Сферическая аберрация как исправить

Работа по теме: физика моя. Глава: 1. Что такое сферическая аберрация и способы её устранения (ответ поясните рисунком)?. Предмет: Физика. ВУЗ: СГМУ.

Сфери́ческая аберра́ция — аберрация
оптических систем; нарушение
гомоцентричности пучков лучей от
точечного источника, прошедших через
оптическую систему без нарушения
симметрии строения этих пучков (в отличие
от комы и астигматизма).

Как и другие аберрации
третьего порядка, сферическая аберрация
зависит от кривизны поверхностей и
оптической силы линзы. Поэтому применение
оптических стёкол с высокими показателями
преломления позволяют уменьшить
сферическую аберрацию, посредством
увеличения радиусов поверхностей линзы
при сохранении её оптической силы.

Заметное влияние
на сферическую аберрацию оказывает
диафрагмирование объектива (или иной
оптической системы), так как при этом
отсекаются краевые лучи широкого пучка.

Достаточно успешно сферическая аберрация
исправляется при помощи комбинации из
положительной и отрицательной линз.
Причём, если линзы не склеиваются, то,
кроме кривизны поверхностей компонентов,
на величину сферической аберрации будет
влиять и величина воздушного зазора
(даже в том случае, если поверхности,
ограничивающие этот воздушный промежуток,
имеют одинаковую кривизну).

Небольшая величина сферической аберрации
может быть исправлена за счёт некоторой
дефокусировки объектива. При этом
плоскость изображения смещается к
«плоскости лучшей установки», находящейся,
как правило, посередине, между пересечением
осевых и крайних лучей, и не совпадающей
с самым узким местом пересечения всех
лучей широкого пучка (диском наименьшего
рассеяния).

Уменьшение влияния сферической
аберрации

1. диафрагмированием;

2. с помощью дефокусировки.

2.
Хроматическая аберрация и способ её
устранения (ответ поясните ри-сунком).

Хромати́ческие
аберра́ции заключаются в паразитной
дисперсии света, проходящего через
оптическую систему (фотографический
объектив, бинокль, микроскоп, телескоп
и т.д.). При этом белый свет разлагается
на составляющие его цветные лучи, в
результате чего изображения предмета
в разных цветах не совпадают в пространстве
изображений.

Хроматические аберрации
ведут к снижению чёткости изображения,
а иногда также и к появлению на нём
цветных контуров, полос, пятен, которые
у предмета отсутствуют.
Диафрагмирование несколько
её уменьшает.

Хроматизм положения может быть исправлен
путем комбинирования собирательной и
рассеивающей линз из стёкол с различной
дисперсией.

На этапе конструирования
хроматические аберрации также могут
быть уменьшены, если в конструкции
оптического прибора применяются такие
оптические элементы, как линзы из особых
оптических стёкол (курцфлинт, лангкрон),
зеркала или зонные пластинки.

Хроматизм положения (1) и его уменьшение
с помощью ахроматической линзы (2)

Схема исправления хроматизма
положения: 1 — крон, 2 — флинт, 3 — зелёный
луч, 4 — точка сведе́ния синего и красного
лучей.

Соседние файлы в предмете Физика

  • #
  • #
  • #
  • #
  • #
  • #

Макеты страниц

Сферическая аберрация в широких наклонных пучках, являясь одной из аберраций высшего порядка, разделяется на несколько составляющих: меридиональную и сагиттальную сферические аберрации, наблюдаемые при ходе апертурных лучей в меридиональной и в сагиттальной плоскостях, и третью составляющую, которая проявляет себя лишь в плоскостях, расположенных между меридиональной и сагиттальной плоскостями.

Наиболее ощутимой из этих трех составляющих является меридиональная сферическая аберрация; это становится очевидным при изучении работы менискообразных линз с ближним расположением входного зрачка.

Борьба со сферической аберрацией в наклонйых пучках йай-более успешно протекает в том случае, когда при компоновке оптической системы удается избежать введения конструктивных элементов, обладающих быстрым ростом сферической аберрации по полю, и ограничиться созданием оптической системы из элементов, у которых сферическая аберрация сохраняется по полю постоянной. Такое положение, как это мы уже видели, имеет место для концентрических и апланатических поверхностей.

Однако устранение полевой сферической аберрации в ее зародыше не всегда оказывается возможным.

Рис. 19.14. Пластинка Шмидта

Рис. 19.15. Тонкая линза, совмещенная со зрачком

Поэтому довольно часто приходится идти на использование приемов взаимной компенсации полевой сферической аберрации при ее суммировании от различных элементов системы.

Основным источником возникновения полевой сферической аберрации можно назвать тонкие линзы, расположенные вблизи материальной диафрагмы, что в значительной степени объясняется сужением наклонного пучка лучей в меридиональной плоскости по отношению к осевому; это явление достаточно ярко проявляется даже в случае коррекционной пластинки Шмидта, представленной на рис. 19.14.

Совершенно очевидно, что компенсация полевой сферической аберрации другим каким-либо элементом, также расположенным вблизи материальной диафрагмы, практически исключается. Тогда компенсирующие элементы будем вынуждены размещать на некотором расстоянии от материальной диафрагмы, в том числе и при расположении между корригирующими элементами и диафрагмой других конструктивных элементов системы, которые могут обладать значительной дисторсией.

В § 41 уже указывалось на это обстоятельство, мешающее одновременной компенсации меридиональной и сагиттальной составляющих полевой сферической аберрации, следствием чего являлось возникновение сложных форм изображения точки в оптической системе.

На рис. 19.15 представлена Тонкая Лийза, соймёщеннай со зрачком входа. Предположим, что на остром крае этой линзы крайний луч апертурного пучка, параллельного оси, претерпевает минимальный угол отклонения равный апертурному углу Примем, что для этого луча величина сферической аберрации вдоль оси равна

Преломление луча на остром крае линзы можно рассматривать как случай отклонения луча, создаваемого клином с малым преломляющим углом О, или как случай поворота второй плоскости плоскопараллельной пластинки на некоторый малый угол

Можно связать угол отклонения луча а с углом О клина. Для исходной плоскопараллельной пластинки:

После поворота второй плоскости на угол угол будет выражаться суммой

Дифференцируя формулу закона преломления, для второй плоскости можно написать

и тогда угол может быть выражен

Угол отклонения будет равен

Для апертурного луча, параллельного оси, углы соответственно равны нулю, и тогда угол а примет значение

Составляя отношение углов находим

Угол может рассматриваться как апертурный угол в меридиональной плоскости. Таким образом,

Ширина наклонного пучка лучей (рис. 19.15) будет равна проекции ширины осевого пучка на плоскость, перпендикулярную главному лучу, поэтому

Для тонкой линзы, совпадающей со зрачком входа, пользуясь дважды меридиональным инвариантом, можно написать:

Складывая эти два выражения и учитывая, что при равенстве углов будут равны и отрезки находим после сокращения

Так как углы формула (19.91) может быть переписана

и для нулевых лучей, при

что позволяет из формулы (19.93) исключить радиусы Таким образом,

Сферическую аберрацию на оси можно определить как разность отрезков

где отрезок равен отношению высоты к апертурному углу Тогда

Для меридионального апертурного луча меридиональная, сферическая аберрация может быть также определена как разность соответствующих отрезков

согласно формулам (19.89) и (19.90),

или

Пользуясь формулой (19.96), получим

из которой вытекает, что меридиональная продольная сферическая аберрация будет уменьшаться по отношению к осевой продольной сферической аберрации приблизительно по квадрату косинуса полевого угла

От продольных сферических аберраций можно перейти к поперечным аберрациям, перпендикулярным главному лучу. Находим

Обратим внимание на то обстоятельство, что отрезок который можно рассматривать как меридиональное фокусное расстояние вдоль главного луча, значительно меньше отрезка

При устранении меридиональной кривизны отрезок должен возрасти до величины и тогда должно возникнуть меридиональное линейное увеличение равное отношению этих отрезков,

Поперечная меридиональная сферическая аберрация для выпряленного изображения получится равной

и уже возрастающей при росте изображения обратно пропорционально квадрату косинуса полевого угла

Величины рассматривались в плоскостях, перпендикулярных главному лучу; поэтому, переходя к поперечным аберрациям в плоскостях, перпендикулярных оси системы, следует разделить величины на косинус полевого угла Таким образом,

откуда следует, что величина будет возрастать обратно пропорционально кубу косинуса полевого угла

Не делая специального вывода, ограничимся замечанием, что и в сагиттальной плоскости тоже будет происходить рост сагиттальной сферической аберрации, но уже приблизительно обратно пропорционально первой степени полевого угла.

  • Печать

Страницы: [1] 2 След.»  Все   Вниз

A A A A

Тема: Как исправить сферическую аберрацию зеркало?  (Прочитано 2544 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Купил телескоп BOSMA 150 EQ со сферическим зеркалом с F=505 мм с линзовым «корректором» в районе фокуса. Но она фактически сферическую аберрацию не исправляет. Как известно в камере Райта вместе с корректором применяется сплюснутый сфероид. Можно ли исправить сферическую аберрацию только с помощью корректора, без фигуризации главного зеркало? Не хочу трогать зеркало, по тому что нет возможности восстановить покрытие из алюминия.       


Записан

бинокль 12Х40, 7Х50, 108, 150, 250 мм самодельные рефлекторы.


Конечно можно — сделайте пластинку Шмидта, при таких параметрах у неё очень небольшой рельеф.


Записан


Конечно можно — сделайте пластинку Шмидта, при таких параметрах у неё очень небольшой рельеф.

Т.е. Вы думаете трогать зеркало не обязательно, достаточно изготовить корректор. К стати у меня имеется плоскопараллельная пластина с диаметром 140 мм и толщиной 8 мм. Но не знаю марки стекла.


Записан

бинокль 12Х40, 7Х50, 108, 150, 250 мм самодельные рефлекторы.


Знание свойств стекла не требуется в случае с КП Шмидта: асферизуете пластину, ориентируясь по теневой картине всего объектива в сборе. Это — известный приём.
Другая плоскость пластины должна быть достаточно хорошей (плавной): асферизуя вторую поверхность, Вы одновременно будете исправлять и ошибки первой поверхности.
После получения удовлетворительной сфер. аберрации можно заняться и хроматизмом, если он окажется большим. Для этого придётся варьировать радиусом кривизны первой поверхности КПШ, одновременно корректируя и сферичку второй поверхностью КПШ.

Геморно (как здесь некоторые говорят)? Так занятие оптикой — не для слабонервных …

« Последнее редактирование: 09 Мар 2018 [14:46:59] от ekvi »


Записан


Понятно. Спасибо за ответ.


Записан

бинокль 12Х40, 7Х50, 108, 150, 250 мм самодельные рефлекторы.


Положения корректора вдоль оптической оси влияет на величину коррекции, попробуйте разные положения.


Записан


Я почему-то думал, что корректор— пластина Шмидта— исправляет кому, а сферичку компенсирует мениск. Походу, отстал от жизни. ???


Записан

Нам тайны не раскрытые раскрыть пора,
Лежат без пользы тайны, как в копилке.
Мы тайны эти с корнем вырвем у ядра,
На волю пустим Джина из бутылки.


Комы в камере Шмидта и без пластинки нет — её исправляет положение апертурной диафрагмы на расстоянии радиуса кривизны от сферического зеркала.


