serializers.py
Expanding the usefulness of the serializers is something that we would
like to address. However, it’s not a trivial problem, and it
will take some serious design work.— Russell Keith-Magee, Django users group
Serializers allow complex data such as querysets and model instances to be converted to native Python datatypes that can then be easily rendered into JSON
, XML
or other content types. Serializers also provide deserialization, allowing parsed data to be converted back into complex types, after first validating the incoming data.
The serializers in REST framework work very similarly to Django’s Form
and ModelForm
classes. We provide a Serializer
class which gives you a powerful, generic way to control the output of your responses, as well as a ModelSerializer
class which provides a useful shortcut for creating serializers that deal with model instances and querysets.
Declaring Serializers
Let’s start by creating a simple object we can use for example purposes:
from datetime import datetime
class Comment:
def __init__(self, email, content, created=None):
self.email = email
self.content = content
self.created = created or datetime.now()
comment = Comment(email='leila@example.com', content='foo bar')
We’ll declare a serializer that we can use to serialize and deserialize data that corresponds to Comment
objects.
Declaring a serializer looks very similar to declaring a form:
from rest_framework import serializers
class CommentSerializer(serializers.Serializer):
email = serializers.EmailField()
content = serializers.CharField(max_length=200)
created = serializers.DateTimeField()
Serializing objects
We can now use CommentSerializer
to serialize a comment, or list of comments. Again, using the Serializer
class looks a lot like using a Form
class.
serializer = CommentSerializer(comment)
serializer.data
# {'email': 'leila@example.com', 'content': 'foo bar', 'created': '2016-01-27T15:17:10.375877'}
At this point we’ve translated the model instance into Python native datatypes. To finalise the serialization process we render the data into json
.
from rest_framework.renderers import JSONRenderer
json = JSONRenderer().render(serializer.data)
json
# b'{"email":"leila@example.com","content":"foo bar","created":"2016-01-27T15:17:10.375877"}'
Deserializing objects
Deserialization is similar. First we parse a stream into Python native datatypes…
import io
from rest_framework.parsers import JSONParser
stream = io.BytesIO(json)
data = JSONParser().parse(stream)
…then we restore those native datatypes into a dictionary of validated data.
serializer = CommentSerializer(data=data)
serializer.is_valid()
# True
serializer.validated_data
# {'content': 'foo bar', 'email': 'leila@example.com', 'created': datetime.datetime(2012, 08, 22, 16, 20, 09, 822243)}
Saving instances
If we want to be able to return complete object instances based on the validated data we need to implement one or both of the .create()
and .update()
methods. For example:
class CommentSerializer(serializers.Serializer):
email = serializers.EmailField()
content = serializers.CharField(max_length=200)
created = serializers.DateTimeField()
def create(self, validated_data):
return Comment(**validated_data)
def update(self, instance, validated_data):
instance.email = validated_data.get('email', instance.email)
instance.content = validated_data.get('content', instance.content)
instance.created = validated_data.get('created', instance.created)
return instance
If your object instances correspond to Django models you’ll also want to ensure that these methods save the object to the database. For example, if Comment
was a Django model, the methods might look like this:
def create(self, validated_data):
return Comment.objects.create(**validated_data)
def update(self, instance, validated_data):
instance.email = validated_data.get('email', instance.email)
instance.content = validated_data.get('content', instance.content)
instance.created = validated_data.get('created', instance.created)
instance.save()
return instance
Now when deserializing data, we can call .save()
to return an object instance, based on the validated data.
comment = serializer.save()
Calling .save()
will either create a new instance, or update an existing instance, depending on if an existing instance was passed when instantiating the serializer class:
# .save() will create a new instance.
serializer = CommentSerializer(data=data)
# .save() will update the existing `comment` instance.
serializer = CommentSerializer(comment, data=data)
Both the .create()
and .update()
methods are optional. You can implement either none, one, or both of them, depending on the use-case for your serializer class.
Passing additional attributes to .save()
Sometimes you’ll want your view code to be able to inject additional data at the point of saving the instance. This additional data might include information like the current user, the current time, or anything else that is not part of the request data.
You can do so by including additional keyword arguments when calling .save()
. For example:
serializer.save(owner=request.user)
Any additional keyword arguments will be included in the validated_data
argument when .create()
or .update()
are called.
Overriding .save()
directly.
In some cases the .create()
and .update()
method names may not be meaningful. For example, in a contact form we may not be creating new instances, but instead sending an email or other message.
In these cases you might instead choose to override .save()
directly, as being more readable and meaningful.
For example:
class ContactForm(serializers.Serializer):
email = serializers.EmailField()
message = serializers.CharField()
def save(self):
email = self.validated_data['email']
message = self.validated_data['message']
send_email(from=email, message=message)
Note that in the case above we’re now having to access the serializer .validated_data
property directly.
Validation
When deserializing data, you always need to call is_valid()
before attempting to access the validated data, or save an object instance. If any validation errors occur, the .errors
property will contain a dictionary representing the resulting error messages. For example:
serializer = CommentSerializer(data={'email': 'foobar', 'content': 'baz'})
serializer.is_valid()
# False
serializer.errors
# {'email': ['Enter a valid e-mail address.'], 'created': ['This field is required.']}
Each key in the dictionary will be the field name, and the values will be lists of strings of any error messages corresponding to that field. The non_field_errors
key may also be present, and will list any general validation errors. The name of the non_field_errors
key may be customized using the NON_FIELD_ERRORS_KEY
REST framework setting.
When deserializing a list of items, errors will be returned as a list of dictionaries representing each of the deserialized items.
Raising an exception on invalid data
The .is_valid()
method takes an optional raise_exception
flag that will cause it to raise a serializers.ValidationError
exception if there are validation errors.
These exceptions are automatically dealt with by the default exception handler that REST framework provides, and will return HTTP 400 Bad Request
responses by default.
# Return a 400 response if the data was invalid.
serializer.is_valid(raise_exception=True)
Field-level validation
You can specify custom field-level validation by adding .validate_<field_name>
methods to your Serializer
subclass. These are similar to the .clean_<field_name>
methods on Django forms.
These methods take a single argument, which is the field value that requires validation.
Your validate_<field_name>
methods should return the validated value or raise a serializers.ValidationError
. For example:
from rest_framework import serializers
class BlogPostSerializer(serializers.Serializer):
title = serializers.CharField(max_length=100)
content = serializers.CharField()
def validate_title(self, value):
"""
Check that the blog post is about Django.
"""
if 'django' not in value.lower():
raise serializers.ValidationError("Blog post is not about Django")
return value
Note: If your <field_name>
is declared on your serializer with the parameter required=False
then this validation step will not take place if the field is not included.
Object-level validation
To do any other validation that requires access to multiple fields, add a method called .validate()
to your Serializer
subclass. This method takes a single argument, which is a dictionary of field values. It should raise a serializers.ValidationError
if necessary, or just return the validated values. For example:
from rest_framework import serializers
class EventSerializer(serializers.Serializer):
description = serializers.CharField(max_length=100)
start = serializers.DateTimeField()
finish = serializers.DateTimeField()
def validate(self, data):
"""
Check that start is before finish.
"""
if data['start'] > data['finish']:
raise serializers.ValidationError("finish must occur after start")
return data
Validators
Individual fields on a serializer can include validators, by declaring them on the field instance, for example:
def multiple_of_ten(value):
if value % 10 != 0:
raise serializers.ValidationError('Not a multiple of ten')
class GameRecord(serializers.Serializer):
score = IntegerField(validators=[multiple_of_ten])
...
Serializer classes can also include reusable validators that are applied to the complete set of field data. These validators are included by declaring them on an inner Meta
class, like so:
class EventSerializer(serializers.Serializer):
name = serializers.CharField()
room_number = serializers.IntegerField(choices=[101, 102, 103, 201])
date = serializers.DateField()
class Meta:
# Each room only has one event per day.
validators = [
UniqueTogetherValidator(
queryset=Event.objects.all(),
fields=['room_number', 'date']
)
]
For more information see the validators documentation.
Accessing the initial data and instance
When passing an initial object or queryset to a serializer instance, the object will be made available as .instance
. If no initial object is passed then the .instance
attribute will be None
.
When passing data to a serializer instance, the unmodified data will be made available as .initial_data
. If the data
keyword argument is not passed then the .initial_data
attribute will not exist.
Partial updates
By default, serializers must be passed values for all required fields or they will raise validation errors. You can use the partial
argument in order to allow partial updates.
# Update `comment` with partial data
serializer = CommentSerializer(comment, data={'content': 'foo bar'}, partial=True)
Dealing with nested objects
The previous examples are fine for dealing with objects that only have simple datatypes, but sometimes we also need to be able to represent more complex objects, where some of the attributes of an object might not be simple datatypes such as strings, dates or integers.
The Serializer
class is itself a type of Field
, and can be used to represent relationships where one object type is nested inside another.
class UserSerializer(serializers.Serializer):
email = serializers.EmailField()
username = serializers.CharField(max_length=100)
class CommentSerializer(serializers.Serializer):
user = UserSerializer()
content = serializers.CharField(max_length=200)
created = serializers.DateTimeField()
If a nested representation may optionally accept the None
value you should pass the required=False
flag to the nested serializer.
class CommentSerializer(serializers.Serializer):
user = UserSerializer(required=False) # May be an anonymous user.
content = serializers.CharField(max_length=200)
created = serializers.DateTimeField()
Similarly if a nested representation should be a list of items, you should pass the many=True
flag to the nested serializer.
class CommentSerializer(serializers.Serializer):
user = UserSerializer(required=False)
edits = EditItemSerializer(many=True) # A nested list of 'edit' items.
content = serializers.CharField(max_length=200)
created = serializers.DateTimeField()
Writable nested representations
When dealing with nested representations that support deserializing the data, any errors with nested objects will be nested under the field name of the nested object.
serializer = CommentSerializer(data={'user': {'email': 'foobar', 'username': 'doe'}, 'content': 'baz'})
serializer.is_valid()
# False
serializer.errors
# {'user': {'email': ['Enter a valid e-mail address.']}, 'created': ['This field is required.']}
Similarly, the .validated_data
property will include nested data structures.
Writing .create()
methods for nested representations
If you’re supporting writable nested representations you’ll need to write .create()
or .update()
methods that handle saving multiple objects.
The following example demonstrates how you might handle creating a user with a nested profile object.
class UserSerializer(serializers.ModelSerializer):
profile = ProfileSerializer()
class Meta:
model = User
fields = ['username', 'email', 'profile']
def create(self, validated_data):
profile_data = validated_data.pop('profile')
user = User.objects.create(**validated_data)
Profile.objects.create(user=user, **profile_data)
return user
Writing .update()
methods for nested representations
For updates you’ll want to think carefully about how to handle updates to relationships. For example if the data for the relationship is None
, or not provided, which of the following should occur?
- Set the relationship to
NULL
in the database. - Delete the associated instance.
- Ignore the data and leave the instance as it is.
- Raise a validation error.
Here’s an example for an .update()
method on our previous UserSerializer
class.
def update(self, instance, validated_data):
profile_data = validated_data.pop('profile')
# Unless the application properly enforces that this field is
# always set, the following could raise a `DoesNotExist`, which
# would need to be handled.
profile = instance.profile
instance.username = validated_data.get('username', instance.username)
instance.email = validated_data.get('email', instance.email)
instance.save()
profile.is_premium_member = profile_data.get(
'is_premium_member',
profile.is_premium_member
)
profile.has_support_contract = profile_data.get(
'has_support_contract',
profile.has_support_contract
)
profile.save()
return instance
Because the behavior of nested creates and updates can be ambiguous, and may require complex dependencies between related models, REST framework 3 requires you to always write these methods explicitly. The default ModelSerializer
.create()
and .update()
methods do not include support for writable nested representations.
There are however, third-party packages available such as DRF Writable Nested that support automatic writable nested representations.
Handling saving related instances in model manager classes
An alternative to saving multiple related instances in the serializer is to write custom model manager classes that handle creating the correct instances.
For example, suppose we wanted to ensure that User
instances and Profile
instances are always created together as a pair. We might write a custom manager class that looks something like this:
class UserManager(models.Manager):
...
def create(self, username, email, is_premium_member=False, has_support_contract=False):
user = User(username=username, email=email)
user.save()
profile = Profile(
user=user,
is_premium_member=is_premium_member,
has_support_contract=has_support_contract
)
profile.save()
return user
This manager class now more nicely encapsulates that user instances and profile instances are always created at the same time. Our .create()
method on the serializer class can now be re-written to use the new manager method.
def create(self, validated_data):
return User.objects.create(
username=validated_data['username'],
email=validated_data['email'],
is_premium_member=validated_data['profile']['is_premium_member'],
has_support_contract=validated_data['profile']['has_support_contract']
)
For more details on this approach see the Django documentation on model managers, and this blogpost on using model and manager classes.
Dealing with multiple objects
The Serializer
class can also handle serializing or deserializing lists of objects.
Serializing multiple objects
To serialize a queryset or list of objects instead of a single object instance, you should pass the many=True
flag when instantiating the serializer. You can then pass a queryset or list of objects to be serialized.
queryset = Book.objects.all()
serializer = BookSerializer(queryset, many=True)
serializer.data
# [
# {'id': 0, 'title': 'The electric kool-aid acid test', 'author': 'Tom Wolfe'},
# {'id': 1, 'title': 'If this is a man', 'author': 'Primo Levi'},
# {'id': 2, 'title': 'The wind-up bird chronicle', 'author': 'Haruki Murakami'}
# ]
Deserializing multiple objects
The default behavior for deserializing multiple objects is to support multiple object creation, but not support multiple object updates. For more information on how to support or customize either of these cases, see the ListSerializer documentation below.
There are some cases where you need to provide extra context to the serializer in addition to the object being serialized. One common case is if you’re using a serializer that includes hyperlinked relations, which requires the serializer to have access to the current request so that it can properly generate fully qualified URLs.
You can provide arbitrary additional context by passing a context
argument when instantiating the serializer. For example:
serializer = AccountSerializer(account, context={'request': request})
serializer.data
# {'id': 6, 'owner': 'denvercoder9', 'created': datetime.datetime(2013, 2, 12, 09, 44, 56, 678870), 'details': 'http://example.com/accounts/6/details'}
The context dictionary can be used within any serializer field logic, such as a custom .to_representation()
method, by accessing the self.context
attribute.
ModelSerializer
Often you’ll want serializer classes that map closely to Django model definitions.
The ModelSerializer
class provides a shortcut that lets you automatically create a Serializer
class with fields that correspond to the Model fields.
The ModelSerializer
class is the same as a regular Serializer
class, except that:
- It will automatically generate a set of fields for you, based on the model.
- It will automatically generate validators for the serializer, such as unique_together validators.
- It includes simple default implementations of
.create()
and.update()
.
Declaring a ModelSerializer
looks like this:
class AccountSerializer(serializers.ModelSerializer):
class Meta:
model = Account
fields = ['id', 'account_name', 'users', 'created']
By default, all the model fields on the class will be mapped to a corresponding serializer fields.
Any relationships such as foreign keys on the model will be mapped to PrimaryKeyRelatedField
. Reverse relationships are not included by default unless explicitly included as specified in the serializer relations documentation.
Inspecting a ModelSerializer
Serializer classes generate helpful verbose representation strings, that allow you to fully inspect the state of their fields. This is particularly useful when working with ModelSerializers
where you want to determine what set of fields and validators are being automatically created for you.
To do so, open the Django shell, using python manage.py shell
, then import the serializer class, instantiate it, and print the object representation…
>>> from myapp.serializers import AccountSerializer
>>> serializer = AccountSerializer()
>>> print(repr(serializer))
AccountSerializer():
id = IntegerField(label='ID', read_only=True)
name = CharField(allow_blank=True, max_length=100, required=False)
owner = PrimaryKeyRelatedField(queryset=User.objects.all())
Specifying which fields to include
If you only want a subset of the default fields to be used in a model serializer, you can do so using fields
or exclude
options, just as you would with a ModelForm
. It is strongly recommended that you explicitly set all fields that should be serialized using the fields
attribute. This will make it less likely to result in unintentionally exposing data when your models change.
For example:
class AccountSerializer(serializers.ModelSerializer):
class Meta:
model = Account
fields = ['id', 'account_name', 'users', 'created']
You can also set the fields
attribute to the special value '__all__'
to indicate that all fields in the model should be used.
For example:
class AccountSerializer(serializers.ModelSerializer):
class Meta:
model = Account
fields = '__all__'
You can set the exclude
attribute to a list of fields to be excluded from the serializer.
For example:
class AccountSerializer(serializers.ModelSerializer):
class Meta:
model = Account
exclude = ['users']
In the example above, if the Account
model had 3 fields account_name
, users
, and created
, this will result in the fields account_name
and created
to be serialized.
The names in the fields
and exclude
attributes will normally map to model fields on the model class.
Alternatively names in the fields
options can map to properties or methods which take no arguments that exist on the model class.
Since version 3.3.0, it is mandatory to provide one of the attributes fields
or exclude
.
Specifying nested serialization
The default ModelSerializer
uses primary keys for relationships, but you can also easily generate nested representations using the depth
option:
class AccountSerializer(serializers.ModelSerializer):
class Meta:
model = Account
fields = ['id', 'account_name', 'users', 'created']
depth = 1
The depth
option should be set to an integer value that indicates the depth of relationships that should be traversed before reverting to a flat representation.
If you want to customize the way the serialization is done you’ll need to define the field yourself.
Specifying fields explicitly
You can add extra fields to a ModelSerializer
or override the default fields by declaring fields on the class, just as you would for a Serializer
class.
class AccountSerializer(serializers.ModelSerializer):
url = serializers.CharField(source='get_absolute_url', read_only=True)
groups = serializers.PrimaryKeyRelatedField(many=True)
class Meta:
model = Account
fields = ['url', 'groups']
Extra fields can correspond to any property or callable on the model.
Specifying read only fields
You may wish to specify multiple fields as read-only. Instead of adding each field explicitly with the read_only=True
attribute, you may use the shortcut Meta option, read_only_fields
.
This option should be a list or tuple of field names, and is declared as follows:
class AccountSerializer(serializers.ModelSerializer):
class Meta:
model = Account
fields = ['id', 'account_name', 'users', 'created']
read_only_fields = ['account_name']
Model fields which have editable=False
set, and AutoField
fields will be set to read-only by default, and do not need to be added to the read_only_fields
option.
Note: There is a special-case where a read-only field is part of a unique_together
constraint at the model level. In this case the field is required by the serializer class in order to validate the constraint, but should also not be editable by the user.
The right way to deal with this is to specify the field explicitly on the serializer, providing both the read_only=True
and default=…
keyword arguments.
One example of this is a read-only relation to the currently authenticated User
which is unique_together
with another identifier. In this case you would declare the user field like so:
user = serializers.PrimaryKeyRelatedField(read_only=True, default=serializers.CurrentUserDefault())
Please review the Validators Documentation for details on the UniqueTogetherValidator and CurrentUserDefault classes.
Additional keyword arguments
There is also a shortcut allowing you to specify arbitrary additional keyword arguments on fields, using the extra_kwargs
option. As in the case of read_only_fields
, this means you do not need to explicitly declare the field on the serializer.
This option is a dictionary, mapping field names to a dictionary of keyword arguments. For example:
class CreateUserSerializer(serializers.ModelSerializer):
class Meta:
model = User
fields = ['email', 'username', 'password']
extra_kwargs = {'password': {'write_only': True}}
def create(self, validated_data):
user = User(
email=validated_data['email'],
username=validated_data['username']
)
user.set_password(validated_data['password'])
user.save()
return user
Please keep in mind that, if the field has already been explicitly declared on the serializer class, then the extra_kwargs
option will be ignored.
Relational fields
When serializing model instances, there are a number of different ways you might choose to represent relationships. The default representation for ModelSerializer
is to use the primary keys of the related instances.
Alternative representations include serializing using hyperlinks, serializing complete nested representations, or serializing with a custom representation.
For full details see the serializer relations documentation.
Customizing field mappings
The ModelSerializer class also exposes an API that you can override in order to alter how serializer fields are automatically determined when instantiating the serializer.
Normally if a ModelSerializer
does not generate the fields you need by default then you should either add them to the class explicitly, or simply use a regular Serializer
class instead. However in some cases you may want to create a new base class that defines how the serializer fields are created for any given model.
.serializer_field_mapping
A mapping of Django model fields to REST framework serializer fields. You can override this mapping to alter the default serializer fields that should be used for each model field.
This property should be the serializer field class, that is used for relational fields by default.
For ModelSerializer
this defaults to serializers.PrimaryKeyRelatedField
.
For HyperlinkedModelSerializer
this defaults to serializers.HyperlinkedRelatedField
.
.serializer_url_field
The serializer field class that should be used for any url
field on the serializer.
Defaults to serializers.HyperlinkedIdentityField
.serializer_choice_field
The serializer field class that should be used for any choice fields on the serializer.
Defaults to serializers.ChoiceField
The field_class and field_kwargs API
The following methods are called to determine the class and keyword arguments for each field that should be automatically included on the serializer. Each of these methods should return a two tuple of (field_class, field_kwargs)
.
.build_standard_field(self, field_name, model_field)
Called to generate a serializer field that maps to a standard model field.
The default implementation returns a serializer class based on the serializer_field_mapping
attribute.
.build_relational_field(self, field_name, relation_info)
Called to generate a serializer field that maps to a relational model field.
The default implementation returns a serializer class based on the serializer_related_field
attribute.
The relation_info
argument is a named tuple, that contains model_field
, related_model
, to_many
and has_through_model
properties.
.build_nested_field(self, field_name, relation_info, nested_depth)
Called to generate a serializer field that maps to a relational model field, when the depth
option has been set.
The default implementation dynamically creates a nested serializer class based on either ModelSerializer
or HyperlinkedModelSerializer
.
The nested_depth
will be the value of the depth
option, minus one.
The relation_info
argument is a named tuple, that contains model_field
, related_model
, to_many
and has_through_model
properties.
.build_property_field(self, field_name, model_class)
Called to generate a serializer field that maps to a property or zero-argument method on the model class.
The default implementation returns a ReadOnlyField
class.
.build_url_field(self, field_name, model_class)
Called to generate a serializer field for the serializer’s own url
field. The default implementation returns a HyperlinkedIdentityField
class.
.build_unknown_field(self, field_name, model_class)
Called when the field name did not map to any model field or model property.
The default implementation raises an error, although subclasses may customize this behavior.
HyperlinkedModelSerializer
The HyperlinkedModelSerializer
class is similar to the ModelSerializer
class except that it uses hyperlinks to represent relationships, rather than primary keys.
By default the serializer will include a url
field instead of a primary key field.
The url field will be represented using a HyperlinkedIdentityField
serializer field, and any relationships on the model will be represented using a HyperlinkedRelatedField
serializer field.
You can explicitly include the primary key by adding it to the fields
option, for example:
class AccountSerializer(serializers.HyperlinkedModelSerializer):
class Meta:
model = Account
fields = ['url', 'id', 'account_name', 'users', 'created']
Absolute and relative URLs
When instantiating a HyperlinkedModelSerializer
you must include the current
request
in the serializer context, for example:
serializer = AccountSerializer(queryset, context={'request': request})
Doing so will ensure that the hyperlinks can include an appropriate hostname,
so that the resulting representation uses fully qualified URLs, such as:
http://api.example.com/accounts/1/
Rather than relative URLs, such as:
/accounts/1/
If you do want to use relative URLs, you should explicitly pass {'request': None}
in the serializer context.
How hyperlinked views are determined
There needs to be a way of determining which views should be used for hyperlinking to model instances.
By default hyperlinks are expected to correspond to a view name that matches the style '{model_name}-detail'
, and looks up the instance by a pk
keyword argument.
You can override a URL field view name and lookup field by using either, or both of, the view_name
and lookup_field
options in the extra_kwargs
setting, like so:
class AccountSerializer(serializers.HyperlinkedModelSerializer):
class Meta:
model = Account
fields = ['account_url', 'account_name', 'users', 'created']
extra_kwargs = {
'url': {'view_name': 'accounts', 'lookup_field': 'account_name'},
'users': {'lookup_field': 'username'}
}
Alternatively you can set the fields on the serializer explicitly. For example:
class AccountSerializer(serializers.HyperlinkedModelSerializer):
url = serializers.HyperlinkedIdentityField(
view_name='accounts',
lookup_field='slug'
)
users = serializers.HyperlinkedRelatedField(
view_name='user-detail',
lookup_field='username',
many=True,
read_only=True
)
class Meta:
model = Account
fields = ['url', 'account_name', 'users', 'created']
Tip: Properly matching together hyperlinked representations and your URL conf can sometimes be a bit fiddly. Printing the repr
of a HyperlinkedModelSerializer
instance is a particularly useful way to inspect exactly which view names and lookup fields the relationships are expected to map too.
Changing the URL field name
The name of the URL field defaults to ‘url’. You can override this globally, by using the URL_FIELD_NAME
setting.
ListSerializer
The ListSerializer
class provides the behavior for serializing and validating multiple objects at once. You won’t typically need to use ListSerializer
directly, but should instead simply pass many=True
when instantiating a serializer.
When a serializer is instantiated and many=True
is passed, a ListSerializer
instance will be created. The serializer class then becomes a child of the parent ListSerializer
The following argument can also be passed to a ListSerializer
field or a serializer that is passed many=True
:
allow_empty
This is True
by default, but can be set to False
if you want to disallow empty lists as valid input.
max_length
This is None
by default, but can be set to a positive integer if you want to validates that the list contains no more than this number of elements.
min_length
This is None
by default, but can be set to a positive integer if you want to validates that the list contains no fewer than this number of elements.
Customizing ListSerializer
behavior
There are a few use cases when you might want to customize the ListSerializer
behavior. For example:
- You want to provide particular validation of the lists, such as checking that one element does not conflict with another element in a list.
- You want to customize the create or update behavior of multiple objects.
For these cases you can modify the class that is used when many=True
is passed, by using the list_serializer_class
option on the serializer Meta
class.
For example:
class CustomListSerializer(serializers.ListSerializer):
...
class CustomSerializer(serializers.Serializer):
...
class Meta:
list_serializer_class = CustomListSerializer
Customizing multiple create
The default implementation for multiple object creation is to simply call .create()
for each item in the list. If you want to customize this behavior, you’ll need to customize the .create()
method on ListSerializer
class that is used when many=True
is passed.
For example:
class BookListSerializer(serializers.ListSerializer):
def create(self, validated_data):
books = [Book(**item) for item in validated_data]
return Book.objects.bulk_create(books)
class BookSerializer(serializers.Serializer):
...
class Meta:
list_serializer_class = BookListSerializer
Customizing multiple update
By default the ListSerializer
class does not support multiple updates. This is because the behavior that should be expected for insertions and deletions is ambiguous.
To support multiple updates you’ll need to do so explicitly. When writing your multiple update code make sure to keep the following in mind:
- How do you determine which instance should be updated for each item in the list of data?
- How should insertions be handled? Are they invalid, or do they create new objects?
- How should removals be handled? Do they imply object deletion, or removing a relationship? Should they be silently ignored, or are they invalid?
- How should ordering be handled? Does changing the position of two items imply any state change or is it ignored?
You will need to add an explicit id
field to the instance serializer. The default implicitly-generated id
field is marked as read_only
. This causes it to be removed on updates. Once you declare it explicitly, it will be available in the list serializer’s update
method.
