. coli эксцинуклеаза формируется, в результате димеризации двух молекул белка UvrА в присутствии АТР и связывания с одной молекулой UvrB. Гетеротример UvrA2B связывается с ДНК и с помощью 5′-3′-ДНК-геликазной активности перемещается вдоль ДНК в поисках повреждения. Такова предполагаемая картина узнавания эксцинуклеазой UvrAВС неспецифического повреждения в ДНК [ Hoeijmakers J., 1993 ]. Результатом узнавания повреждения этим комплексом явится внедрение субъединицы UvrB в ДНК, сопровождающееся конформационными изменениями ДНК в сайте внедрения ( изломы , локальная денатурация), диссоциация обеих субъединиц UvrА из комплекса и последующее связывание с ним молекул UvrD и UvrC. Гетеродимер UvrBC из состава нового комплекса делает два разрыва в поврежденной нити ДНК на расстоянии 8 н. с 5′-конца от повреждения и 5 н. с 3′-конца, катализируемых субъединицами UvrC и UvrB соответственно, что приводит к появлению 12-13-мерного олигонуклеотида,
вытесняемого из комплекса с помощью геликазы UvrD. Образующаяся при этом брешь заполняется ДНК-полимеразой I, синтезирующей ДНК по неповрежденной матрице, и сшивается ДНК-лигазой. Описанный процесс зависит от АТР. Действительно, АТР стимулирует димеризацию молекул UvrA, гидролиз АТР необходим для образования комплекса UvrA2B и проявления его геликазной активности, АТР необходим для формирования комплекса UvrB-ДНК и, наконец, для описанной выше бимодальной инцизии ДНК [ Friedberg E.C., Walker G.C., ea., 1991 ]. У E. coli транскрипционно-зависимую ветвь ЭРН (ТЭРН) осуществляет продукт гена mfd (mutation frequency decline). Этот ген был открыт за 35 лет до того, как его продукт признали фактором TRCF. Последний способствует диссоциации РНК-полимеразы от дефектной транскрибируемой нити ДНК, и связывается с субъединицей UvrA эксцинуклеазного комплекса. Иными словами, именно белок Mfd отыскивает повреждения на транскрибируемой нити и направляет ТЭРН на эту мишень.
Согласно недавним наблюдениям, два главных белка системы ДКНО — MutL и MutS — необходимы для ТЭРН [106 Melon I., Champl G.N., 1996106]. Причина такой взаимосвязи систем ДКНО и ТЭРН или заимствования белков MutL и MutS для выполнения сходных функций пока остается загадочной, хотя сам факт несомненен и нашел подтверждение также и для белков Msh2, Mlh1, Pms1 и Msh3 у S. cerevisiae [ Sweder K.S., ea, 1996 ].
Эксцизионная репарация нуклеотидов (ЭРН) у человека
Большому прогрессу в раскрытии механизма ЭРН у эукариот мы обязаны наследственному заболеванию человека — пигментной ксеродерме .
Изучение молекулярных основ этого заболевания выявили их сопряженность с дефектами системы ЭРН, результатом чего и явилось раскрытие генетического контроля ЭРН. Комплементационный анализ различных клеточных линий ХР определил 8 комплементационных групп (7 от XPA до XPG и одна «вариантная форма» XPV) [ Friedberg E.C., Walker G.C., ea., 1991 ]), а комплементационная
коррекция возможных мутантных линий клеток китайского хомячка, чувствительных к УФ-свету, способствовала выявлению дополнительных генов системы ЭРН. Последние получили название гены ERCC (excision repair cross-complimenting), и поэтому в названии генов и белков ЭРН используются обе аббревиатуры. Хотя детали процесса ЭРН у человека не ясны, так как не определена роль целого ряда генов, в первом приближении он выглядит так ( табл. 3 ) [ Lehmann A.R., 1995 , Lindahl T., ea, 1997 , Hoeijmakers J., 1993 ]. Белок ХРА в комплексе с онДНК-связующим белком RPA ( репликационным белком А ), транслоцируясь вдоль онДНК, опознает конформационнoе повреждениe. Взаимодействуя через другой участок белка ХРА с базальным фактором транскрипции TFIIH (две из субъединиц которого, белки ХРВ и ХРD , обладают геликазной активностью с противоположной ориентацией раскручивания днДНК), они образуют комплекс, который расплетает ДНК вокруг повреждения (в состав этого комплекса входит и белок ХРС
