For a couple of days I was totally blocked on this. I’m very very new to networking/vms but was keen to try set it up myself instead of paying a hosting company to do it for me.
Context
I’m rebuilding the server side for an app that uses php routines to return various bits of data from internal sources as well as external APIs for a map based app. I have started an Oracle VM instance and have installed/set up Apache and php. All running totally fine, until one of my php routines tries to execute a cURL. I start implementing error logging to find that I don’t even get a message — just ‘7’, despite implementation being very similar to the above. My php routine accessing an internal file for data was running successfully so I was fairly sure it wasn’t an Apache or php issue. I also checked my Apache error logs, nothing telling.
Solution
I nearly gave up — there’s talk on disabling SELinux above and in other articles, I tried that and it did work for my purposes, but here’s a really good article on why you shouldn’t disable SELinux https://www.electronicdesign.com/technologies/embedded-revolution/article/21807408/dont-do-it-disabling-selinux
If temporarily disabling it works and like me you don’t want to do this (but it confirms that SELinux is blocking you!), I found a neat little command that actually prints out any SELinux issues in a more readable fashion:
sealert -a /var/log/audit/audit.log
This returned the following:
found 1 alerts in /var/log/audit/audit.log
--------------------------------------------------------------------------------
SELinux is preventing php-fpm from name_connect access on the tcp_socket port 443.
Great, I now get a bit more information than just ‘7’. Reading further down, I can see it actually makes suggestions:
***** Plugin catchall_boolean (24.7 confidence) suggests ******************
If you want to allow httpd to can network connect
Then you must tell SELinux about this by enabling the 'httpd_can_network_connect' boolean.
Do
setsebool -P httpd_can_network_connect 1
This has been mentioned further above but now I have a bit more context and an explanation as to what it does. I run the command, and I’m in business. Furthermore, my SELinux is still set to enforcing, meaning my machine is more secure.
There are many other suggestions logged out, if you’re blocked it might be worth logging out/checking out /var/log/audit/audit.log.
1.1.7. Lubuntu/Xubuntu. The problem is about libtgvoip.
Fatal error in /home/antanubis/TBuild/tdesktop/Telegram/ThirdParty/libtgvoip/webrtc_dsp/webrtc/modules/audio_processing/aec/aec_core.cc, line 205
# Check failed: 0 < AvaliableSpace() (0 vs. 0)
(gdb) Quit
(gdb) bt f
#0 0xb7fd9ce5 in __kernel_vsyscall ()
No symbol table info available.
#1 0xb7aa6ea9 in __GI_raise (sig=6) at ../sysdeps/unix/sysv/linux/raise.c:54
resultvar = <optimized out>
resultvar = <optimized out>
pid = 16174
selftid = 16218
#2 0xb7aa8407 in __GI_abort () at abort.c:89
save_stage = 2
act = {__sigaction_handler = {sa_handler = 0xb7a88148, sa_sigaction = 0xb7a88148}, sa_mask = {
__val = {3081669401, 213065716, 3086895760, 134868660, 5, 3087005976, 213067284, 3086915778,
3087006416, 3078951184, 1, 5, 0, 166176776, 219648544, 219648556, 2210447492, 0,
3087003648, 135616020, 3083001024, 3081604815, 3083001024, 3081245112, 2210447528,
215463492, 3086915595, 224427764, 2210456172, 220071808, 2210447528, 3086942256}},
sa_flags = 0, sa_restorer = 0xb7aa82b0 <__GI_abort>}
sigs = {__val = {32, 0 <repeats 31 times>}}
#3 0x08aaff00 in rtc::FatalMessage::~FatalMessage() ()
No symbol table info available.
#4 0x08ac39dc in webrtc::BlockBuffer::ExtractExtendedBlock(float*) ()
No symbol table info available.
#5 0x08ac9019 in webrtc::WebRtcAec_ProcessFrames(webrtc::AecCore*, float const* const*, unsigned int, unsigned int, int, float* const*) ()
No symbol table info available.
---Type <return> to continue, or q <return> to quit---
#6 0x08ab2ca0 in ?? ()
No symbol table info available.
#7 0x08ab236a in webrtc::WebRtcAec_Process(void*, float const* const*, unsigned int, float* const*, unsigned int, short, int) ()
No symbol table info available.
#8 0x08aab992 in tgvoip::EchoCanceller::ProcessInput(unsigned char*, unsigned char*, unsigned int) ()
No symbol table info available.
#9 0x08aaf5a8 in tgvoip::OpusEncoder::RunThread() ()
No symbol table info available.
#10 0x08aaf483 in tgvoip::OpusEncoder::StartThread(void*) ()
No symbol table info available.
#11 0xb7caa295 in start_thread (arg=0x83c0eb40) at pthread_create.c:333
__res = <optimized out>
pd = 0x83c0eb40
now = <optimized out>
unwind_buf = {cancel_jmp_buf = {{jmp_buf = {-1211375616, 0, 4001536, -2084510872, 763339823,
972976711}, mask_was_saved = 0}}, priv = {pad = {0x0, 0x0, 0x0, 0x0}, data = {prev = 0x0,
cleanup = 0x0, canceltype = 0}}}
not_first_call = 0
pagesize_m1 = <optimized out>
sp = <optimized out>
freesize = <optimized out>
__PRETTY_FUNCTION__ = "start_thread"
---Type <return> to continue, or q <return> to quit---
#12 0xb7b6205e in clone () at ../sysdeps/unix/sysv/linux/i386/clone.S:114
No locals.
(gdb)
This blog post was originally posted on JetBrains .NET blog.
Rider consists of several processes that send messages to each other via sockets. To ensure the reliability of the whole application, it’s important to properly handle all the socket errors. In our codebase, we had the following code which was adopted from Mono Debugger Libs and helps us communicate with debugger processes:
protected virtual bool ShouldRetryConnection (Exception ex, int attemptNumber)
{
var sx = ex as SocketException;
if (sx != null) {
if (sx.ErrorCode == 10061) //connection refused
return true;
}
return false;
}
In the case of a failed connection because of a “ConnectionRefused” error, we are retrying the connection attempt. It works fine with .NET Framework and Mono. However, once we migrated to .NET Core, this method no longer correctly detects the “connection refused” situation on Linux and macOS. If we open the SocketException
documentation, we will learn that this class has three different properties with error codes:
SocketError SocketErrorCode
: Gets the error code that is associated with this exception.int ErrorCode
: Gets the error code that is associated with this exception.int NativeErrorCode
: Gets the Win32 error code associated with this exception.
What’s the difference between these properties? Should we expect different values on different runtimes or different operating systems? Which one should we use in production? Why do we have problems with ShouldRetryConnection
on .NET Core? Let’s figure it all out!
Digging into the problem
Let’s start with the following program, which prints error code property values for SocketError.ConnectionRefused
:
var se = new SocketException((int) SocketError.ConnectionRefused);
Console.WriteLine((int)se.SocketErrorCode);
Console.WriteLine(se.ErrorCode);
Console.WriteLine(se.NativeErrorCode);
If we run it on Windows, we will get the same value on .NET Framework, Mono, and .NET Core:
SocketErrorCode | ErrorCode | NativeErrorCode | |
.NET Framework | 10061 | 10061 | 10061 |
Mono | 10061 | 10061 | 10061 |
.NET Core | 10061 | 10061 | 10061 |
10061 corresponds to the code of the connection refused socket error code in Windows (also known as WSAECONNREFUSED
).
Now let’s run the same program on Linux:
SocketErrorCode | ErrorCode | NativeErrorCode | |
Mono | 10061 | 10061 | 10061 |
.NET Core | 10061 | 111 | 111 |
As you can see, Mono returns Windows-compatible error codes. The situation with .NET Core is different: it returns a Windows-compatible value for SocketErrorCode (10061) and a Linux-like value for ErrorCode
and NativeErrorCode
(111).
Finally, let’s check macOS:
SocketErrorCode | ErrorCode | NativeErrorCode | |
Mono | 10061 | 10061 | 10061 |
.NET Core | 10061 | 61 | 61 |
Here, Mono is completely Windows-compatible again, but .NET Core returns 61 for ErrorCode
and NativeErrorCode
.
In the IBM Knowledge Center, we can find a few more values for the connection refused error code from the Unix world (also known as ECONNREFUSED
):
- AIX: 79
- HP-UX: 239
- Solaris: 146
For a better understanding of what’s going on, let’s check out the source code of all the properties.
SocketErrorCode
SocketException.SocketErrorCode
returns a value from the SocketError
enum. The numerical values of the enum elements are the same on all the runtimes (see its implementation in .NET Framework, .NET Core 3.1.3, and Mono 6.8.0.105):
public enum SocketError
{
SocketError = -1, // 0xFFFFFFFF
Success = 0,
OperationAborted = 995, // 0x000003E3
IOPending = 997, // 0x000003E5
Interrupted = 10004, // 0x00002714
AccessDenied = 10013, // 0x0000271D
Fault = 10014, // 0x0000271E
InvalidArgument = 10022, // 0x00002726
TooManyOpenSockets = 10024, // 0x00002728
WouldBlock = 10035, // 0x00002733
InProgress = 10036, // 0x00002734
AlreadyInProgress = 10037, // 0x00002735
NotSocket = 10038, // 0x00002736
DestinationAddressRequired = 10039, // 0x00002737
MessageSize = 10040, // 0x00002738
ProtocolType = 10041, // 0x00002739
ProtocolOption = 10042, // 0x0000273A
ProtocolNotSupported = 10043, // 0x0000273B
SocketNotSupported = 10044, // 0x0000273C
OperationNotSupported = 10045, // 0x0000273D
ProtocolFamilyNotSupported = 10046, // 0x0000273E
AddressFamilyNotSupported = 10047, // 0x0000273F
AddressAlreadyInUse = 10048, // 0x00002740
AddressNotAvailable = 10049, // 0x00002741
NetworkDown = 10050, // 0x00002742
NetworkUnreachable = 10051, // 0x00002743
NetworkReset = 10052, // 0x00002744
ConnectionAborted = 10053, // 0x00002745
ConnectionReset = 10054, // 0x00002746
NoBufferSpaceAvailable = 10055, // 0x00002747
IsConnected = 10056, // 0x00002748
NotConnected = 10057, // 0x00002749
Shutdown = 10058, // 0x0000274A
TimedOut = 10060, // 0x0000274C
ConnectionRefused = 10061, // 0x0000274D
HostDown = 10064, // 0x00002750
HostUnreachable = 10065, // 0x00002751
ProcessLimit = 10067, // 0x00002753
SystemNotReady = 10091, // 0x0000276B
VersionNotSupported = 10092, // 0x0000276C
NotInitialized = 10093, // 0x0000276D
Disconnecting = 10101, // 0x00002775
TypeNotFound = 10109, // 0x0000277D
HostNotFound = 11001, // 0x00002AF9
TryAgain = 11002, // 0x00002AFA
NoRecovery = 11003, // 0x00002AFB
NoData = 11004, // 0x00002AFC
}
These values correspond to the Windows Sockets Error Codes.