Here’s an example of how you might choose to implement multiple updates:
class BookListSerializer(serializers.ListSerializer):
def update(self, instance, validated_data):
# Maps for id->instance and id->data item.
book_mapping = {book.id: book for book in instance}
data_mapping = {item['id']: item for item in validated_data}
# Perform creations and updates.
ret = []
for book_id, data in data_mapping.items():
book = book_mapping.get(book_id, None)
if book is None:
ret.append(self.child.create(data))
else:
ret.append(self.child.update(book, data))
# Perform deletions.
for book_id, book in book_mapping.items():
if book_id not in data_mapping:
book.delete()
return ret
class BookSerializer(serializers.Serializer):
# We need to identify elements in the list using their primary key,
# so use a writable field here, rather than the default which would be read-only.
id = serializers.IntegerField()
...
class Meta:
list_serializer_class = BookListSerializer
It is possible that a third party package may be included alongside the 3.1 release that provides some automatic support for multiple update operations, similar to the allow_add_remove
behavior that was present in REST framework 2.
Customizing ListSerializer initialization
When a serializer with many=True
is instantiated, we need to determine which arguments and keyword arguments should be passed to the .__init__()
method for both the child Serializer
class, and for the parent ListSerializer
class.
The default implementation is to pass all arguments to both classes, except for validators
, and any custom keyword arguments, both of which are assumed to be intended for the child serializer class.
Occasionally you might need to explicitly specify how the child and parent classes should be instantiated when many=True
is passed. You can do so by using the many_init
class method.
@classmethod
def many_init(cls, *args, **kwargs):
# Instantiate the child serializer.
kwargs['child'] = cls()
# Instantiate the parent list serializer.
return CustomListSerializer(*args, **kwargs)
BaseSerializer
BaseSerializer
class that can be used to easily support alternative serialization and deserialization styles.
This class implements the same basic API as the Serializer
class:
.data
— Returns the outgoing primitive representation..is_valid()
— Deserializes and validates incoming data..validated_data
— Returns the validated incoming data..errors
— Returns any errors during validation..save()
— Persists the validated data into an object instance.
There are four methods that can be overridden, depending on what functionality you want the serializer class to support:
.to_representation()
— Override this to support serialization, for read operations..to_internal_value()
— Override this to support deserialization, for write operations..create()
and.update()
— Override either or both of these to support saving instances.
Because this class provides the same interface as the Serializer
class, you can use it with the existing generic class-based views exactly as you would for a regular Serializer
or ModelSerializer
.
The only difference you’ll notice when doing so is the BaseSerializer
classes will not generate HTML forms in the browsable API. This is because the data they return does not include all the field information that would allow each field to be rendered into a suitable HTML input.
Read-only BaseSerializer
classes
To implement a read-only serializer using the BaseSerializer
class, we just need to override the .to_representation()
method. Let’s take a look at an example using a simple Django model:
class HighScore(models.Model):
created = models.DateTimeField(auto_now_add=True)
player_name = models.CharField(max_length=10)
score = models.IntegerField()
It’s simple to create a read-only serializer for converting HighScore
instances into primitive data types.
class HighScoreSerializer(serializers.BaseSerializer):
def to_representation(self, instance):
return {
'score': instance.score,
'player_name': instance.player_name
}
We can now use this class to serialize single HighScore
instances:
@api_view(['GET'])
def high_score(request, pk):
instance = HighScore.objects.get(pk=pk)
serializer = HighScoreSerializer(instance)
return Response(serializer.data)
Or use it to serialize multiple instances:
@api_view(['GET'])
def all_high_scores(request):
queryset = HighScore.objects.order_by('-score')
serializer = HighScoreSerializer(queryset, many=True)
return Response(serializer.data)
Read-write BaseSerializer
classes
To create a read-write serializer we first need to implement a .to_internal_value()
method. This method returns the validated values that will be used to construct the object instance, and may raise a serializers.ValidationError
if the supplied data is in an incorrect format.
Once you’ve implemented .to_internal_value()
, the basic validation API will be available on the serializer, and you will be able to use .is_valid()
, .validated_data
and .errors
.
If you want to also support .save()
you’ll need to also implement either or both of the .create()
and .update()
methods.
Here’s a complete example of our previous HighScoreSerializer
, that’s been updated to support both read and write operations.
class HighScoreSerializer(serializers.BaseSerializer):
def to_internal_value(self, data):
score = data.get('score')
player_name = data.get('player_name')
# Perform the data validation.
if not score:
raise serializers.ValidationError({
'score': 'This field is required.'
})
if not player_name:
raise serializers.ValidationError({
'player_name': 'This field is required.'
})
if len(player_name) > 10:
raise serializers.ValidationError({
'player_name': 'May not be more than 10 characters.'
})
# Return the validated values. This will be available as
# the `.validated_data` property.
return {
'score': int(score),
'player_name': player_name
}
def to_representation(self, instance):
return {
'score': instance.score,
'player_name': instance.player_name
}
def create(self, validated_data):
return HighScore.objects.create(**validated_data)
Creating new base classes
The BaseSerializer
class is also useful if you want to implement new generic serializer classes for dealing with particular serialization styles, or for integrating with alternative storage backends.
The following class is an example of a generic serializer that can handle coercing arbitrary complex objects into primitive representations.
class ObjectSerializer(serializers.BaseSerializer):
"""
A read-only serializer that coerces arbitrary complex objects
into primitive representations.
"""
def to_representation(self, instance):
output = {}
for attribute_name in dir(instance):
attribute = getattr(instance, attribute_name)
if attribute_name.startswith('_'):
# Ignore private attributes.
pass
elif hasattr(attribute, '__call__'):
# Ignore methods and other callables.
pass
elif isinstance(attribute, (str, int, bool, float, type(None))):
# Primitive types can be passed through unmodified.
output[attribute_name] = attribute
elif isinstance(attribute, list):
# Recursively deal with items in lists.
output[attribute_name] = [
self.to_representation(item) for item in attribute
]
elif isinstance(attribute, dict):
# Recursively deal with items in dictionaries.
output[attribute_name] = {
str(key): self.to_representation(value)
for key, value in attribute.items()
}
else:
# Force anything else to its string representation.
output[attribute_name] = str(attribute)
return output
Advanced serializer usage
Overriding serialization and deserialization behavior
If you need to alter the serialization or deserialization behavior of a serializer class, you can do so by overriding the .to_representation()
or .to_internal_value()
methods.
Some reasons this might be useful include…
- Adding new behavior for new serializer base classes.
- Modifying the behavior slightly for an existing class.
- Improving serialization performance for a frequently accessed API endpoint that returns lots of data.
The signatures for these methods are as follows:
.to_representation(self, instance)
Takes the object instance that requires serialization, and should return a primitive representation. Typically this means returning a structure of built-in Python datatypes. The exact types that can be handled will depend on the render classes you have configured for your API.
May be overridden in order to modify the representation style. For example:
def to_representation(self, instance):
"""Convert `username` to lowercase."""
ret = super().to_representation(instance)
ret['username'] = ret['username'].lower()
return ret
.to_internal_value(self, data)
Takes the unvalidated incoming data as input and should return the validated data that will be made available as serializer.validated_data
. The return value will also be passed to the .create()
or .update()
methods if .save()
is called on the serializer class.
If any of the validation fails, then the method should raise a serializers.ValidationError(errors)
. The errors
argument should be a dictionary mapping field names (or settings.NON_FIELD_ERRORS_KEY
) to a list of error messages. If you don’t need to alter deserialization behavior and instead want to provide object-level validation, it’s recommended that you instead override the .validate()
method.
The data
argument passed to this method will normally be the value of request.data
, so the datatype it provides will depend on the parser classes you have configured for your API.
Serializer Inheritance
Similar to Django forms, you can extend and reuse serializers through inheritance. This allows you to declare a common set of fields or methods on a parent class that can then be used in a number of serializers. For example,
class MyBaseSerializer(Serializer):
my_field = serializers.CharField()
def validate_my_field(self, value):
...
class MySerializer(MyBaseSerializer):
...
Like Django’s Model
and ModelForm
classes, the inner Meta
class on serializers does not implicitly inherit from it’s parents’ inner Meta
classes. If you want the Meta
class to inherit from a parent class you must do so explicitly. For example:
class AccountSerializer(MyBaseSerializer):
class Meta(MyBaseSerializer.Meta):
model = Account
Typically we would recommend not using inheritance on inner Meta classes, but instead declaring all options explicitly.
Additionally, the following caveats apply to serializer inheritance:
- Normal Python name resolution rules apply. If you have multiple base classes that declare a
Meta
inner class, only the first one will be used. This means the child’sMeta
, if it exists, otherwise theMeta
of the first parent, etc. -
It’s possible to declaratively remove a
Field
inherited from a parent class by setting the name to beNone
on the subclass.class MyBaseSerializer(ModelSerializer): my_field = serializers.CharField() class MySerializer(MyBaseSerializer): my_field = None
However, you can only use this technique to opt out from a field defined declaratively by a parent class; it won’t prevent the
ModelSerializer
from generating a default field. To opt-out from default fields, see Specifying which fields to include.
Dynamically modifying fields
Once a serializer has been initialized, the dictionary of fields that are set on the serializer may be accessed using the .fields
attribute. Accessing and modifying this attribute allows you to dynamically modify the serializer.
Modifying the fields
argument directly allows you to do interesting things such as changing the arguments on serializer fields at runtime, rather than at the point of declaring the serializer.
Example
For example, if you wanted to be able to set which fields should be used by a serializer at the point of initializing it, you could create a serializer class like so:
class DynamicFieldsModelSerializer(serializers.ModelSerializer):
"""
A ModelSerializer that takes an additional `fields` argument that
controls which fields should be displayed.
"""
def __init__(self, *args, **kwargs):
# Don't pass the 'fields' arg up to the superclass
fields = kwargs.pop('fields', None)
# Instantiate the superclass normally
super().__init__(*args, **kwargs)
if fields is not None:
# Drop any fields that are not specified in the `fields` argument.
allowed = set(fields)
existing = set(self.fields)
for field_name in existing - allowed:
self.fields.pop(field_name)
This would then allow you to do the following:
>>> class UserSerializer(DynamicFieldsModelSerializer):
>>> class Meta:
>>> model = User
>>> fields = ['id', 'username', 'email']
>>>
>>> print(UserSerializer(user))
{'id': 2, 'username': 'jonwatts', 'email': 'jon@example.com'}
>>>
>>> print(UserSerializer(user, fields=('id', 'email')))
{'id': 2, 'email': 'jon@example.com'}
Customizing the default fields
REST framework 2 provided an API to allow developers to override how a ModelSerializer
class would automatically generate the default set of fields.
This API included the .get_field()
, .get_pk_field()
and other methods.
Because the serializers have been fundamentally redesigned with 3.0 this API no longer exists. You can still modify the fields that get created but you’ll need to refer to the source code, and be aware that if the changes you make are against private bits of API then they may be subject to change.
Third party packages
The following third party packages are also available.
Django REST marshmallow
The django-rest-marshmallow package provides an alternative implementation for serializers, using the python marshmallow library. It exposes the same API as the REST framework serializers, and can be used as a drop-in replacement in some use-cases.
Serpy
The serpy package is an alternative implementation for serializers that is built for speed. Serpy serializes complex datatypes to simple native types. The native types can be easily converted to JSON or any other format needed.
MongoengineModelSerializer
The django-rest-framework-mongoengine package provides a MongoEngineModelSerializer
serializer class that supports using MongoDB as the storage layer for Django REST framework.
GeoFeatureModelSerializer
The django-rest-framework-gis package provides a GeoFeatureModelSerializer
serializer class that supports GeoJSON both for read and write operations.
HStoreSerializer
The django-rest-framework-hstore package provides an HStoreSerializer
to support django-hstore DictionaryField
model field and its schema-mode
feature.
Dynamic REST
The dynamic-rest package extends the ModelSerializer and ModelViewSet interfaces, adding API query parameters for filtering, sorting, and including / excluding all fields and relationships defined by your serializers.
Dynamic Fields Mixin
The drf-dynamic-fields package provides a mixin to dynamically limit the fields per serializer to a subset specified by an URL parameter.
DRF FlexFields
The drf-flex-fields package extends the ModelSerializer and ModelViewSet to provide commonly used functionality for dynamically setting fields and expanding primitive fields to nested models, both from URL parameters and your serializer class definitions.
Serializer Extensions
The django-rest-framework-serializer-extensions
package provides a collection of tools to DRY up your serializers, by allowing
fields to be defined on a per-view/request basis. Fields can be whitelisted,
blacklisted and child serializers can be optionally expanded.
HTML JSON Forms
The html-json-forms package provides an algorithm and serializer for processing <form>
submissions per the (inactive) HTML JSON Form specification. The serializer facilitates processing of arbitrarily nested JSON structures within HTML. For example, <input name="items[0][id]" value="5">
will be interpreted as {"items": [{"id": "5"}]}
.
DRF-Base64
DRF-Base64 provides a set of field and model serializers that handles the upload of base64-encoded files.
QueryFields
djangorestframework-queryfields allows API clients to specify which fields will be sent in the response via inclusion/exclusion query parameters.
DRF Writable Nested
The drf-writable-nested package provides writable nested model serializer which allows to create/update models with nested related data.
DRF Encrypt Content
The drf-encrypt-content package helps you encrypt your data, serialized through ModelSerializer. It also contains some helper functions. Which helps you to encrypt your data.
Нам бы очень хотелось расширить применение сериализаторов, но это не тривиальная проблема, и она требует серьезной работы.
— Russell Keith-Magee, Django users group
Сериализаторы позволяют преобразовывать сложные данные, такие как querysets и экземпляры моделей, в нативные типы данных Python, которые затем могут быть легко срендерены в JSON, XML или другие типы контента. Сериализаторы также обеспечивают десериализацию, позволяя преобразовать спарсенные данные обратно в сложные типы после проверки входящих данных.
Сериализаторы в REST framework работают аналогично классам Django Form
и ModelForm
. Мы предоставляем класс Serializer
, который дает вам мощный, общий способ управления вашими ответами, а также класс ModelSerializer
— полезный и быстрый способ создания сериализаторов, которые имеют дело с экземплярами модели и querysets.
Объявление сериализаторов
Объявление сериализаторов
Сперва создадим простой проект, на котором будем демонстрировать примеры:
from datetime import datetime
def __init__(self, email, content, created=None):
self.created = created or datetime.now()
Мы объявим сериализатор, который мы можем использовать для сериализации и десериализации данных, соответствующих объектам Comment
.
Объявление сериализатора очень похоже на объявление формы:
from rest_framework import serializers
class CommentSerializer(serializers.Serializer):
email = serializers.EmailField()
content = serializers.CharField(max_length=200)
created = serializers.DateTimeField()
Теперь мы можем использовать CommentSerializer
для сериализации комментария или списка комментариев. Опять же, использование класса Serializer
очень похоже на использование класса Form
.
serializer = CommentSerializer(comment)
# {’email’: ‘[email protected]’, ‘content’: ‘foo bar’, ‘created’: ‘2016-01-27T15:17:10.375877’}
На этом этапе мы преобразовали экземпляр модели в нативные типы данных Python. Чтобы завершить процесс сериализации, мы рендерим данные в json
.
from rest_framework.renderers import JSONRenderer
json = JSONRenderer().render(serializer.data)
# b'{«email»:»[email protected]»,»content»:»foo bar»,»created»:»2016-01-27T15:17:10.375877″}’
Аналогично проходит десериализация. Сначала мы парсим поток в нативные типы данных Python …
from django.utils.six import BytesIO
from rest_framework.parsers import JSONParser
data = JSONParser().parse(stream)
…затем мы сохраняем эти нативные типы данных в словарь валидных данных.
serializer = CommentSerializer(data=data)
serializer.validated_data
# {‘content’: ‘foo bar’, ’email’: ‘[email protected]’, ‘created’: datetime.datetime(2012, 08, 22, 16, 20, 09, 822243)}
Если мы хотим иметь возможность возвращать полные экземпляры объектов на основе проверенных данных, нам нужно реализовать один или оба метода .create()
и update()
. Например:
class CommentSerializer(serializers.Serializer):
email = serializers.EmailField()
content = serializers.CharField(max_length=200)
created = serializers.DateTimeField()
def create(self, validated_data):
return Comment(**validated_data)
def update(self, instance, validated_data):
instance.email = validated_data.get(’email’, instance.email)
instance.content = validated_data.get(‘content’, instance.content)
instance.created = validated_data.get(‘created’, instance.created)
Если экземпляры объектов соответствуют моделям Django, то вам также нужно убедиться, что эти методы сохраняют объект в базе данных. Например, если Comment
был моделью Django, методы могут выглядеть так:
def create(self, validated_data):
return Comment.objects.create(**validated_data)
def update(self, instance, validated_data):
instance.email = validated_data.get(’email’, instance.email)
instance.content = validated_data.get(‘content’, instance.content)
instance.created = validated_data.get(‘created’, instance.created)
Теперь при десериализации данных мы можем вызвать .save()
, чтобы вернуть экземпляр объекта на основе проверенных данных.
comment = serializer.save()
При вызове .save()
будет создаваться либо новый экземпляр, либо обновляться существующий экземпляр, в зависимости от того, был ли передан существующий экземпляр при создании экземпляра класса сериализатора:
# .save() will create a new instance.
serializer = CommentSerializer(data=data)
# .save() will update the existing `comment` instance.
serializer = CommentSerializer(comment, data=data)
Оба метода .create()
и .update()
являются необязательными. Вы можете применять их вмете, по отдельности, либо вообще отказаться от них, в зависимости от конкретного случая использования вашего класса сериализатора.
Передача дополнительных атрибутов в .save()
Передача дополнительных атрибутов в .save()
Иногда вам нужно, чтобы код представления мог добавлять дополнительные данные в момент сохранения экземпляра. Эти дополнительные данные могут включать в себя информацию, такую как текущий пользователь, текущее время или что-либо еще, что не является частью данных запроса.
Вы можете сделать это, указав дополнительные аргументы ключевого слова при вызове .save().
Например:
serializer.save(owner=request.user)
Любые дополнительные аргументы ключевого слова будут включены в аргумент validated_data
при вызове .create()
или .update()
.
Переопределение .save() напрямую.
Переопределение .save() напрямую.
В некоторых случаях имена методов .create()
и .update()
могут не иметь смысла. Например, в форме контакта мы можем не создавать новые экземпляры, а вместо этого отправлять электронную почту или другое сообщение.
В этих случаях вы можете переопределить .save()
напрямую, в целях читабельности и прозрачности.
class ContactForm(serializers.Serializer):
email = serializers.EmailField()
message = serializers.CharField()
email = self.validated_data[’email’]
message = self.validated_data[‘message’]
send_email(from=email, message=message)
Обратите внимание, что в приведенном выше случае нам теперь нужно напрямую получить доступ к свойству serialval.validated_data.
При десериализации данных вам всегда нужно вызвать is_valid()
, прежде чем пытаться получить доступ к проверенным данным или сохранить экземпляр объекта. Если возникнут какие-либо ошибки проверки, свойство .errors
будет содержать словарь, представляющий сообщения об ошибках. Например:
serializer = CommentSerializer(data={’email’: ‘foobar’, ‘content’: ‘baz’})
# {’email’: [u’Enter a valid e-mail address.’], ‘created’: [u’This field is required.’]}
Каждый ключ в словаре будет именем поля, а значениями будут списками строк любых сообщений об ошибках, соответствующих этому полю. Также может присутствовать ключ non_field_errors
, который перечисляет любые общие ошибки валидности. Имя ключа non_field_errors
может быть настроено с использованием параметра NON_FIELD_ERRORS_KEY REST
.
При десериализации списка элементов ошибки будут возвращаться в виде списка словарей, представляющих каждый из десериализованных элементов.
Получение исключения по недействительным данным
Получение исключения по недействительным данным
Метод .is_valid()
принимает необязательный флаг raise_exception
, который заставит его вызвать исключение serializers.ValidationError
, в случае, если есть ошибки проверки.
Эти исключения автоматически обрабатываются обработчиком исключений, который предоставляет REST framework, и будет возвращать ответы HTTP 400 Bad Request
по умолчанию.
# Return a 400 response if the data was invalid.
serializer.is_valid(raise_exception=True)
Вы можете указать настраиваемую проверку на уровне поля, добавив методы .validate_<field_name>
в ваш подкласс Serializer
. Они аналогичны методам .clean_<field_name>
в формах Django.
Эти методы принимают один аргумент, который является значением поля, требующим проверки.
Методы .validate_<field_name>
должны возвращать проверенное значение или вызывать serializers.ValidationError
. Например:
from rest_framework import serializers
class BlogPostSerializer(serializers.Serializer):
title = serializers.CharField(max_length=100)
content = serializers.CharField()
def validate_title(self, value):
Check that the blog post is about Django.
if ‘django’ not in value.lower():
raise serializers.ValidationError(«Blog post is not about Django»)
Примечание: Если ваш <field_name>
объявлен в вашем сериализаторе с параметром required = False
, то этот шаг проверки не будет выполняться, если поле не включено.
Проверка на уровне объекта
Проверка на уровне объекта
Чтобы выполнить любую другую проверку, требующую доступа к нескольким полям, добавьте метод под названием .validate()
в ваш подкласс Serializer
. Этот метод принимает один аргумент, который является словарем значений полей. При необходимости он должен вызвать serializers.ValidationError
или просто вернуть проверенные значения. Например:
from rest_framework import serializers
class EventSerializer(serializers.Serializer):
description = serializers.CharField(max_length=100)
start = serializers.DateTimeField()
finish = serializers.DateTimeField()
def validate(self, data):
Check that the start is before the stop.
if data[‘start’] > data[‘finish’]:
raise serializers.ValidationError(«finish must occur after start»)
В отдельные поля в сериализаторе можно включить валидаторы, объявив их в экземпляре поля, например:
def multiple_of_ten(value):
raise serializers.ValidationError(‘Not a multiple of ten’)
class GameRecord(serializers.Serializer):
score = IntegerField(validators=[multiple_of_ten])
Классы сериализаторов могут также включать повторно используемые валидаторы, которые применяются к полному набору данных поля. Эти валидаторы подключаются путем объявления их во внутреннем мета-классе, например:
class EventSerializer(serializers.Serializer):
name = serializers.CharField()
room_number = serializers.IntegerField(choices=[101, 102, 103, 201])
date = serializers.DateField()
# Each room only has one event per day.
validators = UniqueTogetherValidator(
queryset=Event.objects.all(),
fields=[‘room_number’, ‘date’]
Доступ к исходным данным и экземпляру
Доступ к исходным данным и экземпляру
При передаче исходного объекта или queryset в экземпляр сериализатора объект будет доступен как .instance
. Если не было передано никакого начального объекта, то атрибут .instance
будет None.
При передаче данных в экземпляр сериализатора немодифицированные данные будут доступны как .initial_data
. Если аргумент ключевого слова данных не передается, атрибут .initial_data
не будет создан.
По умолчанию, сериализаторам должны быть переданы значения для всех обязательных полей, в противном случае они вызовут ошибку валидации. Вы можете использовать аргумент partial
, чтобы разрешить частичные обновления.
# Update `comment` with partial data
serializer = CommentSerializer(comment, data={‘content’: u’foo bar’}, partial=True)
Работа с вложенными объектами
Работа с вложенными объектами
Предыдущие примеры хорошо подходят для работы с объектами, которые имеют только простые типы данных, но иногда нам также нужно иметь возможность представлять более сложные объекты, где некоторые атрибуты объекта могут быть не простыми типами данных, такими как строки, даты или целые числа.
Класс Serializer
сам по себе является типом Field
и может использоваться для представления отношений, в которых один тип объекта вложен внутри другого.
class UserSerializer(serializers.Serializer):
email = serializers.EmailField()
username = serializers.CharField(max_length=100)
class CommentSerializer(serializers.Serializer):
content = serializers.CharField(max_length=200)
created = serializers.DateTimeField()
Если вложенное представление может опционально принимать значение None
, вы должны передать флаг required = False
вложенному сериализатору.
class CommentSerializer(serializers.Serializer):
user = UserSerializer(required=False) # May be an anonymous user.
content = serializers.CharField(max_length=200)
created = serializers.DateTimeField()
Аналогично, если вложенное представление должно быть списком элементов, вы должны передать флаг many = True
вложенному сериализатору.
class CommentSerializer(serializers.Serializer):
user = UserSerializer(required=False)
edits = EditItemSerializer(many=True) # A nested list of ‘edit’ items.
content = serializers.CharField(max_length=200)
created = serializers.DateTimeField()
Writable вложенные представления
Writable вложенные представления
При работе с вложенными представлениями, которые поддерживают десериализацию данных, любые ошибки с вложенными объектами будут вложены под именем поля вложенного объекта.
serializer = CommentSerializer(data={‘user’: {’email’: ‘foobar’, ‘username’: ‘doe’}, ‘content’: ‘baz’})
# {‘user’: {’email’: [u’Enter a valid e-mail address.’]}, ‘created’: [u’This field is required.’]}
Аналогично, свойство .validated_data
будет включать вложенные структуры данных.
Написание методов .create()
для вложенных представлений
Написание методов .create()
для вложенных представлений
Если вы собираетесь поддерживать writable вложенные представления, вам потребуется написать методы .create()
или .update()
, которые обрабатывают сохранение нескольких объектов.
В следующем примере показано, как можно обрабатывать создание пользователя с вложенным объектом профиля.
class UserSerializer(serializers.ModelSerializer):
profile = ProfileSerializer()
fields = (‘username’, ’email’, ‘profile’)
def create(self, validated_data):
profile_data = validated_data.pop(‘profile’)
user = User.objects.create(**validated_data)
Profile.objects.create(user=user, **profile_data)
Написание методов .update() для вложенных представлений
Написание методов .update() для вложенных представлений
Вам нужно будет тщательно подумать о том, как обрабатывать обновления отношений. Например, что из следующего должно произойти, если данные отношений равняются None
?
-
Отношение устанавливается как NULL в базе данных.
-
Связанный экземпляр удаляется.
-
Данные игнорируются и экземпляр остается таким, какой он есть.
Ниже приведен пример метода update()
на основе нашего UserSerializer
.
def update(self, instance, validated_data):
profile_data = validated_data.pop(‘profile’)
# Unless the application properly enforces that this field is
# always set, the follow could raise a `DoesNotExist`, which
# would need to be handled.
profile = instance.profile
instance.username = validated_data.get(‘username’, instance.username)
instance.email = validated_data.get(’email’, instance.email)
profile.is_premium_member = profile_data.get(
profile.is_premium_member
profile.has_support_contract = profile_data.get(
profile.has_support_contract
Поскольку поведение вложенных create и update может быть неоднозначным и требующим зависимостей между связанными моделями, REST framework 3 требует, чтобы вы всегда записывали эти методы явно. Стандартные методы ModelSerializer
.create()
и .update()
не включают поддержку writable вложенных представлений.
Обработка связанных с сохранением экземпляров в классах менеджера моделей
Обработка связанных с сохранением экземпляров в классах менеджера моделей
Альтернативой сохранению нескольких связанных экземпляров в сериализаторе является создание пользовательских классов диспетчера моделей, которые обрабатывают создание правильных экземпляров.
Предположим, что нам нужно убедиться, что экземпляры User
и экземпляры Profile
всегда создаются парно. Мы могли бы написать собственный класс менеджера, который выглядел бы примерно так:
class UserManager(models.Manager):
def create(self, username, email, is_premium_member=False, has_support_contract=False):
user = User(username=username, email=email)
is_premium_member=is_premium_member,
has_support_contract=has_support_contract
Этот класс менеджера теперь лучше инкапсулирует, что экземпляры пользователей и экземпляры профиля всегда создаются одновременно. Наш метод .create()
в классе сериализатора теперь может быть переписан для использования нового метода менеджера.
def create(self, validated_data):
return User.objects.create(
username=validated_data[‘username’],
email=validated_data[’email’]
is_premium_member=validated_data[‘profile’][‘is_premium_member’]
has_support_contract=validated_data[‘profile’][‘has_support_contract’]
Для дополнительной информации по данному методу смотрите документацию Джанго по
менеджерам моделей
, а также
этот пост
, посвященный использованию классов моделей и менеджеров.