Записан


Комы в камере Шмидта и без пластинки нет — её исправляет положение апертурной диафрагмы на расстоянии радиуса кривизны от сферического зеркала.

Да, спасибо. Прочитал у Сикорука. Там он описывает процесс изготовления пластины корректора для камеры Шмидта и ее контроль. :)


Записан

Нам тайны не раскрытые раскрыть пора,
Лежат без пользы тайны, как в копилке.
Мы тайны эти с корнем вырвем у ядра,
На волю пустим Джина из бутылки.


Положения корректора вдоль оптической оси влияет на величину коррекции, попробуйте разные положения.

влияет на величину коррекции… всех аберраций, не только сферической, но и комы. А если при перемещении корректор ещё и сместится с оси, например, на 1-2 сотки, или закосится, то при своих крутых радиусах он такое покажет — мама не горюй!


Записан


А если при перемещении корректор ещё и сместится с оси, например, на 1-2 сотки, или закосится, то при своих крутых радиусах он такое покажет — мама не горюй!

Вот из книги Сикорука:
«…При относительных отверстиях около 1/2,5—1/3 наклоны пластины к оптической оси на несколько градусов практически не сказываются ни на теневой картине, ни на изображении точки, так же как и при смещении пластины на несколько миллиметров с оси. В этом легко убедиться во время испытаний.»
Правда там речь идет о фотографической камеры Шмидта.


Записан

Нам тайны не раскрытые раскрыть пора,
Лежат без пользы тайны, как в копилке.
Мы тайны эти с корнем вырвем у ядра,
На волю пустим Джина из бутылки.


Вот из книги Сикорука

Обратите внимание: Л.Л. Сикорук говорит о КП Шмидта. А Gleb1964 предлагал вводить коррекцию сферички штатным (малоразмерным) корректором телескопа ТС:

Купил телескоп BOSMA 150 EQ со сферическим зеркалом с F=505 мм с линзовым «корректором» в районе фокуса.


Записан


Положения корректора вдоль оптической оси влияет на величину коррекции, попробуйте разные положения.

А я думал, — практически вообще не влияет. Ну, в разумных, конечно, пределах, а не на километры если двигать. Но, конечно, если корректор окажется так, что свет будет проходить через него дважды, — то повлияет, но это уже, как бы, — совсем другая оптическая система с другим количеством поверхностей. А так, положение корректора Шмидта — влияет только на кому

Единственное, что никак не мог понять — вот что:
а) почему шмидт-кассегрены (не путать с классическими шмидтами для фотографирования в прямом фокусе), всё же, — обладают комой. Неужели их нельзя рассчитать на компенсацию комы как таковой — вообще?
б) почему сразу во многих местах я встречал утверждения, что кома шмидт-кассегренов может быть скомпенсирована кома-корректором, предназначенным для параболического зеркала (типа Росса или Винне, в том числе «Паракор» от фирмы Телевью). Ведь если Ш-К обладает комой, то с какого перепугу она должна иметь такую же величину (ну, или коэффициент при линейном члене зависимости величины комы от расстояния от оси), как и у параболического зеркала (или классического Кассегрена)?
Это — что, какая-то глубинная математическая закономерность? Или особенность конкретной модели ШК конкретного производителя?


Записан


б) почему сразу во многих местах я встречал утверждения, что кома шмидт-кассегренов может быть скомпенсирована кома-корректором, предназначенным для параболического зеркала (типа Росса или Винне, в том числе «Паракор» от фирмы Телевью). Ведь если Ш-К обладает комой, то с какого перепугу она должна иметь такую же величину (ну, или коэффициент при линейном члене зависимости величины комы от расстояния от оси), как и у параболического зеркала (или классического Кассегрена)?

Меня этот вопрос тоже интересует. В частности, обладаю ШК Celestron Nexstar 8 SE и корректором комы Baader MPCC II. У этого корректора есть свойство — изменением рабочего отрезка можно регулировать степерь коррекции комы. Вот и думаю, можно ли с обычного ШК сделать что-то типа EDGE HD или ACF  :)


Записан


Кома — поперечная сферичка. И возникает она в тех случаях, когда на значительном отрезке вносится значительная сферичка. Для бескорректорной камеры Шмидта — внесли сферичку соответствующую сфере на дистанции в радиус — исправили кому голого зеркала. А если попытаемся двигать диафрагму у параболы, то сколько ни пыжься, эффекта не будет, поскольку у параболы сферички нет.

Поэтому и бесполезно ожидать «волшебной» версии MPCC, не вносящую сферичку. Её просто не может быть, поскольку ему и надо внести сферичку, именно для исправления комы одной тонкой группой. А исправляется сферичка в полном Россе, с мениском, который сейчас вошёл в ширпотреб, то ли по невежеству, то ли по борзости Рове называемый «Rowe coma corrector», в то время как правильная расшифровка — Ross coma corrector.

А вообще такие темы возникают раз за разом именно потому, что многие вместо чтения Михельсона читают зачем-то Сикорука, хотя смысла в этом сейчас крайне мало, особенно если цель просто разобраться в принципах работы телескопа, а не тереть его самому. Сикорук был актуален только в условиях недостатка профессиональной отечественной и объёмной любительской зарубежной литературы, которая и по объёму, и по качеству изложения с ним несопоставима.


Записан


Единственное, что никак не мог понять — вот что:
а) почему шмидт-кассегрены (не путать с классическими шмидтами для фотографирования в прямом фокусе), всё же, — обладают комой. Неужели их нельзя рассчитать на компенсацию комы как таковой — вообще?
б) почему сразу во многих местах я встречал утверждения, что кома шмидт-кассегренов может быть скомпенсирована кома-корректором, предназначенным для параболического зеркала (типа Росса или Винне, в том числе «Паракор» от фирмы Телевью). Ведь если Ш-К обладает комой, то с какого перепугу она должна иметь такую же величину (ну, или коэффициент при линейном члене зависимости величины комы от расстояния от оси), как и у параболического зеркала (или классического Кассегрена)?
Это — что, какая-то глубинная математическая закономерность? Или особенность конкретной модели ШК конкретного производителя?
[/quote]

На часть ваших вопросов есть ответы в моей книге «Новые серийные телескопы и аксессуары», 2014 г. стр. 104 — 114.


Записан


б) почему сразу во многих местах я встречал утверждения, что кома шмидт-кассегренов может быть скомпенсирована кома-корректором, предназначенным для параболического зеркала (типа Росса или Винне, в том числе «Паракор» от фирмы Телевью). Ведь если Ш-К обладает комой, то с какого перепугу она должна иметь такую же величину (ну, или коэффициент при линейном члене зависимости величины комы от расстояния от оси), как и у параболического зеркала (или классического Кассегрена)?

Меня этот вопрос тоже интересует. В частности, обладаю ШК Celestron Nexstar 8 SE и корректором комы Baader MPCC II У этого корректора есть свойство — изменением рабочего отрезка можно регулировать степерь коррекции комы. Вот и думаю, можно ли с обычного ШК сделать что-то типа EDGE HD или ACF  :)

разве Baader MPCC II не предназначен только ддя ньютона? По характеристикам он для  f/3.5 до f/6 а у 8 Se f10.  Нужно Starizona 0.63x Astrofoto Korrektor für Schmidt Cassegrain Teleskope

« Последнее редактирование: 11 Мар 2018 [09:55:17] от art-xrom »


Записан

HEQ-5 Syn Scan  c 2015 —
2001 sw с 2017
Гид SW 80400 c 2015-2017
Труба Турист-5  с 1990 —
  canon 550 D nikon FG-20 (плёночный)
Объективы: юпитер 37, 21, зенитар 16/2.6


а) почему шмидт-кассегрены (не путать с классическими шмидтами для фотографирования в прямом фокусе), всё же, — обладают комой. Неужели их нельзя рассчитать на компенсацию комы как таковой — вообще?

Можно конечно, но за все приходится платить. Либо асферизацией по крайней мере одного из зеркал, либо увеличением длины трубы вдвое, как в системе Бейкера-Шмидта. Последняя система в оптическом плане вообще крайне совершенна, поскольку при отсутствии комы поле у нее практически плоское, а астигматизм ничтожен. И даже эти небольшие аберрации исправляются, если сделать главное зеркало слабо эллиптическим.


Записан

На Тау-Ките
Живут в красоте,
Живут, между прочим, по-разному
Товарищи наши по разуму.


такие темы возникают раз за разом именно потому, что многие вместо чтения Михельсона читают зачем-то Сикорука

, называя при этом последнего «КЛАССИКОМ»!

Дрюше и др.: ответы на Ваши вопросы о коме 2х-зеркальных систем смотрите в чудесной книге В.Н. Чуриловского «Теория хроматизма и аберраций третьего порядка».


Записан


если корректор окажется так, что свет будет проходить через него дважды, — то повлияет

И только на сферичку, а на кому повлиять будет не способен — см. Г.Г. Слюсарева, 1975, с.351.


Записан


  • Печать

Страницы: [1] 2 След.»  Все   Вверх

  • Астрофорум – астрономический портал »
  • Практическая астрономия »
  • Телескопостроение, оптика (Модераторы: Ivan7enych, dont_panic) »
  • Как исправить сферическую аберрацию зеркало?

Исправление — сферическая аберрация

Cтраница 1

Исправление сферической аберрации в объективах основано на следующем принципе. Лучи краевой зоны после преломления их рассеивающей линзой направляются уже не в точку F4, а в точку FJ, в которой фокусируются лучи центрального пучка. Одновременно несколько уменьшается и аберрация лучей, прошедших сквозь промежуточные зоны линзы.
 [2]

Для исправления сферической аберрации при наличии пятых порядков обычно добиваются уничтожения сферической аберрации на краю отверстия при некотором заданном угле иг или величине хг.
 [3]

Для исправления сферической аберрации зеркал ( например, прожекторов) им обычно придают не сферическую форму, а вид параболоида вращения, располагая источник в фокусе; в таких зеркалах при тщательном их выполнении сферическую аберрацию можно сделать очень малой. Хорошо исправленными могут быть отражатели, обе поверхности которых сферические, но разной кривизны; задняя, посеребренная, имеет меньшую кривизну. Отраженный свет испытывает дополнительное преломление в стекле отражателя, который играет роль рассеивающей линзы ( тоньше в середине), рассчитанной так, чтобы исправить аберрацию задней поверхности.
 [4]

Наибольшие трудности представляет исправление меридиональной и сагиттальной сферической аберрации в широких наклонных пучках. Решающим в этом деле является устранение или ослабление роста полевых сферических аберраций, что в большей или меньшей мере может быть обеспечено использованием в силовых элементах концентрических линз.
 [5]

Очевидно, что при исправлении сферической аберрации значения остальных аберраций существенно меняются, но остаются довольно большими и лишь при значениях d, больших 0 3 и 0 4, становятся достаточно малыми Во второй графе приведены зна — — чения е, при которых сферическая аберрация исправлена.
 [6]

Простейше оптической системой, удовлетворяющей трем условиям исправления сферической аберрации, комы и хроматической аберрации положения, является двухлинзовый склееи-ный объектив при надлежащей подборе стекол.
 [7]

Объективы ОМ-16, ОМ-25 имеют коррекционные оправы для исправления сферической аберрации, вызываемой изменением толщины покровного стекла от 0 10 до 0 20 мм.
 [8]