NativeErrorCode
In .NET Framework and Mono, SocketErrorCode
and NativeErrorCode
always have the same values:
public SocketError SocketErrorCode {
//
// the base class returns the HResult with this property
// we need the Win32 Error Code, hence the override.
//
get {
return (SocketError)NativeErrorCode;
}
}
In .NET Core, the native code is calculated in the constructor (see SocketException.cs#L20):
public SocketException(int errorCode) : this((SocketError)errorCode)
// ...
internal SocketException(SocketError socketError) : base(GetNativeErrorForSocketError(socketError))
The Windows implementation of GetNativeErrorForSocketError
is trivial (see SocketException.Windows.cs):
private static int GetNativeErrorForSocketError(SocketError error)
{
// SocketError values map directly to Win32 error codes
return (int)error;
}
The Unix implementation is more complicated (see SocketException.Unix.cs):
private static int GetNativeErrorForSocketError(SocketError error)
{
int nativeErr = (int)error;
if (error != SocketError.SocketError)
{
Interop.Error interopErr;
// If an interop error was not found, then don't invoke Info().RawErrno as that will fail with assert.
if (SocketErrorPal.TryGetNativeErrorForSocketError(error, out interopErr))
{
nativeErr = interopErr.Info().RawErrno;
}
}
return nativeErr;
}
TryGetNativeErrorForSocketError
should convert SocketError
to the native Unix error code.
Unfortunately, there exists no unequivocal mapping between Windows and Unix error codes. As such, the .NET team decided to create a Dictionary
that maps error codes in the best possible way (see SocketErrorPal.Unix.cs):
private const int NativeErrorToSocketErrorCount = 42;
private const int SocketErrorToNativeErrorCount = 40;
// No Interop.Errors are included for the following SocketErrors, as there's no good mapping:
// - SocketError.NoRecovery
// - SocketError.NotInitialized
// - SocketError.ProcessLimit
// - SocketError.SocketError
// - SocketError.SystemNotReady
// - SocketError.TypeNotFound
// - SocketError.VersionNotSupported
private static readonly Dictionary<Interop.Error, SocketError> s_nativeErrorToSocketError = new Dictionary<Interop.Error, SocketError>(NativeErrorToSocketErrorCount)
{
{ Interop.Error.EACCES, SocketError.AccessDenied },
{ Interop.Error.EADDRINUSE, SocketError.AddressAlreadyInUse },
{ Interop.Error.EADDRNOTAVAIL, SocketError.AddressNotAvailable },
{ Interop.Error.EAFNOSUPPORT, SocketError.AddressFamilyNotSupported },
{ Interop.Error.EAGAIN, SocketError.WouldBlock },
{ Interop.Error.EALREADY, SocketError.AlreadyInProgress },
{ Interop.Error.EBADF, SocketError.OperationAborted },
{ Interop.Error.ECANCELED, SocketError.OperationAborted },
{ Interop.Error.ECONNABORTED, SocketError.ConnectionAborted },
{ Interop.Error.ECONNREFUSED, SocketError.ConnectionRefused },
{ Interop.Error.ECONNRESET, SocketError.ConnectionReset },
{ Interop.Error.EDESTADDRREQ, SocketError.DestinationAddressRequired },
{ Interop.Error.EFAULT, SocketError.Fault },
{ Interop.Error.EHOSTDOWN, SocketError.HostDown },
{ Interop.Error.ENXIO, SocketError.HostNotFound }, // not perfect, but closest match available
{ Interop.Error.EHOSTUNREACH, SocketError.HostUnreachable },
{ Interop.Error.EINPROGRESS, SocketError.InProgress },
{ Interop.Error.EINTR, SocketError.Interrupted },
{ Interop.Error.EINVAL, SocketError.InvalidArgument },
{ Interop.Error.EISCONN, SocketError.IsConnected },
{ Interop.Error.EMFILE, SocketError.TooManyOpenSockets },
{ Interop.Error.EMSGSIZE, SocketError.MessageSize },
{ Interop.Error.ENETDOWN, SocketError.NetworkDown },
{ Interop.Error.ENETRESET, SocketError.NetworkReset },
{ Interop.Error.ENETUNREACH, SocketError.NetworkUnreachable },
{ Interop.Error.ENFILE, SocketError.TooManyOpenSockets },
{ Interop.Error.ENOBUFS, SocketError.NoBufferSpaceAvailable },
{ Interop.Error.ENODATA, SocketError.NoData },
{ Interop.Error.ENOENT, SocketError.AddressNotAvailable },
{ Interop.Error.ENOPROTOOPT, SocketError.ProtocolOption },
{ Interop.Error.ENOTCONN, SocketError.NotConnected },
{ Interop.Error.ENOTSOCK, SocketError.NotSocket },
{ Interop.Error.ENOTSUP, SocketError.OperationNotSupported },
{ Interop.Error.EPERM, SocketError.AccessDenied },
{ Interop.Error.EPIPE, SocketError.Shutdown },
{ Interop.Error.EPFNOSUPPORT, SocketError.ProtocolFamilyNotSupported },
{ Interop.Error.EPROTONOSUPPORT, SocketError.ProtocolNotSupported },
{ Interop.Error.EPROTOTYPE, SocketError.ProtocolType },
{ Interop.Error.ESOCKTNOSUPPORT, SocketError.SocketNotSupported },
{ Interop.Error.ESHUTDOWN, SocketError.Disconnecting },
{ Interop.Error.SUCCESS, SocketError.Success },
{ Interop.Error.ETIMEDOUT, SocketError.TimedOut },
};
private static readonly Dictionary<SocketError, Interop.Error> s_socketErrorToNativeError = new Dictionary<SocketError, Interop.Error>(SocketErrorToNativeErrorCount)
{
// This is *mostly* an inverse mapping of s_nativeErrorToSocketError. However, some options have multiple mappings and thus
// can't be inverted directly. Other options don't have a mapping from native to SocketError, but when presented with a SocketError,
// we want to provide the closest relevant Error possible, e.g. EINPROGRESS maps to SocketError.InProgress, and vice versa, but
// SocketError.IOPending also maps closest to EINPROGRESS. As such, roundtripping won't necessarily provide the original value 100% of the time,
// but it's the best we can do given the mismatch between Interop.Error and SocketError.