Работа с несколькими объектами
Работа с несколькими объектами
Класс Serializer
также может обрабатывать сериализацию или десериализацию списков объектов.
Сериализация нескольких объектов
Сериализация нескольких объектов
Чтобы сериализовать queryset или список объектов вместо экземпляра одного объекта, вы должны передать флаг many = True
при создании экземпляра сериализатора. Затем вы можете передать queryset или список объектов для сериализации.
queryset = Book.objects.all()
serializer = BookSerializer(queryset, many=True)
# {‘id’: 0, ‘title’: ‘The electric kool-aid acid test’, ‘author’: ‘Tom Wolfe’},
# {‘id’: 1, ‘title’: ‘If this is a man’, ‘author’: ‘Primo Levi’},
# {‘id’: 2, ‘title’: ‘The wind-up bird chronicle’, ‘author’: ‘Haruki Murakami’}
Десериализация нескольких объектов
Десериализация нескольких объектов
Стандартный процесс десериализации нескольких объектов поддерживает создание нескольких объектов, но не поддерживает обновление нескольких объектов. Дополнительные сведения о поддержке или настройке любого из этих случаев см в ListSerializer ниже.
Включение дополнительного контекста
Включение дополнительного контекста
В некоторых случаях вам необходимо предоставить дополнительный контекст для сериализатора в дополнение к сериализуемому объекту. Распространенный случай, когда вы используете сериализатор, который включает в себя отношения-гиперссылки, это подразумевает, что сериализатор имеет доступ к текущему запросу, чтобы он мог правильно генерировать полные URL-адреса.
Вы можете предоставить произвольный дополнительный контекст, передав аргумент context
при создании экземпляра сериализатора. Например:
serializer = AccountSerializer(account, context={‘request’: request})
# {‘id’: 6, ‘owner’: u’denvercoder9′, ‘created’: datetime.datetime(2013, 2, 12, 09, 44, 56, 678870), ‘details’: ‘http://example.com/accounts/6/details’}
Словарь контекста может использоваться в любой логике поля сериализатора, такой как пользовательский метод .to_representation()
, путем доступа к атрибуту self.context
.
Часто вам нужны классы сериализатора, которые тесно связаны с определениями моделей Django.
Класс ModelSerializer
позволяет автоматически создавать класс Serializer
с полями, соответствующими полям Model.
Класс ModelSerializer
совпадает с обычным классом Serializer
, за исключением того, что:
-
Он автоматически генерирует набор полей на основе модели.
-
Он автоматически генерирует валидаторы для сериализатора, такие как
unique_together
. -
Он включает простые стандартные реализации
.create()
и.update()
.
Объявление ModelSerializer
выглядит так:
class AccountSerializer(serializers.ModelSerializer):
fields = (‘id’, ‘account_name’, ‘users’, ‘created’)
По умолчанию все поля модели в классе будут сопоставлены с соответствующими полями сериализатора.
Любые отношения, такие как внешние ключи модели, будут сопоставлены с PrimaryKeyRelatedField
. Обратные отношения не включаются по умолчанию, если только это не сделано явно, как указано в документации по отношениям сериализатора.
Классы сериализатора генерируют полезные verbose строки представления, которые позволяют вам полностью проверить состояние ваших полей. Это особенно полезно при работе с ModelSerializers
, где вы хотите определить, какой набор полей и валидаторов автоматически создается для вас.
Для этого откройте оболочку Django, используя python manage.py shell
, затем импортируйте класс сериализатора, создайте экземпляр и выполните print представления объекта …
>>> from myapp.serializers import AccountSerializer
>>> serializer = AccountSerializer()
>>> print(repr(serializer))
id = IntegerField(label=’ID’, read_only=True)
name = CharField(allow_blank=True, max_length=100, required=False)
owner = PrimaryKeyRelatedField(queryset=User.objects.all())
Определение полей для включения
Определение полей для включения
Если вы хотите, чтобы подмножество полей по умолчанию использовалось в модельном сериализаторе, то можете сделать используя опции fields
или exclude
, аналогично тому, как бы вы это сделали с ModelForm
. Настоятельно рекомендуется явно указать все поля, которые должны быть сериализованы с использованием атрибута fields
. Это уменьшит вероятность непреднамеренного обнародования данных при изменении ваших моделей.
class AccountSerializer(serializers.ModelSerializer):
fields = (‘id’, ‘account_name’, ‘users’, ‘created’)
Вы также можете установить специальное значения __all__
в качестве атрибут полей, чтобы указать, что должны использоваться все поля в модели.
class AccountSerializer(serializers.ModelSerializer):
Вы можете установить атрибут exclude
в список полей, которые должны быть исключены из сериализатора.
class AccountSerializer(serializers.ModelSerializer):
В приведенном выше примере, если модель Account
имеет 3 поля account_name
, users
, и created
, это приведет к тому, что резудьтат полей account_name
и created
будет сериализирован.
Имена в атрибутах fields
и exclude
обычно отображаются в полях модели в классе модели.
В качестве альтернативы имена в параметрах fields
могут отображаться в свойствах или методах, которые не принимают аргументов, существующих в классе модели.
Определение вложенной сериализации
Определение вложенной сериализации
По умолчанию ModelSerializer
использует первичные ключи для отношений, но вы можете легко создавать вложенные представления, используя параметр depth
:
class AccountSerializer(serializers.ModelSerializer):
fields = (‘id’, ‘account_name’, ‘users’, ‘created’)
Параметр depth
должен принимать целочисленное значение, указывающее глубину отношений, которые должны быть пройдены, прежде чем возвращаться к flat представлению.
Если вы хотите настроить способ сериализации, вам необходимо определить поле самостоятельно.
Вы можете добавить дополнительные поля в ModelSerializer
или переопределить поля по умолчанию, объявив поля в классе, аналогично тому как это делается в классе Serializer
.
class AccountSerializer(serializers.ModelSerializer):
url = serializers.CharField(source=‘get_absolute_url’, read_only=True)
groups = serializers.PrimaryKeyRelatedField(many=True)
Дополнительные поля могут соответствовать любому свойству или вызываемому объекту на модели.
Определение read only полей
Определение read only полей
Вы можете указать несколько полей только для чтения. Вместо того, чтобы явно добавлять каждое поле с атрибутом read_only = True
, вы можете использовать опцию Meta shortcut, read_only_fields
.
Этот параметр должен быть списком или кортежем, содержащим имя полей и объявляется следующим образом:
class AccountSerializer(serializers.ModelSerializer):
fields = (‘id’, ‘account_name’, ‘users’, ‘created’)
read_only_fields = (‘account_name’,)
Поля модели с editable = False
и поля AutoField
будут установлены по умолчанию только для чтения и не должны добавляться в параметр read_only_fields
.
Примечание: Есть особый случай, когда поле только для чтения является частью ограничения unique_together
на уровне модели. В этом случае поле требуется классу сериализатора для проверки ограничения, но также не должно быть доступно для редактирования пользователем.
Правильный способ справиться с этим — указать поле явно на сериализаторе, предоставляя как аргументы read_only = True
, так и default = ...
Одним из примеров этого является read-only отношение к аутентифицированному User
, который unique_together
с другим идентификатором. В этом случае вы должны объявить поле пользователя следующим образом:
user = serializers.PrimaryKeyRelatedField(read_only=True, default=serializers.CurrentUserDefault())
Дополнительные ключевые документы
Дополнительные ключевые документы
Существует также shortcut, позволяющий указать произвольные дополнительные аргументы ключевых слов в полях, используя опцию extra_kwargs
. Как и в случае с read_only_fields
, это означает, что вам не нужно явно объявлять поле в сериализаторе.
Этот параметр является словарем, который соотносит имена полей к словарю аргументов ключевых слов. Например:
class CreateUserSerializer(serializers.ModelSerializer):
fields = (’email’, ‘username’, ‘password’)
extra_kwargs = {‘password’: {‘write_only’: True}}
def create(self, validated_data):
email=validated_data[’email’],
username=validated_data[‘username’]
user.set_password(validated_data[‘password’])
При сериализации экземпляров модели существует несколько разных способов представления отношений. Для ModelSerializer
представление по умолчанию заключается в использовании первичных ключей соответствующих экземпляров.
Альтернативные представления включают сериализацию с использованием гиперссылок, сериализацию полных вложенных представлений или сериализацию с пользовательским представлением.
Настройка соотношения полей
Настройка соотношения полей
Класс ModelSerializer
также показывает API, который вы можете переписать для того, чтобы изменить автоматическое определение полей сериализатора при его инициализации.
Обычно, если ModelSerializer
не генерирует поля, которые вам нужны по умолчанию, вы должны либо добавить их в класс явно, либо просто использовать обычный класс Serializer
. Однако в некоторых случаях вам может понадобиться создать новый базовый класс, который определяет, как поля сериализатора создаются для любой модели.
.serializer_field_mapping
Соотношение классов модели Django к классам сериализатора REST framework. Вы можете переопределить это соотношение, чтобы изменить стандартные классы сериализатора, которые должны использоваться для каждого класса модели.
.serializer_related_field
Это свойство должно быть классом поля сериализатора, который по умолчанию используется для реляционных полей.
Для ModelSerializer
по умолчанию используется PrimaryKeyRelatedField
.
Для HyperlinkedModelSerializer
это значение по умолчанию равняется serializers.HyperlinkedRelatedField
.
Класс поля сериализатора, который должен использоваться для любого поля url
в сериализаторе.
По умолчанию serializers.HyperlinkedIdentityField
Класс поля сериализатора, который должен использоваться для любых полей выбора в сериализаторе.
По умолчанию serializers.ChoiceField
field_class и field_kwargs API
field_class и field_kwargs API
Следующие методы вызываются для определения аргументов класса и ключевого слова для каждого поля, которое должно автоматически включаться в сериализатор. Каждый из этих методов должен возвращать два кортежа (field_class, field_kwargs).
.build_standard_field(self, field_name, model_field)
Вызывается для создания поля сериализатора, которое отображается в поле реляционной модели.
Реализация по умолчанию возвращает класс сериализатора на основе атрибута serializer_field_mapping
.
.build_relational_field(self, field_name, relation_info)
Вызывается для создания поля сериализатора, которое соотносится с полем реляционной модели.
Реализация по умолчанию возвращает класс сериализатора на основе атрибута serializer_relational_field
.
Аргумент relation_info
— это именованный кортеж, который содержит свойства model_field
, related_model
, to_many
и through_model
.
.build_nested_field(self, field_name, relation_info, nested_depth)
Вызывается для создания поля сериализатора, которое соотносится с полем реляционной модели, когда задан параметр depth
.
Реализация по умолчанию динамически создает вложенный класс сериализатора на основе ModelSerializer
, либо HyperlinkedModelSerializer
.
Значение nested_depth
будет принимать значение параметра depth
минус единица.
Аргумент relation_info
— это именованный кортеж, который содержит свойства model_field
, related_model
, to_many
и through_model
.
.build_property_field(self, field_name, model_class)
Вызывается для создания поля сериализатора, которое соотносится с методом свойства или с нулевом аргументом в классе модели.
Реализация по умолчанию возвращает класс ReadOnlyField
.
.build_url_field(self, field_name, model_class)
Вызывается для создания поля сериализатора для собственного поля url
.
Реализация по умолчнию возвращает класс HyperlinkedIdentityField
.
.build_unknown_field(self, field_name, model_class)
Вызывается, когда имя поля не соотносится ни с одним из полей моделей или свойством модели. По умолчанию реализация вызывает ошибку, хотя с помощью подклассов можно настраивать это поведение.
HyperlinkedModelSerializer
HyperlinkedModelSerializer
Класс HyperlinkedModelSerializer
похож на класс ModelSerializer
, за исключением того, что для представления отношений он использует гиперссылки, а не первичные ключи.
По умолчанию сериализатор будет содержать поле url вместо поля первичного ключа.
Поле url будет представлено с использованием поля сериализатора HyperlinkedIdentityField
, и любые отношения в модели будут представлены с использованием поля сериализатора HyperlinkedRelatedField
.
Вы можете явно включить первичный ключ, добавив его в опцию полей, например:
class AccountSerializer(serializers.HyperlinkedModelSerializer):
fields = (‘url’, ‘id’, ‘account_name’, ‘users’, ‘created’)
Абсолютные и относительные URL
Абсолютные и относительные URL
При создании экземпляра HyperlinkedModelSerializer
вы должны включить текущий запрос в контекст сериализатора, например:
serializer = AccountSerializer(queryset, context={‘request’: request})
Это гарантирует, что гиперссылки могут содержать соответствующее имя хоста, таким образом в конечном представлении используются полностью определенные URL-адреса, например:
http://api.example.com/accounts/1/
Если вы все-таки хотите использовать относительные URL, то для этого вам нужно явно передать {'request': None}
в контекст сериализатора.
Должен быть способ определения того, какие представления следует использовать в качестве гиперссылки на экземпляры модели.
Предполагается, что по умолчанию гиперссылки будут соответствовать имени представления, которое соответствует стилю '{model_name} -detail'
, и ищет экземпляр по аргументу pk
.
Вы можете переопределить имя поля поля URL и поле поиска с помощью опций view_name
и lookup_field
в параметрах extra_kwargs
:
class AccountSerializer(serializers.HyperlinkedModelSerializer):
fields = (‘account_url’, ‘account_name’, ‘users’, ‘created’)
‘url’: {‘view_name’: ‘accounts’, ‘lookup_field’: ‘account_name’},
‘users’: {‘lookup_field’: ‘username’}
В качестве альтернативы вы можете явно установить поля в сериализаторе. Например:
class AccountSerializer(serializers.HyperlinkedModelSerializer):
url = serializers.HyperlinkedIdentityField(
users = serializers.HyperlinkedRelatedField(
fields = (‘url’, ‘account_name’, ‘users’, ‘created’)
Совет. Правильное сопоставление гиперссылочных представлений и URL conf порой может быть непроcтой задачей. Чтобы узнать к каким именам представлений и lookup полям должны соотноситься отношения можно с помощью print вывести repr
экземпляра HyperlinkedModelSerializer
.
По умолчанию имя поля URL значится как ‘url’. Вы можете переопределить это глобально, используя параметр URL_FIELD_NAME
.
Класс ListSerializer
обеспечивает поведение для последовательной и одновременной проверки нескольких объектов. Обычно вам не нужно использовать ListSerializer напрямую но вместо этого нужно просто передать аргумент many = True
при создании экземпляра сериализатора.
Когда инициализируется сериализатор и передается аргумент many = True
, создается экземпляр ListSerializer
. Затем класс сериализатора становится потомком родительского ListSerializer
Следующий аргумент также может быть передан в поле ListSerializer
или сериализатор, которому передается many = True
:
По умолчанию True
, но может быть равным False
, если вы хотите запретить пустые списки в качестве допустимого ввода.
Настройка поведения ListSerializer
Настройка поведения ListSerializer
Есть ряд случаев, когда вам может потребоваться настроить поведение ListSerializer
. Например:
-
Вы хотите обеспечить определенную проверку списков, например проверку того, что один элемент не конфликтует с другим элементом в списке.
-
Вы хотите настроить процесс создания или обновления нескольких объектов.
Для этих случаев вы можете изменить класс, который используется, при передаче аргумента many=True
, используя опцию list_serializer_class
в классе Meta
сериализатора.
class CustomListSerializer(serializers.ListSerializer):
class CustomSerializer(serializers.Serializer):
list_serializer_class = CustomListSerializer
Настройка нескольких create
Настройка нескольких create
По умолчанию несколько объектов можно создать просто вызвав .create()
для каждого элемента в списке. Если вы хотите настроить это поведение, вам нужно настроить метод .create()
в классе ListSerializer
, который используется, когда передается аргумент many=True
.
class BookListSerializer(serializers.ListSerializer):
def create(self, validated_data):
books = [Book(**item) for item in validated_data]
return Book.objects.bulk_create(books)
class BookSerializer(serializers.Serializer):
list_serializer_class = BookListSerializer
Настройка нескольких update
Настройка нескольких update
По умолчанию класс ListSerializer
не поддерживает несколько update. Это связано с тем, что поведение, которое следует ожидать при вставках и удалениях, неоднозначно.
Чтобы поддерживать нескольких обновлений, вам нужно сделать это явно. При написании кода множественного обновления обязательно учитывайте следующее:
-
Как вы определяете, какой экземпляр должен быть обновлен для каждого элемента в списке данных?
-
Как следует обрабатывать вставки? Они недействительны или создают новые объекты?
-
Как следует обрабатывать удаление? Оно подразумевают удаление объекта или удаление отношений? Следует ли его игнорировать, или считать недействительным?
-
Как следует обрабатывать сортировку? Изменяет ли положение двух элементов любое изменение состояния или игнорируется?
Вам нужно будет добавить явное поле id
в сериализатор экземпляра. По умолчанию неявно сгенерированное поле id помечено как read_only
. Это приводит к его удалению при обновлении. Как только вы объявите его явно, он будет доступен в списке методов обновления сериализатора.
Пример того, как вы можете реализовать несколько обновлений:
class BookListSerializer(serializers.ListSerializer):
def update(self, instance, validated_data):
# Maps for id->instance and id->data item.
book_mapping = {book.id: book for book in instance}
data_mapping = {item[‘id’]: item for item in validated_data}
# Perform creations and updates.
for book_id, data in data_mapping.items():
book = book_mapping.get(book_id, None)
ret.append(self.child.create(data))
ret.append(self.child.update(book, data))
for book_id, book in book_mapping.items():
if book_id not in data_mapping:
class BookSerializer(serializers.Serializer):
# We need to identify elements in the list using their primary key,
# so use a writable field here, rather than the default which would be read-only.
id = serializers.IntegerField()
list_serializer_class = BookListSerializer
Возможно, в следующую версию фреймворка будет включен пакет сторонних разработчиков, который обеспечивал бы некоторую автоматическую поддержку для нескольких операций обновления, аналогичную поведению allow_add_remove
, которое присутствовало в REST framework 2.
Настройка инициализации ListSerializer
Настройка инициализации ListSerializer
Когда создается экземпляр сериализатора с many=True
, нам нужно определить, какие аргументы и аргументы ключевых слов должны быть переданы методу .__init__()
для дочернего класса Serializer
и для родительского класса ListSerializer
.
Реализация по умолчанию — передать все аргументы обоим классам, за исключением валидаторов, и любые пользовательские аргументы ключевых слов, оба из которых предназначены для дочернего класса сериализатора.
Иногда вам может потребоваться явно указать, каким образом следует создать экземпляр дочернего и родительского классов при передаче аргументов many=True
. Вы можете сделать это, используя метод класса many_init
.
def many_init(cls, *args, **kwargs):
# Instantiate the child serializer.
# Instantiate the parent list serializer.
return CustomListSerializer(*args, **kwargs)
Класс BaseSerializer
может использоваться для легкой поддержки альтернативных стилей сериализации и десериализации.
Этот класс реализует тот же базовый API, что и класс Serializer
:
-
.data — возвращает исходное примитивное представление.
-
.is_valid() — десериализирует и проверяет входящие данные.
-
.validated_data — возвращает проверенные входящие данные.
-
.errors — Возвращает любые ошибки во время проверки.
-
.save() — Сохраняет проверенные данные в экземпляре объекта.
Существует четыре метода, которые можно переопределить, в зависимости от того, какую функциональность вы хотите использовать для класса сериализатора:
-
.to_representation () — переопределите для поддержки сериализации для операций чтения.
-
.to_internal_value () — переопределите для поддержки десериализации для операций записи.
-
.create () и .update () — переопределите один или оба метода для поддержки экземпляров сохранения.
Поскольку этот класс предоставляет тот же интерфейс, что и класс Serializer
, вы можете использовать его с существующими общими представлениями-классами, точно так же, как обычный Serializer
или ModelSerializer
.
Единственное отличие, которое вы заметите при этом, — это то, что классы BaseSerializer
не будут генерировать HTML-формы в API-интерфейсе. Это связано с тем, что возвращаемые данные не включают всю информацию о поле, которая позволяет рендерить каждое поле в подходящий HTML.
Read-only BaseSerializer
классы
Чтобы реализовать read-only сериализатор с использованием класса BaseSerializer
, нам просто нужно переопределить метод .to_representation()
. Давайте рассмотрим пример с использованием простой модели Django:
class HighScore(models.Model):
created = models.DateTimeField(auto_now_add=True)
player_name = models.CharField(max_length=10)
score = models.IntegerField()
Нет ничего сложного в том, чтобы создать сериализатор только для чтения для преобразования экземпляров HighScore
в примитивные типы данных.
class HighScoreSerializer(serializers.BaseSerializer):
def to_representation(self, obj):
‘player_name’: obj.player_name
Теперь мы можем использовать этот класс для сериализации отдельных экземпляров HighScore
:
def high_score(request, pk):
instance = HighScore.objects.get(pk=pk)
serializer = HighScoreSerializer(instance)
return Response(serializer.data)
Или использовать его для сериализации нескольких экземпляров:
def all_high_scores(request):
queryset = HighScore.objects.order_by(‘-score’)
serializer = HighScoreSerializer(queryset, many=True)
return Response(serializer.data)
Read-write BaseSerializer классы
Read-write BaseSerializer классы
Чтобы создать сериализатор чтения и записи, сначала необходимо реализовать метод .to_internal_value()
. Этот метод возвращает проверенные значения, которые будут использоваться для создания экземпляра объекта, и может вызвать ValidationError
, если предоставленные данные находятся в неправильном формате.
После того, как вы внедрили .to_internal_value()
, базовый API проверки будет доступен в сериализаторе, и вы сможете использовать .is_valid()
, .validated_data
и .errors
.
Если помимо этого вам требуется поддержка .save (), вам также необходимо реализовать один или оба метода .create()
и .update()
.
Вот полный пример нашего предыдущего HighScoreSerializer
, который был обновлен для поддержки операций чтения и записи.
class HighScoreSerializer(serializers.BaseSerializer):
def to_internal_value(self, data):
score = data.get(‘score’)
player_name = data.get(‘player_name’)
# Осуществляется проверка данных.
‘score’: ‘This field is required.’
‘player_name’: ‘This field is required.’
if len(player_name) > 10:
‘player_name’: ‘May not be more than 10 characters.’
# Возвращает проверенные значения. Они будут доступны
# в качестве свойства `.validated_data` .
‘player_name’: player_name
def to_representation(self, obj):
‘player_name’: obj.player_name
def create(self, validated_data):
return HighScore.objects.create(**validated_data)
Создание новых базовых классов
Создание новых базовых классов
Класс BaseSerializer
также полезен, если вы хотите внедрять новые общие классы сериализатора для работы с определенными стилями сериализации или для интеграции с альтернативными обработчиками хранилищ.
Следующий класс является примером универсального сериализатора, который может преобразовывать произвольные объекты в примитивные представления.
class ObjectSerializer(serializers.BaseSerializer):
A read-only serializer that coerces arbitrary complex objects
into primitive representations.
def to_representation(self, obj):
for attribute_name in dir(obj):
attribute = getattr(obj, attribute_name)
# Ignore private attributes.
elif hasattr(attribute, ‘__call__’):
# Ignore methods and other callables.
elif isinstance(attribute, (str, int, bool, float, type(None))):
# Primitive types can be passed through unmodified.
output[attribute_name] = attribute
elif isinstance(attribute, list):
# Recursively deal with items in lists.
output[attribute_name] = [
self.to_representation(item) for item in attribute
elif isinstance(attribute, dict):
# Recursively deal with items in dictionaries.
output[attribute_name] = {
str(key): self.to_representation(value)
for key, value in attribute.items()
# Force anything else to its string representation.
output[attribute_name] = str(attribute)
Продвинутое использование сериализаторов
Продвинутое использование сериализаторов
Переопределение процесса сериализации и десериализации
Переопределение процесса сериализации и десериализации
Если вам необходимо изменить поведение сериализации или десериализации класса сериализатора, вы можете сделать это, переопределив методы .to_representation()
или .to_internal_value()
.
Некоторые причины, почему это может быть полезно …
-
Добавление нового поведения для новых классов базового класса.
-
Несущественное изменение поведения существующего класса.
-
Улучшение производительности сериализации для часто используемой конечной точки API, которая возвращает большое количество данных.
-
Подписи для этих методов заключаются в следующем:
У этих методов следующие подписи:
.to_representation(self, obj)
Принимает экземпляр объекта, который требует сериализации, и возвращает примитивное представление. Обычно это означает возврат структуры встроенных типов данных Python. Точные типы, которые можно обрабатывать, будут зависеть от классов рендеринга, которые вы настроили для вашего API.
.to_internal_value(self, data)
Принимает невалидные входящие данные и возвращает проверенные данные, которые будут доступны как serializer.validated_data
. Возвращаемое значение также будет передано методам .create()
или .update()
, если в классе сериализатора вызывается .save()
.
Если какая-либо проверка не выполняется, тогда метод должен вызвать serializers.ValidationError(errors)
. Аргумент errors
должен быть словарем, который соотносит имена полей (или settings.NON_FIELD_ERRORS_KEY)
с списком сообщений об ошибках. Если вы не хотите изменять поведение десериализации, и вместо этого вам требуется обеспечить проверку уровня объекта, рекомендуется переопределить метод .validate()
.
Аргумент данных, переданный этому методу, обычно будет значением request.data
, поэтому предоставляемый им тип данных будет зависеть от классов парсеров, которые вы настроили для вашего API.
Наследование сериализаторов
Наследование сериализаторов
Подобно формам Django, вы можете расширять и повторно использовать сериализаторы через наследование. Это позволяет объявлять общий набор полей или методов родительского класса, который затем может использоваться в ряде сериализаторов. Например,
class MyBaseSerializer(Serializer):
my_field = serializers.CharField()
def validate_my_field(self):
class MySerializer(MyBaseSerializer):
Как и классы Django Model
и ModelForm
, внутренний класс Meta
на сериализаторах неявно наследуется от внутренних Meta
-классов своих родителей. Если вы хотите, чтобы класс Meta
наследовался от родительского класса, вы должны сделать это явно. Например:
class AccountSerializer(MyBaseSerializer):
class Meta(MyBaseSerializer.Meta):
Обычно мы не рекомендуем использовать наследование для внутренних классов Meta
и вместо этого явно объявляем все опции.
Кроме того, следующие ограничения относятся к наследованию сериализатора:
-
Применяются нормальные правила разрешения имен Python. Если у вас есть несколько базовых классов, объявляющих внутренний класс Meta, будет использоваться только первый. Например это может быть дочерний
Meta
, если он существует, в противном случае это будетMeta
первого родителя и т.д. -
Можно удалить с помощью описания
Field
, унаследованное от родительского класса, задав для него имяNone
в подклассе.
class MyBaseSerializer(ModelSerializer):
my_field = serializers.CharField()
class MySerializer(MyBaseSerializer):
Однако вы можете использовать этот способ только для устранения поля, определенного родительским классом с помощью описания; это не помешает ModelSerializer
генерировать поле по умолчанию. Чтобы отказаться от полей по умолчанию, см. Определение полей для включения.
Динамически изменяемые поля
Динамически изменяемые поля
Как только сериализатор был задан, словарь полей, которые установлены в сериализаторе, может быть доступен с использованием атрибута .fields
. Доступ и изменение этого атрибута позволяет динамически изменять сериализатор.
Изменение аргумента полей напрямую позволяет вам делать интересные вещи, такие как изменение аргументов в полях сериализатора во время выполнения, а не в момент объявления сериализатора.