Апохроматические объективы представляют собой оптические системы, обеспечивающие лучшее исправление сферической аберрации, астигматизма и комы, по сравнению с ахроматами. Кроме того апохроматы отличаются от ахроматов улучшенной хроматической коррекцией, устраняющей вторичный спектр. Однако апохроматы дают более заметную кривизну поля изображения, что приводит к нерезкости последнего по краям. При работе с этими объективами большое значение приобретает центрировка всей оптической системы микроскопа. Изображение поля с помощью апохроматов получается выпуклым, лишенным плоскостности.
 [9]

В предыдущем параграфе был затронут вопрос о возможности исправления сферической аберрации в воздушных телеанастигматических линзах путем подбора показателей преломления первой и последней среды.
 [10]

После того как в результате решения системы уравнений для исправления сферической аберрации, комы и астигматизма получены приближенные значения всех конструктивных элементов, целесообразно передать продолжение расчета ЭВМ для доведения системы до оптимального состояния.
 [11]

Полученные результаты говорят о том, что общепринятый характер исправления сферической аберрации с учетом аберрации пятого порядка не обеспечивает устранения волновой аберрации на краю отверстия; однако при использовании некоторой расфокусировки величины волновой аберрации могут быть существенно уменьшены.
 [12]

Как уже упоминалось ранее, возможен случай, когда при исправлении сферической аберрации вдоль одной из координатных осей не удастся полностью устранить сферическую аберрацию вдоль другой координатной оси.
 [13]

Рассматривая концентрические системы, мы не показали их возможностей в исправлении сферической аберрации; эта задача может быть решена путем использования склеенных концентрических поверхностей нужного радиуса кривизны при выбранных должным образом показателях преломления по обе стороны поверхности склейки. Способы исправления сферической аберрации для концентрических систем будут рассмотрены в гл.
 [14]

Максутовым компенсаторы не совсем подходят под категорию афокальных компенсаторов, так как исправление сферической аберрации, вызванное ими, осуществляется благодаря отступлению от афокальности и отчасти вследствие сравнительно большой толщины мениска. К тому же следует отметить, что исправление сферической аберрации возможно только при больших крутизнах сферических поверхностей, а это вызывает появление значительных аберраций высших порядков.
 [15]

Страницы:  

   1

   2

   3

   4

Благородное зло — Сферическая Аберрация

Идеальных вещей не существует… Не существует и идеального объектива — объектива, способного строить изображение бесконечно малой точки в виде бесконечно малой точки. Виной тому — сферическая аберрация.

Сферическая аберрация — искажение, возникающее из-за разности фокусов для лучей, проходящих на разных расстояних от оптической оси. В отличие от описанных ранее комы и астигматизма, это искажение не является ассиметричным и приводит к равномерному расхождению лучей от точечного источника света.

Сферическая аберрация присуща в разной степени всем объективам, за немногим исключением (одно известное мне — Эра-12, у нее резкость в большей мере ограничена хроматизмом) именно это искажение ограничивает резкость объектива на открытой диафрагме.

Схема 1 (Википедия). Появление сферической аберрации

Сферическая аберрация имеет много лиц — иногда ее величают благородным «софтом», иногда — низкопробным «мылом», она в большей мере формирует боке объектива. Благодар ей Триоплан 100/2.8 — генератор пузырей, а Новый Петцваль Ломографического общества имеет контроль размытия… Впрочем, обо всем по порядку.

Как проявляется сферическая аберрация на снимке

-Наиболее очевидным проявлением является нерезкость контуров объекта в зоне резкости («свечение контуров», «софт-эффект»), скрадывание мелких деталей, ощущение дефокусировки («мыло» — в тяжелых случаях);

Пример сферической аберрации (софт) на снимке, выполненном на Индустар-26М от ФЭД, F/2.8

-Гораздо менее очевидным является проявление сферической аберрации в боке объектива. В зависимости от знака, степени исправления и пр. сферическая аберрация может формировать различные кружки нерезкости.

Пример снимка на Триплет 78/2.8 (F/2.8) — кружки нерезкости имеют яркую кайму и светлый центр — объектив имеет большую величину сферической аберрации

Пример снимка на апланат КО-120М 120/1.8 (F/1.8) — кружок нерезкости имеет слабо выраженную кайму, но она таки есть. У объектива, судя по тестам (опубликованы мною ранее в иной статье) — сферическая аберрация невелика

И, как пример объектива, у которого величина сферической аберрации несказанно мала — снимок на Эра-12 125/4 (F/4). Кружок вообще лишен каймы, распределение яркости очень ровное. Это говорит о превосходной коррекции объектива (что действительно правда).

Устранение сферической абберации

-Основной способ — диафрагмирование. Отсекание «лишних» пучков позволяет хорошо поднимать резкость.

Схема 2 (Википедия) — уменьшение сферической аберрации с помощью диарфамы (1 рис.) и с помощью дефокусировки (2 рис.). Способ дефокусировки обычно не подходит для фотографии.

Примеры фотографий миры (вырезан центр) на разных диафрагмах — 2.8, 4, 5.6 и 8, выполненнах с помощью объектива Индустар-61 (ранний, ФЭД).

F/2.8 — заматен довольно сильный софт

F/4 — софт уменьшился, улучшилась детализация снимка

F/5.6 — софт практически отутствует

F/8 — софт отсутствует, хорошо видны мелкие детали

-В графических редакторах можно использовать функции повышения резкости и удаления размытия, что позволяет несколько уменьшить негативный эффект сферической аберрации.

-Иногда сферическая аберрация возникает из-за неисправности объектива. Обычно — нарушения промежутков между линзами. Помогает юстировка.

Например, есть подозрение, что при пересчете Юпитер-9 на ЛЗОС пошло что-то не так: в сравнении с Юпитер-9 производства КМЗ, резкость у ЛЗОС просто отсутствует из-а огромной сферической аберрации. Де-факто — объективы отличаются абсолютно всем ,кроме циферок 85/2. Белый может биться с Canon 85/1.8 USM, а черный — разве что с Триплетом 78/2.8 и софт-объективами.

Снимок на черный Юпитер-9 80-х годов, ЛЗОС (F/2)

Снимок на белый Юпитер-9 1959 г., КМЗ (F/2)

Отношение к сферической аберрации фотографа

-Сферическая аберрация снижает резкость снимка и иногда неприятна — кажется, что объект не в фокусе. Не следует в обычной съемке использовать оптику с повышенной сфрической аберрацией.

-Однако сферическая аберрация — неотъемлемая часть рисунка обеъктива. Без нее не было бы красивых мягких портретов на Таир-11, сумасшедших сказочных моноклевых пейзажей, пузырчатого боке знаменитого Meyer Trioplan, «гороха» Индустара-26М и «объемных» кружков в виде кошачьего глаза у Zeiss Planar 50/1.7. Не стоит пытаться избавиться от сферической аберрации в объективах — стоит пытаться найти ей применение. Хотя, конечно, избыточная сферическая аберрация в большинстве случаев ничего хорошего не несет.

Выводы

В статье мы подробно разобрали влияние сферической аберрации на фотографию: на резкость, боке, эстетичность и пр.

Можно отметить, что:

-невозможно полностью избавиться от описанного искжаения;

-резкость большинства объективов ограничивается именно сферической аберрацией;

-сферическую аберрацию часто именуют софтом, «свечением» (когда имеют ввиду мягкую картинку со сниженной детализацией) или

«мылом» (когда детализация крайне плоха);

-сферическая аберрация более всех прочих влияет на так называемый «рисунок» объектива;

-искажение может иметь разные формы и по-разному проявлять себя на снимке;

-степень проявления сферических аберраций очень важно оценить при выборе объектива.

На этом — всё, как всегда — надеюсь на то, что познавательный материал придется по душе посетителям сайта. Благодарю за внимание!

Автор: Rudzil 12.10.2015 01:12:17

79013

Нравится

  
 

Комментарии:

3.

2.

1.

Извините, но комментарии могут добавлять только авторизованные пользователи

Аберрации объективов

© 2013 Vasili-photo.com

Аберрации фотографического объектива – это последнее, о чём стоит думать начинающему фотографу. Они абсолютно не влияют на художественную ценность ваших фотографий, да и на техническое качество снимков их влияние ничтожно. Тем не менее, если вы не знаете, чем занять своё время, прочтение данной статьи поможет вам разобраться в многообразии оптических аберраций и в методах борьбы с ними, что, конечно же, бесценно для настоящего фотоэрудита.

Аберрации оптической системы (в нашем случае – фотографического объектива) – это несовершенство изображения, которое вызывается отклонением лучей света от пути, по которому они должны были бы следовать в идеальной (абсолютной) оптической системе.

Свет от всякого точечного источника, пройдя через идеальный объектив, должен был бы формировать бесконечно малую точку на плоскости матрицы или плёнки. На деле этого, естественно, не происходит, и точка превращается в т.н. пятно рассеяния, но инженеры-оптики, разрабатывающие объективы, стараются приблизиться к идеалу насколько это возможно.

Различают монохроматические аберрации, в одинаковой степени присущие лучам света с любой длиной волны, и хроматические, зависящие от длины волны, т.е. от цвета.

Особняком стоит дифракция, которую хоть и можно отнести к аберрациям объектива, однако в силу её фундаментального характера и принципиальной неустранимости обычно рассматривают отдельно от прочих аберраций.

Монохроматические аберрации

В 1857 г. немецкий математик и астроном Филип Людвиг Зейдель выявил и математически описал пять т.н. монохроматических аберраций третьего порядка. Вот они:

  • Сферическая аберрация
  • Кома
  • Астигматизм
  • Кривизна поля изображения
  • Дисторсия

Настоящая статья написана для фотографов, а не для математиков, а потому нас, прежде всего, интересует не то, какие формулы описывают каждую из аберраций, а то, как аберрации проявляют себя в практической фотографии.

Рассмотрим их по порядку.

Сферическая аберрация

Особенность сферической линзы такова, что лучи света, проходящие через линзу вблизи её края, преломляются сильнее, чем лучи, проходящие через центр. Объясняется это тем, что исходно параллельные лучи света падают на сферическую поверхность линзы под разными углами. Чем дальше лежит путь луча от оптической оси объектива, тем больше угол его падения, и тем сильнее он преломляется. В конечном итоге это приводит к невозможности сфокусировать точку иначе как в виде размытого по краям пятна, и всё изображение оказывается нерезким.

Идеальная линза

Ход световых лучей в идеальной линзе.

Сферическая аберрация

Ход лучей при сферической аберрации.

Диафрагмирование объектива заметно уменьшает сферическую аберрацию, поскольку при уменьшении отверстия диафрагмы отсекается часть лучей, проходящая через край линзы, а оставшиеся вблизи оптической оси лучи формируют более резкое изображение.

При конструировании объективов сферические аберрации устраняются комбинированием положительных и отрицательных линз, а также применением специальных асферических элементов, т.е. линз, преломляющая поверхность которых имеет асферическую форму, с тем расчётом, чтобы, вне зависимости от удалённости лучей света от оптической оси объектива, все они преломлялись по возможности одинаково, и таки сходились при фокусировке в одну точку. Чрезмерное исправление сферических аберраций, кстати, также ни к чему хорошему не приводит: пятно рассеяния становится ярче по краям, нежели в центре, что проявляется в виде кольцеобразного боке.

Кома

Коматическая аберрация или кома возникает, когда лучи света проходят через линзу под углом к оптической оси. В результате изображение точечных источников света приобретает по краям кадра вид ассиметричных пятен каплеобразной (или, в тяжёлых случаях, кометообразной) формы.