{ SocketError.AccessDenied, Interop.Error.EACCES}, // could also have been EPERM
{ SocketError.AddressAlreadyInUse, Interop.Error.EADDRINUSE },
{ SocketError.AddressNotAvailable, Interop.Error.EADDRNOTAVAIL },
{ SocketError.AddressFamilyNotSupported, Interop.Error.EAFNOSUPPORT },
{ SocketError.AlreadyInProgress, Interop.Error.EALREADY },
{ SocketError.ConnectionAborted, Interop.Error.ECONNABORTED },
{ SocketError.ConnectionRefused, Interop.Error.ECONNREFUSED },
{ SocketError.ConnectionReset, Interop.Error.ECONNRESET },
{ SocketError.DestinationAddressRequired, Interop.Error.EDESTADDRREQ },
{ SocketError.Disconnecting, Interop.Error.ESHUTDOWN },
{ SocketError.Fault, Interop.Error.EFAULT },
{ SocketError.HostDown, Interop.Error.EHOSTDOWN },
{ SocketError.HostNotFound, Interop.Error.EHOSTNOTFOUND },
{ SocketError.HostUnreachable, Interop.Error.EHOSTUNREACH },
{ SocketError.InProgress, Interop.Error.EINPROGRESS },
{ SocketError.Interrupted, Interop.Error.EINTR },
{ SocketError.InvalidArgument, Interop.Error.EINVAL },
{ SocketError.IOPending, Interop.Error.EINPROGRESS },
{ SocketError.IsConnected, Interop.Error.EISCONN },
{ SocketError.MessageSize, Interop.Error.EMSGSIZE },
{ SocketError.NetworkDown, Interop.Error.ENETDOWN },
{ SocketError.NetworkReset, Interop.Error.ENETRESET },
{ SocketError.NetworkUnreachable, Interop.Error.ENETUNREACH },
{ SocketError.NoBufferSpaceAvailable, Interop.Error.ENOBUFS },
{ SocketError.NoData, Interop.Error.ENODATA },
{ SocketError.NotConnected, Interop.Error.ENOTCONN },
{ SocketError.NotSocket, Interop.Error.ENOTSOCK },
{ SocketError.OperationAborted, Interop.Error.ECANCELED },
{ SocketError.OperationNotSupported, Interop.Error.ENOTSUP },
{ SocketError.ProtocolFamilyNotSupported, Interop.Error.EPFNOSUPPORT },
{ SocketError.ProtocolNotSupported, Interop.Error.EPROTONOSUPPORT },
{ SocketError.ProtocolOption, Interop.Error.ENOPROTOOPT },
{ SocketError.ProtocolType, Interop.Error.EPROTOTYPE },
{ SocketError.Shutdown, Interop.Error.EPIPE },
{ SocketError.SocketNotSupported, Interop.Error.ESOCKTNOSUPPORT },
{ SocketError.Success, Interop.Error.SUCCESS },
{ SocketError.TimedOut, Interop.Error.ETIMEDOUT },
{ SocketError.TooManyOpenSockets, Interop.Error.ENFILE }, // could also have been EMFILE
{ SocketError.TryAgain, Interop.Error.EAGAIN }, // not a perfect mapping, but better than nothing
{ SocketError.WouldBlock, Interop.Error.EAGAIN },
};
internal static bool TryGetNativeErrorForSocketError(SocketError error, out Interop.Error errno)
{
return s_socketErrorToNativeError.TryGetValue(error, out errno);
}
Once we have an instance of Interop.Error
, we call interopErr.Info().RawErrno
. The implementation of RawErrno can be found in Interop.Errors.cs:
internal int RawErrno
{
get { return _rawErrno == -1 ? (_rawErrno = Interop.Sys.ConvertErrorPalToPlatform(_error)) : _rawErrno; }
}
[DllImport(Libraries.SystemNative, EntryPoint = "SystemNative_ConvertErrorPalToPlatform")]
internal static extern int ConvertErrorPalToPlatform(Error error);
Here we are jumping to the native function SystemNative_ConvertErrorPalToPlatform that maps Error to the native integer code that is defined in errno.h. You can get all the values using the errno util. Here is a typical output on Linux:
$ errno -ls
EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
ESRCH 3 No such process
EINTR 4 Interrupted system call
EIO 5 Input/output error
ENXIO 6 No such device or address
E2BIG 7 Argument list too long
ENOEXEC 8 Exec format error
EBADF 9 Bad file descriptor
ECHILD 10 No child processes
EAGAIN 11 Resource temporarily unavailable
ENOMEM 12 Cannot allocate memory
EACCES 13 Permission denied
EFAULT 14 Bad address
ENOTBLK 15 Block device required
EBUSY 16 Device or resource busy
EEXIST 17 File exists
EXDEV 18 Invalid cross-device link
ENODEV 19 No such device
ENOTDIR 20 Not a directory
EISDIR 21 Is a directory
EINVAL 22 Invalid argument
ENFILE 23 Too many open files in system
EMFILE 24 Too many open files
ENOTTY 25 Inappropriate ioctl for device
ETXTBSY 26 Text file busy
EFBIG 27 File too large
ENOSPC 28 No space left on device
ESPIPE 29 Illegal seek
EROFS 30 Read-only file system
EMLINK 31 Too many links
EPIPE 32 Broken pipe
EDOM 33 Numerical argument out of domain
ERANGE 34 Numerical result out of range
EDEADLK 35 Resource deadlock avoided
ENAMETOOLONG 36 File name too long
ENOLCK 37 No locks available
ENOSYS 38 Function not implemented
ENOTEMPTY 39 Directory not empty
ELOOP 40 Too many levels of symbolic links
EWOULDBLOCK 11 Resource temporarily unavailable
ENOMSG 42 No message of desired type
EIDRM 43 Identifier removed
ECHRNG 44 Channel number out of range
EL2NSYNC 45 Level 2 not synchronized
EL3HLT 46 Level 3 halted
EL3RST 47 Level 3 reset
ELNRNG 48 Link number out of range
EUNATCH 49 Protocol driver not attached
ENOCSI 50 No CSI structure available
EL2HLT 51 Level 2 halted
EBADE 52 Invalid exchange
EBADR 53 Invalid request descriptor
EXFULL 54 Exchange full
ENOANO 55 No anode
EBADRQC 56 Invalid request code
EBADSLT 57 Invalid slot
EDEADLOCK 35 Resource deadlock avoided
EBFONT 59 Bad font file format
ENOSTR 60 Device not a stream
ENODATA 61 No data available
ETIME 62 Timer expired
ENOSR 63 Out of streams resources
ENONET 64 Machine is not on the network
ENOPKG 65 Package not installed
EREMOTE 66 Object is remote
ENOLINK 67 Link has been severed
EADV 68 Advertise error
ESRMNT 69 Srmount error
ECOMM 70 Communication error on send
EPROTO 71 Protocol error
EMULTIHOP 72 Multihop attempted
EDOTDOT 73 RFS specific error
EBADMSG 74 Bad message
EOVERFLOW 75 Value too large for defined data type
ENOTUNIQ 76 Name not unique on network
EBADFD 77 File descriptor in bad state
EREMCHG 78 Remote address changed
ELIBACC 79 Can not access a needed shared library
ELIBBAD 80 Accessing a corrupted shared library
ELIBSCN 81 .lib section in a.out corrupted
ELIBMAX 82 Attempting to link in too many shared libraries
ELIBEXEC 83 Cannot exec a shared library directly
EILSEQ 84 Invalid or incomplete multibyte or wide character
ERESTART 85 Interrupted system call should be restarted
ESTRPIPE 86 Streams pipe error
EUSERS 87 Too many users
ENOTSOCK 88 Socket operation on non-socket
EDESTADDRREQ 89 Destination address required
EMSGSIZE 90 Message too long
EPROTOTYPE 91 Protocol wrong type for socket
ENOPROTOOPT 92 Protocol not available
EPROTONOSUPPORT 93 Protocol not supported
ESOCKTNOSUPPORT 94 Socket type not supported
EOPNOTSUPP 95 Operation not supported
EPFNOSUPPORT 96 Protocol family not supported
EAFNOSUPPORT 97 Address family not supported by protocol
EADDRINUSE 98 Address already in use
EADDRNOTAVAIL 99 Cannot assign requested address
ENETDOWN 100 Network is down
ENETUNREACH 101 Network is unreachable
ENETRESET 102 Network dropped connection on reset
ECONNABORTED 103 Software caused connection abort
ECONNRESET 104 Connection reset by peer
ENOBUFS 105 No buffer space available
EISCONN 106 Transport endpoint is already connected
ENOTCONN 107 Transport endpoint is not connected
ESHUTDOWN 108 Cannot send after transport endpoint shutdown
ETOOMANYREFS 109 Too many references: cannot splice
ETIMEDOUT 110 Connection timed out
ECONNREFUSED 111 Connection refused
EHOSTDOWN 112 Host is down
EHOSTUNREACH 113 No route to host
EALREADY 114 Operation already in progress
EINPROGRESS 115 Operation now in progress
ESTALE 116 Stale file handle
EUCLEAN 117 Structure needs cleaning
ENOTNAM 118 Not a XENIX named type file
ENAVAIL 119 No XENIX semaphores available
EISNAM 120 Is a named type file
EREMOTEIO 121 Remote I/O error
EDQUOT 122 Disk quota exceeded
ENOMEDIUM 123 No medium found
EMEDIUMTYPE 124 Wrong medium type
ECANCELED 125 Operation canceled
ENOKEY 126 Required key not available
EKEYEXPIRED 127 Key has expired
EKEYREVOKED 128 Key has been revoked
EKEYREJECTED 129 Key was rejected by service
EOWNERDEAD 130 Owner died
ENOTRECOVERABLE 131 State not recoverable
ERFKILL 132 Operation not possible due to RF-kill
EHWPOISON 133 Memory page has hardware error
ENOTSUP 95 Operation not supported
Note that errno
may be not available by default in your Linux distro. For example, on Debian, you should call sudo apt-get install moreutils
to get this utility.
Here is a typical output on macOS:
$ errno -ls
EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
ESRCH 3 No such process
EINTR 4 Interrupted system call
EIO 5 Input/output error
ENXIO 6 Device not configured
E2BIG 7 Argument list too long
ENOEXEC 8 Exec format error
EBADF 9 Bad file descriptor
ECHILD 10 No child processes
EDEADLK 11 Resource deadlock avoided
ENOMEM 12 Cannot allocate memory
EACCES 13 Permission denied
EFAULT 14 Bad address
ENOTBLK 15 Block device required
EBUSY 16 Resource busy
EEXIST 17 File exists
EXDEV 18 Cross-device link
ENODEV 19 Operation not supported by device
ENOTDIR 20 Not a directory
EISDIR 21 Is a directory
EINVAL 22 Invalid argument
ENFILE 23 Too many open files in system
EMFILE 24 Too many open files
ENOTTY 25 Inappropriate ioctl for device
ETXTBSY 26 Text file busy
EFBIG 27 File too large
ENOSPC 28 No space left on device
ESPIPE 29 Illegal seek
EROFS 30 Read-only file system
EMLINK 31 Too many links
EPIPE 32 Broken pipe
EDOM 33 Numerical argument out of domain
ERANGE 34 Result too large
EAGAIN 35 Resource temporarily unavailable
EWOULDBLOCK 35 Resource temporarily unavailable
EINPROGRESS 36 Operation now in progress
EALREADY 37 Operation already in progress
ENOTSOCK 38 Socket operation on non-socket
EDESTADDRREQ 39 Destination address required
EMSGSIZE 40 Message too long
EPROTOTYPE 41 Protocol wrong type for socket
ENOPROTOOPT 42 Protocol not available
EPROTONOSUPPORT 43 Protocol not supported
ESOCKTNOSUPPORT 44 Socket type not supported
ENOTSUP 45 Operation not supported
EPFNOSUPPORT 46 Protocol family not supported
EAFNOSUPPORT 47 Address family not supported by protocol family
EADDRINUSE 48 Address already in use
EADDRNOTAVAIL 49 Can`t assign requested address
ENETDOWN 50 Network is down
ENETUNREACH 51 Network is unreachable
ENETRESET 52 Network dropped connection on reset
ECONNABORTED 53 Software caused connection abort
ECONNRESET 54 Connection reset by peer
ENOBUFS 55 No buffer space available
EISCONN 56 Socket is already connected
ENOTCONN 57 Socket is not connected
ESHUTDOWN 58 Can`t send after socket shutdown
ETOOMANYREFS 59 Too many references: can`t splice
ETIMEDOUT 60 Operation timed out
ECONNREFUSED 61 Connection refused
ELOOP 62 Too many levels of symbolic links
ENAMETOOLONG 63 File name too long
EHOSTDOWN 64 Host is down
EHOSTUNREACH 65 No route to host
ENOTEMPTY 66 Directory not empty
EPROCLIM 67 Too many processes
EUSERS 68 Too many users
EDQUOT 69 Disc quota exceeded
ESTALE 70 Stale NFS file handle
EREMOTE 71 Too many levels of remote in path
EBADRPC 72 RPC struct is bad
ERPCMISMATCH 73 RPC version wrong
EPROGUNAVAIL 74 RPC prog. not avail
EPROGMISMATCH 75 Program version wrong
EPROCUNAVAIL 76 Bad procedure for program
ENOLCK 77 No locks available
ENOSYS 78 Function not implemented
EFTYPE 79 Inappropriate file type or format
EAUTH 80 Authentication error
ENEEDAUTH 81 Need authenticator
EPWROFF 82 Device power is off
EDEVERR 83 Device error
EOVERFLOW 84 Value too large to be stored in data type
EBADEXEC 85 Bad executable (or shared library)
EBADARCH 86 Bad CPU type in executable
ESHLIBVERS 87 Shared library version mismatch
EBADMACHO 88 Malformed Mach-o file
ECANCELED 89 Operation canceled
EIDRM 90 Identifier removed
ENOMSG 91 No message of desired type
EILSEQ 92 Illegal byte sequence
ENOATTR 93 Attribute not found
EBADMSG 94 Bad message
EMULTIHOP 95 EMULTIHOP (Reserved)
ENODATA 96 No message available on STREAM
ENOLINK 97 ENOLINK (Reserved)
ENOSR 98 No STREAM resources
ENOSTR 99 Not a STREAM
EPROTO 100 Protocol error
ETIME 101 STREAM ioctl timeout
EOPNOTSUPP 102 Operation not supported on socket
ENOPOLICY 103 Policy not found
ENOTRECOVERABLE 104 State not recoverable
EOWNERDEAD 105 Previous owner died
EQFULL 106 Interface output queue is full
ELAST 106 Interface output queue is full
Hooray! We’ve finished our fascinating journey into the internals of socket error codes. Now you know where .NET is getting the native error code for each SocketException
from!