Например, если вы хотите указать, какие поля должны использоваться сериализатором в точке его инициализации, вы можете создать класс сериализатора следующим образом:
class DynamicFieldsModelSerializer(serializers.ModelSerializer):
A ModelSerializer that takes an additional `fields` argument that
controls which fields should be displayed.
def __init__(self, *args, **kwargs):
# Don’t pass the ‘fields’ arg up to the superclass
fields = kwargs.pop(‘fields’, None)
# Instantiate the superclass normally
super(DynamicFieldsModelSerializer, self).__init__(*args, **kwargs)
# Drop any fields that are not specified in the `fields` argument.
existing = set(self.fields.keys())
for field_name in existing — allowed:
self.fields.pop(field_name)
Это позволит вам сделать следующее:
>>> class UserSerializer(DynamicFieldsModelSerializer):
>>> fields = (‘id’, ‘username’, ’email’)
>>> print UserSerializer(user)
>>> print UserSerializer(user, fields=(‘id’, ’email’))
Настройка полей по умолчанию
Настройка полей по умолчанию
REST framework 2 предоставил API, который позволяет разработчикам переопределять, как класс ModelSerializer
автоматически генерирует набор полей по умолчанию.
Этот API включал методы .get_field()
, .get_pk_field()
и другие методы.
Поскольку сериализаторы были коренным образом переработаны в 3.0 версии, этот API больше не существует. Вы все равно можете изменить создающиеся поля, но вам нужно будет обратиться к исходному коду. Имейте в виду, что если сделанные вами изменения будут противоречить некоторым компонентам API, то их можно изменить.
Доступны следующие сторонние пакеты.
Пакет
django-rest-marshmallow
обеспечивает альтернативную реализацию для сериализаторов, используя библиотеку python
marshmallow
. Он предоставляет тот же API, что и сериализаторы REST framework и может использоваться в качестве замены в некоторых случаях использования.
Пакет
Serpy
— альтернативная скоростная реализация для сериализаторов. Serpy сериализует сложные типы данных для простых родных типов. Нативные типы могут быть легко преобразованы в JSON или в любой другой формат.
MongoengineModelSerializer
MongoengineModelSerializer
Пакет
django-rest-framework-mongoengine
предоставляет класс сериализатора MongoEngineModelSerializer
, который поддерживает использование MongoDB
в качестве уровня хранения для Django REST framework.
GeoFeatureModelSerializer
GeoFeatureModelSerializer
Пакет
django-rest-framework-gis
предоставляет класс сериализатора GeoFeatureModelSerializer
, который поддерживает GeoJSON для операций чтения и записи.
Пакет
django-rest-framework-hstore
предоставляет HStoreSerializer
для поддержки поля модели django-hstore DictionaryField
и его функции schema-mode.
Пакет
dynamic-rest
расширяет интерфейсы ModelSerializer
и ModelViewSet
, добавляя параметры запроса API для фильтрации, сортировки и включения / исключения всех полей и отношений, определенных вашими сериализаторами.
Пакет
drf-dynamic-fields
предоставляет миксины для динамического ограничения полей сериализатора на подмножество, заданное в параметре URL.
Пакет
drf-flex-fields
расширяет ModelSerializer
и ModelViewSet
для предоставления часто использующегося функционала для динамического задания полей и расширения примитивных полей для вложенных моделей как из параметров URL, так и из определений классов сериализатора.
Пакет
django-rest-framework-serializer-extensions
предоставляет набор инструментов для того, чтобы ваши сериализаторы соответствовали принципу DRY, позволяя определять поля на основе каждого взятого представления/запроса. Поля могут быть добавлены в белый список, черные списки и дочерние сериализаторы могут быть дополнительно расширены.
Пакет
html-json-forms
предоставляет алгоритм и сериализатор для обработки поданных
через (неактивную)
спецификацию HTML JSON
. Сериализатор облегчает обработку произвольно вложенных структур JSON внутри HTML. Например, <input name = "items [0][id]" value = "5">
будет интерпретироваться как {"items": [{"id": "5"}]}
.
DRF-Base64
предоставляет набор полевых и модельных сериализаторов, которые обрабатывают загрузку base64-encode
Пакет
drf-writable-nested
обеспечивает доступный для записи вложенный сериализатор модели, который позволяет создаватьобновлять модели с вложенными связанными данными.
Expanding the usefulness of the serializers is something that we would like to address. However, it’s not a trivial problem, and it will take some serious design work.
— Russell Keith-Magee, Django users group
Serializers allow complex data such as querysets and model instances to be converted to native Python datatypes that can then be easily rendered into JSON
, XML
or other content types. Serializers also provide deserialization, allowing parsed data to be converted back into complex types, after first validating the incoming data.
The serializers in REST framework work very similarly to Django’s Form
and ModelForm
classes. We provide a Serializer
class which gives you a powerful, generic way to control the output of your responses, as well as a ModelSerializer
class which provides a useful shortcut for creating serializers that deal with model instances and querysets.
Declaring Serializers
Let’s start by creating a simple object we can use for example purposes:
from datetime import datetime class Comment(object): def __init__(self, email, content, created=None): self.email = email self.content = content self.created = created or datetime.now() comment = Comment(email='[email protected]', content='foo bar')
We’ll declare a serializer that we can use to serialize and deserialize data that corresponds to Comment
objects.
Declaring a serializer looks very similar to declaring a form:
from rest_framework import serializers class CommentSerializer(serializers.Serializer): email = serializers.EmailField() content = serializers.CharField(max_length=200) created = serializers.DateTimeField()
Serializing objects
We can now use CommentSerializer
to serialize a comment, or list of comments. Again, using the Serializer
class looks a lot like using a Form
class.
serializer = CommentSerializer(comment) serializer.data # {'email': '[email protected]', 'content': 'foo bar', 'created': '2016-01-27T15:17:10.375877'}
At this point we’ve translated the model instance into Python native datatypes. To finalise the serialization process we render the data into json
.
from rest_framework.renderers import JSONRenderer json = JSONRenderer().render(serializer.data) json # b'{"email":"[email protected]","content":"foo bar","created":"2016-01-27T15:17:10.375877"}'
Deserializing objects
Deserialization is similar. First we parse a stream into Python native datatypes…
import io from rest_framework.parsers import JSONParser stream = io.BytesIO(json) data = JSONParser().parse(stream)
…then we restore those native datatypes into a dictionary of validated data.
serializer = CommentSerializer(data=data) serializer.is_valid() # True serializer.validated_data # {'content': 'foo bar', 'email': '[email protected]', 'created': datetime.datetime(2012, 08, 22, 16, 20, 09, 822243)}
Saving instances
If we want to be able to return complete object instances based on the validated data we need to implement one or both of the .create()
and .update()
methods. For example:
class CommentSerializer(serializers.Serializer): email = serializers.EmailField() content = serializers.CharField(max_length=200) created = serializers.DateTimeField() def create(self, validated_data): return Comment(**validated_data) def update(self, instance, validated_data): instance.email = validated_data.get('email', instance.email) instance.content = validated_data.get('content', instance.content) instance.created = validated_data.get('created', instance.created) return instance
If your object instances correspond to Django models you’ll also want to ensure that these methods save the object to the database. For example, if Comment
was a Django model, the methods might look like this:
def create(self, validated_data): return Comment.objects.create(**validated_data) def update(self, instance, validated_data): instance.email = validated_data.get('email', instance.email) instance.content = validated_data.get('content', instance.content) instance.created = validated_data.get('created', instance.created) instance.save() return instance
Now when deserializing data, we can call .save()
to return an object instance, based on the validated data.
comment = serializer.save()
Calling .save()
will either create a new instance, or update an existing instance, depending on if an existing instance was passed when instantiating the serializer class:
# .save() will create a new instance. serializer = CommentSerializer(data=data) # .save() will update the existing `comment` instance. serializer = CommentSerializer(comment, data=data)
Both the .create()
and .update()
methods are optional. You can implement either neither, one, or both of them, depending on the use-case for your serializer class.
Passing additional attributes to .save()
Sometimes you’ll want your view code to be able to inject additional data at the point of saving the instance. This additional data might include information like the current user, the current time, or anything else that is not part of the request data.
You can do so by including additional keyword arguments when calling .save()
. For example:
serializer.save(owner=request.user)
Any additional keyword arguments will be included in the validated_data
argument when .create()
or .update()
are called.
Overriding .save() directly.
In some cases the .create()
and .update()
method names may not be meaningful. For example, in a contact form we may not be creating new instances, but instead sending an email or other message.
In these cases you might instead choose to override .save()
directly, as being more readable and meaningful.
For example:
class ContactForm(serializers.Serializer): email = serializers.EmailField() message = serializers.CharField() def save(self): email = self.validated_data['email'] message = self.validated_data['message'] send_email(from=email, message=message)
Note that in the case above we’re now having to access the serializer .validated_data
property directly.
Validation
When deserializing data, you always need to call is_valid()
before attempting to access the validated data, or save an object instance. If any validation errors occur, the .errors
property will contain a dictionary representing the resulting error messages. For example:
serializer = CommentSerializer(data={'email': 'foobar', 'content': 'baz'}) serializer.is_valid() # False serializer.errors # {'email': ['Enter a valid e-mail address.'], 'created': ['This field is required.']}
Each key in the dictionary will be the field name, and the values will be lists of strings of any error messages corresponding to that field. The non_field_errors
key may also be present, and will list any general validation errors. The name of the non_field_errors
key may be customized using the NON_FIELD_ERRORS_KEY
REST framework setting.
When deserializing a list of items, errors will be returned as a list of dictionaries representing each of the deserialized items.
Raising an exception on invalid data
The .is_valid()
method takes an optional raise_exception
flag that will cause it to raise a serializers.ValidationError
exception if there are validation errors.
These exceptions are automatically dealt with by the default exception handler that REST framework provides, and will return HTTP 400 Bad Request
responses by default.
# Return a 400 response if the data was invalid. serializer.is_valid(raise_exception=True)
Field-level validation
You can specify custom field-level validation by adding .validate_<field_name>
methods to your Serializer
subclass. These are similar to the .clean_<field_name>
methods on Django forms.
These methods take a single argument, which is the field value that requires validation.
Your validate_<field_name>
methods should return the validated value or raise a serializers.ValidationError
. For example:
from rest_framework import serializers class BlogPostSerializer(serializers.Serializer): title = serializers.CharField(max_length=100) content = serializers.CharField() def validate_title(self, value): """ Check that the blog post is about Django. """ if 'django' not in value.lower(): raise serializers.ValidationError("Blog post is not about Django") return value
Note: If your <field_name>
is declared on your serializer with the parameter required=False
then this validation step will not take place if the field is not included.
Object-level validation
To do any other validation that requires access to multiple fields, add a method called .validate()
to your Serializer
subclass. This method takes a single argument, which is a dictionary of field values. It should raise a serializers.ValidationError
if necessary, or just return the validated values. For example:
from rest_framework import serializers class EventSerializer(serializers.Serializer): description = serializers.CharField(max_length=100) start = serializers.DateTimeField() finish = serializers.DateTimeField() def validate(self, data): """ Check that start is before finish. """ if data['start'] > data['finish']: raise serializers.ValidationError("finish must occur after start") return data
Validators
Individual fields on a serializer can include validators, by declaring them on the field instance, for example:
def multiple_of_ten(value): if value % 10 != 0: raise serializers.ValidationError('Not a multiple of ten') class GameRecord(serializers.Serializer): score = IntegerField(validators=[multiple_of_ten]) ...
Serializer classes can also include reusable validators that are applied to the complete set of field data. These validators are included by declaring them on an inner Meta
class, like so:
class EventSerializer(serializers.Serializer): name = serializers.CharField() room_number = serializers.IntegerField(choices=[101, 102, 103, 201]) date = serializers.DateField() class Meta: # Each room only has one event per day. validators = UniqueTogetherValidator( queryset=Event.objects.all(), fields=['room_number', 'date'] )
For more information see the validators documentation.
Accessing the initial data and instance
When passing an initial object or queryset to a serializer instance, the object will be made available as .instance
. If no initial object is passed then the .instance
attribute will be None
.
When passing data to a serializer instance, the unmodified data will be made available as .initial_data
. If the data keyword argument is not passed then the .initial_data
attribute will not exist.
Partial updates
By default, serializers must be passed values for all required fields or they will raise validation errors. You can use the partial
argument in order to allow partial updates.
# Update `comment` with partial data serializer = CommentSerializer(comment, data={'content': 'foo bar'}, partial=True)
Dealing with nested objects
The previous examples are fine for dealing with objects that only have simple datatypes, but sometimes we also need to be able to represent more complex objects, where some of the attributes of an object might not be simple datatypes such as strings, dates or integers.
The Serializer
class is itself a type of Field
, and can be used to represent relationships where one object type is nested inside another.
class UserSerializer(serializers.Serializer): email = serializers.EmailField() username = serializers.CharField(max_length=100) class CommentSerializer(serializers.Serializer): user = UserSerializer() content = serializers.CharField(max_length=200) created = serializers.DateTimeField()
If a nested representation may optionally accept the None
value you should pass the required=False
flag to the nested serializer.
class CommentSerializer(serializers.Serializer): user = UserSerializer(required=False) # May be an anonymous user. content = serializers.CharField(max_length=200) created = serializers.DateTimeField()
Similarly if a nested representation should be a list of items, you should pass the many=True
flag to the nested serialized.
class CommentSerializer(serializers.Serializer): user = UserSerializer(required=False) edits = EditItemSerializer(many=True) # A nested list of 'edit' items. content = serializers.CharField(max_length=200) created = serializers.DateTimeField()
Writable nested representations
When dealing with nested representations that support deserializing the data, any errors with nested objects will be nested under the field name of the nested object.
serializer = CommentSerializer(data={'user': {'email': 'foobar', 'username': 'doe'}, 'content': 'baz'}) serializer.is_valid() # False serializer.errors # {'user': {'email': ['Enter a valid e-mail address.']}, 'created': ['This field is required.']}
Similarly, the .validated_data
property will include nested data structures.
Writing .create() methods for nested representations
If you’re supporting writable nested representations you’ll need to write .create()
or .update()
methods that handle saving multiple objects.
The following example demonstrates how you might handle creating a user with a nested profile object.
class UserSerializer(serializers.ModelSerializer): profile = ProfileSerializer() class Meta: model = User fields = ['username', 'email', 'profile'] def create(self, validated_data): profile_data = validated_data.pop('profile') user = User.objects.create(**validated_data) Profile.objects.create(user=user, **profile_data) return user
Writing .update() methods for nested representations
For updates you’ll want to think carefully about how to handle updates to relationships. For example if the data for the relationship is None
, or not provided, which of the following should occur?
- Set the relationship to
NULL
in the database. - Delete the associated instance.
- Ignore the data and leave the instance as it is.
- Raise a validation error.
Here’s an example for an .update()
method on our previous UserSerializer
class.
def update(self, instance, validated_data): profile_data = validated_data.pop('profile') # Unless the application properly enforces that this field is # always set, the follow could raise a `DoesNotExist`, which # would need to be handled. profile = instance.profile instance.username = validated_data.get('username', instance.username) instance.email = validated_data.get('email', instance.email) instance.save() profile.is_premium_member = profile_data.get( 'is_premium_member', profile.is_premium_member ) profile.has_support_contract = profile_data.get( 'has_support_contract', profile.has_support_contract ) profile.save() return instance
Because the behavior of nested creates and updates can be ambiguous, and may require complex dependencies between related models, REST framework 3 requires you to always write these methods explicitly. The default ModelSerializer
.create()
and .update()
methods do not include support for writable nested representations.
There are however, third-party packages available such as DRF Writable Nested that support automatic writable nested representations.
Handling saving related instances in model manager classes
An alternative to saving multiple related instances in the serializer is to write custom model manager classes that handle creating the correct instances.
For example, suppose we wanted to ensure that User
instances and Profile
instances are always created together as a pair. We might write a custom manager class that looks something like this:
class UserManager(models.Manager): ... def create(self, username, email, is_premium_member=False, has_support_contract=False): user = User(username=username, email=email) user.save() profile = Profile( user=user, is_premium_member=is_premium_member, has_support_contract=has_support_contract ) profile.save() return user
This manager class now more nicely encapsulates that user instances and profile instances are always created at the same time. Our .create()
method on the serializer class can now be re-written to use the new manager method.
def create(self, validated_data): return User.objects.create( username=validated_data['username'], email=validated_data['email'] is_premium_member=validated_data['profile']['is_premium_member'] has_support_contract=validated_data['profile']['has_support_contract'] )
For more details on this approach see the Django documentation on model managers, and this blogpost on using model and manager classes.
Dealing with multiple objects
The Serializer
class can also handle serializing or deserializing lists of objects.
Serializing multiple objects
To serialize a queryset or list of objects instead of a single object instance, you should pass the many=True
flag when instantiating the serializer. You can then pass a queryset or list of objects to be serialized.
queryset = Book.objects.all() serializer = BookSerializer(queryset, many=True) serializer.data # [ # {'id': 0, 'title': 'The electric kool-aid acid test', 'author': 'Tom Wolfe'}, # {'id': 1, 'title': 'If this is a man', 'author': 'Primo Levi'}, # {'id': 2, 'title': 'The wind-up bird chronicle', 'author': 'Haruki Murakami'} # ]
Deserializing multiple objects
The default behavior for deserializing multiple objects is to support multiple object creation, but not support multiple object updates. For more information on how to support or customize either of these cases, see the ListSerializer documentation below.
There are some cases where you need to provide extra context to the serializer in addition to the object being serialized. One common case is if you’re using a serializer that includes hyperlinked relations, which requires the serializer to have access to the current request so that it can properly generate fully qualified URLs.
You can provide arbitrary additional context by passing a context
argument when instantiating the serializer. For example:
serializer = AccountSerializer(account, context={'request': request}) serializer.data # {'id': 6, 'owner': 'denvercoder9', 'created': datetime.datetime(2013, 2, 12, 09, 44, 56, 678870), 'details': 'http://example.com/accounts/6/details'}
The context dictionary can be used within any serializer field logic, such as a custom .to_representation()
method, by accessing the self.context
attribute.
ModelSerializer
Often you’ll want serializer classes that map closely to Django model definitions.
The ModelSerializer
class provides a shortcut that lets you automatically create a Serializer
class with fields that correspond to the Model fields.
The ModelSerializer
class is the same as a regular Serializer
class, except that:
- It will automatically generate a set of fields for you, based on the model.
- It will automatically generate validators for the serializer, such as unique_together validators.
- It includes simple default implementations of
.create()
and.update()
.
Declaring a ModelSerializer
looks like this:
class AccountSerializer(serializers.ModelSerializer): class Meta: model = Account fields = ['id', 'account_name', 'users', 'created']
By default, all the model fields on the class will be mapped to a corresponding serializer fields.
Any relationships such as foreign keys on the model will be mapped to PrimaryKeyRelatedField
. Reverse relationships are not included by default unless explicitly included as specified in the serializer relations documentation.
Inspecting a ModelSerializer
Serializer classes generate helpful verbose representation strings, that allow you to fully inspect the state of their fields. This is particularly useful when working with ModelSerializers
where you want to determine what set of fields and validators are being automatically created for you.
To do so, open the Django shell, using python manage.py shell
, then import the serializer class, instantiate it, and print the object representation…
>>> from myapp.serializers import AccountSerializer >>> serializer = AccountSerializer() >>> print(repr(serializer)) AccountSerializer(): id = IntegerField(label='ID', read_only=True) name = CharField(allow_blank=True, max_length=100, required=False) owner = PrimaryKeyRelatedField(queryset=User.objects.all())
Specifying which fields to include
If you only want a subset of the default fields to be used in a model serializer, you can do so using fields
or exclude
options, just as you would with a ModelForm
. It is strongly recommended that you explicitly set all fields that should be serialized using the fields
attribute. This will make it less likely to result in unintentionally exposing data when your models change.
For example:
class AccountSerializer(serializers.ModelSerializer): class Meta: model = Account fields = ['id', 'account_name', 'users', 'created']
You can also set the fields
attribute to the special value '__all__'
to indicate that all fields in the model should be used.
For example:
class AccountSerializer(serializers.ModelSerializer): class Meta: model = Account fields = '__all__'
You can set the exclude
attribute to a list of fields to be excluded from the serializer.
For example:
class AccountSerializer(serializers.ModelSerializer): class Meta: model = Account exclude = ['users']
In the example above, if the Account
model had 3 fields account_name
, users
, and created
, this will result in the fields account_name
and created
to be serialized.
The names in the fields
and exclude
attributes will normally map to model fields on the model class.
Alternatively names in the fields
options can map to properties or methods which take no arguments that exist on the model class.
Since version 3.3.0, it is mandatory to provide one of the attributes fields
or exclude
.
Specifying nested serialization
The default ModelSerializer
uses primary keys for relationships, but you can also easily generate nested representations using the depth
option:
class AccountSerializer(serializers.ModelSerializer): class Meta: model = Account fields = ['id', 'account_name', 'users', 'created'] depth = 1
The depth
option should be set to an integer value that indicates the depth of relationships that should be traversed before reverting to a flat representation.
If you want to customize the way the serialization is done you’ll need to define the field yourself.
Specifying fields explicitly
You can add extra fields to a ModelSerializer
or override the default fields by declaring fields on the class, just as you would for a Serializer
class.
class AccountSerializer(serializers.ModelSerializer): url = serializers.CharField(source='get_absolute_url', read_only=True) groups = serializers.PrimaryKeyRelatedField(many=True) class Meta: model = Account
Extra fields can correspond to any property or callable on the model.
Specifying read only fields
You may wish to specify multiple fields as read-only. Instead of adding each field explicitly with the read_only=True
attribute, you may use the shortcut Meta option, read_only_fields
.
This option should be a list or tuple of field names, and is declared as follows:
class AccountSerializer(serializers.ModelSerializer): class Meta: model = Account fields = ['id', 'account_name', 'users', 'created'] read_only_fields = ['account_name']
Model fields which have editable=False
set, and AutoField
fields will be set to read-only by default, and do not need to be added to the read_only_fields
option.
Note: There is a special-case where a read-only field is part of a unique_together
constraint at the model level. In this case the field is required by the serializer class in order to validate the constraint, but should also not be editable by the user.
The right way to deal with this is to specify the field explicitly on the serializer, providing both the read_only=True
and default=…
keyword arguments.
One example of this is a read-only relation to the currently authenticated User
which is unique_together
with another identifier. In this case you would declare the user field like so:
user = serializers.PrimaryKeyRelatedField(read_only=True, default=serializers.CurrentUserDefault())
Please review the Validators Documentation for details on the UniqueTogetherValidator and CurrentUserDefault classes.
Additional keyword arguments
There is also a shortcut allowing you to specify arbitrary additional keyword arguments on fields, using the extra_kwargs
option. As in the case of read_only_fields
, this means you do not need to explicitly declare the field on the serializer.
This option is a dictionary, mapping field names to a dictionary of keyword arguments. For example:
class CreateUserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ['email', 'username', 'password'] extra_kwargs = {'password': {'write_only': True}} def create(self, validated_data): user = User( email=validated_data['email'], username=validated_data['username'] ) user.set_password(validated_data['password']) user.save() return user
Please keep in mind that, if the field has already been explicitly declared on the serializer class, then the extra_kwargs
option will be ignored.
Relational fields
When serializing model instances, there are a number of different ways you might choose to represent relationships. The default representation for ModelSerializer
is to use the primary keys of the related instances.
Alternative representations include serializing using hyperlinks, serializing complete nested representations, or serializing with a custom representation.
For full details see the serializer relations documentation.
Customizing field mappings
The ModelSerializer class also exposes an API that you can override in order to alter how serializer fields are automatically determined when instantiating the serializer.
Normally if a ModelSerializer
does not generate the fields you need by default then you should either add them to the class explicitly, or simply use a regular Serializer
class instead. However in some cases you may want to create a new base class that defines how the serializer fields are created for any given model.
.serializer_field_mapping
A mapping of Django model classes to REST framework serializer classes. You can override this mapping to alter the default serializer classes that should be used for each model class.
This property should be the serializer field class, that is used for relational fields by default.
For ModelSerializer
this defaults to PrimaryKeyRelatedField
.
For HyperlinkedModelSerializer
this defaults to serializers.HyperlinkedRelatedField
.
serializer_url_field
The serializer field class that should be used for any url
field on the serializer.
Defaults to serializers.HyperlinkedIdentityField
serializer_choice_field
The serializer field class that should be used for any choice fields on the serializer.
Defaults to serializers.ChoiceField
The field_class and field_kwargs API
The following methods are called to determine the class and keyword arguments for each field that should be automatically included on the serializer. Each of these methods should return a two tuple of (field_class, field_kwargs)
.
.build_standard_field(self, field_name, model_field)
Called to generate a serializer field that maps to a standard model field.
The default implementation returns a serializer class based on the serializer_field_mapping
attribute.
.build_relational_field(self, field_name, relation_info)
Called to generate a serializer field that maps to a relational model field.
The default implementation returns a serializer class based on the serializer_related_field
attribute.
The relation_info
argument is a named tuple, that contains model_field
, related_model
, to_many
and has_through_model
properties.
.build_nested_field(self, field_name, relation_info, nested_depth)
Called to generate a serializer field that maps to a relational model field, when the depth
option has been set.
The default implementation dynamically creates a nested serializer class based on either ModelSerializer
or HyperlinkedModelSerializer
.
The nested_depth
will be the value of the depth
option, minus one.
The relation_info
argument is a named tuple, that contains model_field
, related_model
, to_many
and has_through_model
properties.
.build_property_field(self, field_name, model_class)
Called to generate a serializer field that maps to a property or zero-argument method on the model class.
The default implementation returns a ReadOnlyField
class.
.build_url_field(self, field_name, model_class)
Called to generate a serializer field for the serializer’s own url
field. The default implementation returns a HyperlinkedIdentityField
class.
.build_unknown_field(self, field_name, model_class)
Called when the field name did not map to any model field or model property. The default implementation raises an error, although subclasses may customize this behavior.
HyperlinkedModelSerializer
The HyperlinkedModelSerializer
class is similar to the ModelSerializer
class except that it uses hyperlinks to represent relationships, rather than primary keys.
By default the serializer will include a url
field instead of a primary key field.
The url field will be represented using a HyperlinkedIdentityField
serializer field, and any relationships on the model will be represented using a HyperlinkedRelatedField
serializer field.
You can explicitly include the primary key by adding it to the fields
option, for example:
class AccountSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Account fields = ['url', 'id', 'account_name', 'users', 'created']
Absolute and relative URLs
When instantiating a HyperlinkedModelSerializer
you must include the current request
in the serializer context, for example:
serializer = AccountSerializer(queryset, context={'request': request})
Doing so will ensure that the hyperlinks can include an appropriate hostname, so that the resulting representation uses fully qualified URLs, such as:
http://api.example.com/accounts/1/
Rather than relative URLs, such as:
/accounts/1/
If you do want to use relative URLs, you should explicitly pass {'request': None}
in the serializer context.
How hyperlinked views are determined
There needs to be a way of determining which views should be used for hyperlinking to model instances.
By default hyperlinks are expected to correspond to a view name that matches the style '{model_name}-detail'
, and looks up the instance by a pk
keyword argument.