Кома

Коматическая аберрация.

Кома бывает заметна по краям кадра при съёмке с широко открытой диафрагмой. Поскольку диафрагмирование уменьшает количество лучей, проходящих через край линзы, оно, как правило, устраняет и коматические аберрации.

Конструкционно с комой борются примерно так же, как и со сферическими аберрациями.

Астигматизм

Астигматизм проявляется в том, что для наклонного (не параллельного оптической оси объектива) пучка света лучи, лежащие в меридиональной плоскости, т.е. плоскости, которой принадлежит оптическая ось, фокусируются отличным образом от лучей, лежащих в сагиттальной плоскости, которая перпендикулярна плоскости меридиональной. Это, в конечном итоге приводит к ассиметричному растягиванию пятна нерезкости. Астигматизм заметен по краям изображения, но не в его центре.

Астигматизм труден для понимания, поэтому я попробую проиллюстрировать его на простом примере. Если представить, что изображение буквы А находится в верхней части кадра, то при астигматизме объектива оно бы выглядело так:

Для исправления астигматической разности меридионального и сагиттального фокусов требуется не менее трёх элементов (обычно два выпуклых и один вогнутый).

Очевидный астигматизм в современном объективе указывает обычно на непараллельность одного или нескольких элементов, что является однозначным дефектом.

Кривизна поля изображения

Под кривизной поля изображения подразумевают характерное для весьма многих объективов явление, при котором резкое изображение плоского объекта фокусируется объективом не на плоскость, а на некую искривлённую поверхность. Например, у многих широкоугольных объективов наблюдается выраженная кривизна поля изображения, в результате которой края кадра оказываются сфокусированы как бы ближе к наблюдателю, чем центр. У телеобъективов кривизна поля изображения обычно выражена слабо, а у макрообъективов исправляется практически полностью – плоскость идеального фокуса становится действительно плоской.

Кривизна поля изображения

Кривизна поля изображения.

Кривизну поля принято считать аберрацией, поскольку при фотографировании плоского объекта (тестовой таблицы или кирпичной стены) с фокусировкой по центру кадра, его края неизбежно окажутся не в фокусе, что может быть ошибочно принято за нерезкость объектива. Но в реальной фотографической жизни мы редко сталкиваемся с плоскими объектами – мир вокруг нас трёхмерен, – а потому свойственную широкоугольным объективам кривизну поля я склонен рассматривать скорее как их достоинство, нежели недостаток. Кривизна поля изображения – это то, что позволяет получить одинаково резкими и передний, и задний план одновременно. Посудите сами: центр большинства широкоугольных композиций находится вдалеке, в то время как ближе к углам кадра, а также внизу, располагаются объекты переднего плана. Кривизна поля делает и то, и другое резким, избавляя нас от необходимости закрывать диафрагму сверх меры.

Рускеала

Кривизна поля позволила при фокусировке на дальние деревья получить резкими ещё и глыбы мрамора внизу слева.
Некоторая нерезкость в области неба и на дальних кустах справа меня в этой сцене мало беспокоила.

Следует, однако, помнить, что для объективов с выраженной кривизной поля изображения непригоден способ автоматической фокусировки, при котором вы сперва фокусируетесь на ближнем к вам объекте, используя центральный фокусировочный датчик, а затем перекомпоновываете кадр (см. «Как пользоваться автофокусом»). Поскольку объект при этом переместится из центра кадра на периферию, вы рискуете получить фронт-фокус вследствие кривизны поля. Для идеального фокуса придётся сделать соответствующую поправку.

Дисторсия

Дисторсия – это аберрация при которой объектив отказывается изображать прямые линии прямыми. Геометрически это означает нарушение подобия между объектом и его изображением вследствие изменения линейного увеличения по полю зрения объектива.

Выделяют два наиболее распространённых типа дисторсии: подушкообразная и бочкообразная.

При бочкообразной дисторсии линейное увеличение уменьшается по мере удаления от оптической оси объектива, в результате чего прямые линии по краям кадра изгибаются наружу, и изображение выглядит выпуклым.

При подушкообразной дисторсии линейное увеличение, напротив, возрастает с удалением от оптической оси. Прямые линии изгибаются внутрь, и изображение кажется вогнутым.

Кроме того, встречается комплексная дисторсия, когда линейное увеличение сперва уменьшается по мере удаления от оптической оси, но ближе к углам кадра снова начинает возрастать. В таком случае прямые линии приобретают форму усов.

Дисторсия наиболее выражена в зум-объективах, особенно с большой кратностью, но заметна и в объективах с фиксированным фокусным расстоянием. Для широкоугольных объективов характерна преимущественно бочкообразная дисторсия (экстремальный пример такой дисторсии – объективы типа fisheye или «рыбий глаз»), в то время как телеобъективам чаще свойственна подушкообразная дисторсия. Нормальные объективы, как правило, наименее подвержены дисторсии, но полностью исправляется она только в хороших макрообъективах.

Ладога

Это не Земля закругляется, а обычная бочкообразная дисторсия.

У зум-объективов часто можно наблюдать бочкообразную дисторсию в широкоугольном положении и подушкообразную дисторсию в телеположении при практически свободной от дисторсии середине диапазона фокусных расстояний.

Степень выраженности дисторсии может также изменяться в зависимости от дистанции фокусировки: у многих объективов дисторсия очевидна, когда они сфокусированы на близлежащем объекте, но делается почти незаметной при фокусировке на бесконечность.

В XXI в. дисторсия не является большой проблемой. Практически все RAW-конвертеры и многие графические редакторы позволяют исправлять дисторсию при обработке фотоснимков, а многие современные камеры и вовсе делают это самостоятельно в момент съёмки. Программное исправление дисторсии при наличии надлежащего профиля даёт прекрасные результаты и почти не влияет на резкость изображения.

Хочу также заметить, что на практике исправление дисторсии требуется не так уж часто, ведь дисторсия бывает заметна невооружённым глазом только тогда, когда по краям кадра присутствуют заведомо прямые линии (горизонт, стены зданий, колонны). В сценах же, не имеющих на периферии строго прямолинейных элементов, дисторсия, как правило, совершенно не режет глаз.

Хроматические аберрации

Хроматические или цветовые аберрации обусловлены дисперсией света. Не секрет, что показатель преломления оптической среды зависит от длины световой волны. У коротких волн степень преломления выше, чем у длинных, т.е. лучи синего цвета преломляются линзами объектива сильнее, чем красного. Как следствие, изображения предмета, формируемые лучами различного цвета, могут не совпадать между собой, что приводит к появлению цветных артефактов, которые и называются хроматическими аберрациями.

В чёрно-белой фотографии хроматические аберрации не так заметны, как в цветной, но, тем не менее, они существенно ухудшают резкость даже чёрно-белого изображения.

Различают два основных типа хроматических аберраций: хроматизм положения (продольная хроматическая аберрация) и хроматизм увеличения (хроматическая разность увеличения). В свою очередь, каждая из хроматических аберраций может быть первичной или вторичной. Также к хроматическим аберрациям относят хроматические разности геометрических аберраций, т.е. различную выраженность монохроматических аберраций для волн разной длины.

Хроматизм положения

Хроматизм положения или продольная хроматическая аберрация возникает, когда лучи света с разной длиной волны фокусируются в разных плоскостях. Иными словами, лучи синего цвета фокусируются ближе к задней главной плоскости объектива, а лучи красного цвета – дальше, чем лучи зелёного цвета, т.е. для синего цвета наблюдается фронт-фокус, а для красного – бэк-фокус.

Хроматическая аберрация

Хроматизм положения.

К счастью для нас, хроматизм положения научились исправлять ещё в XVIII в. путём комбинирования собирательной и рассеивающей линз, изготовленных из стёкол с разными показателями преломления. В результате продольная хроматическая аберрация флинтовой (собирательной) линзы компенсируется за счёт аберрации кроновой (рассеивающей) линзы, и лучи света с различной длиной волны могут быть сфокусированы в одной точке.

Исправление первичной хроматической аберрации

Исправление хроматизма положения.

Объективы, в которых исправлен хроматизм положения, называются ахроматическими. Практически все современные объективы являются ахроматами, так что о хроматизме положения на сегодняшний день можно спокойно забыть.

Хроматизм увеличения

Хроматизм увеличения возникает за счёт того, что линейное увеличение объектива различается для разных цветов. В результате изображения, формируемые лучами с различной длиной волны, имеют немного разные размеры. Поскольку изображения разного цвета отцентрированы по оптической оси объектива, хроматизм увеличения отсутствует в центре кадра, но возрастает к его краям.

Хроматизм увеличения проявляется на периферии снимка в виде цветной каймы вокруг объектов с резкими контрастными краями, такими как, например, тёмные ветви деревьев на фоне светлого неба. В областях, где подобные объекты отсутствуют, цветная кайма может быть незаметной, но общая чёткость всё равно падает.

При конструировании объектива хроматизм увеличения исправить значительно труднее, чем хроматизм положения, поэтому эту аберрацию можно в той или иной степени наблюдать у весьма многих объективов. Этому подвержены в первую очередь зум-объективы с большой кратностью, особенно в широкоугольном положении.

Тем не менее, хроматизм увеличения не является сегодня поводом для беспокойства, поскольку он достаточно легко исправляется программными средствами. Все хорошие RAW-конвертеры в состоянии устранять хроматические аберрации в автоматическом режиме. Кроме того, всё больше цифровых фотоаппаратов снабжаются функцией исправления аберраций при съёмке в формате JPEG. Это означает, что многие объективы, считавшиеся в прошлом посредственными, сегодня с помощью цифровых костылей могут обеспечить вполне приличное качество изображения.

Хроматическая аберрация

Этот фрагмент фотографии иллюстрирует хроматизм увеличения. Наведите курсор для сравнения с программно исправленым вариантом.

Первичные и вторичные хроматические аберрации

Хроматические аберрации подразделяются на первичные и вторичные.

Первичные хроматические аберрации – это хроматизмы в своём исходном неисправленном виде, обусловленные различной степенью преломления лучей разного цвета. Артефакты первичных аберраций окрашены в крайние цвета спектра – сине-фиолетовый и красный.

При исправлении хроматических аберраций хроматическая разность по краям спектра устраняется, т.е. синие и красные лучи начинают фокусироваться в одной точке, которая, к сожалению, может не совпадать с точкой фокусировки зелёных лучей. При этом возникает вторичный спектр, поскольку хроматическая разность для середины первичного спектра (зелёных лучей) и для его сведённых вместе краёв (синих и красных лучей) остаётся не устранённой. Это и есть вторичные аберрации, артефакты которых окрашены в зелёный и пурпурный цвета.

Когда говорят о хроматических аберрациях современных ахроматических объективов, в подавляющем большинстве случаев имеют в виду именно вторичный хроматизм увеличения и только его. Апохроматы, т.е. объективы, в которых полностью устранены как первичные, так и вторичные хроматические аберрации, чрезвычайно сложны в производстве и вряд ли когда-нибудь станут массовыми.

Сферохроматизм

Сферохроматизм – это единственный заслуживающий упоминания пример хроматической разности геометрических аберраций и проявляется как едва заметное окрашивание зон вне фокуса в крайние цвета вторичного спектра.

Сферохроматизм

Сферохроматизм.