ErrorCode
The ErrorCode
property is the most boring one, as it always returns NativeErrorCode
.
.NET Framework, Mono 6.8.0.105:
public override int ErrorCode {
//
// the base class returns the HResult with this property
// we need the Win32 Error Code, hence the override.
//
get {
return NativeErrorCode;
}
}
In .NET Core 3.1.3:
public override int ErrorCode => base.NativeErrorCode;
Writing cross-platform socket error handling
Circling back to the original method we started this post with, we rewrote ShouldRetryConnection as follows:
protected virtual bool ShouldRetryConnection(Exception ex)
{
if (ex is SocketException sx)
return sx.SocketErrorCode == SocketError.ConnectionRefused;
return false;
}
There was a lot of work involved in tracking down the error code to check against, but in the end, our code is much more readable now. Adding to that, this method is now also completely cross-platform, and works correctly on any runtime.
Overview of the native error codes
In some situations, you may want to have a table with native error codes on different operating systems. We can get these values with the following code snippet:
var allErrors = Enum.GetValues(typeof(SocketError)).Cast<SocketError>().ToList();
var maxNameWidth = allErrors.Select(x => x.ToString().Length).Max();
foreach (var socketError in allErrors)
{
var name = socketError.ToString().PadRight(maxNameWidth);
var code = new SocketException((int) socketError).NativeErrorCode.ToString().PadLeft(7);
Console.WriteLine("| {name} | {code} |");
}
We executed this program on Windows, Linux, and macOS. Here are the aggregated results:
SocketError | Windows | Linux | macOS |
Success | 0 | 0 | 0 |
OperationAborted | 995 | 125 | 89 |
IOPending | 997 | 115 | 36 |
Interrupted | 10004 | 4 | 4 |
AccessDenied | 10013 | 13 | 13 |
Fault | 10014 | 14 | 14 |
InvalidArgument | 10022 | 22 | 22 |
TooManyOpenSockets | 10024 | 23 | 23 |
WouldBlock | 10035 | 11 | 35 |
InProgress | 10036 | 115 | 36 |
AlreadyInProgress | 10037 | 114 | 37 |
NotSocket | 10038 | 88 | 38 |
DestinationAddressRequired | 10039 | 89 | 39 |
MessageSize | 10040 | 90 | 40 |
ProtocolType | 10041 | 91 | 41 |
ProtocolOption | 10042 | 92 | 42 |
ProtocolNotSupported | 10043 | 93 | 43 |
SocketNotSupported | 10044 | 94 | 44 |
OperationNotSupported | 10045 | 95 | 45 |
ProtocolFamilyNotSupported | 10046 | 96 | 46 |
AddressFamilyNotSupported | 10047 | 97 | 47 |
AddressAlreadyInUse | 10048 | 98 | 48 |
AddressNotAvailable | 10049 | 99 | 49 |
NetworkDown | 10050 | 100 | 50 |
NetworkUnreachable | 10051 | 101 | 51 |
NetworkReset | 10052 | 102 | 52 |
ConnectionAborted | 10053 | 103 | 53 |
ConnectionReset | 10054 | 104 | 54 |
NoBufferSpaceAvailable | 10055 | 105 | 55 |
IsConnected | 10056 | 106 | 56 |
NotConnected | 10057 | 107 | 57 |
Shutdown | 10058 | 32 | 32 |
TimedOut | 10060 | 110 | 60 |
ConnectionRefused | 10061 | 111 | 61 |
HostDown | 10064 | 112 | 64 |
HostUnreachable | 10065 | 113 | 65 |
ProcessLimit | 10067 | 10067 | 10067 |
SystemNotReady | 10091 | 10091 | 10091 |
VersionNotSupported | 10092 | 10092 | 10092 |
NotInitialized | 10093 | 10093 | 10093 |
Disconnecting | 10101 | 108 | 58 |
TypeNotFound | 10109 | 10109 | 10109 |
HostNotFound | 11001 | -131073 | -131073 |
TryAgain | 11002 | 11 | 35 |
NoRecovery | 11003 | 11003 | 11003 |
NoData | 11004 | 61 | 96 |
SocketError | -1 | -1 | -1 |
This table may be useful if you work with native socket error codes.
Summary
From this investigation, we’ve learned the following:
SocketException.SocketErrorCode
returns a value from theSocketError
enum. The numerical values of the enum elements always correspond to the Windows socket error codes.SocketException.ErrorCode
always returnsSocketException.NativeErrorCode
.SocketException.NativeErrorCode
on .NET Framework and Mono always corresponds to the Windows error codes (even if you are using Mono on Unix). On .NET Core,SocketException.NativeErrorCode
equals the corresponding native error code from the current operating system.
A few practical recommendations:
- If you want to write portable code, always use
SocketException.SocketErrorCode
and compare it with the values ofSocketError
. Never use raw numerical error codes. - If you want to get the native error code on .NET Core (e.g., for passing to another native program), use
SocketException.NativeErrorCode
. Remember that different Unix-based operating systems (e.g., Linux, macOS, Solaris) have different native code sets. You can get the exact values of the native error codes by using the errno command.
References
- Microsoft Docs: Windows Sockets Error Codes
- IBM Knowledge Center: TCP/IP error codes
- MariaDB: Operating System Error Codes
- gnu.org: Error Codes
- Stackoverflow: Identical Error Codes
Dev Team blog
How Socket Error Codes Depend on Runtime and Operating System
This post is the first part of a blog post series that covers different technical challenges that we had to resolve during the migration of the Rider backend process from Mono to .NET Core. By sharing our experiences, we hope to help out those who are in the same boat.
There’s too much to share in one post, so we will make this into a series of posts. In this series:
- How Socket Error Codes Depend on Runtime and Operating System
- How Sorting Order Depends on Runtime and Operating System
- How ListSeparator Depends on Runtime and Operating System
Let’s dive in!
Sockets and error codes
Rider consists of several processes that send messages to each other via sockets. To ensure the reliability of the whole application, it’s important to properly handle all the socket errors. In our codebase, we had the following code which was adopted from Mono Debugger Libs and helps us communicate with debugger processes:
protected virtual bool ShouldRetryConnection (Exception ex, int attemptNumber) { var sx = ex as SocketException; if (sx != null) { if (sx.ErrorCode == 10061) //connection refused return true; } return false; }
In the case of a failed connection because of a “ConnectionRefused” error, we are retrying the connection attempt. It works fine with .NET Framework and Mono. However, once we migrated to .NET Core, this method no longer correctly detects the “connection refused” situation on Linux and macOS. If we open the SocketException
documentation, we will learn that this class has three different properties with error codes:
SocketError SocketErrorCode
: Gets the error code that is associated with this exception.int ErrorCode
: Gets the error code that is associated with this exception.int NativeErrorCode
: Gets the Win32 error code associated with this exception.
What’s the difference between these properties? Should we expect different values on different runtimes or different operating systems? Which one should we use in production? Why do we have problems with ShouldRetryConnection
on .NET Core? Let’s figure it all out!
Digging into the problem
Let’s start with the following program, which prints error code property values for SocketError.ConnectionRefused
:
var se = new SocketException((int) SocketError.ConnectionRefused); Console.WriteLine((int)se.SocketErrorCode); Console.WriteLine(se.ErrorCode); Console.WriteLine(se.NativeErrorCode);
If we run it on Windows, we will get the same value on .NET Framework, Mono, and .NET Core:
SocketErrorCode | ErrorCode | NativeErrorCode | |
.NET Framework | 10061 | 10061 | 10061 |
Mono | 10061 | 10061 | 10061 |
.NET Core | 10061 | 10061 | 10061 |
10061 corresponds to the code of the connection refused socket error code in Windows (also known as WSAECONNREFUSED
).
Now let’s run the same program on Linux:
SocketErrorCode | ErrorCode | NativeErrorCode | |
Mono | 10061 | 10061 | 10061 |
.NET Core | 10061 | 111 | 111 |
As you can see, Mono returns Windows-compatible error codes. The situation with .NET Core is different: it returns a Windows-compatible value for SocketErrorCode (10061) and a Linux-like value for ErrorCode
and NativeErrorCode
(111).
Finally, let’s check macOS:
SocketErrorCode | ErrorCode | NativeErrorCode | |
Mono | 10061 | 10061 | 10061 |
.NET Core | 10061 | 61 | 61 |
Here, Mono is completely Windows-compatible again, but .NET Core returns 61 for ErrorCode
and NativeErrorCode
.