You can override a URL field view name and lookup field by using either, or both of, the view_name
and lookup_field
options in the extra_kwargs
setting, like so:
class AccountSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Account fields = ['account_url', 'account_name', 'users', 'created'] extra_kwargs = { 'url': {'view_name': 'accounts', 'lookup_field': 'account_name'}, 'users': {'lookup_field': 'username'} }
Alternatively you can set the fields on the serializer explicitly. For example:
class AccountSerializer(serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='accounts', lookup_field='slug' ) users = serializers.HyperlinkedRelatedField( view_name='user-detail', lookup_field='username', many=True, read_only=True ) class Meta: model = Account fields = ['url', 'account_name', 'users', 'created']
Tip: Properly matching together hyperlinked representations and your URL conf can sometimes be a bit fiddly. Printing the repr
of a HyperlinkedModelSerializer
instance is a particularly useful way to inspect exactly which view names and lookup fields the relationships are expected to map too.
Changing the URL field name
The name of the URL field defaults to ‘url’. You can override this globally, by using the URL_FIELD_NAME
setting.
ListSerializer
The ListSerializer
class provides the behavior for serializing and validating multiple objects at once. You won’t typically need to use ListSerializer
directly, but should instead simply pass many=True
when instantiating a serializer.
When a serializer is instantiated and many=True
is passed, a ListSerializer
instance will be created. The serializer class then becomes a child of the parent ListSerializer
The following argument can also be passed to a ListSerializer
field or a serializer that is passed many=True
:
allow_empty
This is True
by default, but can be set to False
if you want to disallow empty lists as valid input.
Customizing ListSerializer behavior
There are a few use cases when you might want to customize the ListSerializer
behavior. For example:
- You want to provide particular validation of the lists, such as checking that one element does not conflict with another element in a list.
- You want to customize the create or update behavior of multiple objects.
For these cases you can modify the class that is used when many=True
is passed, by using the list_serializer_class
option on the serializer Meta
class.
For example:
class CustomListSerializer(serializers.ListSerializer): ... class CustomSerializer(serializers.Serializer): ... class Meta: list_serializer_class = CustomListSerializer
Customizing multiple create
The default implementation for multiple object creation is to simply call .create()
for each item in the list. If you want to customize this behavior, you’ll need to customize the .create()
method on ListSerializer
class that is used when many=True
is passed.
For example:
class BookListSerializer(serializers.ListSerializer): def create(self, validated_data): books = [Book(**item) for item in validated_data] return Book.objects.bulk_create(books) class BookSerializer(serializers.Serializer): ... class Meta: list_serializer_class = BookListSerializer
Customizing multiple update
By default the ListSerializer
class does not support multiple updates. This is because the behavior that should be expected for insertions and deletions is ambiguous.
To support multiple updates you’ll need to do so explicitly. When writing your multiple update code make sure to keep the following in mind:
- How do you determine which instance should be updated for each item in the list of data?
- How should insertions be handled? Are they invalid, or do they create new objects?
- How should removals be handled? Do they imply object deletion, or removing a relationship? Should they be silently ignored, or are they invalid?
- How should ordering be handled? Does changing the position of two items imply any state change or is it ignored?
You will need to add an explicit id
field to the instance serializer. The default implicitly-generated id
field is marked as read_only
. This causes it to be removed on updates. Once you declare it explicitly, it will be available in the list serializer’s update
method.
Here’s an example of how you might choose to implement multiple updates:
class BookListSerializer(serializers.ListSerializer): def update(self, instance, validated_data): # Maps for id->instance and id->data item. book_mapping = {book.id: book for book in instance} data_mapping = {item['id']: item for item in validated_data} # Perform creations and updates. ret = [] for book_id, data in data_mapping.items(): book = book_mapping.get(book_id, None) if book is None: ret.append(self.child.create(data)) else: ret.append(self.child.update(book, data)) # Perform deletions. for book_id, book in book_mapping.items(): if book_id not in data_mapping: book.delete() return ret class BookSerializer(serializers.Serializer): # We need to identify elements in the list using their primary key, # so use a writable field here, rather than the default which would be read-only. id = serializers.IntegerField() ... class Meta: list_serializer_class = BookListSerializer
It is possible that a third party package may be included alongside the 3.1 release that provides some automatic support for multiple update operations, similar to the allow_add_remove
behavior that was present in REST framework 2.
Customizing ListSerializer initialization
When a serializer with many=True
is instantiated, we need to determine which arguments and keyword arguments should be passed to the .__init__()
method for both the child Serializer
class, and for the parent ListSerializer
class.
The default implementation is to pass all arguments to both classes, except for validators
, and any custom keyword arguments, both of which are assumed to be intended for the child serializer class.
Occasionally you might need to explicitly specify how the child and parent classes should be instantiated when many=True
is passed. You can do so by using the many_init
class method.
@classmethod def many_init(cls, *args, **kwargs): # Instantiate the child serializer. kwargs['child'] = cls() # Instantiate the parent list serializer. return CustomListSerializer(*args, **kwargs)
BaseSerializer
BaseSerializer
class that can be used to easily support alternative serialization and deserialization styles.
This class implements the same basic API as the Serializer
class:
-
.data
— Returns the outgoing primitive representation. -
.is_valid()
— Deserializes and validates incoming data. -
.validated_data
— Returns the validated incoming data. -
.errors
— Returns any errors during validation. -
.save()
— Persists the validated data into an object instance.
There are four methods that can be overridden, depending on what functionality you want the serializer class to support:
-
.to_representation()
— Override this to support serialization, for read operations. -
.to_internal_value()
— Override this to support deserialization, for write operations. -
.create()
and.update()
— Override either or both of these to support saving instances.
Because this class provides the same interface as the Serializer
class, you can use it with the existing generic class-based views exactly as you would for a regular Serializer
or ModelSerializer
.
The only difference you’ll notice when doing so is the BaseSerializer
classes will not generate HTML forms in the browsable API. This is because the data they return does not include all the field information that would allow each field to be rendered into a suitable HTML input.
Read-only BaseSerializer classes
To implement a read-only serializer using the BaseSerializer
class, we just need to override the .to_representation()
method. Let’s take a look at an example using a simple Django model:
class HighScore(models.Model): created = models.DateTimeField(auto_now_add=True) player_name = models.CharField(max_length=10) score = models.IntegerField()
It’s simple to create a read-only serializer for converting HighScore
instances into primitive data types.
class HighScoreSerializer(serializers.BaseSerializer): def to_representation(self, obj): return { 'score': obj.score, 'player_name': obj.player_name }
We can now use this class to serialize single HighScore
instances:
@api_view(['GET']) def high_score(request, pk): instance = HighScore.objects.get(pk=pk) serializer = HighScoreSerializer(instance) return Response(serializer.data)
Or use it to serialize multiple instances:
@api_view(['GET']) def all_high_scores(request): queryset = HighScore.objects.order_by('-score') serializer = HighScoreSerializer(queryset, many=True) return Response(serializer.data)
Read-write BaseSerializer classes
To create a read-write serializer we first need to implement a .to_internal_value()
method. This method returns the validated values that will be used to construct the object instance, and may raise a serializers.ValidationError
if the supplied data is in an incorrect format.
Once you’ve implemented .to_internal_value()
, the basic validation API will be available on the serializer, and you will be able to use .is_valid()
, .validated_data
and .errors
.
If you want to also support .save()
you’ll need to also implement either or both of the .create()
and .update()
methods.
Here’s a complete example of our previous HighScoreSerializer
, that’s been updated to support both read and write operations.
class HighScoreSerializer(serializers.BaseSerializer): def to_internal_value(self, data): score = data.get('score') player_name = data.get('player_name') # Perform the data validation. if not score: raise serializers.ValidationError({ 'score': 'This field is required.' }) if not player_name: raise serializers.ValidationError({ 'player_name': 'This field is required.' }) if len(player_name) > 10: raise serializers.ValidationError({ 'player_name': 'May not be more than 10 characters.' }) # Return the validated values. This will be available as # the `.validated_data` property. return { 'score': int(score), 'player_name': player_name } def to_representation(self, obj): return { 'score': obj.score, 'player_name': obj.player_name } def create(self, validated_data): return HighScore.objects.create(**validated_data)
Creating new base classes
The BaseSerializer
class is also useful if you want to implement new generic serializer classes for dealing with particular serialization styles, or for integrating with alternative storage backends.
The following class is an example of a generic serializer that can handle coercing arbitrary objects into primitive representations.
class ObjectSerializer(serializers.BaseSerializer): """ A read-only serializer that coerces arbitrary complex objects into primitive representations. """ def to_representation(self, obj): output = {} for attribute_name in dir(obj): attribute = getattr(obj, attribute_name) if attribute_name.startswith('_'): # Ignore private attributes. pass elif hasattr(attribute, '__call__'): # Ignore methods and other callables. pass elif isinstance(attribute, (str, int, bool, float, type(None))): # Primitive types can be passed through unmodified. output[attribute_name] = attribute elif isinstance(attribute, list): # Recursively deal with items in lists. output[attribute_name] = [ self.to_representation(item) for item in attribute ] elif isinstance(attribute, dict): # Recursively deal with items in dictionaries. output[attribute_name] = { str(key): self.to_representation(value) for key, value in attribute.items() } else: # Force anything else to its string representation. output[attribute_name] = str(attribute) return output
Advanced serializer usage
Overriding serialization and deserialization behavior
If you need to alter the serialization or deserialization behavior of a serializer class, you can do so by overriding the .to_representation()
or .to_internal_value()
methods.
Some reasons this might be useful include…
- Adding new behavior for new serializer base classes.
- Modifying the behavior slightly for an existing class.
- Improving serialization performance for a frequently accessed API endpoint that returns lots of data.
The signatures for these methods are as follows:
.to_representation(self, obj)
Takes the object instance that requires serialization, and should return a primitive representation. Typically this means returning a structure of built-in Python datatypes. The exact types that can be handled will depend on the render classes you have configured for your API.
May be overridden in order modify the representation style. For example:
def to_representation(self, instance): """Convert `username` to lowercase.""" ret = super().to_representation(instance) ret['username'] = ret['username'].lower() return ret
.to_internal_value(self, data)
Takes the unvalidated incoming data as input and should return the validated data that will be made available as serializer.validated_data
. The return value will also be passed to the .create()
or .update()
methods if .save()
is called on the serializer class.
If any of the validation fails, then the method should raise a serializers.ValidationError(errors)
. The errors
argument should be a dictionary mapping field names (or settings.NON_FIELD_ERRORS_KEY
) to a list of error messages. If you don’t need to alter deserialization behavior and instead want to provide object-level validation, it’s recommended that you instead override the .validate()
method.
The data
argument passed to this method will normally be the value of request.data
, so the datatype it provides will depend on the parser classes you have configured for your API.
Serializer Inheritance
Similar to Django forms, you can extend and reuse serializers through inheritance. This allows you to declare a common set of fields or methods on a parent class that can then be used in a number of serializers. For example,
class MyBaseSerializer(Serializer): my_field = serializers.CharField() def validate_my_field(self, value): ... class MySerializer(MyBaseSerializer): ...
Like Django’s Model
and ModelForm
classes, the inner Meta
class on serializers does not implicitly inherit from it’s parents’ inner Meta
classes. If you want the Meta
class to inherit from a parent class you must do so explicitly. For example:
class AccountSerializer(MyBaseSerializer): class Meta(MyBaseSerializer.Meta): model = Account
Typically we would recommend not using inheritance on inner Meta classes, but instead declaring all options explicitly.
Additionally, the following caveats apply to serializer inheritance:
- Normal Python name resolution rules apply. If you have multiple base classes that declare a
Meta
inner class, only the first one will be used. This means the child’sMeta
, if it exists, otherwise theMeta
of the first parent, etc. -
It’s possible to declaratively remove a
Field
inherited from a parent class by setting the name to beNone
on the subclass.class MyBaseSerializer(ModelSerializer): my_field = serializers.CharField() class MySerializer(MyBaseSerializer): my_field = None
However, you can only use this technique to opt out from a field defined declaratively by a parent class; it won’t prevent the
ModelSerializer
from generating a default field. To opt-out from default fields, see Specifying which fields to include.
Dynamically modifying fields
Once a serializer has been initialized, the dictionary of fields that are set on the serializer may be accessed using the .fields
attribute. Accessing and modifying this attribute allows you to dynamically modify the serializer.
Modifying the fields
argument directly allows you to do interesting things such as changing the arguments on serializer fields at runtime, rather than at the point of declaring the serializer.
Example
For example, if you wanted to be able to set which fields should be used by a serializer at the point of initializing it, you could create a serializer class like so:
class DynamicFieldsModelSerializer(serializers.ModelSerializer): """ A ModelSerializer that takes an additional `fields` argument that controls which fields should be displayed. """ def __init__(self, *args, **kwargs): # Don't pass the 'fields' arg up to the superclass fields = kwargs.pop('fields', None) # Instantiate the superclass normally super(DynamicFieldsModelSerializer, self).__init__(*args, **kwargs) if fields is not None: # Drop any fields that are not specified in the `fields` argument. allowed = set(fields) existing = set(self.fields) for field_name in existing - allowed: self.fields.pop(field_name)
This would then allow you to do the following:
>>> class UserSerializer(DynamicFieldsModelSerializer): >>> class Meta: >>> model = User >>> fields = ['id', 'username', 'email'] >>> >>> print(UserSerializer(user)) {'id': 2, 'username': 'jonwatts', 'email': '[email protected]'} >>> >>> print(UserSerializer(user, fields=('id', 'email'))) {'id': 2, 'email': '[email protected]'}
Customizing the default fields
REST framework 2 provided an API to allow developers to override how a ModelSerializer
class would automatically generate the default set of fields.
This API included the .get_field()
, .get_pk_field()
and other methods.
Because the serializers have been fundamentally redesigned with 3.0 this API no longer exists. You can still modify the fields that get created but you’ll need to refer to the source code, and be aware that if the changes you make are against private bits of API then they may be subject to change.
Third party packages
The following third party packages are also available.
Django REST marshmallow
The django-rest-marshmallow package provides an alternative implementation for serializers, using the python marshmallow library. It exposes the same API as the REST framework serializers, and can be used as a drop-in replacement in some use-cases.
Serpy
The serpy package is an alternative implementation for serializers that is built for speed. Serpy serializes complex datatypes to simple native types. The native types can be easily converted to JSON or any other format needed.
MongoengineModelSerializer
The django-rest-framework-mongoengine package provides a MongoEngineModelSerializer
serializer class that supports using MongoDB as the storage layer for Django REST framework.
GeoFeatureModelSerializer
The django-rest-framework-gis package provides a GeoFeatureModelSerializer
serializer class that supports GeoJSON both for read and write operations.
HStoreSerializer
The django-rest-framework-hstore package provides an HStoreSerializer
to support django-hstore DictionaryField
model field and its schema-mode
feature.
Dynamic REST
The dynamic-rest package extends the ModelSerializer and ModelViewSet interfaces, adding API query parameters for filtering, sorting, and including / excluding all fields and relationships defined by your serializers.
Dynamic Fields Mixin
The drf-dynamic-fields package provides a mixin to dynamically limit the fields per serializer to a subset specified by an URL parameter.
DRF FlexFields
The drf-flex-fields package extends the ModelSerializer and ModelViewSet to provide commonly used functionality for dynamically setting fields and expanding primitive fields to nested models, both from URL parameters and your serializer class definitions.
Serializer Extensions
The django-rest-framework-serializer-extensions package provides a collection of tools to DRY up your serializers, by allowing fields to be defined on a per-view/request basis. Fields can be whitelisted, blacklisted and child serializers can be optionally expanded.
HTML JSON Forms
The html-json-forms package provides an algorithm and serializer for processing <form>
submissions per the (inactive) HTML JSON Form specification. The serializer facilitates processing of arbitrarily nested JSON structures within HTML. For example, <input name="items[0][id]" value="5">
will be interpreted as {"items": [{"id": "5"}]}
.
DRF-Base64
DRF-Base64 provides a set of field and model serializers that handles the upload of base64-encoded files.
QueryFields
djangorestframework-queryfields allows API clients to specify which fields will be sent in the response via inclusion/exclusion query parameters.
DRF Writable Nested
The drf-writable-nested package provides writable nested model serializer which allows to create/update models with nested related data.
serializers.py
Есть такая частая задача в бэкенд-разработке: “Как проверить данные, прилетевшие от клиента?”. Действительно ли заполнены обязательные поля? А указанный id
существует в БД? А список действительно является списком? Буквально каждый шаг приходится проверять. Выливается всё это к кучу однотипного, простого, но крайне громоздкого кода. Задача это частая, и у неё есть своё название — валидация данных.
Но и проверкой данных дело обычно не заканчивается. Клиент мог прислать строку, а база данных хочет число. Или снова получили строку, но нужна дата datetime.Date
. Приходится писать дополнительный код, преобразующий входные данные к нормальному виду. Потому и называют эту задачу нормализацией данных.
Два этих процесса — проверка данных и нормализация — тесно связаны друг с другом, и, обычно их объединяют вместе. Называют этот новый процесс десериализацией данных.
Валидация + Нормализация = Десериализация
Из туториала вы узнаете как эффективно провести десерилизацию: всё надёжно проверить, нормализовать и при этом избавиться от всего этого громоздкого кода.
Работать будем со страничкой сайта ежегодной конференции по маркетингу TheEvent. Это лендинг, сделанный с помощью Bootstrap 4 и Django. На стартовой странице есть форма покупки билетов. К концу этого туториала вы её оживите, написав ручку API для приёма заявок:
Что надо знать
Туториал предполагает, что вы уже хорошо знакомы с Django: легко пишете свои модели, вьюхи и добавляете урлы. Также вам понадобятся общие представления о работе с Django Rest Framework: кто такие @api_view
, Parsers и Renderes.
Если знаний у вас пока недостаточно, подтяните их с помощью туториалов:
- Как добавить страницу в Django
- Модели данных и поля
- Как подключить DRF
1. Запустите сайт
Прежде всего вам понадобится заготовка сайта. Возьмите код с GitHub и разверните его у себя. В точности следуйте инструкциям в README. Вот ссылка на репозиторий на GitHub.
Если всё сделано правильно, у вас заработает сайт:
Теперь найдите в репозитории файл enrollment/views.py и загляните в код. Там вы найдёте функцию def enroll(request)
. Она принимает заявки на участие в конференции и состоит из двух блоков кода. Первый отвечает за проверку данных:
@api_view(['POST'])
def enroll(request):
if 'contact_phone' not in request.data:
return Response(['Contact phone field is required.'], status=400)
if 'ticket_type' not in request.data:
return Response(['Ticket type field is required.'], status=400)
# TODO check if ticket_type is one of available choices
...
Код проверяет, что клиент указал в заявке оба поля contact_phone
и ticket_type
. А если одного из них не хватает, то сервер сразу вернёт HTTP 400 с описанием проблемы.
Потестировать работу функции можно с помощью Browsable API. Зайдите на страницу http://127.0.0.1:8000/enroll/ и отправьте пустой JSON объект {}
. В ответ прилетит список с одной единственной ошибкой — той, что была обнаружена первой:
[
"Contact phone field is required."
]
Второй блок кода внутри функции def enroll(request)
отвечает за сохранение данных в БД. Он сильно связан с моделью данных в файле enrollment/models.py. Модель включает в себя заявку Application
и набор прикреплённых к ней участников Participant
:
class Application(models.Model):
contact_phone = models.CharField(max_length=20)
ticket_type = models.CharField(max_length=20, db_index=True, ...)
confirmed = models.BooleanField(default=False, db_index=True)
class Participant(models.Model):
application = models.ForeignKey(Application, related_name='participants', on_delete=models.CASCADE)
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)
email = models.EmailField()
Теперь, зная модель данных, можно разобраться со вторым блоком кода функции def enroll(request)
. Он кладёт поступившую заявку в БД и возвращает её id:
@api_view(['POST'])
def enroll(request):
...
participants = request.data.get('participants', []) # TODO validate data!
application = Application.objects.create(
contact_phone=str(request.data['contact_phone']),
ticket_type=str(request.data['ticket_type']),
)
participants = [Participant(application=application, **fields) for fields in participants]
Participant.objects.bulk_create(participants)
return Response({
'application_id': application.id,
})
2. Используйте ValidationError
Вот первый фокус, о котором следует знать: декоратор @api_view
умеет перехватывать некоторые виды исключений и превращать их в объекты Response. В частности исключение ValidationError
будет заменено на Response
со статусом HTTP 400. Используйте это. Так было:
@api_view(['POST'])
def enroll(request):
if 'contact_phone' not in request.data:
return Response(['Contact phone field is required.'], status=400)
if 'ticket_type' not in request.data:
return Response(['Ticket type field is required.'], status=400)
# TODO check if ticket_type is one of available choices
...
Так стало:
from rest_framework.serializers import ValidationError
@api_view(['POST'])
def enroll(request):
if 'contact_phone' not in request.data:
raise ValidationError(['Contact phone field is required.'])
if 'ticket_type' not in request.data:
raise ValidationError(['Ticket type field is required.'])
# TODO check if ticket_type is one of available choices
...
Новый код делает то же самое, что и старый. Если зайти на страницу http://127.0.0.1:8000/enroll/ и отправить пустой JSON объект {}
, то в ответ прилетит HTTP 400 с ошибкой:
[
"Contact phone field is required."
]
Что удивительно, с исключением ValidationError
оказывается работать проще, чем с Response
. Теперь код проверки данных не обязательно держать внутри def enroll(request)
. Можно вынести его наружу в отдельную функцию и тем самым упростить код основной функции enroll
:
from rest_framework.serializers import ValidationError
def validate(data):
if 'contact_phone' not in data:
raise ValidationError(['Contact phone field is required.'])
if 'ticket_type' not in data:
raise ValidationError(['Ticket type field is required.'])
# TODO check if ticket_type is one of available choices
@api_view(['POST'])
def enroll(request):
validate(request.data)
...
3. Соберите все ошибки
Вы уже заметили этот серьёзный недостаток в коде валидации? Мало того, что данные проверены не особо надёжно, так ещё и валидация обрывается сразу после первой же обнаруженной ошибки. Это крайне раздражающая “фича”. Клиенту придется раз за разом отправлять данные на сервер, только для того, чтобы узнать о следующей своей проблеме. Издевательство …
Можно решить проблему в лоб. Допишите код функции def validate(data)
, накопите ошибки внутри списка errors
прежде, чем выкинуть исключение:
def validate(data):
errors = []
if 'contact_phone' not in data:
errors.append('Contact phone field is required.')
if 'ticket_type' not in data:
errors.append('Ticket type field is required.')
# TODO check if ticket_type is one of available choices
if errors:
raise ValidationError(errors)
Проверьте как это работает. Зайдите на страницу http://127.0.0.1:8000/enroll/, отправьте пустой JSON объект {}
. В ответ прилетит сразу пара ошибок:
[
"Contact phone field is required.",
"Ticket type field is required."
]
4. Подключите Serializer
Теперь Django Rest Framework может предложить вам ещё кое-что очень интересное! У него есть замена для вашей функции def validate(data)
. В DRF встроен механизм десериализации на базе всё того же исключения ValidationError
, но с кучей плюшек и готовых решений.
Основной инструмент для десериализации в DRF — это класс Serializer
или, по-русски, сериализатор. Да-да, вам не почудилось. В DRF и сериализацию и десериализацию выполняет один и тот же класс. Причём в этом туториале вы будете использовать Serializer
исключительно в качестве десериализатора. Такая вот странная несостыковка в названиях.
Класс Serializer
позволяет описать схему данных таким образом, что DRF сам сгенерует код аналогичный вашей функции def validate(data)
. Так было:
def validate(data):
errors = []
if 'contact_phone' not in data:
errors.append('Contact phone field is required.')
if 'ticket_type' not in data:
errors.append('Ticket type field is required.')
# TODO check if ticket_type is one of available choices
if errors:
raise ValidationError(errors)
А так стало:
from rest_framework.serializers import Serializer
from rest_framework.serializers import CharField
class ApplicationSerializer(Serializer):
contact_phone = CharField()
ticket_type = CharField()
def validate(data):
serializer = ApplicationSerializer(data=data)
serializer.is_valid(raise_exception=True) # выкинет ValidationError
Вот что здесь происходит. Сначала создаётся класс ApplicationSerializer
— он описывает схему данных. Здесь указаны текстовые поля contact_phone
и ticket_type
. DRF будет считать эти поля обязательными для заполнения, если не указать обратное в дополнительных настройках CharField
.
Внутри функции def validate(data)
всего две строки кода. Сначала сериализатор ApplicationSerializer
получает входные данные data
, после чего запускается их проверка с помощью метода is_valid
. Если данные не будут соответствовать схеме, описанной внутри ApplicationSerializer
, то вызов метода is_valid(raise_exception=True)
приведёт к исключению ValidationError
.
Поведение функции def validate(data)
осталось прежним, но код с условиями if
теперь заменён на простую и наглядную декларацию схемы данных. Теперь можно пойти дальше и отказаться от более ненужной функции def validate(data)
. Её код переезжает внутрь enroll
:
from rest_framework.serializers import Serializer
from rest_framework.serializers import CharField
class ApplicationSerializer(Serializer):
contact_phone = CharField()
ticket_type = CharField()
@api_view(['POST'])
def enroll(request):
serializer = ApplicationSerializer(data=request.data)
serializer.is_valid(raise_exception=True) # выкинет ValidationError
...
Проверьте как это работает. Зайдите на страницу http://127.0.0.1:8000/enroll/, отправьте пустой JSON объект {}
. В ответ прилетят ошибки:
{
"contact_phone": [
"This field is required."
],
"ticket_type": [
"This field is required."
]
}
Формат ответа немного отличается от того, что было раньше. Теперь каждая ошибка привязана к полю, в котором она возникла. Это весьма удобно, когда данных становится много и из текста ошибки уже не понять о каком поле идёт речь.
5. Проверьте ticket_type
В коде не хватает ещё одной проверки. База данных требует, чтобы поле ticket_type
соответствовало одному из трёх разрешённых значений. В файле enrollment/models.py есть такой код:
class Application(models.Model):
...
ticket_type = models.CharField(max_length=20, db_index=True, choices=(
('standard-access', 'Standard Access'),
('pro-access', 'Pro Access'),
('premium-access', 'Premium Access'),
))
Настройка choices
разрешает лишь три возможных значения для поля ticket_type
: 'standard-access'
, 'pro-access'
и 'premium-access'
. Добавьте соответствующую проверку в API.
Вам понадобится новый метод validate_ticket_type
. DRF уже знает о том, что в схеме данных есть поле ticket_type
, а потому будет искать и метод с похожим названием вида validate_{fieldname}
. Если такой метод найдётся внутри сериализатора, то DRF автоматически вызовет его в конце проверки данных.
class ApplicationSerializer(Serializer):
contact_phone = CharField()
ticket_type = CharField()
def validate_ticket_type(self, value):
if value not in ['standard-access', 'pro-access', 'premium-access']:
raise ValidationError('Wrong value')
return value
Метод validate_ticket_type
очень похож на старую функцию def validate(data)
. Первое отличие здесь в том, что метод validate_ticket_type
проверяет одно единственное поле ticket_type
и ничего не знает об остальных данных. Второе отличие — метод не только проверяет данные, но и возвращает значение return value
. Дело здесь в том, что DRF позволяет не только проверять данные, но и нормализовать их. Например, можно было привести текст к верхнему регистру или нижнему, обрезать или обработать другим образом. Здесь эта возможность не используется, но DRF требует вернуть значение, и поэтому функция возвращает то, что сама получила на вход — аргумент value
.
Проверьте как это работает. Со страницы http://127.0.0.1:8000/enroll/ отправьте такой JSON:
{"ticket_type": "unknown"}
В ответ прилетит новое сообщение об ошибке 'Wrong value'
:
{
"contact_phone": [
"This field is required."