с неясными функциями). Через третий участок белка ХРА к комплексу примыкает гетеродимер ERCC1-XPF , который вносит однонитевой разрыв в ДНК с 5′-конца на расстоянии 16-25 н. от повреждения, тогда как белок XPG , входящий в комплекс белков эксцинуклеазы через взаимодействие с белком RPA, делает надрез с 3′-конца на расстоянии 2-9 н. (в разрезании принимает участие и белок ХРС , а белок ХРЕ активирует реакцию). В результате бимодальной инцизии участок ДНК размером около 29 н. высвобождается, а образующаяся брешь ресинтезируется с помощью ДНК-полимеразы епсилон или ДНК-полимеразы дельта , сопутствующего репликации фактора PCNА , репликационного фактора C-RFС и ДНК-лигазы I .
Представленная картина во многом основана на реконструировании процесса в открытой системе с участием 10 хорошо очищенных белков [ Wood R.D., 1994 ]. Как видно, эукариотическая система ЭРН лишь функционально подобна прокариотической. В ней задействовано значительно больше белков, число которых должно еще возрасти
за счет белков, осуществляющих разборку и сборку хроматина. Раскрытие природы ТЭРН у человека также связывают с пониманием молекулярного дефекта,приводящего к развитию двух мультисистемных генетических заболеваний — синдрома Кокейна (СS) и трихотиодистрофии ( ТТD ). При обоих заболеваниях соматические клетки больных оказались неспособны к ТЭРН. Классические случаи CS оказались связанными с повреждениями в двух генах, CSA и CSB, а редкие смешанные формы CS+XP (CS с дополнительными симптомами ХР), с повреждениями в генах ХРВ, ХРD и ХРG. При ТТD дефекты были обнаружены также в генах XPB и XPD и в новом пока не клонированном гене ТТDА, продукт которого является частью корового домена транскрипционного фактора TFIIH [ Lehmann A.R., 1995 , Lindahl T., ea, 1997 ].
Фактор TFIIH состоит из 6 субъединиц, две из которых — белки XPB и XPD. Связываясь с белками РНК-полимеразного комплекса, кор TFIIH принимает участие в инициировании транскрипции [ Buratowski S., 1994 ], a вкупе с белками репарационного
комплекса кор этого фактора участвует в ЭРН. Если допустить, что белки CSA и CSB способствуют превращению транскрипционного комплекса в репарационнный [ Lindahl T., ea, 1997 , Bregman D.B., 1996 ], то следствием повреждения этих белков может стать дефектность в ТЭРН. Таким образом, либо прямыми воздействиями на коровый домен фактора TFIIH (мутации в генах XPB, XPD и TTDA), либо косвенными (через гены CSA и CSB) можно модифицировать способность этого фактора к диссоциации из РНК- полимеразного комплекса для участия в ТЭРН. Что касается белка XPG, то он, подобно своему гомологу из S. cereivisiae — белку Rad2 [ Bregman D.B., 1996 ], способен взаимодействовать c TFIIH, что допускает возможность его воздействия на TFIIH для участия в ТЭРН. Таковы гипотетические объяснения взаимосвязи молекулярных дефектов при CS и ТTD с нарушениями ТЭРН, которые могут быть полезными для раскрытия механизма ТЭРН у эукариот. Связь же между молекулярными дефектами и клиническими проявлениями
рассматриваемых наследственных заболеваний пока не имеет даже упрощенных толкований [ Kolodner R., 1995 ].
Так случилось, что изучение молекулярных механизмов ЭРН и ТЭРН на клетках человека развивались параллельно, или даже опережая исследования на популярной эукариотической модели дрожжей S. cerevisiae. В табл. 3 представлены известные функциональные аналоги системы ЭРН у дрожжей. Несомненно, однако, что при исследовании детального механизма ЭРН именно эта модельная система будет играть ведущую роль. Например, немаловажной особенностью системы ЭРН у E. coli является ее связь с SOS-функциями клетки. Действительно, центральные гены системы ЭРН, uvrA и uvrB, находятся под контролем SOS-регулона [ Friedberg E.C., Walker G.C., ea., 1991 ]. Системы, подобной SOS, у эукариот пока не обнаружено. Однако целый ряд генов системы ЭРН у дрожжей, таких, как RAD2, RAD7, RAD23, CDC8 и CDC9, индуцируется при повреждении ДНК, а последние два гена дополнительно регулируются клеточным циклом [ Friedberg
E.C., Walker G.C., ea., 1991 ].
Природу этой индукции еще предстоит выяснить.