In the IBM Knowledge Center, we can find a few more values for the connection refused error code from the Unix world (also known as ECONNREFUSED
):
- AIX: 79
- HP-UX: 239
- Solaris: 146
For a better understanding of what’s going on, let’s check out the source code of all the properties.
SocketErrorCode
SocketException.SocketErrorCode
returns a value from the SocketError
enum. The numerical values of the enum elements are the same on all the runtimes (see its implementation in .NET Framework, .NET Core 3.1.3, and Mono 6.8.0.105):
public enum SocketError { SocketError = -1, // 0xFFFFFFFF Success = 0, OperationAborted = 995, // 0x000003E3 IOPending = 997, // 0x000003E5 Interrupted = 10004, // 0x00002714 AccessDenied = 10013, // 0x0000271D Fault = 10014, // 0x0000271E InvalidArgument = 10022, // 0x00002726 TooManyOpenSockets = 10024, // 0x00002728 WouldBlock = 10035, // 0x00002733 InProgress = 10036, // 0x00002734 AlreadyInProgress = 10037, // 0x00002735 NotSocket = 10038, // 0x00002736 DestinationAddressRequired = 10039, // 0x00002737 MessageSize = 10040, // 0x00002738 ProtocolType = 10041, // 0x00002739 ProtocolOption = 10042, // 0x0000273A ProtocolNotSupported = 10043, // 0x0000273B SocketNotSupported = 10044, // 0x0000273C OperationNotSupported = 10045, // 0x0000273D ProtocolFamilyNotSupported = 10046, // 0x0000273E AddressFamilyNotSupported = 10047, // 0x0000273F AddressAlreadyInUse = 10048, // 0x00002740 AddressNotAvailable = 10049, // 0x00002741 NetworkDown = 10050, // 0x00002742 NetworkUnreachable = 10051, // 0x00002743 NetworkReset = 10052, // 0x00002744 ConnectionAborted = 10053, // 0x00002745 ConnectionReset = 10054, // 0x00002746 NoBufferSpaceAvailable = 10055, // 0x00002747 IsConnected = 10056, // 0x00002748 NotConnected = 10057, // 0x00002749 Shutdown = 10058, // 0x0000274A TimedOut = 10060, // 0x0000274C ConnectionRefused = 10061, // 0x0000274D HostDown = 10064, // 0x00002750 HostUnreachable = 10065, // 0x00002751 ProcessLimit = 10067, // 0x00002753 SystemNotReady = 10091, // 0x0000276B VersionNotSupported = 10092, // 0x0000276C NotInitialized = 10093, // 0x0000276D Disconnecting = 10101, // 0x00002775 TypeNotFound = 10109, // 0x0000277D HostNotFound = 11001, // 0x00002AF9 TryAgain = 11002, // 0x00002AFA NoRecovery = 11003, // 0x00002AFB NoData = 11004, // 0x00002AFC }
These values correspond to the Windows Sockets Error Codes.
NativeErrorCode
In .NET Framework and Mono, SocketErrorCode
and NativeErrorCode
always have the same values:
public SocketError SocketErrorCode { // // the base class returns the HResult with this property // we need the Win32 Error Code, hence the override. // get { return (SocketError)NativeErrorCode; } }
In .NET Core, the native code is calculated in the constructor (see SocketException.cs#L20):
public SocketException(int errorCode) : this((SocketError)errorCode) // ... internal SocketException(SocketError socketError) : base(GetNativeErrorForSocketError(socketError))
The Windows implementation of GetNativeErrorForSocketError
is trivial (see SocketException.Windows.cs):
private static int GetNativeErrorForSocketError(SocketError error) { // SocketError values map directly to Win32 error codes return (int)error; }
The Unix implementation is more complicated (see SocketException.Unix.cs):
private static int GetNativeErrorForSocketError(SocketError error) { int nativeErr = (int)error; if (error != SocketError.SocketError) { Interop.Error interopErr; // If an interop error was not found, then don't invoke Info().RawErrno as that will fail with assert. if (SocketErrorPal.TryGetNativeErrorForSocketError(error, out interopErr)) { nativeErr = interopErr.Info().RawErrno; } } return nativeErr; }
TryGetNativeErrorForSocketError
should convert SocketError
to the native Unix error code.
Unfortunately, there exists no unequivocal mapping between Windows and Unix error codes. As such, the .NET team decided to create a Dictionary
that maps error codes in the best possible way (see SocketErrorPal.Unix.cs):
private const int NativeErrorToSocketErrorCount = 42; private const int SocketErrorToNativeErrorCount = 40; // No Interop.Errors are included for the following SocketErrors, as there's no good mapping: // - SocketError.NoRecovery // - SocketError.NotInitialized // - SocketError.ProcessLimit // - SocketError.SocketError // - SocketError.SystemNotReady // - SocketError.TypeNotFound // - SocketError.VersionNotSupported private static readonly Dictionary<Interop.Error, SocketError> s_nativeErrorToSocketError = new Dictionary<Interop.Error, SocketError>(NativeErrorToSocketErrorCount) { { Interop.Error.EACCES, SocketError.AccessDenied }, { Interop.Error.EADDRINUSE, SocketError.AddressAlreadyInUse }, { Interop.Error.EADDRNOTAVAIL, SocketError.AddressNotAvailable }, { Interop.Error.EAFNOSUPPORT, SocketError.AddressFamilyNotSupported }, { Interop.Error.EAGAIN, SocketError.WouldBlock }, { Interop.Error.EALREADY, SocketError.AlreadyInProgress }, { Interop.Error.EBADF, SocketError.OperationAborted }, { Interop.Error.ECANCELED, SocketError.OperationAborted }, { Interop.Error.ECONNABORTED, SocketError.ConnectionAborted }, { Interop.Error.ECONNREFUSED, SocketError.ConnectionRefused }, { Interop.Error.ECONNRESET, SocketError.ConnectionReset }, { Interop.Error.EDESTADDRREQ, SocketError.DestinationAddressRequired }, { Interop.Error.EFAULT, SocketError.Fault }, { Interop.Error.EHOSTDOWN, SocketError.HostDown }, { Interop.Error.ENXIO, SocketError.HostNotFound }, // not perfect, but closest match available { Interop.Error.EHOSTUNREACH, SocketError.HostUnreachable }, { Interop.Error.EINPROGRESS, SocketError.InProgress }, { Interop.Error.EINTR, SocketError.Interrupted }, { Interop.Error.EINVAL, SocketError.InvalidArgument }, { Interop.Error.EISCONN, SocketError.IsConnected }, { Interop.Error.EMFILE, SocketError.TooManyOpenSockets }, { Interop.Error.EMSGSIZE, SocketError.MessageSize }, { Interop.Error.ENETDOWN, SocketError.NetworkDown }, { Interop.Error.ENETRESET, SocketError.NetworkReset }, { Interop.Error.ENETUNREACH, SocketError.NetworkUnreachable }, { Interop.Error.ENFILE, SocketError.TooManyOpenSockets }, { Interop.Error.ENOBUFS, SocketError.NoBufferSpaceAvailable }, { Interop.Error.ENODATA, SocketError.NoData }, { Interop.Error.ENOENT, SocketError.AddressNotAvailable }, { Interop.Error.ENOPROTOOPT, SocketError.ProtocolOption }, { Interop.Error.ENOTCONN, SocketError.NotConnected }, { Interop.Error.ENOTSOCK, SocketError.NotSocket }, { Interop.Error.ENOTSUP, SocketError.OperationNotSupported }, { Interop.Error.EPERM, SocketError.AccessDenied }, { Interop.Error.EPIPE, SocketError.Shutdown }, { Interop.Error.EPFNOSUPPORT, SocketError.ProtocolFamilyNotSupported }, { Interop.Error.EPROTONOSUPPORT, SocketError.ProtocolNotSupported }, { Interop.Error.EPROTOTYPE, SocketError.ProtocolType }, { Interop.Error.ESOCKTNOSUPPORT, SocketError.SocketNotSupported }, { Interop.Error.ESHUTDOWN, SocketError.Disconnecting }, { Interop.Error.SUCCESS, SocketError.Success }, { Interop.Error.ETIMEDOUT, SocketError.TimedOut }, }; private static readonly Dictionary<SocketError, Interop.Error> s_socketErrorToNativeError = new Dictionary<SocketError, Interop.Error>(SocketErrorToNativeErrorCount) { // This is *mostly* an inverse mapping of s_nativeErrorToSocketError. However, some options have multiple mappings and thus // can't be inverted directly. Other options don't have a mapping from native to SocketError, but when presented with a SocketError, // we want to provide the closest relevant Error possible, e.g. EINPROGRESS maps to SocketError.InProgress, and vice versa, but // SocketError.IOPending also maps closest to EINPROGRESS. As such, roundtripping won't necessarily provide the original value 100% of the time, // but it's the best we can do given the mismatch between Interop.Error and SocketError. { SocketError.AccessDenied, Interop.Error.EACCES}, // could also have been EPERM { SocketError.AddressAlreadyInUse, Interop.Error.EADDRINUSE }, { SocketError.AddressNotAvailable, Interop.Error.EADDRNOTAVAIL }, { SocketError.AddressFamilyNotSupported, Interop.Error.EAFNOSUPPORT }, { SocketError.AlreadyInProgress, Interop.Error.EALREADY }, { SocketError.ConnectionAborted, Interop.Error.ECONNABORTED }, { SocketError.ConnectionRefused, Interop.Error.ECONNREFUSED }, { SocketError.ConnectionReset, Interop.Error.ECONNRESET }, { SocketError.DestinationAddressRequired, Interop.Error.EDESTADDRREQ }, { SocketError.Disconnecting, Interop.Error.ESHUTDOWN }, { SocketError.Fault, Interop.Error.EFAULT }, { SocketError.HostDown, Interop.Error.EHOSTDOWN }, { SocketError.HostNotFound, Interop.Error.EHOSTNOTFOUND }, { SocketError.HostUnreachable, Interop.Error.EHOSTUNREACH }, { SocketError.InProgress, Interop.Error.EINPROGRESS }, { SocketError.Interrupted, Interop.Error.EINTR }, { SocketError.InvalidArgument, Interop.Error.EINVAL }, { SocketError.IOPending, Interop.Error.EINPROGRESS }, { SocketError.IsConnected, Interop.Error.EISCONN }, { SocketError.MessageSize, Interop.Error.EMSGSIZE }, { SocketError.NetworkDown, Interop.Error.ENETDOWN }, { SocketError.NetworkReset, Interop.Error.ENETRESET }, { SocketError.NetworkUnreachable, Interop.Error.ENETUNREACH }, { SocketError.NoBufferSpaceAvailable, Interop.Error.ENOBUFS }, { SocketError.NoData, Interop.Error.ENODATA }, { SocketError.NotConnected, Interop.Error.ENOTCONN }, { SocketError.NotSocket, Interop.Error.ENOTSOCK }, { SocketError.OperationAborted, Interop.Error.ECANCELED }, { SocketError.OperationNotSupported, Interop.Error.ENOTSUP }, { SocketError.ProtocolFamilyNotSupported, Interop.Error.EPFNOSUPPORT }, { SocketError.ProtocolNotSupported, Interop.Error.EPROTONOSUPPORT }, { SocketError.ProtocolOption, Interop.Error.ENOPROTOOPT }, { SocketError.ProtocolType, Interop.Error.EPROTOTYPE }, { SocketError.Shutdown, Interop.Error.EPIPE }, { SocketError.SocketNotSupported, Interop.Error.ESOCKTNOSUPPORT }, { SocketError.Success, Interop.Error.SUCCESS }, { SocketError.TimedOut, Interop.Error.ETIMEDOUT }, { SocketError.TooManyOpenSockets, Interop.Error.ENFILE }, // could also have been EMFILE { SocketError.TryAgain, Interop.Error.EAGAIN }, // not a perfect mapping, but better than nothing { SocketError.WouldBlock, Interop.Error.EAGAIN }, }; internal static bool TryGetNativeErrorForSocketError(SocketError error, out Interop.Error errno) { return s_socketErrorToNativeError.TryGetValue(error, out errno); }
Once we have an instance of Interop.Error
, we call interopErr.Info().RawErrno
. The implementation of RawErrno can be found in Interop.Errors.cs:
internal int RawErrno { get { return _rawErrno == -1 ? (_rawErrno = Interop.Sys.ConvertErrorPalToPlatform(_error)) : _rawErrno; } } [DllImport(Libraries.SystemNative, EntryPoint = "SystemNative_ConvertErrorPalToPlatform")] internal static extern int ConvertErrorPalToPlatform(Error error);
Here we are jumping to the native function SystemNative_ConvertErrorPalToPlatform that maps Error to the native integer code that is defined in errno.h. You can get all the values using the errno util. Here is a typical output on Linux:
$ errno -ls EPERM 1 Operation not permitted ENOENT 2 No such file or directory ESRCH 3 No such process EINTR 4 Interrupted system call EIO 5 Input/output error ENXIO 6 No such device or address E2BIG 7 Argument list too long ENOEXEC 8 Exec format error EBADF 9 Bad file descriptor ECHILD 10 No child processes EAGAIN 11 Resource temporarily unavailable ENOMEM 12 Cannot allocate memory EACCES 13 Permission denied EFAULT 14 Bad address ENOTBLK 15 Block device required EBUSY 16 Device or resource busy EEXIST 17 File exists EXDEV 18 Invalid cross-device link ENODEV 19 No such device ENOTDIR 20 Not a directory EISDIR 21 Is a directory EINVAL 22 Invalid argument ENFILE 23 Too many open files in system EMFILE 24 Too many open files ENOTTY 25 Inappropriate ioctl for device ETXTBSY 26 Text file busy EFBIG 27 File too large ENOSPC 28 No space left on device ESPIPE 29 Illegal seek EROFS 30 Read-only file system EMLINK 31 Too many links EPIPE 32 Broken pipe EDOM 33 Numerical argument out of domain ERANGE 34 Numerical result out of range EDEADLK 35 Resource deadlock avoided ENAMETOOLONG 36 File name too long ENOLCK 37 No locks available ENOSYS 38 Function not implemented ENOTEMPTY 39 Directory not empty ELOOP 40 Too many levels of symbolic links EWOULDBLOCK 11 Resource temporarily unavailable ENOMSG 42 No message of desired type EIDRM 43 Identifier removed ECHRNG 44 Channel number out of range EL2NSYNC 45 Level 2 not synchronized EL3HLT 46 Level 3 halted EL3RST 47 Level 3 reset ELNRNG 48 Link number out of range EUNATCH 49 Protocol driver not attached ENOCSI 50 No CSI structure available EL2HLT 51 Level 2 halted EBADE 52 Invalid exchange EBADR 53 Invalid request descriptor EXFULL 54 Exchange full ENOANO 55 No anode EBADRQC 56 Invalid request code EBADSLT 57 Invalid slot EDEADLOCK 35 Resource deadlock avoided EBFONT 59 Bad font file format ENOSTR 60 Device not a stream ENODATA 61 No data available ETIME 62 Timer expired ENOSR 63 Out of streams resources ENONET 64 Machine is not on the network ENOPKG 65 Package not installed EREMOTE 66 Object is remote ENOLINK 67 Link has been severed EADV 68 Advertise error ESRMNT 69 Srmount error ECOMM 70 Communication error on send EPROTO 71 Protocol error EMULTIHOP 72 Multihop attempted EDOTDOT 73 RFS specific error EBADMSG 74 Bad message EOVERFLOW 75 Value too large for defined data type ENOTUNIQ 76 Name not unique on network EBADFD 77 File descriptor in bad state EREMCHG 78 Remote address changed ELIBACC 79 Can not access a needed shared library ELIBBAD 80 Accessing a corrupted shared library ELIBSCN 81 .lib section in a.out corrupted ELIBMAX 82 Attempting to link in too many shared libraries ELIBEXEC 83 Cannot exec a shared library directly EILSEQ 84 Invalid or incomplete multibyte or wide character ERESTART 85 Interrupted system call should be restarted ESTRPIPE 86 Streams pipe error EUSERS 87 Too many users ENOTSOCK 88 Socket operation on non-socket EDESTADDRREQ 89 Destination address required EMSGSIZE 90 Message too long EPROTOTYPE 91 Protocol wrong type for socket ENOPROTOOPT 92 Protocol not available EPROTONOSUPPORT 93 Protocol not supported ESOCKTNOSUPPORT 94 Socket type not supported EOPNOTSUPP 95 Operation not supported EPFNOSUPPORT 96 Protocol family not supported EAFNOSUPPORT 97 Address family not supported by protocol EADDRINUSE 98 Address already in use EADDRNOTAVAIL 99 Cannot assign requested address ENETDOWN 100 Network is down ENETUNREACH 101 Network is unreachable ENETRESET 102 Network dropped connection on reset ECONNABORTED 103 Software caused connection abort ECONNRESET 104 Connection reset by peer ENOBUFS 105 No buffer space available EISCONN 106 Transport endpoint is already connected ENOTCONN 107 Transport endpoint is not connected ESHUTDOWN 108 Cannot send after transport endpoint shutdown ETOOMANYREFS 109 Too many references: cannot splice ETIMEDOUT 110 Connection timed out ECONNREFUSED 111 Connection refused EHOSTDOWN 112 Host is down EHOSTUNREACH 113 No route to host EALREADY 114 Operation already in progress EINPROGRESS 115 Operation now in progress ESTALE 116 Stale file handle EUCLEAN 117 Structure needs cleaning ENOTNAM 118 Not a XENIX named type file ENAVAIL 119 No XENIX semaphores available EISNAM 120 Is a named type file EREMOTEIO 121 Remote I/O error EDQUOT 122 Disk quota exceeded ENOMEDIUM 123 No medium found EMEDIUMTYPE 124 Wrong medium type ECANCELED 125 Operation canceled ENOKEY 126 Required key not available EKEYEXPIRED 127 Key has expired EKEYREVOKED 128 Key has been revoked EKEYREJECTED 129 Key was rejected by service EOWNERDEAD 130 Owner died ENOTRECOVERABLE 131 State not recoverable ERFKILL 132 Operation not possible due to RF-kill EHWPOISON 133 Memory page has hardware error ENOTSUP 95 Operation not supported
Note that errno
may be not available by default in your Linux distro. For example, on Debian, you should call sudo apt-get install moreutils
to get this utility.