],
"ticket_type": [
"Wrong value"
]
}
Обратите внимание, что ошибка в поле contact_phone
никак не повлияла на проверку поля ticket_type
. DRF проверяет поля раздельно и независимо друг от друга. Более того, ValidationError
в функциях validate_ticket_type
и is_valid
— это не одно, а два разных исключения. Присмотритесь внимательно к коду:
class ApplicationSerializer(Serializer):
...
def validate_ticket_type(self, value):
if value not in ['standard-access', 'pro-access', 'premium-access']:
raise ValidationError('Wrong value')
return value
@api_view(['POST'])
def enroll(request):
serializer = ApplicationSerializer(data=request.data)
serializer.is_valid(raise_exception=True) # выкинет ValidationError
...
В первом случае ValidationError
содержит описание одной единственной проблемы 'Wrong value'
для поля ticket_type
. Во втором случае исключение получает целый словарь с набором ошибок:
{
"contact_phone": [
"This field is required."
],
"ticket_type": [
"Wrong value"
]
}
Фокус здесь в том, что сериализатор ApplicationSerializer
перехватывает внутри себя все исключения ValidationError
. Сначала он накапливает их, переупаковывает их данные в словарь, а в конце проверки выкидывает новое исключение ValidationError
с полным набором ошибок внутри.
6. Замените код на ModelSerializer
На это магия DRF не заканчивается. Помимо класса Serializer
есть аналогичный класс ModelSerializer
. Отличается он тем, что сам умеет описывать схему данных на основе модели данных. Всё что нужно сделать — это указать на модель данных и перечислить интересующие поля:
from rest_framework.serializers import ModelSerializer
class ApplicationSerializer(ModelSerializer):
class Meta:
model = Application
fields = ['contact_phone', 'ticket_type']
И что совсем здорово, ModelSerializer
проверяет данные идеально точно. Вы помните об ограничении на максимальную длину строки contact_phone
в модели данных? Нет? А ведь она там есть! Файл :
class Application(models.Model):
contact_phone = models.CharField(max_length=20)
...
Вы только полюбуйтесь, насколько точно сработал ModalSerializer
! Добавьте отладочный print
:
class ApplicationSerializer(ModelSerializer):
class Meta:
model = Application
fields = ['contact_phone', 'ticket_type']
print(repr(ApplicationSerializer()))
В консоли вы увидите все настройки сериализатора:
ApplicationSerializer():
contact_phone = CharField(max_length=20)
ticket_type = ChoiceField(choices=(('standard-access', 'Standard Access'), ('pro-access', 'Pro Access'), ('premium-access', 'Premium Access')))
Ну не прекрасно ли это! На самом деле, пропустить что-то в настройках схемы данных довольно просто, поэтому при любой возможности старайтесь использовать ModelSerializer
.
ModelSerializer — когда пишешь данные в БД
И теперь увесистая такая ложка дёгтя… Класс ModelSerializer
превращается в тыкву, если клиент API присылает вам данные с другими названиями полей, отличными от того, что лежит у вас в БД. Если клиент присылает firstname
, а в БД поле называется first_name
, то никакого легального способа переименовать автоматически сгенерированное поле ModelSerializer
у вас не будет. Варианта действий здесь два. Первый — пойти ругаться с фронтендером и требовать переименовать поля. Второй — отказаться от автоматической генерации полей и добавить их вручную. Вот обсуждение проблемы на StackOverflow. А в документации можно почитать про настройку source
.
В остальном поведение ModelSerializer
в точности повторяет обычный Serializer
. Ему точно так же можно добавлять методы, поля и прочие настройки. В любой ситуации Serializer
можно заменить на ModelSerializer
и наоборот.
7. Проверьте участников
Заявка от клиента помимо двух полей contact_phone
и ticket_type
может содержать ещё целый список полей participants
. Им тоже нужна своя валидация.
Подход к проблеме здесь прежний. Просто создайте ещё один ModelSerializer
для модели Participant
. Так выглядил прежний код:
@api_view(['POST'])
def enroll(request):
serializer = ApplicationSerializer(data=request.data)
serializer.is_valid(raise_exception=True) # выкинет ValidationError
participants = request.data.get('participants', []) # TODO validate data!
...
Так выглядит новая версия:
class ParticipantSerializer(ModelSerializer):
class Meta:
model = Participant
fields = ['first_name', 'last_name', 'email']
@api_view(['POST'])
def enroll(request):
serializer = ApplicationSerializer(data=request.data)
serializer.is_valid(raise_exception=True) # выкинет ValidationError
participants = request.data.get('participants', [])
if not isinstance(participants, list):
raise ValidationError('Expects participants field be a list')
for fields in participants:
serializer = ParticipantSerializer(data=fields)
serializer.is_valid(raise_exception=True) # выкинет ValidationError
...
Проверьте как это работает. Со страницы http://127.0.0.1:8000/enroll/ отправьте пустой JSON объект {}
. Ответ будет таким:
{
"contact_phone": [
"This field is required."
],
"ticket_type": [
"This field is required."
]
}
Примечательно, что до проверки поля participants
дело даже не дошло. Снова всплыла старая проблема — валидация прерывается после первого же “сломанного” сериализатора ApplicationSerializer
, и второй ParticipantSerializer
даже не запускается. Решить проблему можно собрав все проверки внутри одного основного сериализатора ApplicationSerializer
. Для этого пригодится новый трюк DRF — вложенные сериализаторы.
8. Объедините сериализаторы
Каждый сериализатор в DRF описывает свою схему данных и, комбинируя их, можно из нескольких простых схем собрать одну большую сложную. Есть несколько способов такой композиции. Например, можно использовать сериализатор подобно обычному полю CharField
:
class ApplicationSerializer(ModelSerializer):
participant = ParticipantSerializer()
class Meta:
model = Application
fields = ['contact_phone', 'ticket_type', 'participant']
Такая схема данных помимо полей contact_phone
и ticket_type
будет ожидать словарь participant
. Вот пример входных данных:
{
"contact_phone": "+1 5612 ...",
"ticket_type": "pro-access",
"participant": {
"first_name": "Bob",
"last_name": "Smith",
"email": "mail@example.com"
}
}
Однако, вам в заявке от клиента прилетает не словарь, а целый список словарей. На этот случай в DRF есть специальный тип поля ListField
. Он представляет из себя список любых объектов: строк, чисел, чего угодно. Даже можно положить туда другой сериализатор:
from rest_framework.serializers import ListField
class ApplicationSerializer(ModelSerializer):
participants = ListField(
child=ParticipantSerializer()
)
class Meta:
model = Application
fields = ['contact_phone', 'ticket_type', 'participants']
Пора проверить как всё это работает. Снова зайдите на страницу http://127.0.0.1:8000/enroll/ и отправьте JSON:
{
"ticket_type": "pro-access",
"participants": [
{ "first_name": "Bob" }
]
}
Ответ сервера будет таким:
{
"contact_phone": [ "This field is required." ],
"participants": {
"0": {
"last_name": [ "This field is required." ],
"email": [ "This field is required." ]
}
}
}
Для ListField
в DRF существует альтернативная короткая форма записи:
class ApplicationSerializer(ModelSerializer):
participants = ParticipantSerializer(many=True) # обратите внимание на many=True
class Meta:
model = Application
fields = ['contact_phone', 'ticket_type', 'participants']
Интересно, как это работает? Без чёрной магии тут не обошлось… Сериализатор ParticipantSerializer
меняет стандартное поведение конструктора __new__
. Обычно конструктор просто создаёт экземпляр своего класса ParticipantSerializer
, но здесь всё хитрее. Конструктор замечает параметр many=True
и вместо экземпляра ParticipantSerializer
создаёт экземпляр другого класса ListField
. Получается тот же результат, что и при явном вызове:
ListField(
child=ParticipantSerializer()
)
9. Откажитесь от сырых данных
Наконец-то можно переписать и вторую последнюю часть кода функции def enroll(request)
— ту часть, где происходит запись в БД.
@api_view(['POST'])
def enroll(request):
serializer = ApplicationSerializer(data=request.data)
serializer.is_valid(raise_exception=True) # выкинет ValidationError
participants = request.data.get('participants', [])
application = Application.objects.create(
contact_phone=str(request.data['contact_phone']),
ticket_type=str(request.data['ticket_type']),
)
participants = [Participant(application=application, **fields) for fields in participants]
Participant.objects.bulk_create(participants)
return Response({
'application_id': application.id,
})
Этот код исправно работает. И выглядит он лаконично. Тогда что же с ним не так?! Здесь нарушен запрет на работу с сырыми данными.
Объект request.data
содержит в себе абсолютно все данные, что прислал вам пользователь. Здесь есть и те поля, что вы надёжно проверили, и те, о проверке которых вы могли забыть. Чистые обработанные данные здесь смешаны с грязными и сырыми. Стоит один раз промахнуться ключом или забыть что-то проверить, и вы получите угрозу взлома сервера и ещё гору мусора в БД в придачу.
Здесь снова выручит сериализатор ApplicationSerializer
. Помимо проверки данных (валидации) он берёт на себя и нормализацию. Все обработанные чистые данные он складывает в атрибут validated_data
. В отличии от request.data
там не может быть сырых данных, а потому использовать validated_data
вполне безопасно. Так будет выглядеть исправленный код:
@api_view(['POST'])
def enroll(request):
serializer = ApplicationSerializer(data=request.data)
serializer.is_valid(raise_exception=True) # выкинет ValidationError
application = Application.objects.create(
contact_phone=serializer.validated_data['contact_phone'],
ticket_type=serializer.validated_data['ticket_type'],
)
participants_fields = serializer.validated_data['participants']
participants = [Participant(application=application, **fields) for fields in participants_fields]
Participant.objects.bulk_create(participants)
return Response({
'application_id': application.id,
})
Теперь вместо request.data
всюду используется serializer.validated_data
, что защищает код от неосторожной работы с сырыми данными.
Никогда не берите данные напрямую из request.data
Читать дальше
- Официальный туториал по сериализации
- Документация к Serializer
- Документация к Serializer fields
- Marshmallow — альтернативная библиотека для сериализации и десериализации
Expanding the usefulness of the serializers is something that we would like to address. However, it’s not a trivial problem, and it will take some serious design work.
— Russell Keith-Magee, Django users group
Serializers allow complex data such as querysets and model instances to be converted to native Python datatypes that can then be easily rendered into JSON
, XML
or other content types. Serializers also provide deserialization, allowing parsed data to be converted back into complex types, after first validating the incoming data.
The serializers in REST framework work very similarly to Django’s Form
and ModelForm
classes. We provide a Serializer
class which gives you a powerful, generic way to control the output of your responses, as well as a ModelSerializer
class which provides a useful shortcut for creating serializers that deal with model instances and querysets.
Declaring Serializers
Let’s start by creating a simple object we can use for example purposes:
from datetime import datetime class Comment: def __init__(self, email, content, created=None): self.email = email self.content = content self.created = created or datetime.now() comment = Comment(email='leila@example.com', content='foo bar')
We’ll declare a serializer that we can use to serialize and deserialize data that corresponds to Comment
objects.
Declaring a serializer looks very similar to declaring a form:
from rest_framework import serializers class CommentSerializer(serializers.Serializer): email = serializers.EmailField() content = serializers.CharField(max_length=200) created = serializers.DateTimeField()
Serializing objects
We can now use CommentSerializer
to serialize a comment, or list of comments. Again, using the Serializer
class looks a lot like using a Form
class.
serializer = CommentSerializer(comment) serializer.data # {'email': 'leila@example.com', 'content': 'foo bar', 'created': '2016-01-27T15:17:10.375877'}
At this point we’ve translated the model instance into Python native datatypes. To finalise the serialization process we render the data into json
.
from rest_framework.renderers import JSONRenderer
json = JSONRenderer().render(serializer.data)
json
# b'{"email":"leila@example.com","content":"foo bar","created":"2016-01-27T15:17:10.375877"}'
Deserializing objects
Deserialization is similar. First we parse a stream into Python native datatypes…
import io from rest_framework.parsers import JSONParser stream = io.BytesIO(json) data = JSONParser().parse(stream)
…then we restore those native datatypes into a dictionary of validated data.
serializer = CommentSerializer(data=data) serializer.is_valid() # True serializer.validated_data # {'content': 'foo bar', 'email': 'leila@example.com', 'created': datetime.datetime(2012, 08, 22, 16, 20, 09, 822243)}
Saving instances
If we want to be able to return complete object instances based on the validated data we need to implement one or both of the .create()
and .update()
methods. For example:
class CommentSerializer(serializers.Serializer): email = serializers.EmailField() content = serializers.CharField(max_length=200) created = serializers.DateTimeField() def create(self, validated_data): return Comment(**validated_data) def update(self, instance, validated_data): instance.email = validated_data.get('email', instance.email) instance.content = validated_data.get('content', instance.content) instance.created = validated_data.get('created', instance.created) return instance
If your object instances correspond to Django models you’ll also want to ensure that these methods save the object to the database. For example, if Comment
was a Django model, the methods might look like this:
def create(self, validated_data): return Comment.objects.create(**validated_data) def update(self, instance, validated_data): instance.email = validated_data.get('email', instance.email) instance.content = validated_data.get('content', instance.content) instance.created = validated_data.get('created', instance.created) instance.save() return instance
Now when deserializing data, we can call .save()
to return an object instance, based on the validated data.
comment = serializer.save()
Calling .save()
will either create a new instance, or update an existing instance, depending on if an existing instance was passed when instantiating the serializer class:
serializer = CommentSerializer(data=data) serializer = CommentSerializer(comment, data=data)
Both the .create()
and .update()
methods are optional. You can implement either neither, one, or both of them, depending on the use-case for your serializer class.
Passing additional attributes to .save()
Sometimes you’ll want your view code to be able to inject additional data at the point of saving the instance. This additional data might include information like the current user, the current time, or anything else that is not part of the request data.
You can do so by including additional keyword arguments when calling .save()
. For example:
serializer.save(owner=request.user)
Any additional keyword arguments will be included in the validated_data
argument when .create()
or .update()
are called.
Overriding .save() directly.
In some cases the .create()
and .update()
method names may not be meaningful. For example, in a contact form we may not be creating new instances, but instead sending an email or other message.
In these cases you might instead choose to override .save()
directly, as being more readable and meaningful.
For example:
class ContactForm(serializers.Serializer): email = serializers.EmailField() message = serializers.CharField() def save(self): email = self.validated_data['email'] message = self.validated_data['message'] send_email(from=email, message=message)
Note that in the case above we’re now having to access the serializer .validated_data
property directly.
Validation
When deserializing data, you always need to call is_valid()
before attempting to access the validated data, or save an object instance. If any validation errors occur, the .errors
property will contain a dictionary representing the resulting error messages. For example:
serializer = CommentSerializer(data={'email': 'foobar', 'content': 'baz'}) serializer.is_valid() # False serializer.errors # {'email': ['Enter a valid e-mail address.'], 'created': ['This field is required.']}
Each key in the dictionary will be the field name, and the values will be lists of strings of any error messages corresponding to that field. The non_field_errors
key may also be present, and will list any general validation errors. The name of the non_field_errors
key may be customized using the NON_FIELD_ERRORS_KEY
REST framework setting.
When deserializing a list of items, errors will be returned as a list of dictionaries representing each of the deserialized items.
Raising an exception on invalid data
The .is_valid()
method takes an optional raise_exception
flag that will cause it to raise a serializers.ValidationError
exception if there are validation errors.
These exceptions are automatically dealt with by the default exception handler that REST framework provides, and will return HTTP 400 Bad Request
responses by default.
serializer.is_valid(raise_exception=True)
Field-level validation
You can specify custom field-level validation by adding .validate_<field_name>
methods to your Serializer
subclass. These are similar to the .clean_<field_name>
methods on Django forms.
These methods take a single argument, which is the field value that requires validation.
Your validate_<field_name>
methods should return the validated value or raise a serializers.ValidationError
. For example:
from rest_framework import serializers class BlogPostSerializer(serializers.Serializer): title = serializers.CharField(max_length=100) content = serializers.CharField() def validate_title(self, value): """ Check that the blog post is about Django. """ if 'django' not in value.lower(): raise serializers.ValidationError("Blog post is not about Django") return value
Note: If your <field_name>
is declared on your serializer with the parameter required=False
then this validation step will not take place if the field is not included.
Object-level validation
To do any other validation that requires access to multiple fields, add a method called .validate()
to your Serializer
subclass. This method takes a single argument, which is a dictionary of field values. It should raise a serializers.ValidationError
if necessary, or just return the validated values. For example:
from rest_framework import serializers class EventSerializer(serializers.Serializer): description = serializers.CharField(max_length=100) start = serializers.DateTimeField() finish = serializers.DateTimeField() def validate(self, data): """ Check that start is before finish. """ if data['start'] > data['finish']: raise serializers.ValidationError("finish must occur after start") return data
Validators
Individual fields on a serializer can include validators, by declaring them on the field instance, for example:
def multiple_of_ten(value): if value % 10 != 0: raise serializers.ValidationError('Not a multiple of ten') class GameRecord(serializers.Serializer): score = IntegerField(validators=[multiple_of_ten]) ...
Serializer classes can also include reusable validators that are applied to the complete set of field data. These validators are included by declaring them on an inner Meta
class, like so:
class EventSerializer(serializers.Serializer): name = serializers.CharField() room_number = serializers.IntegerField(choices=[101, 102, 103, 201]) date = serializers.DateField() class Meta: validators = [ UniqueTogetherValidator( queryset=Event.objects.all(), fields=['room_number', 'date'] ) ]
For more information see the validators documentation.
Accessing the initial data and instance
When passing an initial object or queryset to a serializer instance, the object will be made available as .instance
. If no initial object is passed then the .instance
attribute will be None
.
When passing data to a serializer instance, the unmodified data will be made available as .initial_data
. If the data
keyword argument is not passed then the .initial_data
attribute will not exist.
Partial updates
By default, serializers must be passed values for all required fields or they will raise validation errors. You can use the partial
argument in order to allow partial updates.
serializer = CommentSerializer(comment, data={'content': 'foo bar'}, partial=True)
Dealing with nested objects
The previous examples are fine for dealing with objects that only have simple datatypes, but sometimes we also need to be able to represent more complex objects, where some of the attributes of an object might not be simple datatypes such as strings, dates or integers.
The Serializer
class is itself a type of Field
, and can be used to represent relationships where one object type is nested inside another.
class UserSerializer(serializers.Serializer): email = serializers.EmailField() username = serializers.CharField(max_length=100) class CommentSerializer(serializers.Serializer): user = UserSerializer() content = serializers.CharField(max_length=200) created = serializers.DateTimeField()
If a nested representation may optionally accept the None
value you should pass the required=False
flag to the nested serializer.
class CommentSerializer(serializers.Serializer): user = UserSerializer(required=False) # May be an anonymous user. content = serializers.CharField(max_length=200) created = serializers.DateTimeField()
Similarly if a nested representation should be a list of items, you should pass the many=True
flag to the nested serializer.
class CommentSerializer(serializers.Serializer): user = UserSerializer(required=False) edits = EditItemSerializer(many=True) # A nested list of 'edit' items. content = serializers.CharField(max_length=200) created = serializers.DateTimeField()
Writable nested representations
When dealing with nested representations that support deserializing the data, any errors with nested objects will be nested under the field name of the nested object.
serializer = CommentSerializer(data={'user': {'email': 'foobar', 'username': 'doe'}, 'content': 'baz'}) serializer.is_valid() # False serializer.errors # {'user': {'email': ['Enter a valid e-mail address.']}, 'created': ['This field is required.']}
Similarly, the .validated_data
property will include nested data structures.
Writing .create() methods for nested representations
If you’re supporting writable nested representations you’ll need to write .create()
or .update()
methods that handle saving multiple objects.
The following example demonstrates how you might handle creating a user with a nested profile object.
class UserSerializer(serializers.ModelSerializer): profile = ProfileSerializer() class Meta: model = User fields = ['username', 'email', 'profile'] def create(self, validated_data): profile_data = validated_data.pop('profile') user = User.objects.create(**validated_data) Profile.objects.create(user=user, **profile_data) return user
Writing .update() methods for nested representations
For updates you’ll want to think carefully about how to handle updates to relationships. For example if the data for the relationship is None
, or not provided, which of the following should occur?
- Set the relationship to
NULL
in the database. - Delete the associated instance.
- Ignore the data and leave the instance as it is.
- Raise a validation error.
Here’s an example for an .update()
method on our previous UserSerializer
class.
def update(self, instance, validated_data): profile_data = validated_data.pop('profile') profile = instance.profile instance.username = validated_data.get('username', instance.username) instance.email = validated_data.get('email', instance.email) instance.save() profile.is_premium_member = profile_data.get( 'is_premium_member', profile.is_premium_member ) profile.has_support_contract = profile_data.get( 'has_support_contract', profile.has_support_contract ) profile.save() return instance
Because the behavior of nested creates and updates can be ambiguous, and may require complex dependencies between related models, REST framework 3 requires you to always write these methods explicitly. The default ModelSerializer
.create()
and .update()
methods do not include support for writable nested representations.
There are however, third-party packages available such as DRF Writable Nested that support automatic writable nested representations.
Handling saving related instances in model manager classes
An alternative to saving multiple related instances in the serializer is to write custom model manager classes that handle creating the correct instances.
For example, suppose we wanted to ensure that User
instances and Profile
instances are always created together as a pair. We might write a custom manager class that looks something like this:
class UserManager(models.Manager): ... def create(self, username, email, is_premium_member=False, has_support_contract=False): user = User(username=username, email=email) user.save() profile = Profile( user=user, is_premium_member=is_premium_member, has_support_contract=has_support_contract ) profile.save() return user
This manager class now more nicely encapsulates that user instances and profile instances are always created at the same time. Our .create()
method on the serializer class can now be re-written to use the new manager method.
def create(self, validated_data): return User.objects.create( username=validated_data['username'], email=validated_data['email'], is_premium_member=validated_data['profile']['is_premium_member'], has_support_contract=validated_data['profile']['has_support_contract'] )
For more details on this approach see the Django documentation on model managers, and this blogpost on using model and manager classes.
Dealing with multiple objects
The Serializer
class can also handle serializing or deserializing lists of objects.
Serializing multiple objects
To serialize a queryset or list of objects instead of a single object instance, you should pass the many=True
flag when instantiating the serializer. You can then pass a queryset or list of objects to be serialized.
queryset = Book.objects.all() serializer = BookSerializer(queryset, many=True) serializer.data # [ # {'id': 0, 'title': 'The electric kool-aid acid test', 'author': 'Tom Wolfe'}, # {'id': 1, 'title': 'If this is a man', 'author': 'Primo Levi'}, # {'id': 2, 'title': 'The wind-up bird chronicle', 'author': 'Haruki Murakami'} # ]
Deserializing multiple objects
The default behavior for deserializing multiple objects is to support multiple object creation, but not support multiple object updates. For more information on how to support or customize either of these cases, see the ListSerializer documentation below.
There are some cases where you need to provide extra context to the serializer in addition to the object being serialized. One common case is if you’re using a serializer that includes hyperlinked relations, which requires the serializer to have access to the current request so that it can properly generate fully qualified URLs.
You can provide arbitrary additional context by passing a context
argument when instantiating the serializer. For example:
serializer = AccountSerializer(account, context={'request': request}) serializer.data # {'id': 6, 'owner': 'denvercoder9', 'created': datetime.datetime(2013, 2, 12, 09, 44, 56, 678870), 'details': 'http://example.com/accounts/6/details'}
The context dictionary can be used within any serializer field logic, such as a custom .to_representation()
method, by accessing the self.context
attribute.
ModelSerializer
Often you’ll want serializer classes that map closely to Django model definitions.
The ModelSerializer
class provides a shortcut that lets you automatically create a Serializer
class with fields that correspond to the Model fields.
The ModelSerializer
class is the same as a regular Serializer
class, except that:
- It will automatically generate a set of fields for you, based on the model.
- It will automatically generate validators for the serializer, such as unique_together validators.
- It includes simple default implementations of
.create()
and.update()
.
Declaring a ModelSerializer
looks like this:
class AccountSerializer(serializers.ModelSerializer): class Meta: model = Account fields = ['id', 'account_name', 'users', 'created']
By default, all the model fields on the class will be mapped to a corresponding serializer fields.
Any relationships such as foreign keys on the model will be mapped to PrimaryKeyRelatedField
. Reverse relationships are not included by default unless explicitly included as specified in the serializer relations documentation.
Inspecting a ModelSerializer
Serializer classes generate helpful verbose representation strings, that allow you to fully inspect the state of their fields. This is particularly useful when working with ModelSerializers
where you want to determine what set of fields and validators are being automatically created for you.
To do so, open the Django shell, using python manage.py shell
, then import the serializer class, instantiate it, and print the object representation…
>>> from myapp.serializers import AccountSerializer >>> serializer = AccountSerializer() >>> print(repr(serializer)) AccountSerializer(): id = IntegerField(label='ID', read_only=True) name = CharField(allow_blank=True, max_length=100, required=False) owner = PrimaryKeyRelatedField(queryset=User.objects.all())
Specifying which fields to include
If you only want a subset of the default fields to be used in a model serializer, you can do so using fields
or exclude
options, just as you would with a ModelForm
. It is strongly recommended that you explicitly set all fields that should be serialized using the fields
attribute. This will make it less likely to result in unintentionally exposing data when your models change.
For example:
class AccountSerializer(serializers.ModelSerializer): class Meta: model = Account fields = ['id', 'account_name', 'users', 'created']
You can also set the fields
attribute to the special value '__all__'
to indicate that all fields in the model should be used.
For example:
class AccountSerializer(serializers.ModelSerializer): class Meta: model = Account fields = '__all__'
You can set the exclude
attribute to a list of fields to be excluded from the serializer.
For example:
class AccountSerializer(serializers.ModelSerializer): class Meta: model = Account exclude = ['users']
In the example above, if the Account
model had 3 fields account_name
, users
, and created
, this will result in the fields account_name
and created
to be serialized.
The names in the fields
and exclude
attributes will normally map to model fields on the model class.
Alternatively names in the fields
options can map to properties or methods which take no arguments that exist on the model class.
Since version 3.3.0, it is mandatory to provide one of the attributes fields
or exclude
.
Specifying nested serialization
The default ModelSerializer
uses primary keys for relationships, but you can also easily generate nested representations using the depth
option:
class AccountSerializer(serializers.ModelSerializer): class Meta: model = Account fields = ['id', 'account_name', 'users', 'created'] depth = 1
The depth
option should be set to an integer value that indicates the depth of relationships that should be traversed before reverting to a flat representation.
If you want to customize the way the serialization is done you’ll need to define the field yourself.
Specifying fields explicitly
You can add extra fields to a ModelSerializer
or override the default fields by declaring fields on the class, just as you would for a Serializer
class.
class AccountSerializer(serializers.ModelSerializer): url = serializers.CharField(source='get_absolute_url', read_only=True) groups = serializers.PrimaryKeyRelatedField(many=True) class Meta: model = Account
Extra fields can correspond to any property or callable on the model.
Specifying read only fields
You may wish to specify multiple fields as read-only. Instead of adding each field explicitly with the read_only=True
attribute, you may use the shortcut Meta option, read_only_fields
.
This option should be a list or tuple of field names, and is declared as follows:
class AccountSerializer(serializers.ModelSerializer): class Meta: model = Account fields = ['id', 'account_name', 'users', 'created'] read_only_fields = ['account_name']
Model fields which have editable=False
set, and AutoField
fields will be set to read-only by default, and do not need to be added to the read_only_fields
option.
Note: There is a special-case where a read-only field is part of a unique_together
constraint at the model level. In this case the field is required by the serializer class in order to validate the constraint, but should also not be editable by the user.
The right way to deal with this is to specify the field explicitly on the serializer, providing both the read_only=True
and default=…
keyword arguments.