Сферохроматизм возникает из-за того, что сферическая аберрация, о которой говорилось выше, редко бывает в равной степени скорректирована для лучей разного цвета. В результате пятна нерезкости на переднем плане могут иметь лёгкую пурпурную кайму, а на заднем плане – зелёную. Сферохроматизм в наибольшей степени свойственен светосильным длиннофокусным объективам, при съёмке с широко открытой диафрагмой.

О чём стоит беспокоиться?

Беспокоиться не стоит. Обо всём, о чём следовало побеспокоиться, разработчики вашего объектива, скорее всего, уже побеспокоились.

Идеальных объективов не бывает, поскольку исправление одних аберраций ведёт к усилению других, и конструктор объектива, как правило, старается найти разумный компромисс между его характеристиками. Современные зумы и так содержат по двадцать элементов, и не стоит усложнять их сверх меры.

Все криминальные аберрации исправляются разработчиками весьма успешно, а с теми, что остались легко поладить. Если у вашего объектива есть какие-то слабые стороны (а таких объективов – большинство), научитесь обходить их в своей работе. Сферическая аберрация, кома, астигматизм и их хроматические разности уменьшаются при диафрагмировании объектива (см. «Выбор оптимальной диафрагмы»). Дисторсия и хроматизм увеличения устраняются при обработке фотографий. Кривизна поля изображения требует дополнительного внимания при фокусировке, но тоже не смертельна.

Иными словами, вместо того чтобы обвинять оборудование в несовершенстве, фотолюбителю следует скорее начать совершенствоваться самому, досконально изучив свои инструменты и используя их в соответствии с их достоинствами и недостатками.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект, внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Желаю удачи!

  Дата публикации: 15.11.2013

Лицензия Creative Commons

Вернуться к разделу «Матчасть»

Перейти к полному списку статей

Хроматические аберрации: как исправить недостаток

Хроматическая аберрация — это нарушение цветопередачи, которое проявляется в виде «бахромы» (контура) на контрастных объектах. Поговорим о том, какие бывают виды аберраций, почему они возникают и как от них избавиться.

Какими бывают цветовые искажения на снимках

Эффект хроматической аберрации возникает в тот момент, когда луч света проходит через линзу объектива, преломляется и распадается на спектральные цвета (от красного до фиолетового). Все цвета разноволновые по длине, поэтому у каждого будет собственный угол преломления, что в результате приводит к возникновению на фотографии разного рода искажений: цветовых полос, бликов или колец.

Показатели аберрации:

  • цветные полосы по контуру объектов;
  • радужные блики;
  • разноцветные круги;
  • нивелирование границ между контрастными объектами;
  • падение четкости на локальных участках снимка;
  • плавный переход одного цвета к другому на границах снимаемого объекта.

Проще говоря, хроматическая аберрация в фотографии — это цветовые искажения на изображении.

Хроматическая аберрация в фотографии

Пример хроматической аберрации

Классификация искажений

Хроматические аберрации оптических систем были теоретически обоснованы в позапрошлом столетии немецким математиком Ф. Л. Зейделем. Всего было выделено 5 разновидностей искажений. Они относились к монохроматическому, то есть черно-белому изображению, когда все лучи имеют одну длину волны. Позже, когда появилась цветная пленка, были обнаружены еще и цветовые аномалии.

Монохроматизм — погрешность, присущая оптике. Аномалии появляются оттого, что поверхности, преломляющие лучи, не могут собрать световые потоки в одну точку, если те падают на плоскости под большими углами.

Выделяют следующие типы аномалий:

Сферическая аберрация

Это нивелирование границ между объектами, которые слишком контрастны по отношению друг к другу. Возникает из-за несовпадения фокусов для лучей света проходящих на разных расстояниях от оптической оси.

Сферическая аберрация

Пример сферической аберрации

Кома

Выглядит как размытость по краям объекта, на профессиональном жаргоне называют «коматической засветкой». Также может иметь вид капли или кометы с большим светящимся хвостом. Вызывается разницей преломления между лучами, исходящими из одной точки, когда одна часть лучей проходит по краю объектива, а другая по центру.

Кома

Пример комы

Астигматизм

Изображение получается резче на одном участке фото, чем на другом. Появляется вследствие того, что лучи, находящиеся вне оптической оси объектива, имеют различные точки сходимости.

Астигматизм

Астигматизм фотографии

Кривизна

Также проявляется неравномерной четкостью по всей поверхности снимка из-за особенностей формы линзы.

Кривизна поля

Кривизна поля изображения

Дисторсия

Это искажение прямых линий. В результате предметы по краям кадра выглядят неестественно сплюснутыми или вытянутыми. Об этом явлении мы поговорим чуть ниже.

Дисторсия фотографии

Дисторсия

Сферическая и хроматическая аберрации, а также дисторсия — это основные искажения линз.

Главные типы аберраций

Итак, выделяют два основных вида искажений: те, что связаны с геометрией, и цветовые. Первый тип — это дисторсия, эффект, который легко убрать в программе для редактирования фото. Данное явление хорошо знакомо владельцам широкоугольных объективов, когда картинка по краям получается выпуклой или вогнутой.

Второй вид — непосредственно хроматическая аберрация, которая делиться на два подвида: продольная аберрация и поперечная. Причина хроматической аберрации заключается в явлении дисперсии и связана с разложением цвета на световые волны. А причина геометрической аберрации — в дисторсии и связана с кривизной волны. Оба эффекта обязаны своим явлением форме линзы, но если геометрию еще можно исправить, то убрать хроматическую аберрацию целиком не получится. Можно только свести их к минимуму.

Цветовые искажения

Цветовые искажения практически невозможно убрать полностью

Продольная аберрация

Мы уже знаем, что свет при попадании на линзу преломляется и распадается на цвета радуги. Каждый цвет обладает разной длиной волны. Поэтому угол преломления у всех оттенков будет свой. Например, синий излучает сильнее, поэтому точка, где лучи сойдутся воедино, будет располагаться ближе к линзе. С красным цветом все наоборот.

Хроматизм положения (как еще называют продольную аберрацию) — это расхождение между показателями вышеупомянутых цветов. Если, например, равняться по красному цвету, то все части изображения, которые содержат синий цвет, окажутся не в фокусе. Избавиться от данного явления целиком нельзя. Можно лишь уменьшить его проявление до той степени, когда человеческий глаз перестает видеть различия.

Этого можно добиться использованием двух линз: сферической и обратно вогнутой. Первая будет рассеивать пучки света и отклонять их от изначальной оси. Вторая — собирать обратно, нейтрализуя действие первой. В результате мы получим необходимый оттенок. Такие линзы называют ахроматическими. Стоит отметить, что дешевая оптика «хроматит» гораздо сильнее, чем объективы элитной серии, так что обращайте внимание на качество оптической системы. Такие дуплеты устраняют большинство разновидностей аберраций.

Продольная аберрация

Принцип построения ахроматической линзы

Хроматизм увеличения

Его также называют поперечной аберрацией. Возникает тогда, когда волны различной длины фокусируются в разных точках одной фокальной плоскости. Это та самая «бахрома», о которой мы упоминали в начале статьи. Чаще всего цвет искажается на периферии снимков и не возникает в центре. Бороться с этим эффектом путем уменьшения диафрагмы бесполезно. Зато можно исправить аберрации при постобработке.

Нередко при съемке фотографу приходится сталкиваться с двумя типами аберраций: продольной и поперечной. В этом случае в процессе съемки избавиться лучше от хроматизма положения, стараясь уменьшить значение диафрагмы. А проблему хроматизма увеличений решать уже при наличии соответствующего ПО.

Как исправить аберрации

Хроматизм увеличения

Как избавиться от хроматических аберраций во время съемки

С цветовыми аномалиями можно справиться в процессе постобработки. Но более действенный результат вас ожидает, если вы начнете бороться с проблемой еще перед началом съемки. Вот несколько практических советов, следуя которым вы сможете свести к минимуму проявление аберрации.

  • Ставьте узкую диафрагму
  • Закрытие лепестков до f/2.8 — f/4 позволит минимизировать выраженность искажений. Чтобы компенсировать потерю света, увеличивайте светочувствительность и выдержку.

  • Располагайте важные объекты подальше от периферии
  • Линза имеет свойство создавать искажения как раз по краям снимка, поэтому если другого выхода нет — нарушьте правило третей и скомпонуйте кадр со значимым объектом в центре. Конечно, во всем следует руководствоваться чувством меры и оставить данный пункт на крайний случай.

  • Снимайте со средним фокусным расстоянием
  • Это поможет сделать дефекты менее заметными. Как вариант, вы можете снять одну и ту же картинку с разным фокусным расстоянием, а потом сделать компоновку в графическом редакторе.

  • Избегайте контрастов
  • На фоне яркого неба ветви деревьев вероятнее всего приобретут цветную окантовку. Если есть возможность, перенесите часы съемки, измените фон или отредактируйте кадр в программе. В последнем случае съемку лучше производить в RAW формате, аберрации легче всего устраняются в специальном модуле «Камера RAW» в Фотошопе.

  • Покупайте качественные объективы
  • Дорогая оптика изготовлена из хороших материалов и проектируется с использованием больших компьютеров для проведения головоломных расчетов и моделирования высокого уровня, что в итоге приводит к подавлению искажений различных типов. Но такое «стекло» и стоит отнюдь не копейки.

Как избавиться от хроматических аберраций

Используйте все возможные методы, чтобы подавить искажения еще на этапе съемки

Удаление хроматических аберраций в фоторедакторе

В статье мы рассмотрим как ликвидировать искажения на примере редактора Photoshop. Благодаря этому редактору
вы сможете исправить большинство различных дефектов и нарушений, возникших в процессе съемки. Как выглядит хроматическая аберрация? Обратите внимание на пример, расположенный ниже:

Признак хроматизма

Цветной кант на шляпе свидетельствует о наличии хроматизма

Она проявляется в виде зелено-красной окантовки по краям шляпы ковбоя. Именно от этой неприятности мы и будем избавляться, причем сделаем это несколькими способами.

Метод 1. Камера RAW

Данный модуль является встроенным, начиная с версии Photoshop СC. В ранних модификациях его придется ставить вручную. Однако если вы постоянно работаете с фотографиями, то это скорее необходимость, чем вынужденная мера.

Откройте снимок в «Камере RAW». Выберите опцию «Коррекция дисторсии» —> «Цветность». Поставьте галочку напротив пункта «Удалить хроматическую аберрацию» и цветная окантовка по полю шляпы исчезнет.

Камера RAW

Камера RAW — самый легкий способ устранения аберраций

Метод 2. Размытие по Гауссу

Переместите изображение на рабочую область программы. Сделайте дубликат слоя (Ctrl+J). Далее пройдите по пути «Фильтр» —> «Размытие» —> «Размытие по Гауссу…» и установите значение на 4px. Затем поменяйте параметр наложения для копии слоя на «Цветность». Сравните эффект до и после на скриншотах:

До обработки

До

После обработки

После

Метод 3. «Губка»

Хроматические аберрации на фото легко устранить при помощи инструмента «Губка». Все участки, к которым прикасается этот инструмент, обесцвечиваются. Посмотрите местонахождение «Губки» на скриншоте, выберите ее, установите значение нажима на 100% и, приблизив нужную область, аккуратно пройдитесь вдоль краев шляпы.

Работать нужно аккуратно, чтобы случайно не удалить цвет на соседних участках. Данный способ более затратный по времени, чем два других, но если с их помощью не удается достичь приемлемых результатов, то используем «Губку».