Here is a typical output on macOS:
$ errno -ls EPERM 1 Operation not permitted ENOENT 2 No such file or directory ESRCH 3 No such process EINTR 4 Interrupted system call EIO 5 Input/output error ENXIO 6 Device not configured E2BIG 7 Argument list too long ENOEXEC 8 Exec format error EBADF 9 Bad file descriptor ECHILD 10 No child processes EDEADLK 11 Resource deadlock avoided ENOMEM 12 Cannot allocate memory EACCES 13 Permission denied EFAULT 14 Bad address ENOTBLK 15 Block device required EBUSY 16 Resource busy EEXIST 17 File exists EXDEV 18 Cross-device link ENODEV 19 Operation not supported by device ENOTDIR 20 Not a directory EISDIR 21 Is a directory EINVAL 22 Invalid argument ENFILE 23 Too many open files in system EMFILE 24 Too many open files ENOTTY 25 Inappropriate ioctl for device ETXTBSY 26 Text file busy EFBIG 27 File too large ENOSPC 28 No space left on device ESPIPE 29 Illegal seek EROFS 30 Read-only file system EMLINK 31 Too many links EPIPE 32 Broken pipe EDOM 33 Numerical argument out of domain ERANGE 34 Result too large EAGAIN 35 Resource temporarily unavailable EWOULDBLOCK 35 Resource temporarily unavailable EINPROGRESS 36 Operation now in progress EALREADY 37 Operation already in progress ENOTSOCK 38 Socket operation on non-socket EDESTADDRREQ 39 Destination address required EMSGSIZE 40 Message too long EPROTOTYPE 41 Protocol wrong type for socket ENOPROTOOPT 42 Protocol not available EPROTONOSUPPORT 43 Protocol not supported ESOCKTNOSUPPORT 44 Socket type not supported ENOTSUP 45 Operation not supported EPFNOSUPPORT 46 Protocol family not supported EAFNOSUPPORT 47 Address family not supported by protocol family EADDRINUSE 48 Address already in use EADDRNOTAVAIL 49 Can`t assign requested address ENETDOWN 50 Network is down ENETUNREACH 51 Network is unreachable ENETRESET 52 Network dropped connection on reset ECONNABORTED 53 Software caused connection abort ECONNRESET 54 Connection reset by peer ENOBUFS 55 No buffer space available EISCONN 56 Socket is already connected ENOTCONN 57 Socket is not connected ESHUTDOWN 58 Can`t send after socket shutdown ETOOMANYREFS 59 Too many references: can`t splice ETIMEDOUT 60 Operation timed out ECONNREFUSED 61 Connection refused ELOOP 62 Too many levels of symbolic links ENAMETOOLONG 63 File name too long EHOSTDOWN 64 Host is down EHOSTUNREACH 65 No route to host ENOTEMPTY 66 Directory not empty EPROCLIM 67 Too many processes EUSERS 68 Too many users EDQUOT 69 Disc quota exceeded ESTALE 70 Stale NFS file handle EREMOTE 71 Too many levels of remote in path EBADRPC 72 RPC struct is bad ERPCMISMATCH 73 RPC version wrong EPROGUNAVAIL 74 RPC prog. not avail EPROGMISMATCH 75 Program version wrong EPROCUNAVAIL 76 Bad procedure for program ENOLCK 77 No locks available ENOSYS 78 Function not implemented EFTYPE 79 Inappropriate file type or format EAUTH 80 Authentication error ENEEDAUTH 81 Need authenticator EPWROFF 82 Device power is off EDEVERR 83 Device error EOVERFLOW 84 Value too large to be stored in data type EBADEXEC 85 Bad executable (or shared library) EBADARCH 86 Bad CPU type in executable ESHLIBVERS 87 Shared library version mismatch EBADMACHO 88 Malformed Mach-o file ECANCELED 89 Operation canceled EIDRM 90 Identifier removed ENOMSG 91 No message of desired type EILSEQ 92 Illegal byte sequence ENOATTR 93 Attribute not found EBADMSG 94 Bad message EMULTIHOP 95 EMULTIHOP (Reserved) ENODATA 96 No message available on STREAM ENOLINK 97 ENOLINK (Reserved) ENOSR 98 No STREAM resources ENOSTR 99 Not a STREAM EPROTO 100 Protocol error ETIME 101 STREAM ioctl timeout EOPNOTSUPP 102 Operation not supported on socket ENOPOLICY 103 Policy not found ENOTRECOVERABLE 104 State not recoverable EOWNERDEAD 105 Previous owner died EQFULL 106 Interface output queue is full ELAST 106 Interface output queue is full
Hooray! We’ve finished our fascinating journey into the internals of socket error codes. Now you know where .NET is getting the native error code for each SocketException
from!
ErrorCode
The ErrorCode
property is the most boring one, as it always returns NativeErrorCode
.
.NET Framework, Mono 6.8.0.105:
public override int ErrorCode { // // the base class returns the HResult with this property // we need the Win32 Error Code, hence the override. // get { return NativeErrorCode; } }
In .NET Core 3.1.3:
public override int ErrorCode => base.NativeErrorCode;
Writing cross-platform socket error handling
Circling back to the original method we started this post with, we rewrote ShouldRetryConnection as follows:
protected virtual bool ShouldRetryConnection(Exception ex) { if (ex is SocketException sx) return sx.SocketErrorCode == SocketError.ConnectionRefused; return false; }
There was a lot of work involved in tracking down the error code to check against, but in the end, our code is much more readable now. Adding to that, this method is now also completely cross-platform, and works correctly on any runtime.
Overview of the native error codes
In some situations, you may want to have a table with native error codes on different operating systems. We can get these values with the following code snippet:
var allErrors = Enum.GetValues(typeof(SocketError)).Cast<SocketError>().ToList(); var maxNameWidth = allErrors.Select(x => x.ToString().Length).Max(); foreach (var socketError in allErrors) { var name = socketError.ToString().PadRight(maxNameWidth); var code = new SocketException((int) socketError).NativeErrorCode.ToString().PadLeft(7); Console.WriteLine($TEXT$quot;| {name} | {code} |"); }
We executed this program on Windows, Linux, and macOS. Here are the aggregated results:
SocketError | Windows | Linux | macOS |
Success | 0 | 0 | 0 |
OperationAborted | 995 | 125 | 89 |
IOPending | 997 | 115 | 36 |
Interrupted | 10004 | 4 | 4 |
AccessDenied | 10013 | 13 | 13 |
Fault | 10014 | 14 | 14 |
InvalidArgument | 10022 | 22 | 22 |
TooManyOpenSockets | 10024 | 23 | 23 |
WouldBlock | 10035 | 11 | 35 |
InProgress | 10036 | 115 | 36 |
AlreadyInProgress | 10037 | 114 | 37 |
NotSocket | 10038 | 88 | 38 |
DestinationAddressRequired | 10039 | 89 | 39 |
MessageSize | 10040 | 90 | 40 |
ProtocolType | 10041 | 91 | 41 |
ProtocolOption | 10042 | 92 | 42 |
ProtocolNotSupported | 10043 | 93 | 43 |
SocketNotSupported | 10044 | 94 | 44 |
OperationNotSupported | 10045 | 95 | 45 |
ProtocolFamilyNotSupported | 10046 | 96 | 46 |
AddressFamilyNotSupported | 10047 | 97 | 47 |
AddressAlreadyInUse | 10048 | 98 | 48 |
AddressNotAvailable | 10049 | 99 | 49 |
NetworkDown | 10050 | 100 | 50 |
NetworkUnreachable | 10051 | 101 | 51 |
NetworkReset | 10052 | 102 | 52 |
ConnectionAborted | 10053 | 103 | 53 |
ConnectionReset | 10054 | 104 | 54 |
NoBufferSpaceAvailable | 10055 | 105 | 55 |
IsConnected | 10056 | 106 | 56 |
NotConnected | 10057 | 107 | 57 |
Shutdown | 10058 | 32 | 32 |
TimedOut | 10060 | 110 | 60 |
ConnectionRefused | 10061 | 111 | 61 |
HostDown | 10064 | 112 | 64 |
HostUnreachable | 10065 | 113 | 65 |
ProcessLimit | 10067 | 10067 | 10067 |
SystemNotReady | 10091 | 10091 | 10091 |
VersionNotSupported | 10092 | 10092 | 10092 |
NotInitialized | 10093 | 10093 | 10093 |
Disconnecting | 10101 | 108 | 58 |
TypeNotFound | 10109 | 10109 | 10109 |
HostNotFound | 11001 | -131073 | -131073 |
TryAgain | 11002 | 11 | 35 |
NoRecovery | 11003 | 11003 | 11003 |
NoData | 11004 | 61 | 96 |
SocketError | -1 | -1 | -1 |
This table may be useful if you work with native socket error codes.
Summary
From this investigation, we’ve learned the following:
SocketException.SocketErrorCode
returns a value from theSocketError
enum. The numerical values of the enum elements always correspond to the Windows socket error codes.SocketException.ErrorCode
always returnsSocketException.NativeErrorCode
.SocketException.NativeErrorCode
on .NET Framework and Mono always corresponds to the Windows error codes (even if you are using Mono on Unix). On .NET Core,SocketException.NativeErrorCode
equals the corresponding native error code from the current operating system.
A few practical recommendations:
- If you want to write portable code, always use
SocketException.SocketErrorCode
and compare it with the values ofSocketError
. Never use raw numerical error codes. - If you want to get the native error code on .NET Core (e.g., for passing to another native program), use
SocketException.NativeErrorCode
. Remember that different Unix-based operating systems (e.g., Linux, macOS, Solaris) have different native code sets. You can get the exact values of the native error codes by using the errno command.
References
- Microsoft Docs: Windows Sockets Error Codes
- IBM Knowledge Center: TCP/IP error codes
- MariaDB: Operating System Error Codes
- gnu.org: Error Codes
- Stackoverflow: Identical Error Codes
Subscribe to Blog updates
Discover more
Methods declared in class java.lang.Object
Constructor Detail
Socket
Socket
If there is a security manager, its checkConnect method is called with the proxy host address and port number as its arguments. This could result in a SecurityException.
Examples:
- Socket s = new Socket(Proxy.NO_PROXY); will create a plain socket ignoring any other proxy configuration.
- Socket s = new Socket(new Proxy(Proxy.Type.SOCKS, new InetSocketAddress(«socks.mydom.com», 1080))); will create a socket connecting through the specified SOCKS proxy server.
Socket
Socket
If the specified host is null it is the equivalent of specifying the address as InetAddress.getByName (null) . In other words, it is equivalent to specifying an address of the loopback interface.
If the application has specified a server socket factory, that factory’s createSocketImpl method is called to create the actual socket implementation. Otherwise a «plain» socket is created.
If there is a security manager, its checkConnect method is called with the host address and port as its arguments. This could result in a SecurityException.
Socket
If the application has specified a socket factory, that factory’s createSocketImpl method is called to create the actual socket implementation. Otherwise a «plain» socket is created.
If there is a security manager, its checkConnect method is called with the host address and port as its arguments. This could result in a SecurityException.
Socket
If the specified host is null it is the equivalent of specifying the address as InetAddress.getByName (null) . In other words, it is equivalent to specifying an address of the loopback interface.
A local port number of zero will let the system pick up a free port in the bind operation.
If there is a security manager, its checkConnect method is called with the host address and port as its arguments. This could result in a SecurityException.
Socket
If the specified local address is null it is the equivalent of specifying the address as the AnyLocal address (see InetAddress.isAnyLocalAddress () ).
A local port number of zero will let the system pick up a free port in the bind operation.
If there is a security manager, its checkConnect method is called with the host address and port as its arguments. This could result in a SecurityException.
Socket
If the specified host is null it is the equivalent of specifying the address as InetAddress.getByName (null) . In other words, it is equivalent to specifying an address of the loopback interface.
If the stream argument is true , this creates a stream socket. If the stream argument is false , it creates a datagram socket.