One example of this is a read-only relation to the currently authenticated User
which is unique_together
with another identifier. In this case you would declare the user field like so:
user = serializers.PrimaryKeyRelatedField(read_only=True, default=serializers.CurrentUserDefault())
Please review the Validators Documentation for details on the UniqueTogetherValidator and CurrentUserDefault classes.
Additional keyword arguments
There is also a shortcut allowing you to specify arbitrary additional keyword arguments on fields, using the extra_kwargs
option. As in the case of read_only_fields
, this means you do not need to explicitly declare the field on the serializer.
This option is a dictionary, mapping field names to a dictionary of keyword arguments. For example:
class CreateUserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ['email', 'username', 'password'] extra_kwargs = {'password': {'write_only': True}} def create(self, validated_data): user = User( email=validated_data['email'], username=validated_data['username'] ) user.set_password(validated_data['password']) user.save() return user
Please keep in mind that, if the field has already been explicitly declared on the serializer class, then the extra_kwargs
option will be ignored.
Relational fields
When serializing model instances, there are a number of different ways you might choose to represent relationships. The default representation for ModelSerializer
is to use the primary keys of the related instances.
Alternative representations include serializing using hyperlinks, serializing complete nested representations, or serializing with a custom representation.
For full details see the serializer relations documentation.
Customizing field mappings
The ModelSerializer class also exposes an API that you can override in order to alter how serializer fields are automatically determined when instantiating the serializer.
Normally if a ModelSerializer
does not generate the fields you need by default then you should either add them to the class explicitly, or simply use a regular Serializer
class instead. However in some cases you may want to create a new base class that defines how the serializer fields are created for any given model.
.serializer_field_mapping
A mapping of Django model fields to REST framework serializer fields. You can override this mapping to alter the default serializer fields that should be used for each model field.
This property should be the serializer field class, that is used for relational fields by default.
For ModelSerializer
this defaults to PrimaryKeyRelatedField
.
For HyperlinkedModelSerializer
this defaults to serializers.HyperlinkedRelatedField
.
.serializer_url_field
The serializer field class that should be used for any url
field on the serializer.
Defaults to serializers.HyperlinkedIdentityField
.serializer_choice_field
The serializer field class that should be used for any choice fields on the serializer.
Defaults to serializers.ChoiceField
The field_class and field_kwargs API
The following methods are called to determine the class and keyword arguments for each field that should be automatically included on the serializer. Each of these methods should return a two tuple of (field_class, field_kwargs)
.
.build_standard_field(self, field_name, model_field)
Called to generate a serializer field that maps to a standard model field.
The default implementation returns a serializer class based on the serializer_field_mapping
attribute.
.build_relational_field(self, field_name, relation_info)
Called to generate a serializer field that maps to a relational model field.
The default implementation returns a serializer class based on the serializer_related_field
attribute.
The relation_info
argument is a named tuple, that contains model_field
, related_model
, to_many
and has_through_model
properties.
.build_nested_field(self, field_name, relation_info, nested_depth)
Called to generate a serializer field that maps to a relational model field, when the depth
option has been set.
The default implementation dynamically creates a nested serializer class based on either ModelSerializer
or HyperlinkedModelSerializer
.
The nested_depth
will be the value of the depth
option, minus one.
The relation_info
argument is a named tuple, that contains model_field
, related_model
, to_many
and has_through_model
properties.
.build_property_field(self, field_name, model_class)
Called to generate a serializer field that maps to a property or zero-argument method on the model class.
The default implementation returns a ReadOnlyField
class.
.build_url_field(self, field_name, model_class)
Called to generate a serializer field for the serializer’s own url
field. The default implementation returns a HyperlinkedIdentityField
class.
.build_unknown_field(self, field_name, model_class)
Called when the field name did not map to any model field or model property. The default implementation raises an error, although subclasses may customize this behavior.
HyperlinkedModelSerializer
The HyperlinkedModelSerializer
class is similar to the ModelSerializer
class except that it uses hyperlinks to represent relationships, rather than primary keys.
By default the serializer will include a url
field instead of a primary key field.
The url field will be represented using a HyperlinkedIdentityField
serializer field, and any relationships on the model will be represented using a HyperlinkedRelatedField
serializer field.
You can explicitly include the primary key by adding it to the fields
option, for example:
class AccountSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Account fields = ['url', 'id', 'account_name', 'users', 'created']
Absolute and relative URLs
When instantiating a HyperlinkedModelSerializer
you must include the current request
in the serializer context, for example:
serializer = AccountSerializer(queryset, context={'request': request})
Doing so will ensure that the hyperlinks can include an appropriate hostname, so that the resulting representation uses fully qualified URLs, such as:
http://api.example.com/accounts/1/
Rather than relative URLs, such as:
/accounts/1/
If you do want to use relative URLs, you should explicitly pass {'request': None}
in the serializer context.
How hyperlinked views are determined
There needs to be a way of determining which views should be used for hyperlinking to model instances.
By default hyperlinks are expected to correspond to a view name that matches the style '{model_name}-detail'
, and looks up the instance by a pk
keyword argument.
You can override a URL field view name and lookup field by using either, or both of, the view_name
and lookup_field
options in the extra_kwargs
setting, like so:
class AccountSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Account fields = ['account_url', 'account_name', 'users', 'created'] extra_kwargs = { 'url': {'view_name': 'accounts', 'lookup_field': 'account_name'}, 'users': {'lookup_field': 'username'} }
Alternatively you can set the fields on the serializer explicitly. For example:
class AccountSerializer(serializers.HyperlinkedModelSerializer): url = serializers.HyperlinkedIdentityField( view_name='accounts', lookup_field='slug' ) users = serializers.HyperlinkedRelatedField( view_name='user-detail', lookup_field='username', many=True, read_only=True ) class Meta: model = Account fields = ['url', 'account_name', 'users', 'created']
Tip: Properly matching together hyperlinked representations and your URL conf can sometimes be a bit fiddly. Printing the repr
of a HyperlinkedModelSerializer
instance is a particularly useful way to inspect exactly which view names and lookup fields the relationships are expected to map too.
Changing the URL field name
The name of the URL field defaults to ‘url’. You can override this globally, by using the URL_FIELD_NAME
setting.
ListSerializer
The ListSerializer
class provides the behavior for serializing and validating multiple objects at once. You won’t typically need to use ListSerializer
directly, but should instead simply pass many=True
when instantiating a serializer.
When a serializer is instantiated and many=True
is passed, a ListSerializer
instance will be created. The serializer class then becomes a child of the parent ListSerializer
The following argument can also be passed to a ListSerializer
field or a serializer that is passed many=True
:
allow_empty
This is True
by default, but can be set to False
if you want to disallow empty lists as valid input.
Customizing ListSerializer behavior
There are a few use cases when you might want to customize the ListSerializer
behavior. For example:
- You want to provide particular validation of the lists, such as checking that one element does not conflict with another element in a list.
- You want to customize the create or update behavior of multiple objects.
For these cases you can modify the class that is used when many=True
is passed, by using the list_serializer_class
option on the serializer Meta
class.
For example:
class CustomListSerializer(serializers.ListSerializer): ... class CustomSerializer(serializers.Serializer): ... class Meta: list_serializer_class = CustomListSerializer
Customizing multiple create
The default implementation for multiple object creation is to simply call .create()
for each item in the list. If you want to customize this behavior, you’ll need to customize the .create()
method on ListSerializer
class that is used when many=True
is passed.
For example:
class BookListSerializer(serializers.ListSerializer): def create(self, validated_data): books = [Book(**item) for item in validated_data] return Book.objects.bulk_create(books) class BookSerializer(serializers.Serializer): ... class Meta: list_serializer_class = BookListSerializer
Customizing multiple update
By default the ListSerializer
class does not support multiple updates. This is because the behavior that should be expected for insertions and deletions is ambiguous.
To support multiple updates you’ll need to do so explicitly. When writing your multiple update code make sure to keep the following in mind:
- How do you determine which instance should be updated for each item in the list of data?
- How should insertions be handled? Are they invalid, or do they create new objects?
- How should removals be handled? Do they imply object deletion, or removing a relationship? Should they be silently ignored, or are they invalid?
- How should ordering be handled? Does changing the position of two items imply any state change or is it ignored?
You will need to add an explicit id
field to the instance serializer. The default implicitly-generated id
field is marked as read_only
. This causes it to be removed on updates. Once you declare it explicitly, it will be available in the list serializer’s update
method.
Here’s an example of how you might choose to implement multiple updates:
class BookListSerializer(serializers.ListSerializer): def update(self, instance, validated_data): book_mapping = {book.id: book for book in instance} data_mapping = {item['id']: item for item in validated_data} ret = [] for book_id, data in data_mapping.items(): book = book_mapping.get(book_id, None) if book is None: ret.append(self.child.create(data)) else: ret.append(self.child.update(book, data)) for book_id, book in book_mapping.items(): if book_id not in data_mapping: book.delete() return ret class BookSerializer(serializers.Serializer): id = serializers.IntegerField() ... class Meta: list_serializer_class = BookListSerializer
It is possible that a third party package may be included alongside the 3.1 release that provides some automatic support for multiple update operations, similar to the allow_add_remove
behavior that was present in REST framework 2.
Customizing ListSerializer initialization
When a serializer with many=True
is instantiated, we need to determine which arguments and keyword arguments should be passed to the .__init__()
method for both the child Serializer
class, and for the parent ListSerializer
class.
The default implementation is to pass all arguments to both classes, except for validators
, and any custom keyword arguments, both of which are assumed to be intended for the child serializer class.
Occasionally you might need to explicitly specify how the child and parent classes should be instantiated when many=True
is passed. You can do so by using the many_init
class method.
@classmethod def many_init(cls, *args, **kwargs): kwargs['child'] = cls() return CustomListSerializer(*args, **kwargs)
BaseSerializer
BaseSerializer
class that can be used to easily support alternative serialization and deserialization styles.
This class implements the same basic API as the Serializer
class:
-
.data
— Returns the outgoing primitive representation. -
.is_valid()
— Deserializes and validates incoming data. -
.validated_data
— Returns the validated incoming data. -
.errors
— Returns any errors during validation. -
.save()
— Persists the validated data into an object instance.
There are four methods that can be overridden, depending on what functionality you want the serializer class to support:
-
.to_representation()
— Override this to support serialization, for read operations. -
.to_internal_value()
— Override this to support deserialization, for write operations. -
.create()
and.update()
— Override either or both of these to support saving instances.
Because this class provides the same interface as the Serializer
class, you can use it with the existing generic class-based views exactly as you would for a regular Serializer
or ModelSerializer
.
The only difference you’ll notice when doing so is the BaseSerializer
classes will not generate HTML forms in the browsable API. This is because the data they return does not include all the field information that would allow each field to be rendered into a suitable HTML input.
Read-only BaseSerializer classes
To implement a read-only serializer using the BaseSerializer
class, we just need to override the .to_representation()
method. Let’s take a look at an example using a simple Django model:
class HighScore(models.Model): created = models.DateTimeField(auto_now_add=True) player_name = models.CharField(max_length=10) score = models.IntegerField()
It’s simple to create a read-only serializer for converting HighScore
instances into primitive data types.
class HighScoreSerializer(serializers.BaseSerializer): def to_representation(self, instance): return { 'score': instance.score, 'player_name': instance.player_name }
We can now use this class to serialize single HighScore
instances:
@api_view(['GET']) def high_score(request, pk): instance = HighScore.objects.get(pk=pk) serializer = HighScoreSerializer(instance) return Response(serializer.data)
Or use it to serialize multiple instances:
@api_view(['GET']) def all_high_scores(request): queryset = HighScore.objects.order_by('-score') serializer = HighScoreSerializer(queryset, many=True) return Response(serializer.data)
Read-write BaseSerializer classes
To create a read-write serializer we first need to implement a .to_internal_value()
method. This method returns the validated values that will be used to construct the object instance, and may raise a serializers.ValidationError
if the supplied data is in an incorrect format.
Once you’ve implemented .to_internal_value()
, the basic validation API will be available on the serializer, and you will be able to use .is_valid()
, .validated_data
and .errors
.
If you want to also support .save()
you’ll need to also implement either or both of the .create()
and .update()
methods.
Here’s a complete example of our previous HighScoreSerializer
, that’s been updated to support both read and write operations.
class HighScoreSerializer(serializers.BaseSerializer): def to_internal_value(self, data): score = data.get('score') player_name = data.get('player_name') if not score: raise serializers.ValidationError({ 'score': 'This field is required.' }) if not player_name: raise serializers.ValidationError({ 'player_name': 'This field is required.' }) if len(player_name) > 10: raise serializers.ValidationError({ 'player_name': 'May not be more than 10 characters.' }) return { 'score': int(score), 'player_name': player_name } def to_representation(self, instance): return { 'score': instance.score, 'player_name': instance.player_name } def create(self, validated_data): return HighScore.objects.create(**validated_data)
Creating new base classes
The BaseSerializer
class is also useful if you want to implement new generic serializer classes for dealing with particular serialization styles, or for integrating with alternative storage backends.
The following class is an example of a generic serializer that can handle coercing arbitrary objects into primitive representations.
class ObjectSerializer(serializers.BaseSerializer): """ A read-only serializer that coerces arbitrary complex objects into primitive representations. """ def to_representation(self, instance): output = {} for attribute_name in dir(instance): attribute = getattr(instance, attribute_name) if attribute_name.startswith('_'): pass elif hasattr(attribute, '__call__'): pass elif isinstance(attribute, (str, int, bool, float, type(None))): output[attribute_name] = attribute elif isinstance(attribute, list): output[attribute_name] = [ self.to_representation(item) for item in attribute ] elif isinstance(attribute, dict): output[attribute_name] = { str(key): self.to_representation(value) for key, value in attribute.items() } else: output[attribute_name] = str(attribute) return output
Copyright © 2011–present Encode OSS Ltd.
Licensed under the BSD License.
https://www.django-rest-framework.org/api-guide/serializers/
Django REST Framework
3.14
-
Routers
Resource routing allows you to quickly declare of the common routes for given resourceful controller.
-
Schema
A machine-readable [schema] describes what resources are available via the API, their URLs how they represented and operations support.
-
Advanced serializer usage
If you need to alter the serialization or deserialization behavior of serializer class, can do so by overriding .to_representation() .to_internal_value()
-
Settings
Namespaces are one honking great idea let’s do more of those! The Zen of Python Configuration for REST framework is all namespaced inside single Django
In this article, we’ll look at how to use Django REST Framework (DRF) serializers more efficiently and effectively by example. Along the way, we’ll dive into some advanced concepts like using the source
keyword, passing context, validating data, and much more.
This article supposes you already have a fair understanding of Django REST Framework.
- What’s Covered?
- Custom Data Validation
- Custom field validation
- Object-level validation
- Functional validators
- Custom Outputs
- to_representation()
- to_internal_value()
- Serializer Save
- Passing data directly to save
- Serializer Context
- Source Keyword
- Rename serializer output fields
- Attach serializer function response to data
- Append data from one-to-one models
- SerializerMethodField
- Different Read and Write Serializers
- Read-only Fields
- Nested Serializers
- Explicit definition
- Using the depth field
- Conclusion
What’s Covered?
This article covers:
- Validating data at the field or object level
- Customizing the serialization and deserialization output
- Passing additional data at save
- Passing context to serializers
- Renaming serializer output fields
- Attaching serializer function responses to data
- Fetching data from one-to-one models
- Attaching data to the serialized output
- Creating separate read and write serializers
- Setting read-only fields
- Handling nested serialization
The concepts presented in this article are not connected with one another. I recommend reading the article as a whole but feel free to hone in on the concept(s) that you’re specifically interested in.
Custom Data Validation
DRF enforces data validation in the deserialization process, which is why you need to call is_valid()
before accessing the validated data. If the data is invalid, errors are then appended to the serializer’s error
property and a ValidationError
is thrown.
There are two types of custom data validators:
- Custom field
- Object-level
Let’s look at an example. Suppose we have a Movie
model:
from django.db import models
class Movie(models.Model):
title = models.CharField(max_length=128)
description = models.TextField(max_length=2048)
release_date = models.DateField()
rating = models.PositiveSmallIntegerField()
us_gross = models.IntegerField(default=0)
worldwide_gross = models.IntegerField(default=0)
def __str__(self):
return f'{self.title}'
Our model has a title
, description
, release_date
, rating
, us_gross
and worldwide_gross
.
We also have a simple ModelSerializer
, which serializes all the fields:
from rest_framework import serializers
from examples.models import Movie
class MovieSerializer(serializers.ModelSerializer):
class Meta:
model = Movie
fields = '__all__'
Let’s say the model is only valid if both of these are true:
rating
is between 1 and 10us_gross
is less thanworldwide_gross
We can use custom data validators for this.
Custom field validation
Custom field validation allows us to validate a specific field. We can use it by adding the validate_<field_name>
method to our serializer like so:
from rest_framework import serializers
from examples.models import Movie
class MovieSerializer(serializers.ModelSerializer):
class Meta:
model = Movie
fields = '__all__'
def validate_rating(self, value):
if value < 1 or value > 10:
raise serializers.ValidationError('Rating has to be between 1 and 10.')
return value
Our validate_rating
method will make sure the rating always stays between 1 and 10.
Object-level validation
Sometimes you’ll have to compare fields with one another in order to validate them. This is when you should use the object-level validation approach.
Example:
from rest_framework import serializers
from examples.models import Movie
class MovieSerializer(serializers.ModelSerializer):
class Meta:
model = Movie
fields = '__all__'
def validate(self, data):
if data['us_gross'] > data['worldwide_gross']:
raise serializers.ValidationError('worldwide_gross cannot be bigger than us_gross')
return data
The validate
method will make sure us_gross
is never bigger than worldwide_gross
.
You should avoid accessing additional fields in the custom field validator via
self.initial_data
. This dictionary contains raw data, which means that your data types won’t necessarily match the required data types. DRF will also append validation errors to the wrong field.
Functional validators
If we use the same validator in multiple serializers, we can create a function validator instead of writing the same code over and over again. Let’s write a validator that checks if the number is between 1 and 10:
def is_rating(value):
if value < 1:
raise serializers.ValidationError('Value cannot be lower than 1.')
elif value > 10:
raise serializers.ValidationError('Value cannot be higher than 10')
We can now append it to our MovieSerializer
like so:
from rest_framework import serializers
from examples.models import Movie
class MovieSerializer(serializers.ModelSerializer):
rating = IntegerField(validators=[is_rating])
...
Custom Outputs
Two of the most useful functions inside the BaseSerializer
class that we can override are to_representation()
and to_internal_value()
. By overriding them, we can change the serialization and deserialization behavior, respectively, to append additional data, extract data, and handle relationships.
to_representation()
allows us to change the serialization outputto_internal_value()
allows us to change the deserialization output
Suppose you have the following model:
from django.contrib.auth.models import User
from django.db import models
class Resource(models.Model):
title = models.CharField(max_length=256)
content = models.TextField()
liked_by = models.ManyToManyField(to=User)
def __str__(self):
return f'{self.title}'
Every resource has a title
, content
, and liked_by
field. liked_by
represents the users that liked the resource.
Our serializer is defined like so:
from rest_framework import serializers
from examples.models import Resource
class ResourceSerializer(serializers.ModelSerializer):
class Meta:
model = Resource
fields = '__all__'
If we serialize a resource and access its data
property, we’ll get the following output:
{
"id": 1,
"title": "C++ with examples",
"content": "This is the resource's content.",
"liked_by": [
2,
3
]
}
to_representation()
Now, let’s say we want to add a total likes count to the serialized data. The easiest way to achieve this is by implementing the to_representation
method in our serializer class:
from rest_framework import serializers
from examples.models import Resource
class ResourceSerializer(serializers.ModelSerializer):
class Meta:
model = Resource
fields = '__all__'
def to_representation(self, instance):
representation = super().to_representation(instance)
representation['likes'] = instance.liked_by.count()
return representation
This piece of code fetches the current representation, appends likes
to it, and returns it.
If we serialize another resource, we’ll get the following result:
{
"id": 1,
"title": "C++ with examples",
"content": "This is the resource's content.",
"liked_by": [
2,
3
],
"likes": 2
}
to_internal_value()
Suppose the services that use our API appends unnecessary data to the endpoint when creating resources:
{
"info": {
"extra": "data",
...
},
"resource": {
"id": 1,
"title": "C++ with examples",
"content": "This is the resource's content.",
"liked_by": [
2,
3
],
"likes": 2
}
}
If we try to serialize this data, our serializer will fail because it will be unable to extract the resource.
We can override to_internal_value()
to extract the resource data:
from rest_framework import serializers
from examples.models import Resource
class ResourceSerializer(serializers.ModelSerializer):
class Meta:
model = Resource
fields = '__all__'
def to_internal_value(self, data):
resource_data = data['resource']
return super().to_internal_value(resource_data)
Yay! Our serializer now works as expected.
Serializer Save
Calling save()
will either create a new instance or update an existing instance, depending on if an existing instance was passed when instantiating the serializer class:
# this creates a new instance
serializer = MySerializer(data=data)
# this updates an existing instance
serializer = MySerializer(instance, data=data)
Passing data directly to save
Sometimes you’ll want to pass additional data at the point of saving the instance. This additional data might include information like the current user, the current time, or request data.
You can do so by including additional keyword arguments when calling save()
. For example:
serializer.save(owner=request.user)
Keep in mind that values passed to
save()
won’t be validated.
Serializer Context
There are some cases when you need to pass additional data to your serializers. You can do that by using the serializer context
property. You can then use this data inside the serializer such as to_representation
or when validating data.
You pass the data as a dictionary via the context
keyword:
from rest_framework import serializers
from examples.models import Resource
resource = Resource.objects.get(id=1)
serializer = ResourceSerializer(resource, context={'key': 'value'})
Then you can fetch it inside the serializer class from the self.context
dictionary like so:
from rest_framework import serializers
from examples.models import Resource
class ResourceSerializer(serializers.ModelSerializer):
class Meta:
model = Resource
fields = '__all__'
def to_representation(self, instance):
representation = super().to_representation(instance)
representation['key'] = self.context['key']
return representation
Our serializer output will now contain key
with value
.
Source Keyword
The DRF serializer comes with the source
keyword, which is extremely powerful and can be used in multiple case scenarios. We can use it to:
- Rename serializer output fields
- Attach serializer function response to data
- Fetch data from one-to-one models
Let’s say you’re building a social network and every user has their own UserProfile
, which has a one-to-one relationship with the User
model:
from django.contrib.auth.models import User
from django.db import models
class UserProfile(models.Model):
user = models.OneToOneField(to=User, on_delete=models.CASCADE)
bio = models.TextField()
birth_date = models.DateField()
def __str__(self):
return f'{self.user.username} profile'
We’re using a ModelSerializer
for serializing our users:
class UserSerializer(serializers.ModelSerializer):
class Meta:
model = User
fields = ['id', 'username', 'email', 'is_staff', 'is_active']
Let’s serialize a user:
{
"id": 1,
"username": "admin",
"email": "[email protected]",
"is_staff": true,
"is_active": true
}
Rename serializer output fields
To rename a serializer output field we need to add a new field to our serializer and pass it to fields
property.
class UserSerializer(serializers.ModelSerializer):
active = serializers.BooleanField(source='is_active')
class Meta:
model = User
fields = ['id', 'username', 'email', 'is_staff', 'active']
Our active field is now going to be named active
instead of is_active
.
Attach serializer function response to data
We can use source
to add a field which equals to function’s return.
class UserSerializer(serializers.ModelSerializer):
full_name = serializers.CharField(source='get_full_name')
class Meta:
model = User
fields = ['id', 'username', 'full_name', 'email', 'is_staff', 'active']
get_full_name()
is a method from the Django user model that concatenatesuser.first_name
anduser.last_name
.
Our response will now contain full_name
.
Append data from one-to-one models
Now let’s suppose we also wanted to include our user’s bio
and birth_date
in UserSerializer
. We can do that by adding extra fields to our serializer with the source keyword.
Let’s modify our serializer class:
class UserSerializer(serializers.ModelSerializer):
bio = serializers.CharField(source='userprofile.bio')
birth_date = serializers.DateField(source='userprofile.birth_date')
class Meta:
model = User
fields = [
'id', 'username', 'email', 'is_staff',
'is_active', 'bio', 'birth_date'
] # note we also added the new fields here
We can access userprofile.<field_name>
, because it is a one-to-one relationship with our user.
This is our final JSON response:
{
"id": 1,
"username": "admin",
"email": "",
"is_staff": true,
"is_active": true,
"bio": "This is my bio.",
"birth_date": "1995-04-27"
}
SerializerMethodField
SerializerMethodField
is a read-only field, which gets its value by calling a method on the serializer class that it is attached to. It can be used to attach any kind of data to the serialized presentation of the object.
SerializerMethodField
gets its data by calling get_<field_name>
.
If we wanted to add a full_name
attribute to our User
serializer we could achieve that like this:
from django.contrib.auth.models import User
from rest_framework import serializers
class UserSerializer(serializers.ModelSerializer):
full_name = serializers.SerializerMethodField()
class Meta:
model = User
fields = '__all__'
def get_full_name(self, obj):
return f'{obj.first_name} {obj.last_name}'
This piece of code creates a user serializer that also contains full_name
which is the result of the get_full_name()
function.
Different Read and Write Serializers
If your serializers contain a lot of nested data, which is not required for write operations, you can boost your API performance by creating separate read and write serializers.
You do that by overriding the get_serializer_class()
method in your ViewSet
like so:
from rest_framework import viewsets
from .models import MyModel
from .serializers import MyModelWriteSerializer, MyModelReadSerializer
class MyViewSet(viewsets.ModelViewSet):
queryset = MyModel.objects.all()
def get_serializer_class(self):
if self.action in ["create", "update", "partial_update", "destroy"]:
return MyModelWriteSerializer
return MyModelReadSerializer
This code checks what REST operation has been used and returns MyModelWriteSerializer
for write operations and MyModelReadSerializer
for read operations.
Read-only Fields
Serializer fields come with the read_only
option. By setting it to True
, DRF includes the field in the API output, but ignores it during create and update operations:
from rest_framework import serializers
class AccountSerializer(serializers.Serializer):
id = IntegerField(label='ID', read_only=True)
username = CharField(max_length=32, required=True)
Setting fields like
id
,create_date
, etc. to read only will give you a performance boost during write operations.
If you want to set multiple fields to read_only
, you can specify them using read_only_fields
in Meta
like so:
from rest_framework import serializers
class AccountSerializer(serializers.Serializer):
id = IntegerField(label='ID')
username = CharField(max_length=32, required=True)
class Meta:
read_only_fields = ['id', 'username']
Nested Serializers
There are two different ways of handling nested serialization with ModelSerializer
:
- Explicit definition
- Using the
depth
field
Explicit definition
The explicit definition works by passing an external Serializer
as a field to our main serializer.
Let’s take a look at an example. We have a Comment
which is defined like so:
from django.contrib.auth.models import User
from django.db import models
class Comment(models.Model):
author = models.ForeignKey(to=User, on_delete=models.CASCADE)
datetime = models.DateTimeField(auto_now_add=True)
content = models.TextField()
Say you then have the following serializer:
from rest_framework import serializers
class CommentSerializer(serializers.ModelSerializer):
author = UserSerializer()
class Meta:
model = Comment
fields = '__all__'
If we serialize a Comment
, you’ll get the following output:
{
"id": 1,
"datetime": "2021-03-19T21:51:44.775609Z",
"content": "This is an interesting message.",
"author": 1
}
If we also wanted to serialize the user (instead of only showing their ID), we can add an author
serializer field to our Comment
:
from rest_framework import serializers
class UserSerializer(serializers.ModelSerializer):
class Meta:
model = User
fields = ['id', 'username']
class CommentSerializer(serializers.ModelSerializer):
author = UserSerializer()
class Meta:
model = Comment
fields = '__all__'
Serialize again and you’ll get this:
{
"id": 1,
"author": {
"id": 1,
"username": "admin"
},
"datetime": "2021-03-19T21:51:44.775609Z",
"content": "This is an interesting message."