Губка

Устранить несовершенства можно при помощи инструмента «Губка»

Как сделать хроматические аберрации

Вся статья была посвящена тому, как избежать цветовых погрешностей на снимках, но иногда их добавляют специально на изображения для создания интересных эффектов. Поэтому теперь давайте научимся создавать искажения!

Выберите подходящую картинку, откройте в программе и, не делая копии слоя (!), перейдите во вкладку «Каналы». Здесь вы видите иконки, которые обозначают три RGB-цвета: красный, зеленый и голубой. Выберите один из каналов. «Глазики» напротив других слоев автоматически отключатся. Ваша задача включить верхний, цветной слой. При этом «глазики» опять зажгутся напротив всех слоев, но выделенным должен быть только один! Пусть это будет зеленый.

Возьмите инструмент «Перемещение» и на выделенном активном слое канала начните сдвигать изображение влево или вправо. Корректируйте степень толщины цветовых линий углом сдвига. То же самое вы можете проделать и с другими каналами. Это достаточно простой способ, который помогает добиться любопытного эффекта.

Интерфейс Фотошопа

Применяйте цветовые искажения для добавления необычных эффектов

ФотоМАСТЕР — программа для стильной обработки

Кстати, об эффектах. Хотим вам рассказать об одной занятной программе, с помощью которой вы сможете добиться интересных снимков. ФотоМАСТЕР обладает русскоязычным интерфейсом, поэтому никаких головоломок с пониманием меню и лихорадочных метаний среди кнопок не возникнет. 100+ уникальных фильтров, способных подчеркнуть настроение фотографии, полуавтоматизированный процесс работы, который позволит выделить лучшие стороны снимка в несколько кликов, и несложная замена фона — вот чем вам понравится эта программа.

Среди других возможностей ФотоМАСТЕРА:

  • пресеты для эффектной бьюти-ретуши;
  • инструменты для пластики лица и фигуры;
  • функция пакетной обработки снимков;
  • быстрое удаление ненужных предметов или людей из кадра;
  • изменение цвета отдельных элементов;
  • обрезка и исправление геометрических искажений.

Избавиться от дисторсии легко. Загрузите снимок, зайдите в раздел «Инструменты» –> «Геометрия». Потяните бегунок на шкале «Дисторсия» влево, если хотите исправить вогнутость, и вправо, если требуется уменьшить выпуклость. Скачайте фоторедактор и добивайтесь идеальных снимков, убирая искажения любого рода!

ФотоМАСТЕР

Уберите дисторсию одним движением

Подводим итоги

Хроматическая аберрация линзы — это дефект, с которым фотографы борются с момента возникновения цветной пленки. Еще 20 лет назад, когда техника и графические редакторы не были особо качественными, хроматика сильно отравляла жизнь фотоделов. Сегодня большинство искажений можно устранить либо во время подготовки к съемке, либо при помощи постобработки. Не допускайте, чтобы в результате хроматической аберрации ваши фотографии потеряли привлекательность. Следуя информации из этой статьи, вы сможете избежать грубых ошибок.

Эти статьи могут вам понравиться:

Аберрации и их влияние на изображение

Статья описывает базовые понятия аберраций, классификацию аберраций, а также возможные методики устранения аберраций применительно к микроскопным объективам. В статье описана методика выбора микроскопных объективов исходя из задач исследователя.
Аберрации в оптических системах — погрешность изображения, вызванная любым отклонением реальных лучей от геометрических направлений по которым они должны были бы идти в идеальной оптической системе. Аберрации можно классифицировать на монохроматические (то есть присущие монохроматическим лучам – лучам одной длины волны) и хроматические.

Монохроматические аберрации

Монохроматические аберрации – погрешности, присущие любой реальной оптической системе. Возникновение связано с тем, что поверхности, преломляющие лучи неспособны собрать в точку широкие пучки лучей, падающие на них под большими углами. Монохроматические аберрации приводят к искажению изображения точки в некоторую фигуру рассеяния, что снижает четкость изображения и нарушает подобие изображения и предмета.
Монохроматические аберрации классифицируют пятью аберрациями Зейделя:

SI — сферическая аберрация

39 s1 sphere
Сферическая аберрация оптической системы. Лучи, параллельные оси оптической системы сходится не в точке, а в перетяжке.

Сферическая аберрация оптических систем из-за несовпадения фокусов для лучей света проходящих на разных расстояниях от оптической оси. Нарушает гомоцентричность пучка света, но не нарушает симметричность.
Существует несколько путей исправления сферической аберрации:
Во-первых, снижение кривизны линзы (использование стекла с большим показателем преломления в совокупности с увеличением радиусов поверхностей линзы, сохраняя, тем самым, ее оптическую силу).
Во-вторых, применением комбинации из положительных и отрицательных линз. Обычно параллельно с исправлением сферической аберрации исправляют также хроматические аберрации.
В-третьих, применяют диафрагмирование – отсечение краевых лучей широкого пучка. Способ позволяет снизить значение рассеяния, но непригоден для оптических систем требующих высокой светосилы.
Полностью избавиться от сферической аберрации невозможно, но способы снизить ее эффективно применяются в микроскопии.

SII – кома

40 s2 coma
Аберрация Кома. Лучи, приходящие под углом к оптической оси не собираются в одной точке

Аберрация Кома обусловлена тем, что лучи, приходящие под углом к оптической оси, собираются не в одной точке. Методика исправления Комы схожа с методикой исправления сферических аберраций и, в основном, строится на использовании комбинаций положительных и отрицательных линз.

SIII – астигматизм

41 s3 astigmatism 1

Астигматизм оптической системы. Аберрация, при которой изображение точки, лежащей вне оси и сформированное узким пучком лучей представляет собой два перпендикулярных отрезка расположенных на разном расстоянии плоскости Гаусса (плоскости безаберрационного фокуса).
Астигматизм не может быть исправлен диафрагмированием, т.к. проявляется и на узких пучках. Для коррекции астигматизма применяют дуплеты положительных и отрицательных линз.

SIV – кривизна поля изображения

42 s4 field curvature
Кривизна поля оптической системы. Изображение плоского объекта перпендикулярного оси оптической системы в плоскостях F1 и F2

Аберрация, при которой изображение плоского объекта, перпендикулярного оси оптической системы лежит на выпуклой или вогнутой (обычно сферической в случае симметричной оптики) поверхности относительно объектива.
Погрешность вносимая аберрацией, очень сильно сказывается в микроскопии, так как получаемое изображение плоского объекта не находится полностью в фокальной плоскости и, таким образом, на нескорректированной системе мы не можем наблюдать полностью резкое изображение объекта по всему полю.
Кривизна поля корректируется при помощи расчета системы содержащей две и более отрицательных линз, а также использующей воздушное пространство между линзами.

SV – дисторсия

45 s5 distorsion
Изменение коэффициента линейного увеличения по полю зрения. Подушкообразная и бочкообразная дисторсия.

Дисторсия – изменение коэффициента линейного увеличения оптической системы по полю зрения. Дисторсия не приемлема в микроскопии, так как система, подверженная дисторсии, не обеспечивает геометрическое подобие наблюдаемого объекта и его изображения. Дисторсия исправляется подбором линз на этапе проектировки объектива. Также возможно исправление дисторсии на этапе компьютерной обработки изображения.

Хроматические аберрации (ХА)

46 chromatic
Хроматические аберрации. Разница показателя преломления оптической системы для лучей с различной длиной волны.

Хроматические аберрации – погрешности вносимые в изображение разницей коэффициента преломления для пучков с различными длинами волн.
При прохождении света через оптические материалы наблюдается дисперсия – разложение белого света на спектр. Именно явление дисперсии запечатлено на самой знаменитой обложке музыкального альбома 20 века — Pink Floyd – The Dark Side of the Moon.
Паразитная дисперсия не позволяет лучам с различными длинами волн сфокусироваться в одной точке.
Таким образом, различают три вида хроматизма: хроматизм положения, хроматизм увеличения и хроматизм разности геометрических аберраций. В статье мы рассмотрим хроматизм положения, так как природа ХА абсолютно одинакова во всех случаях.
Для любой оптической линзы коэффициент преломления синих лучей, как правило, больше, чем красных, поэтому точка фокуса синих лучей Fblue расположена ближе к задней главной точке линзы, чем точка фокуса красных лучей Fred. Отсюда следует, что лучи, полученные разложением белого света, будут иметь различное фокусное расстояние. Единого фокусного расстояния у одной линзы не существует, а есть совокупность фокусных расстояний — по одному фокусу на луч каждого цвета.
Разность Fblue-Fred это и есть «хроматизм положения» (или хроматической разностью положения, продольной хроматической аберрацией)
Диафрагмирование несколько уменьшает хроматизм положения. При этом изображения предмета в лучах разного цвета будут находиться на разных расстояниях от задней главной точки. Если наводить оптическую систему на резкость по красным лучам, изображение в синих лучах будет не в фокусе, и наоборот.
Конструкция микроскопных объективов рассчитана на устранение хроматических аберраций. Система линз, выполняющих сближение фокусов двух (например, синих и жёлтых) лучей, называется ахроматической, а при сближении фокусов трёх лучей —апохроматической системой.
Основное правило при исправлении ХА является исправление ХА суммарно для всей системы. Нет необходимости исправлять хроматизм каждого элемента. Важно, чтобы суммарная положительная и отрицательная дисперсия элементов системы была равна нулю.

Критерии при выборе микроскопных объективов

Рассмотрев основные типы различных оптических аберраций мы можем описать основные критерии при выборе объективов для лабораторного микроскопа, ведь именно характеристиками объектива определяются разрешающая способность микроскопа, дисторсия, возможность проведения точных измерений, возможность качественного получения большого поля изображения при сильном увеличении путем сшивки частичных полей.
В большинстве случаев при выборе объективов работает правило, что чем качественнее и дороже объектив – тем он лучше для решения любых задач. Но на самом деле, во-первых, это не всегда абсолютно достоверно, во-вторых – экономическую составляющую вопроса это правило не затрагивает. А ведь порой именно она играет решающую роль при выборе оборудования того или иного класса.
Объективы для микроскопов делятся на различные классы в зависимости от коррекции монохроматических и хроматических аберраций. Каждый производитель имеет свою классификацию и свои уникальные названия для каждого из классов, что крайне усложняет прозрачность выбора той или иной линейки.
Все производители различают три больших класса объективов: Ахроматы, Полу-апохроматы (или Флюотары) и Апохроматы. Критерием внесения объектива в тот или иной класс будет являться сходимость фокальных плоскостей для трех основных цветов: красного, зеленого и синего.
Компания Leica Microsystems предлагает следующую оценку критериев (она может незначительно отличаться от оценки других производителей – Zeiss, Olympus, Nikon и др). Эта оценка дает максимально прозрачное представление коррекции ХА в зависимости от класса объектива.

Класс объективов Коррекция хроматических аберраций Применение
Ахроматы (Achromats) Между Fred и Fblue < 2x DoF*.
т.е. красный и синий лучи сведены в одну область, длиной менее 2 глубин резкости. Расстояние до фокуса зеленого луча не определено.
Рутинная микроскопия в видимом световом диапазоне
Полу-Апохроматы (Semi-Apochromats) Fred, Fblue и Fgreen <2,5x DoF*.
т.е. фокус красного, синего и зеленого лучей сведены в одну область шириной 2,5 глубины резкости.
Для качественной визуализации в видимом световом диапазоне, а также достижения высококонтрастного изображения.
Апохроматы (Apochromats) Fred, Fblue и Fgreen <1x DoF*.
т.е. фокус красного, синего и зеленого лучей сведены в одну точку. (Коррекция ХА по трем цветам)
Для решения задач сверхточной микроскопии, измерительной микроскопии при большом увеличении, а также для работы в УФ и ИК диапазонах.