      1. Репарация ошибочно спаренных нуклеотидов

Система,
осуществляющая репарацию ошибочно
спаренных нуклеотидов (mismatch
repair),
выполняет в клетке несколько важных
функций. Прежде всего она исправляет
ошибки репликации ДНК, меняя ошибочно
включенные нуклеотиды. Кроме того, при
участии этой системы происходит
процессинг промежуточных продуктов
рекомбинации, приводящий к образованию
новых сочетаний генетических маркеров.
Ферменты данной системы обеспечивают
рекомбинацию между дивергировавшими
последовательностями гомологичных
ДНК, а также задержку клеточного цикла
в ответ на повреждения ДНК. Система
репарации ошибочно спаренных нуклеотидов
у E. coli, использующая белки MutHLS,
распознает и репарирует все некомплементарные
пары оснований за исключением C–C.
Кроме того, эта система репарирует
небольшие вставки в одну из цепей ДНК,
образующиеся в результате ошибок
репликации, длина которых не превышает
четырех нуклеотидов.

Обычно
у E. coli ДНК метилирована Dam-метилазой
по сайтам GATC. Однако после завершения
репликации дочерняя цепь ДНК некоторое
время остается неметилированной. Система
MutHLS
избирательно репарирует дочернюю цепь
ДНК, тем самым значительно повышая
точность репликации. Эта система может
быть реконструирована in vitro
с использованием ДНК с одной метилированной
цепью в качестве субстрата, к которой
добавляются очищенные белки MutH,
MutL,
MutS,
UvrD
(хеликаза II), холофермент
ДНК-полимеразы III, ДНК-лигаза, белок
SSB, а также одна из экзонуклеаз: ExoI,
ExoVII
или RecJ.
Процесс репарации инициируется внесением
одноцепочечного разрыва в неметилированную
цепь вблизи частично метилированного
сайта GATC с последующим гидролизом цепи
ДНК и заполнением образующейся
одноцепочечной бреши. При этом белок
MutS
связывается с ошибочно спаренными
нуклеотидами. У белка MutL
не обнаружено ферментативной активности,
хотя он взаимодействует с MutS
и необходим для активации MutH
– эндонуклеазы, осуществляющей
одноцепочечный разрыв ДНК. Таким образом,
комплекс MutS–MutL,
собранный на участке ДНК с ошибочно
спаренным нуклеотидом, стимулирует
эндонуклеазную (никазную) активность
MutH.
Бесклеточная система не требует
присутствия MutH
при наличии в ДНК-субстрате одноцепочечного
разрыва. MutHLS-система репарации может
использовать частично метилированные
последовательности GATC, расположенные
выше и ниже поврежденного участка ДНК.
При этом в вырезании ошибочно включенного
нуклеотида помимо хеликазы II принимает
участие одна из экзонуклеаз: ExoI
(3’-экзо), ExoVII
(3’- и 5’-экзо) или RecJ
(5’-экзо) в зависимости от расположения
GATC-сайта по отношению к корректируемому
нуклеотиду. Вслед за вырезанием нуклеотида
образовавшаяся одноцепочечная брешь
заполняется холоферментом ДНК-полимеразы III
в присутствии SSB-белка и ДНК-лигазы.

Следует
подчеркнуть, что использование белка
MutH
и Dam-метилазы для распознавания дочерней
цепи реплицировавшейся ДНК является
уникальным свойством грамотрицательных
бактерий. У грамположительных бактерий
не происходит метилирование цепей ДНК
в целях маркировки. Если сайты GATC
полностью метилированы, MutHLS-система
репарации E. coli изменяет ошибочно
спаренные нуклеотиды в обеих цепях ДНК
с одинаковой эффективностью.

У
E. coli существуют, по крайней мере, еще
два специфических пути репарации
ошибочно спаренных нуклеотидов. Система
VSP (very
short
patch
repair
pathway)
репарирует некомплементарные пары G–T,
заменяя их на G–C.
Считается, что такие пары образуются в
результате дезаминирования 5-метилцитозина
в сайтах, где остатки С метилированы
Dcm-метилазой. С более низкой эффективностью
эта же система заменяет пары G–U
на G–C.
Другая MutY-зависимая система репарации
специфически ликвидирует последствия
окислительных повреждений гуанина.
Если dGTP
окисляется с образованием 8-оксо-dGTP,
белок MutT
расщепляет последний, предотвращая его
включение в ДНК. Если же он все-таки
включается напротив остатка С, то
Fpg-гликозилаза (MutM)
удаляет это модифицированное основание.
В том случае, когда 8-оксо-G остается в
составе ДНК, в следующем раунде репликации
он спаривается с А, и в итоге может
произойти трансверсия G–CT–A.
В этом случае белок MutY
действует как ДНК-гликозилаза, удаляющая
остаток A из некорректной пары, и как
AP-лиаза, вносящая одноцепочечный разрыв
по соседству с AP-сайтом. Далее следуют
процессы, уже рассмотренные выше в связи
с функционированием системы репарации
BER. Последовательность реакций с участием
MutY
также репарирует некомплементарные
пары A–G
и A–C
с образованием соответственно пар C–G
и G–C.

Репарация
ошибочно спаренных оснований у эукариот
происходит при участии комплекса белков,
подобного системе MutHLS
бактерий. Белок GTBP человека представляет
собой гомолог бактериального белка
MutS,
а у дрожжей в соответствующей роли
выступает белок Msh6. Распознавание
ошибочно спаренных нуклеотидов у
человека осуществляется гетеродимером
MSH2–GTBP. Гомологами MutL
в клетках S. cerevisiae являются белки MLH1
и PMS2, которые также существуют в виде
гетеродимерных комплексов. Мутации в
генах, кодирующих эти белки у человека,
сопровождаются формированием мутаторного
фенотипа и развитием наследственного
неполипозного рака кишечника (синдром
HNPCC – hereditary
nonpolyposis
colon
cancer).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Реорганизация индекса sql 1с ошибка
  • Рено меган ошибка df083 рено
  • Рентген аполло ошибка 158
  • Рено флюенс самодиагностика ошибок
  • Реф элинж ошибка ade