}
Using the depth field
When it comes to nested serialization, the depth
field is one of the most powerful featuress. Let’s suppose we have three models — ModelA
, ModelB
, and ModelC
. ModelA
depends on ModelB
while ModelB
depends on ModelC
. They are defined like so:
from django.db import models
class ModelC(models.Model):
content = models.CharField(max_length=128)
class ModelB(models.Model):
model_c = models.ForeignKey(to=ModelC, on_delete=models.CASCADE)
content = models.CharField(max_length=128)
class ModelA(models.Model):
model_b = models.ForeignKey(to=ModelB, on_delete=models.CASCADE)
content = models.CharField(max_length=128)
Our ModelA
serializer, which is the top-level object, looks like this:
from rest_framework import serializers
class ModelASerializer(serializers.ModelSerializer):
class Meta:
model = ModelA
fields = '__all__'
If we serialize an example object we’ll get the following output:
{
"id": 1,
"content": "A content",
"model_b": 1
}
Now let’s say we also want to include ModelB
‘s content when serializing ModelA
. We could add the explicit definition to our ModelASerializer
or use the depth
field.
When we change depth
to 1
in our serializer like so:
from rest_framework import serializers
class ModelASerializer(serializers.ModelSerializer):
class Meta:
model = ModelA
fields = '__all__'
depth = 1
The output changes to the following:
{
"id": 1,
"content": "A content",
"model_b": {
"id": 1,
"content": "B content",
"model_c": 1
}
}
If we change it to 2
our serializer will serialize a level deeper:
{
"id": 1,
"content": "A content",
"model_b": {
"id": 1,
"content": "B content",
"model_c": {
"id": 1,
"content": "C content"
}
}
}
The downside is that you have no control over a child’s serialization. Using
depth
will include all fields on the children, in other words.
Conclusion
In this article, you learned a number of different tips and tricks for using DRF serializers more effectively.
Summary of what specifically we covered:
Concept | Method |
---|---|
Validating data at the field or object level | validate_<field_name> or validate |
Customizing the serialization and deserialization output | to_representation and to_internal_value |
Passing additional data at save | serializer.save(additional=data) |
Passing context to serializers | SampleSerializer(resource, context={'key': 'value'}) |
Renaming serializer output fields | source keyword |
Attaching serializer function responses to data | source keyword |
Fetching data from one-to-one models | source keyword |
Attaching data to the serialized output | SerializerMethodField |
Creating separate read and write serializers | get_serializer_class() |
Setting read-only fields | read_only_fields |
Handling nested serialization | depth field |
why we use validators ?
- Validators are used to validate the data whether it is semantically valid or not.
- Validation simplifies the data processing
- Validation avoids the data redundancy
Custom Validation for serializer fields
Django REST supports both serializers and model serializers. Serializers provides basic validation for fields, In some cases we need to write custom validations for fields .
Let’s take an example for validation for serializer fields.
Case: A company want’s recruit for the position of «django developer». Company set age restriction on applicant that his/her age should be greater than twenty and less than thirty years.
Method-1:
from datetime import date from rest_framework import serializers def age_restriction(dob): today = date.today() age = today.year - dob.year - ((today.month, today.day) < (dob.month, dob.day)) if (not(20 < age < 30)): raise serializers.ValidationError("You are no eligible for the job") return dob class EligibilitySerializer(serializers.Serializer): email = serializers.EmailField() name = serializers.CharField(max_length=200) date_of_birth = serializers.DateField(validators=[age_restriction])
«serializers.Serializer» apply primary validations on the field when we call method «is_valid». Serializer converts the value of the field into python object. After it checks for the attribute «validate_<field_name>» if it has the attribute it will the attribute(method). After this validation it will check for «validators» attribute for the field. validators is list object. so, serializer takes the each validator from the validatiors list and applies it on the field value. After it will call method «validate» and executes validations init.
«validate_<field_name>» recieves field related value but, where as «validate» method recieves the all fields related data and raises «non field errors»
If any one of the validations[above mentioned validation methods] are failed then validation error will be raised otherwise the valid value will be returned.
Method — 2:
from datetime import date from rest_framework import serializers class EligibilitySerializer(serializers.Serializer): email = serializers.EmailField() name = serializers.CharField(max_length=200) date_of_birth = serializers.DateField() def validate_date_of_birth(self, dob): today = date.today() age = today.year - dob.year - ((today.month, today.day) < (dob.month, dob.day)) if (not(20 < age < 30)): raise serializers.ValidationError("You are no eligible for the job") return dob
Test the above serializer with valid data and invalid data
# testing with valid data data = { 'date_of_birth': '1993-04-08', 'email': 'hello@micropyramid.com', 'name': 'Micropyramid' } s = EligibilitySerializer(data=data) print(s.is_valid()) # Output: True print(s.data) # Output: ReturnDict([('email', 'hello@micropyramid.com'), # ('name', 'Micropyramid'), # ('date_of_birth', '1993-14-08')]) # testing with invalid data data = { 'date_of_birth': '1980-04-08', 'email': 'hello@micropyramid.com', 'name': 'Micropyramid' } print(s.is_valid()) # Output: False print(s.errors) # Output: ReturnDict([('date_of_birth', ['You are no eligible for the job'])])
when to use «validate_<field_name>» and «validators» for fields ?
- If we are applying a single validator on the field data we have to go for «validate_<field_name>».
- If we apply more than a single validator then we have to go for «validators».
To Know more about our Django CRM(Customer Relationship Management) Open Source Package. Check Code
About Micropyramid
Micropyramid is a software development and cloud consulting partner for enterprise businesses across the world. We work on python, Django, Salesforce, Angular, Reactjs, React Native, MySQL, PostgreSQL, Docker, Linux, Ansible, git, amazon web services. We are Amazon and salesforce consulting partner with 5 years of cloud architect experience. We develop e-commerce, retail, banking, machine learning, CMS, CRM web and mobile applications.
Need any Help in your Project?Let’s Talk
down
Subscribe To our news letter
Subscribe and Stay Updated about our Webinars, news and articles on Django, Python, Machine Learning, Amazon Web Services, DevOps, Salesforce, ReactJS, AngularJS, React Native.
* We don’t provide your email contact details to any third parties
serializers.py
Expanding the usefulness of the serializers is something that we would
like to address. However, it’s not a trivial problem, and it
will take some serious design work.— Russell Keith-Magee, Django users group
Serializers allow complex data such as querysets and model instances to be converted to native Python datatypes that can then be easily rendered into JSON
, XML
or other content types. Serializers also provide deserialization, allowing parsed data to be converted back into complex types, after first validating the incoming data.
REST framework’s serializers work very similarly to Django’s Form
and ModelForm
classes. It provides a Serializer
class which gives you a powerful, generic way to control the output of your responses, as well as a ModelSerializer
class which provides a useful shortcut for creating serializers that deal with model instances and querysets.
Declaring Serializers
Let’s start by creating a simple object we can use for example purposes:
class Comment(object):
def __init__(self, email, content, created=None):
self.email = email
self.content = content
self.created = created or datetime.datetime.now()
comment = Comment(email='leila@example.com', content='foo bar')
We’ll declare a serializer that we can use to serialize and deserialize Comment
objects.
Declaring a serializer looks very similar to declaring a form:
from rest_framework import serializers
class CommentSerializer(serializers.Serializer):
email = serializers.EmailField()
content = serializers.CharField(max_length=200)
created = serializers.DateTimeField()
def restore_object(self, attrs, instance=None):
"""
Given a dictionary of deserialized field values, either update
an existing model instance, or create a new model instance.
"""
if instance is not None:
instance.email = attrs.get('email', instance.email)
instance.content = attrs.get('content', instance.content)
instance.created = attrs.get('created', instance.created)
return instance
return Comment(**attrs)
The first part of serializer class defines the fields that get serialized/deserialized. The restore_object
method defines how fully fledged instances get created when deserializing data.
The restore_object
method is optional, and is only required if we want our serializer to support deserialization into fully fledged object instances. If we don’t define this method, then deserializing data will simply return a dictionary of items.
Serializing objects
We can now use CommentSerializer
to serialize a comment, or list of comments. Again, using the Serializer
class looks a lot like using a Form
class.
serializer = CommentSerializer(comment)
serializer.data
# {'email': u'leila@example.com', 'content': u'foo bar', 'created': datetime.datetime(2012, 8, 22, 16, 20, 9, 822774)}
At this point we’ve translated the model instance into Python native datatypes. To finalise the serialization process we render the data into json
.
from rest_framework.renderers import JSONRenderer
json = JSONRenderer().render(serializer.data)
json
# '{"email": "leila@example.com", "content": "foo bar", "created": "2012-08-22T16:20:09.822"}'
Customizing field representation
Sometimes when serializing objects, you may not want to represent everything exactly the way it is in your model.
If you need to customize the serialized value of a particular field, you can do this by creating a transform_<fieldname>
method. For example if you needed to render some markdown from a text field:
description = serializers.CharField()
description_html = serializers.CharField(source='description', read_only=True)
def transform_description_html(self, obj, value):
from django.contrib.markup.templatetags.markup import markdown
return markdown(value)
These methods are essentially the reverse of validate_<fieldname>
(see Validation below.)
Deserializing objects
Deserialization is similar. First we parse a stream into Python native datatypes…
from StringIO import StringIO
from rest_framework.parsers import JSONParser
stream = StringIO(json)
data = JSONParser().parse(stream)
…then we restore those native datatypes into a fully populated object instance.
serializer = CommentSerializer(data=data)
serializer.is_valid()
# True
serializer.object
# <Comment object at 0x10633b2d0>
When deserializing data, we can either create a new instance, or update an existing instance.
serializer = CommentSerializer(data=data) # Create new instance
serializer = CommentSerializer(comment, data=data) # Update `comment`
By default, serializers must be passed values for all required fields or they will throw validation errors. You can use the partial
argument in order to allow partial updates.
serializer = CommentSerializer(comment, data={'content': u'foo bar'}, partial=True) # Update `comment` with partial data
Validation
When deserializing data, you always need to call is_valid()
before attempting to access the deserialized object. If any validation errors occur, the .errors
property will contain a dictionary representing the resulting error messages. For example:
serializer = CommentSerializer(data={'email': 'foobar', 'content': 'baz'})
serializer.is_valid()
# False
serializer.errors
# {'email': [u'Enter a valid e-mail address.'], 'created': [u'This field is required.']}
Each key in the dictionary will be the field name, and the values will be lists of strings of any error messages corresponding to that field. The non_field_errors
key may also be present, and will list any general validation errors.
When deserializing a list of items, errors will be returned as a list of dictionaries representing each of the deserialized items.
Field-level validation
You can specify custom field-level validation by adding .validate_<fieldname>
methods to your Serializer
subclass. These are analogous to .clean_<fieldname>
methods on Django forms, but accept slightly different arguments.
They take a dictionary of deserialized attributes as a first argument, and the field name in that dictionary as a second argument (which will be either the name of the field or the value of the source
argument to the field, if one was provided).
Your validate_<fieldname>
methods should either just return the attrs
dictionary or raise a ValidationError
. For example:
from rest_framework import serializers
class BlogPostSerializer(serializers.Serializer):
title = serializers.CharField(max_length=100)
content = serializers.CharField()
def validate_title(self, attrs, source):
"""
Check that the blog post is about Django.
"""
value = attrs[source]
if "django" not in value.lower():
raise serializers.ValidationError("Blog post is not about Django")
return attrs
Object-level validation
To do any other validation that requires access to multiple fields, add a method called .validate()
to your Serializer
subclass. This method takes a single argument, which is the attrs
dictionary. It should raise a ValidationError
if necessary, or just return attrs
. For example:
from rest_framework import serializers
class EventSerializer(serializers.Serializer):
description = serializers.CharField(max_length=100)
start = serializers.DateTimeField()
finish = serializers.DateTimeField()
def validate(self, attrs):
"""
Check that the start is before the stop.
"""
if attrs['start'] > attrs['finish']:
raise serializers.ValidationError("finish must occur after start")
return attrs
Saving object state
To save the deserialized objects created by a serializer, call the .save()
method:
if serializer.is_valid():
serializer.save()
The default behavior of the method is to simply call .save()
on the deserialized object instance. You can override the default save behaviour by overriding the .save_object(obj)
method on the serializer class.
The generic views provided by REST framework call the .save()
method when updating or creating entities.
Dealing with nested objects
The previous examples are fine for dealing with objects that only have simple datatypes, but sometimes we also need to be able to represent more complex objects, where some of the attributes of an object might not be simple datatypes such as strings, dates or integers.
The Serializer
class is itself a type of Field
, and can be used to represent relationships where one object type is nested inside another.
class UserSerializer(serializers.Serializer):
email = serializers.EmailField()
username = serializers.CharField(max_length=100)
class CommentSerializer(serializers.Serializer):
user = UserSerializer()
content = serializers.CharField(max_length=200)
created = serializers.DateTimeField()
If a nested representation may optionally accept the None
value you should pass the required=False
flag to the nested serializer.
class CommentSerializer(serializers.Serializer):
user = UserSerializer(required=False) # May be an anonymous user.
content = serializers.CharField(max_length=200)
created = serializers.DateTimeField()
Similarly if a nested representation should be a list of items, you should pass the many=True
flag to the nested serialized.
class CommentSerializer(serializers.Serializer):
user = UserSerializer(required=False)
edits = EditItemSerializer(many=True) # A nested list of 'edit' items.
content = serializers.CharField(max_length=200)
created = serializers.DateTimeField()
Validation of nested objects will work the same as before. Errors with nested objects will be nested under the field name of the nested object.
serializer = CommentSerializer(data={'user': {'email': 'foobar', 'username': 'doe'}, 'content': 'baz'})
serializer.is_valid()
# False
serializer.errors
# {'user': {'email': [u'Enter a valid e-mail address.']}, 'created': [u'This field is required.']}
Dealing with multiple objects
The Serializer
class can also handle serializing or deserializing lists of objects.
Serializing multiple objects
To serialize a queryset or list of objects instead of a single object instance, you should pass the many=True
flag when instantiating the serializer. You can then pass a queryset or list of objects to be serialized.
queryset = Book.objects.all()
serializer = BookSerializer(queryset, many=True)
serializer.data
# [
# {'id': 0, 'title': 'The electric kool-aid acid test', 'author': 'Tom Wolfe'},
# {'id': 1, 'title': 'If this is a man', 'author': 'Primo Levi'},
# {'id': 2, 'title': 'The wind-up bird chronicle', 'author': 'Haruki Murakami'}
# ]
Deserializing multiple objects for creation
To deserialize a list of object data, and create multiple object instances in a single pass, you should also set the many=True
flag, and pass a list of data to be deserialized.
This allows you to write views that create multiple items when a POST
request is made.
For example:
data = [
{'title': 'The bell jar', 'author': 'Sylvia Plath'},
{'title': 'For whom the bell tolls', 'author': 'Ernest Hemingway'}
]
serializer = BookSerializer(data=data, many=True)
serializer.is_valid()
# True
serializer.save() # `.save()` will be called on each deserialized instance
Deserializing multiple objects for update
You can also deserialize a list of objects as part of a bulk update of multiple existing items.
In this case you need to supply both an existing list or queryset of items, as well as a list of data to update those items with.
This allows you to write views that update or create multiple items when a PUT
request is made.
# Capitalizing the titles of the books
queryset = Book.objects.all()
data = [
{'id': 3, 'title': 'The Bell Jar', 'author': 'Sylvia Plath'},
{'id': 4, 'title': 'For Whom the Bell Tolls', 'author': 'Ernest Hemingway'}
]
serializer = BookSerializer(queryset, data=data, many=True)
serializer.is_valid()
# True
serializer.save() # `.save()` will be called on each updated or newly created instance.
By default bulk updates will be limited to updating instances that already exist in the provided queryset.
When performing a bulk update you may want to allow new items to be created, and missing items to be deleted. To do so, pass allow_add_remove=True
to the serializer.
serializer = BookSerializer(queryset, data=data, many=True, allow_add_remove=True)
serializer.is_valid()
# True
serializer.save() # `.save()` will be called on updated or newly created instances.
# `.delete()` will be called on any other items in the `queryset`.
Passing allow_add_remove=True
ensures that any update operations will completely overwrite the existing queryset, rather than simply updating existing objects.
How identity is determined when performing bulk updates
Performing a bulk update is slightly more complicated than performing a bulk creation, because the serializer needs a way to determine how the items in the incoming data should be matched against the existing object instances.
By default the serializer class will use the id
key on the incoming data to determine the canonical identity of an object. If you need to change this behavior you should override the get_identity
method on the Serializer
class. For example:
class AccountSerializer(serializers.Serializer):
slug = serializers.CharField(max_length=100)
created = serializers.DateTimeField()
... # Various other fields
def get_identity(self, data):
"""
This hook is required for bulk update.
We need to override the default, to use the slug as the identity.
Note that the data has not yet been validated at this point,
so we need to deal gracefully with incorrect datatypes.
"""
try:
return data.get('slug', None)
except AttributeError:
return None
To map the incoming data items to their corresponding object instances, the .get_identity()
method will be called both against the incoming data, and against the serialized representation of the existing objects.
There are some cases where you need to provide extra context to the serializer in addition to the object being serialized. One common case is if you’re using a serializer that includes hyperlinked relations, which requires the serializer to have access to the current request so that it can properly generate fully qualified URLs.
You can provide arbitrary additional context by passing a context
argument when instantiating the serializer. For example:
serializer = AccountSerializer(account, context={'request': request})
serializer.data
# {'id': 6, 'owner': u'denvercoder9', 'created': datetime.datetime(2013, 2, 12, 09, 44, 56, 678870), 'details': 'http://example.com/accounts/6/details'}
The context dictionary can be used within any serializer field logic, such as a custom .to_native()
method, by accessing the self.context
attribute.
—
ModelSerializer
Often you’ll want serializer classes that map closely to model definitions.
The ModelSerializer
class lets you automatically create a Serializer class with fields that correspond to the Model fields.
class AccountSerializer(serializers.ModelSerializer):
class Meta:
model = Account
By default, all the model fields on the class will be mapped to corresponding serializer fields.
Any relationships such as foreign keys on the model will be mapped to PrimaryKeyRelatedField
. Other models fields will be mapped to a corresponding serializer field.
Note: When validation is applied to a ModelSerializer
, both the serializer fields, and their corresponding model fields must correctly validate. If you have optional fields on your model, make sure to correctly set blank=True
on the model field, as well as setting required=False
on the serializer field.
Specifying which fields should be included
If you only want a subset of the default fields to be used in a model serializer, you can do so using fields
or exclude
options, just as you would with a ModelForm
.
For example:
class AccountSerializer(serializers.ModelSerializer):
class Meta:
model = Account
fields = ('id', 'account_name', 'users', 'created')
Specifying nested serialization
The default ModelSerializer
uses primary keys for relationships, but you can also easily generate nested representations using the depth
option:
class AccountSerializer(serializers.ModelSerializer):
class Meta:
model = Account
fields = ('id', 'account_name', 'users', 'created')
depth = 1
The depth
option should be set to an integer value that indicates the depth of relationships that should be traversed before reverting to a flat representation.
If you want to customize the way the serialization is done (e.g. using allow_add_remove
) you’ll need to define the field yourself.
Specifying which fields should be read-only
You may wish to specify multiple fields as read-only. Instead of adding each field explicitly with the read_only=True
attribute, you may use the read_only_fields
Meta option, like so:
class AccountSerializer(serializers.ModelSerializer):
class Meta:
model = Account
fields = ('id', 'account_name', 'users', 'created')
read_only_fields = ('account_name',)
Model fields which have editable=False
set, and AutoField
fields will be set to read-only by default, and do not need to be added to the read_only_fields
option.
Specifying which fields should be write-only
You may wish to specify multiple fields as write-only. Instead of adding each field explicitly with the write_only=True
attribute, you may use the write_only_fields
Meta option, like so:
class CreateUserSerializer(serializers.ModelSerializer):
class Meta:
model = User
fields = ('email', 'username', 'password')
write_only_fields = ('password',) # Note: Password field is write-only
def restore_object(self, attrs, instance=None):
"""
Instantiate a new User instance.
"""
assert instance is None, 'Cannot update users with CreateUserSerializer'
user = User(email=attrs['email'], username=attrs['username'])
user.set_password(attrs['password'])
return user
Specifying fields explicitly
You can add extra fields to a ModelSerializer
or override the default fields by declaring fields on the class, just as you would for a Serializer
class.
class AccountSerializer(serializers.ModelSerializer):
url = serializers.CharField(source='get_absolute_url', read_only=True)
groups = serializers.PrimaryKeyRelatedField(many=True)
class Meta:
model = Account
Extra fields can correspond to any property or callable on the model.
Relational fields
When serializing model instances, there are a number of different ways you might choose to represent relationships. The default representation for ModelSerializer
is to use the primary keys of the related instances.
Alternative representations include serializing using hyperlinks, serializing complete nested representations, or serializing with a custom representation.
For full details see the serializer relations documentation.
HyperlinkedModelSerializer
The HyperlinkedModelSerializer
class is similar to the ModelSerializer
class except that it uses hyperlinks to represent relationships, rather than primary keys.
By default the serializer will include a url
field instead of a primary key field.
The url field will be represented using a HyperlinkedIdentityField
serializer field, and any relationships on the model will be represented using a HyperlinkedRelatedField
serializer field.
You can explicitly include the primary key by adding it to the fields
option, for example:
class AccountSerializer(serializers.HyperlinkedModelSerializer):
class Meta:
model = Account
fields = ('url', 'id', 'account_name', 'users', 'created')
How hyperlinked views are determined
There needs to be a way of determining which views should be used for hyperlinking to model instances.
By default hyperlinks are expected to correspond to a view name that matches the style '{model_name}-detail'
, and looks up the instance by a pk
keyword argument.
You can change the field that is used for object lookups by setting the lookup_field
option. The value of this option should correspond both with a kwarg in the URL conf, and with a field on the model. For example:
class AccountSerializer(serializers.HyperlinkedModelSerializer):
class Meta:
model = Account
fields = ('url', 'account_name', 'users', 'created')
lookup_field = 'slug'
Note that the lookup_field
will be used as the default on all hyperlinked fields, including both the URL identity, and any hyperlinked relationships.
For more specific requirements such as specifying a different lookup for each field, you’ll want to set the fields on the serializer explicitly. For example:
class AccountSerializer(serializers.HyperlinkedModelSerializer):
url = serializers.HyperlinkedIdentityField(
view_name='account_detail',
lookup_field='account_name'
)
users = serializers.HyperlinkedRelatedField(
view_name='user-detail',
lookup_field='username',
many=True,
read_only=True
)
class Meta:
model = Account
fields = ('url', 'account_name', 'users', 'created')
Overriding the URL field behavior
The name of the URL field defaults to ‘url’. You can override this globally, by using the URL_FIELD_NAME
setting.
You can also override this on a per-serializer basis by using the url_field_name
option on the serializer, like so:
class AccountSerializer(serializers.HyperlinkedModelSerializer):
class Meta:
model = Account
fields = ('account_url', 'account_name', 'users', 'created')
url_field_name = 'account_url'
Note: The generic view implementations normally generate a Location
header in response to successful POST
requests. Serializers using url_field_name
option will not have this header automatically included by the view. If you need to do so you will ned to also override the view’s get_success_headers()
method.
You can also override the URL field’s view name and lookup field without overriding the field explicitly, by using the view_name
and lookup_field
options, like so:
class AccountSerializer(serializers.HyperlinkedModelSerializer):
class Meta:
model = Account
fields = ('account_url', 'account_name', 'users', 'created')
view_name = 'account_detail'
lookup_field='account_name'
Advanced serializer usage
You can create customized subclasses of ModelSerializer
or HyperlinkedModelSerializer
that use a different set of default fields.
Doing so should be considered advanced usage, and will only be needed if you have some particular serializer requirements that you often need to repeat.
Dynamically modifying fields
Once a serializer has been initialized, the dictionary of fields that are set on the serializer may be accessed using the .fields
attribute. Accessing and modifying this attribute allows you to dynamically modify the serializer.
Modifying the fields
argument directly allows you to do interesting things such as changing the arguments on serializer fields at runtime, rather than at the point of declaring the serializer.
Example
For example, if you wanted to be able to set which fields should be used by a serializer at the point of initializing it, you could create a serializer class like so:
class DynamicFieldsModelSerializer(serializers.ModelSerializer):
"""
A ModelSerializer that takes an additional `fields` argument that
controls which fields should be displayed.
"""
def __init__(self, *args, **kwargs):
# Don't pass the 'fields' arg up to the superclass
fields = kwargs.pop('fields', None)
# Instantiate the superclass normally
super(DynamicFieldsModelSerializer, self).__init__(*args, **kwargs)
if fields:
# Drop any fields that are not specified in the `fields` argument.
allowed = set(fields)
existing = set(self.fields.keys())
for field_name in existing - allowed:
self.fields.pop(field_name)
This would then allow you to do the following:
>>> class UserSerializer(DynamicFieldsModelSerializer):
>>> class Meta:
>>> model = User
>>> fields = ('id', 'username', 'email')
>>>
>>> print UserSerializer(user)
{'id': 2, 'username': 'jonwatts', 'email': 'jon@example.com'}
>>>
>>> print UserSerializer(user, fields=('id', 'email'))
{'id': 2, 'email': 'jon@example.com'}
Customising the default fields
The field_mapping
attribute is a dictionary that maps model classes to serializer classes. Overriding the attribute will let you set a different set of default serializer classes.
For more advanced customization than simply changing the default serializer class you can override various get_<field_type>_field
methods. Doing so will allow you to customize the arguments that each serializer field is initialized with. Each of these methods may either return a field or serializer instance, or None
.
get_pk_field
Signature: .get_pk_field(self, model_field)
Returns the field instance that should be used to represent the pk field.
get_nested_field
Signature: .get_nested_field(self, model_field, related_model, to_many)
Returns the field instance that should be used to represent a related field when depth
is specified as being non-zero.
Note that the model_field
argument will be None
for reverse relationships. The related_model
argument will be the model class for the target of the field. The to_many
argument will be a boolean indicating if this is a to-one or to-many relationship.
Signature: .get_related_field(self, model_field, related_model, to_many)
Returns the field instance that should be used to represent a related field when depth
is not specified, or when nested representations are being used and the depth reaches zero.
Note that the model_field
argument will be None
for reverse relationships. The related_model
argument will be the model class for the target of the field. The to_many
argument will be a boolean indicating if this is a to-one or to-many relationship.
get_field
Signature: .get_field(self, model_field)
Returns the field instance that should be used for non-relational, non-pk fields.
Example
The following custom model serializer could be used as a base class for model serializers that should always exclude the pk by default.
class NoPKModelSerializer(serializers.ModelSerializer):
def get_pk_field(self, model_field):
return None
Third party packages
The following third party packages are also available.
MongoengineModelSerializer
The django-rest-framework-mongoengine package provides a MongoEngineModelSerializer
serializer class that supports using MongoDB as the storage layer for Django REST framework.
GeoFeatureModelSerializer
The django-rest-framework-gis package provides a GeoFeatureModelSerializer
serializer class that supports GeoJSON both for read and write operations.
HStoreSerializer
The django-rest-framework-hstore package provides an HStoreSerializer
to support django-hstore DictionaryField
model field and its schema-mode
feature.