* DoF – Depth of field – глубина резко изображаемого пространства
Каждый класс объективов делится на несколько групп в зависимости от задач применения. В основном речь идет о коррекции монохроматических аберраций, к примеру, План Ахромат и просто Ахромат будут отличаться наличием коррекции сферы, кривизны поля и дисторсии у объектива План Ахромат.
Дополнительно некоторые объективы имеют конструктивные отличия, к примеру, LD (Long distance) объективы – объективы с увеличенным рабочим расстоянием для работы с чашками Петри в биологии, или контроля объектов со сложной топографией в материаловедении. PH – объективы для фазового контраста с установленным фазовым кольцом (могут использоваться и в светлом поле, но светопропускание таких объективов ниже). OIL-объективы с использованием иммерсионного масла и т.д.

Содержание:

Описание

Аберрации и их коррекция

Представление о глазе как о совершенном оптическом приборе мы приобретаем еще со школы при изучении раздела физики «Оптика». При изучении соответствующих наук в высшем или среднем специальном учебных заведениях такое представление о глазе закрепляется, обрастая дополнительной информацией. Поэтому высказывание С.Н. Федорова о том, что глаз является несовершенным прибором и задача офтальмолога в усовершенствовании его, долгое время воспринималось многими врачами со скепсисом.

А что есть лазерная коррекция, если не усовершенствование ошибок природы? Ошибками природы здесь можно назвать близорукость, дальнозоркость и астигматизм. И не только. Ученые-оптики знали об этом давно. Они знали, что при конструировании даже самой простой подзорной трубы необходимо не только сфокусировать оптическую систему в одной точке (исключить близорукость, дальнозоркость и астигматизм подзорной трубы), но и обеспечить качество получаемого изображения. Линзы, из которых делают подзорную трубу, должны быть из хорошего стекла, почти идеальной формы и с хорошо обработанной поверхностью. Иначе изображение будет нечетким, искаженным и размытым. Вот тогда и началось изучение аберраций — мельчайших шероховатостей и неравномерностей преломления. А с появлением аппаратов для выявления и измерения аберраций глаза в офтальмологию вошло новое измерение — аберрометрия.

Аберрации могут быть разного порядка
. Самыми простыми и наиболее известными аберрациями являются собственно те самые близорукость, дальнозоркость и астигматизм. Их называют дефокусом или аберрациями второго, низшего порядка. Аберрации высшего порядка и являются теми самыми шероховатостями и неравномерностями преломления, о которых уже упоминалось выше.

Аберрации высшего порядка также делят на несколько порядков. Принято считать, что на качество зрения влияют аберрации в основном до седьмого порядка. Для удобства восприятия существует набор полиномов Зернике, отображающий виды монохроматических аберраций как трехмерную модель неравномерности преломления. Набором этих полиномов более-менее точно можно отобразить любую неровность рефракции глаза.

Они есть у всех. Из них и состоит индивидуальная карта преломления глаза. Современные аппараты обнаруживают аберрации высшего порядка, как-то влияющие на качество зрения, у 15 % людей. Но индивидуальные особенности преломления есть у каждого.

Поставщиками аберраций являются роговица и хрусталик.

Причинами аберраций могут быть:

— врожденная аномалия (совсем небольшие и слабо влияющие на зрение неравномерности, лентиконус);

— травма роговицы (рубец роговицы стягивает окружающую ткань, лишая роговицу сферичности);

— операция (радиальная кератотомия, удаление хрусталика через роговичный разрез, лазерная коррекция, термокератопластика и другие операции на роговице);

— заболевания роговицы (последствия кератита, бельмо, кератоконус, кератоглобус).

Причиной внимания офтальмологов к аберрациям является офтальмохирургия. Не обращая внимания на аберрации и не принимая в расчет их влияние на качество зрения, офтальмология просуществовала довольно долго. До этого аберрации изучали и боролись с их негативным влиянием только производители подзорных труб, телескопов и микроскопов.

Операции на роговице или хрусталике (имеется в виду роговичный разрез) на несколько порядков увеличивают аберрации высшего порядка, что иногда может приводить к снижению послеоперационной остроты зрения. Поэтому широкое внедрение в офтальмологическую практику имплантации искусственного хрусталика, кератотомии и лазерной коррекции способствовало развитию диагностической аппаратуры: появились кератотопографы, анализирующие карту преломления роговицы, а теперь и аберрометры, анализирующие весь волновой фронт от передней поверхности роговицы до сетчатки.

Исправляя дефокус (близорукость, дальнозоркость), рефракционный хирург прибавляет пациенту аберраций высокого порядка.

Формирование микрокератомом роговичного лоскута приводит к росту аберраций высшего порядка.

Осложнения во время ЛАСИК приводят к росту аберраций высшего порядка.
[banner_centerrs]
{banner_centerrs}
[/banner_centerrs]

Процесс заживления приводит к росту аберраций высшего порядка.

Убирать микрошероховатости и неравномерности с помощью эксимерного лазера с щелевой подачей луча не представлялось возможным. Изобретена и внедрена в производство установка с возможностью точечной абляции, то есть диаметр лазерного луча в некоторых моделях менее миллиметра. С использованием полиномов Зернике были введены в практику компьютерные программы, позволяющие автоматически преобразовывать полученную из аберрометра индивидуальную карту рефракции в лазерной установке в алгоритм, управляющий лучом, устраняющим не только остаточный дефокус, но и аберрации высшего порядка. Полиномы Зернике становятся набором инструментов, каждый из которых предназначен для удаления определенного компонента в аберрационном комплексе. Как у столяра рубанок предназначен для выравнивания, долото — для углубления, пила -для разделения, топор — для раскалывания. Все не так просто, конечно. Как у топора можно найти не одно, а десять способов применения, так и полином предназначен для удаления пространственно довольно сложных форм. Но основной принцип понятен.

Роговица при проведении такой персонализированной лазерной абляции должна приближаться по своей форме к уровню оптически идеальной сферы.

После проведения персонализированной лазерной коррекции у некоторых пациентов была получена острота зрения более 1,0. Пациенты видели не только десять строчек, но и одиннадцать, и двенадцать, и даже больше. Этот феномен был назван «суперзрение».

В научных кругах разгорелась дискуссия чуть ли не о нарушении прав человека. Насколько корректно давать человеку слишком хорошее зрение, ведь он увидит изъяны на лицах близких людей, станет различать каждый пиксель на экране компьютера и телевизора, страдать от избытка визуальной информации. Вполне научный подход. Может быть, этот спор и будет актуальным через несколько лет.

Однако параллельно с этим спором появились и коммерческие предложения

. В рекламах эксимерных клиник обещали суперзрение каждому. Но суперзрение не прогнозируемо! У кого-то из пациентов получится, а у десятков других — нет. Ведь способность к суперзрению определяется размерами фотодетекторов глаза, тех самых колбочек на сетчатке. Чем меньше колбочка и чем больше ее плотность в макуле, тем более мелкий предмет сможет разглядеть человек. К тому же влияние каждого вида аберраций высшего порядка на зрение еще недостаточно изучено. Поэтому коммерческое предложение суперзрения в виде суперЛАСИКа (см. выше) некорректно. Можно лишь говорить о персонализированной лазерной коррекции.

Во времена «холодной войны» между СССР и США одним из самых важных направлений работы спецслужб двух стран стал научный и военнопромышленный шпионаж. Когда новый советский истребитель МиГ продемонстрировал в локальных войнах явное преимущество своих технических характеристик над самолетами противника, разведка США сделала все, чтобы завладеть секретными разработками конструкторского бюро Артема Микояна. В конце концов им удалось заполучить почти целый МиГ.

Одними из преимуществ МиГа над американскими аналогами являлись его маневренность и скорость, обусловленные крайне низкой по тем временам сопротивляемостью воздуха при полете. Воздух будто совсем не сопротивлялся корпусу самолета, плавно обтекая его контур.

Американские авиаконструкторы для достижения такого эффекта пытались сделать поверхность своих самолетов идеально гладкой, ровной и обтекаемой. Каково же был их удивление, когда они увидели неровную, шероховатую поверхность МиГа с выпирающими шляпками «заклепок и болтов». Секрет обтекаемости российского самолета оказался прост и гениален. Все эти шероховатости во время полета создавали вокруг корпуса самолета своеобразную воздушную подушку, позволяющую максимально снизить сопротивляемость воздуха.

Возможно, это миф или легенда авиаконструкторов, но такая аналогия прекрасно иллюстрирует отношение офтальмологов к аберрациям высшего порядка. Дело в том, что взгляды офтальмологов на вопрос влияния аберраций на зрение за последние десять лет прошли определенную эволюцию, сходную с эволюцией американских конструкторов к характеристикам поверхности самолета.

Как было сказано выше, на проблему аберраций офтальмологи обратили пристальное внимание в основном из-за ухудшения качества зрения после корнеорефракционных операций. Пациенты видели нужное количество строчек, но жаловались на снижение темновой адаптации, искажение и расплывчатость границ видимых предметов. Были и такие, у кого при практически нулевой рефракции (то есть отсутствии близорукости и дальнозоркости) острота зрения недотягивала 1-2 строчки до того уровня, который они давали в очках до коррекции. Немудрено, что отношение к аберрациям было сугубо отрицательным, как к приобретенной либо врожденной патологии. Именно это отношение и послужило причиной гонки за идеальной сферичностью роговицы и суперзрением.

Теперь мнение офтальмологов меняется. Первой ласточкой был легендарный офтальмохирург Палликарис (рефракционный хирург с мировым именем и один из основоположников лазерной коррекции).

В 2001 г. в Каннах он предположил, что у каждого человека, кроме параметров глаза, фиксируемых с помощью современных приборов, существует еще и «динамический зрительный фактор». К чему приведут дальнейшие исследования в этой области, покажет время. Безусловно одно: аберрации могут как снижать, так и повышать остроту зрения.

Возможно, дальнейшее изучение «динамического зрительного фактора» будет базироваться на следующей гипотезе.

Проведение ЛАСИК приводит к увеличению аберраций высшего порядка. Возможно, сужать эти аберрации до семи порядков в научноисследовательской перспективе не совсем правильно. Имеет значение тут и перепад оптической плотности в области интерфейса (подлоскутного пространства), и шероховатость полученной поверхности роговичного ложа, и процессы заживления (ремодуляция формы роговицы, тракция поврежденных фибрилл, неравномерность эпителиалного пласта и т. п.). Все это вкупе с другими аберрациями приводит к размытости фокуса на сетчатке, появлению нескольких изображений. Головной мозг с помощью механизма аккомодации из всех представленных изображений выбирает наиболее четкое и удовлетворяющее его в данный период времени (принцип мультифокальности). Именно индивидуальные особенности адаптации головного мозга к вариабельности получаемого изображения и будут тем самым «динамическим зрительным фактором», от которого зависит — будет данный набор аберраций улучшать зрение у данного человека или снижать его качество. А это уже связано с балансом сознания и подсознания, особенностями психомоторики, интеллектом, психологическим статусом.

Из дебрей предположений к конкретным вопросам.

Какие бывают аберрации?

Хроматическая, астигматизм косых пучков, кома и др. Все вместе они и формируют на сетчатке изображение окружающего мира, восприятие которого у каждого человека строго индивидуальное. Каждый из нас действительно видит мир только по-своему. Одинаковой для всех может быть только полная слепота.

Вот несколько видов аберраций высшего порядка.

1. Сферическая аберрация. Свет, проходящий через периферию двояковыпуклой линзы, преломляется сильнее, чем в центре. Главным «поставщиком» сферической аберрации в глазу является хрусталик, во вторую очередь — роговица. Чем шире зрачок, то есть чем большая часть хрусталика принимает участие в зрительном акте, тем более заметна сферическая аберрация.

В рефракционной хирургии наиболее часто индуцирует сферическую аберрацию:

— искусственный хрусталик;

— ЛАСИК;

— лазерная термокератопластика.

2. Аберрации углов наклона оптических пучков. Асферичность преломляющих поверхностей. Представляет собой несовпадение центров изображений светящихся точек, расположенных вне оси оптической системы. Подразделяются на аберрации больших углов наклона (астигматизм наклонных пучков) и малых углов наклона (кома).

Кома не имеет никакого отношения к известному диагнозу реаниматологов. Ее аберрометрическая картина похожа на окружность, расположенную в оптическом центре роговицы и разделенную линией на две ровные половины. Одна из половин имеет высокую оптическую силу, а другая -низкую. При такой аберрации человек видит светящуюся точку как запятую. При описании предметов люди с такой аберрацией используют слова «хвост», «тень», «дополнительный контур», «двоение». Направление этих оптических эффектов (меридиан аберрации) может быть различным. Причиной комы может быть врожденная или приобретенная разбалансировка оптической системы глаза. Оптическая ось (на которой располагается фокус линзы) роговицы не совпадает с осью хрусталика и вся оптическая система не сфокусирована в центре сетчатки, в макуле. Кома может быть в том числе и одним из компонентов неравномерности рефракции при кератоконусе. При проведении ЛАСИК кома может появляться в результате децентровки зоны лазерной абляции или особенностей заживления роговицы при лазерной коррекции дальнозоркости.

3. Дисторсия — нарушение геометрического подобия между предметом и его изображением — искажение. Разноудаленные от оптической оси точки предмета изображаются с различным увеличением.

Лазерная коррекция не является монополистом в коррекции аберраций. Уже разработаны искусственные хрусталики и контактные линзы, компенсирующие некоторые виды аберраций высшего порядка.

Аберрации подразделяют на три основные группы:

— дифракционные;

— хроматические;

— монохроматические.

Дифракционные аберрации
появляются при прохождении луча света вблизи непрозрачного объекта. Световая волна отклоняется от своего направления, проходя рядом с четкой границей между прозрачной средой (воздухом) и непрозрачной средой. В глазу такой непрозрачной средой является радужка. Та часть светового пучка, которая проходит не в центре зрачка, а у его края, отклоняется, что приводит к светорассеянию по периферии.

Хроматические аберрации возникают вследствие следующего оптического явления. Солнечный свет, как уже говорилось, состоит из световых волн с очень разнообразной длиной. Видимый свет включает в себя диапазон от коротковолновых фиолетовых лучей до длинноволновых красных. Помните считалочку для запоминания спектра видимого света — цветов радуги? «Каждый охотник желает знать, где сидит фазан».

Красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

У каждого из этих видов лучей свой коэффициент преломления. Каждый цвет преломляется в роговице и хрусталике по-своему. Грубо говоря, изображение синих и зеленых частей предмета фокусируются у эметрона сетчаткой, а красные — за ней. В итоге изображение цветного предмета на сетчатке получается более расплывчатым, чем черно-белого. Именно на эффекте, связанном с хроматическими аберрациями, и базируется трехмерное видео.

Монохроматические аберрации, собственно, и являются основным предметом изучения рефракционных хирургов. Именно монохроматические аберрации подразделяются на аберрации высшего и низшего порядков. Монохроматические аберрации низшего порядка: близорукость, дальнозоркость и астигматизм. Монохроматические аберрации высшего порядка: сферическая аберрация, кома, астигматизм косых пучков, кривизна поля, дисторсия, нерегулярные аберрации.

Для описания комплекса монохроматических аберраций высшего порядка используют полиномы математического формализма Зернике (Цернике). Хорошо, если они близки к нулю, а среднеквадратичное отклонение волнового фронта RMS (root mean square) меньше длины волны или равно 0,038 мкм (критерий Марешаля). Впрочем, это уже тонкости рефракционной хирургии.

Стандартная таблица полиномов Зернике
является своего рода набором трехмерных иллюстраций аберраций вплоть до седьмого порядка: дефокус, астигматизм, астигматизм наклонных пучков, кома, сферическая аберрация, трилистник, четырехлистник и так далее, до восьмилистника (trefoil, tetrafoil, pentafoil, hexafoil…). «Трилистники» представляют собой от трех до восьми равномерных секторов окружности с повышенной оптической силой. Их возникновение может быть связано с основными центростремительными направлениями фибрилл стромы, своего рода ребрами жесткости роговицы.

Аберрационная картина глаза весьма динамична. Монохроматические аберрации маскируют хроматические. При расширении зрачка в более темном помещении увеличиваются сферические аберрации, но уменьшаются дифракционные, и наоборот. При возрастном снижении способностей к аккомодации аберрации высшего порядка, ранее являвшиеся стимулом и повышавшие точность аккомодирования, начинают снижать качество зрения.

Поэтому в настоящее время сложно определить значимость положительного и отрицательного влияния каждого вида аберраций на зрение каждого человека.

Об этом уже все сказано. По данным аберрометрии составляется индивидуальная карта волнового фронта, по параметрам которой проводится персонализированная лазерная коррекция. У большинства пациентов уровень аберраций высшего порядка, мягко говоря, очень небольшой. И использовать персонализированную лазерную абляцию нет необходимости. Достаточно данных авторефрактокератометрии. Но это не значит, что не стоит гоняться за персонализацией. Ведь если у вас есть аберрации, то их можно выявить только при аберрометрии. И при коррекции вероятнее получить более высокую остроту зрения, чем у вас была когда-либо в очках или даже в контактных линзах.

Рис. 17. Анализатор волнового фронта глаза (аберрометр с функцией кератотопографии). Суть кератотопографии в следующем. На переднюю поверхность роговицы проецируются светящиеся концентрические круги (диск Плачидо) (б) и их отражение фотографируется аппаратом (а). По разнице между параметрами проецируемых и отраженных кругов аппарат вычисляет кривизну роговицы в 10000 точек и формирует «карту» рефракции.

Персонализированную лазерную абляцию еще проводят при докоррекции, при коррекции после других операций и при тонкой роговице.

Что касается диагностики как таковой, то есть поиска патологии, то тут главное — не пропустить кератоконус.

Рефракционному хирургу выявить кератоконус при наличии соответствующей аппаратуры достаточно просто. Но проблема не в этом. Проблема в ответственности. Так же, как и сложность работы сапера не только в знании премудростей ремесла. Сложность в том, что сапер ошибается только один раз. С кератоконусом ошибаться нельзя. Ни разу. А для этого нужно постоянно держать в голове его косвенные признаки:

— миопический астигматизм чаще с косыми осями;

— оптическая сила роговицы более 46 дптр;

— тонкая роговица;

— удивительно хорошее зрение без очков и удивительно плохое в очках при наличии выраженного астигматизма;

— прогрессирование астигматизма;

— локальное выпячивание роговицы, чаще в нижнем секторе.

Вот это выпячивание и невозможно пропустить при кератотопографии (либо аберрометрии). Выпячивание сопровождается ростом оптической силы. Общепринятый стандарт цветовой индикации окрашивает на снимке волнового фронта в синий цвет участки с меньшей оптической силой (диоптрийностью), а в красный цвет — с большей. Классический кератоконус выглядит как пятно красного цвета в нижнеправом или нижнелевом секторе роговицы.

К слову, обычный астигматизм высокой степени выглядит как красная бабочка. Иногда крылья этой бабочки теряют симметричность. Одно крыло становится огромным, смещается книзу, а другое уменьшается. Как песок в песочных часах, оптическая сила перетекает из верхней части в нижнюю. Вот это уже может быть проявлением кератоконуса. Делать лазерную коррекцию в таком случае нельзя.

Кто хуже переносит приобретенные после ЛАСИК аберрации?

Молодые люди с лабильной психикой и широким зрачком. У каждого из нас размер зрачка на свету разный. В среднем три миллиметра, но у некоторых с рождения бывает на пару миллиметров больше. А чем больше зрачок, тем больше площадь роговицы и хрусталика, принимающая участие в акте зрения. И тем больше мелких шероховатостей искажают изображение. Как правило, мозг не обращает внимания на такие мелочи. Так же как исключает из зрительной информации плавающие помутнения в стекловидном теле (они есть у большинства близоруких людей), и человек обращает на них внимание только иногда, глядя на слепяще-белый снег или, скажем, на светлый экран компьютера. Но у тонких, творческих, нервических натур восприятие часто обострено, и это может способствовать тому, что они постоянно обращают внимание на подобные раздражители. Это не придирчивость, а особенность нервной системы, как, например, индивидуальный порог болевой чувствительности.

В таких случаях можно попробовать выработать у мозга привыкание к аберрациям, а точнее, отвлечь его внимание от этой проблемы, в течение месяца закапывая капли, сужающие зрачок (пилокарпин). В случае неудачи такой тактики придется сделать докоррекцию с целью уменьшения аберраций высшего порядка.

Где в повседневной практике окулист может столкнуться с аберрациями высшего порядка?

При кератоконусе острота зрения с полной очковой коррекцией часто недотягивает до 1,0. При проверке зрения через диафрагму в три миллиметра и меньше острота зрения значительно улучшается (см. выше). И в том и в другом случае причина происходящего в аберрациях.

После удаления катаракты с имплантацией искусственного хрусталика пациент часто, даже с полной очковой коррекцией, не видит 1,0. Далеко не во всех случаях это связано с заболеваниями сетчатки, амблиопией или вторичной катарактой.

Искусственный хрусталик меньшего диаметра, чем естественный. Иногда искусственный хрусталик может стоять неровно. При проведении операции роговичным разрезом изменяется сферическая форма роговицы. Все эти причины вызывают аберрации высшего порядка. В крайнем случае их можно уменьшить, проведя персонализированную лазерную коррекцию (более подробно о биоптике в следующей главе).

Имеет смысл провести аберрометрию и при так называемой куриной слепоте, проявляющейся ухудшением остроты зрения в сумерках, но не сопровождающейся признаками серьезных заболеваний сетчатки (тапеторетинальная абиотрофия и др.).

Примеров можно привести немало. При появлении подозрений на наличие аберраций пациента можно направить на обследование в центр рефракционной хирургии.

Статья из книги: Лазерная коррекция зрения | Амир Ринатович Габбасов

Понравилась статья? Поделить с друзьями:
  • Сущность атрибуции ошибки атрибуции
  • Сырники жесткие как исправить
  • Существуют следующие виды ошибок простая юридическая
  • Существует несколько типов бинтовых повязок на различные участки тела человека найдите ошибку
  • Существовала опасность личной безопасности избирателей ошибка