If the application has specified a server socket factory, that factory’s createSocketImpl method is called to create the actual socket implementation. Otherwise a «plain» socket is created.
If there is a security manager, its checkConnect method is called with the host address and port as its arguments. This could result in a SecurityException.
If a UDP socket is used, TCP/IP related socket options will not apply.
Socket
If the stream argument is true , this creates a stream socket. If the stream argument is false , it creates a datagram socket.
If the application has specified a server socket factory, that factory’s createSocketImpl method is called to create the actual socket implementation. Otherwise a «plain» socket is created.
If there is a security manager, its checkConnect method is called with host.getHostAddress() and port as its arguments. This could result in a SecurityException.
If UDP socket is used, TCP/IP related socket options will not apply.
Method Detail
connect
connect
If the address is null , then the system will pick up an ephemeral port and a valid local address to bind the socket.
getInetAddress
If the socket was connected prior to being closed , then this method will continue to return the connected address after the socket is closed.
getLocalAddress
If there is a security manager set, its checkConnect method is called with the local address and -1 as its arguments to see if the operation is allowed. If the operation is not allowed, the loopback address is returned.
getPort
If the socket was connected prior to being closed , then this method will continue to return the connected port number after the socket is closed.
getLocalPort
If the socket was bound prior to being closed , then this method will continue to return the local port number after the socket is closed.
getRemoteSocketAddress
If the socket was connected prior to being closed , then this method will continue to return the connected address after the socket is closed.
getLocalSocketAddress
If a socket bound to an endpoint represented by an InetSocketAddress is closed , then this method will continue to return an InetSocketAddress after the socket is closed. In that case the returned InetSocketAddress ‘s address is the wildcard address and its port is the local port that it was bound to.
If there is a security manager set, its checkConnect method is called with the local address and -1 as its arguments to see if the operation is allowed. If the operation is not allowed, a SocketAddress representing the loopback address and the local port to which this socket is bound is returned.
getChannel
A socket will have a channel if, and only if, the channel itself was created via the SocketChannel.open or ServerSocketChannel.accept methods.
getInputStream
If this socket has an associated channel then the resulting input stream delegates all of its operations to the channel. If the channel is in non-blocking mode then the input stream’s read operations will throw an IllegalBlockingModeException .
Under abnormal conditions the underlying connection may be broken by the remote host or the network software (for example a connection reset in the case of TCP connections). When a broken connection is detected by the network software the following applies to the returned input stream :-
The network software may discard bytes that are buffered by the socket. Bytes that aren’t discarded by the network software can be read using read .
If there are no bytes buffered on the socket, or all buffered bytes have been consumed by read , then all subsequent calls to read will throw an IOException .
If there are no bytes buffered on the socket, and the socket has not been closed using close , then available will return 0 .
Closing the returned InputStream will close the associated socket.
getOutputStream
If this socket has an associated channel then the resulting output stream delegates all of its operations to the channel. If the channel is in non-blocking mode then the output stream’s write operations will throw an IllegalBlockingModeException .
Closing the returned OutputStream will close the associated socket.
setTcpNoDelay
getTcpNoDelay
setSoLinger
getSoLinger
sendUrgentData
setOOBInline
Note, only limited support is provided for handling incoming urgent data. In particular, no notification of incoming urgent data is provided and there is no capability to distinguish between normal data and urgent data unless provided by a higher level protocol.
getOOBInline
setSoTimeout
getSoTimeout
setSendBufferSize
Because SO_SNDBUF is a hint, applications that want to verify what size the buffers were set to should call getSendBufferSize() .
getSendBufferSize
setReceiveBufferSize
Increasing the receive buffer size can increase the performance of network I/O for high-volume connection, while decreasing it can help reduce the backlog of incoming data.
Because SO_RCVBUF is a hint, applications that want to verify what size the buffers were set to should call getReceiveBufferSize() .
The value of SO_RCVBUF is also used to set the TCP receive window that is advertized to the remote peer. Generally, the window size can be modified at any time when a socket is connected. However, if a receive window larger than 64K is required then this must be requested before the socket is connected to the remote peer. There are two cases to be aware of:
- For sockets accepted from a ServerSocket, this must be done by calling ServerSocket.setReceiveBufferSize(int) before the ServerSocket is bound to a local address.
- For client sockets, setReceiveBufferSize() must be called before connecting the socket to its remote peer.
getReceiveBufferSize
setKeepAlive
getKeepAlive
setTrafficClass
The tc must be in the range 0 or an IllegalArgumentException will be thrown.
For Internet Protocol v4 the value consists of an integer , the least significant 8 bits of which represent the value of the TOS octet in IP packets sent by the socket. RFC 1349 defines the TOS values as follows:
- IPTOS_LOWCOST (0x02)
- IPTOS_RELIABILITY (0x04)
- IPTOS_THROUGHPUT (0x08)
- IPTOS_LOWDELAY (0x10)
The last low order bit is always ignored as this corresponds to the MBZ (must be zero) bit.
Setting bits in the precedence field may result in a SocketException indicating that the operation is not permitted.
As RFC 1122 section 4.2.4.2 indicates, a compliant TCP implementation should, but is not required to, let application change the TOS field during the lifetime of a connection. So whether the type-of-service field can be changed after the TCP connection has been established depends on the implementation in the underlying platform. Applications should not assume that they can change the TOS field after the connection.
For Internet Protocol v6 tc is the value that would be placed into the sin6_flowinfo field of the IP header.
getTrafficClass
As the underlying network implementation may ignore the traffic class or type-of-service set using setTrafficClass(int) this method may return a different value than was previously set using the setTrafficClass(int) method on this Socket.
setReuseAddress
When a TCP connection is closed the connection may remain in a timeout state for a period of time after the connection is closed (typically known as the TIME_WAIT state or 2MSL wait state). For applications using a well known socket address or port it may not be possible to bind a socket to the required SocketAddress if there is a connection in the timeout state involving the socket address or port.
Enabling SO_REUSEADDR prior to binding the socket using bind(SocketAddress) allows the socket to be bound even though a previous connection is in a timeout state.
When a Socket is created the initial setting of SO_REUSEADDR is disabled.
The behaviour when SO_REUSEADDR is enabled or disabled after a socket is bound (See isBound() ) is not defined.
getReuseAddress
close
Any thread currently blocked in an I/O operation upon this socket will throw a SocketException .
Once a socket has been closed, it is not available for further networking use (i.e. can’t be reconnected or rebound). A new socket needs to be created.
Closing this socket will also close the socket’s InputStream and OutputStream .
If this socket has an associated channel then the channel is closed as well.
shutdownInput
If you read from a socket input stream after invoking this method on the socket, the stream’s available method will return 0, and its read methods will return -1 (end of stream).
shutdownOutput
toString
isConnected
Note: Closing a socket doesn’t clear its connection state, which means this method will return true for a closed socket (see isClosed() ) if it was successfuly connected prior to being closed.
isBound
Note: Closing a socket doesn’t clear its binding state, which means this method will return true for a closed socket (see isClosed() ) if it was successfuly bound prior to being closed.
isClosed
isInputShutdown
isOutputShutdown
setSocketImplFactory
When an application creates a new client socket, the socket implementation factory’s createSocketImpl method is called to create the actual socket implementation.
Passing null to the method is a no-op unless the factory was already set.
If there is a security manager, this method first calls the security manager’s checkSetFactory method to ensure the operation is allowed. This could result in a SecurityException.
setPerformancePreferences
Sockets use the TCP/IP protocol by default. Some implementations may offer alternative protocols which have different performance characteristics than TCP/IP. This method allows the application to express its own preferences as to how these tradeoffs should be made when the implementation chooses from the available protocols.
Performance preferences are described by three integers whose values indicate the relative importance of short connection time, low latency, and high bandwidth. The absolute values of the integers are irrelevant; in order to choose a protocol the values are simply compared, with larger values indicating stronger preferences. Negative values represent a lower priority than positive values. If the application prefers short connection time over both low latency and high bandwidth, for example, then it could invoke this method with the values (1, 0, 0) . If the application prefers high bandwidth above low latency, and low latency above short connection time, then it could invoke this method with the values (0, 1, 2) .
Invoking this method after this socket has been connected will have no effect.
setOption
getOption
supportedOptions
Report a bug or suggest an enhancement
For further API reference and developer documentation see the Java SE Documentation, which contains more detailed, developer-targeted descriptions with conceptual overviews, definitions of terms, workarounds, and working code examples.
Java is a trademark or registered trademark of Oracle and/or its affiliates in the US and other countries.
Copyright © 1993, 2022, Oracle and/or its affiliates, 500 Oracle Parkway, Redwood Shores, CA 94065 USA.
All rights reserved. Use is subject to license terms and the documentation redistribution policy.
Источник
Adblock
detector
For a couple of days I was totally blocked on this. I’m very very new to networking/vms but was keen to try set it up myself instead of paying a hosting company to do it for me.
Context
I’m rebuilding the server side for an app that uses php routines to return various bits of data from internal sources as well as external APIs for a map based app. I have started an Oracle VM instance and have installed/set up Apache and php. All running totally fine, until one of my php routines tries to execute a cURL. I start implementing error logging to find that I don’t even get a message — just ‘7’, despite implementation being very similar to the above. My php routine accessing an internal file for data was running successfully so I was fairly sure it wasn’t an Apache or php issue. I also checked my Apache error logs, nothing telling.
Solution
I nearly gave up — there’s talk on disabling SELinux above and in other articles, I tried that and it did work for my purposes, but here’s a really good article on why you shouldn’t disable SELinux https://www.electronicdesign.com/technologies/embedded-revolution/article/21807408/dont-do-it-disabling-selinux
If temporarily disabling it works and like me you don’t want to do this (but it confirms that SELinux is blocking you!), I found a neat little command that actually prints out any SELinux issues in a more readable fashion:
sealert -a /var/log/audit/audit.log
This returned the following:
found 1 alerts in /var/log/audit/audit.log
--------------------------------------------------------------------------------
SELinux is preventing php-fpm from name_connect access on the tcp_socket port 443.
Great, I now get a bit more information than just ‘7’. Reading further down, I can see it actually makes suggestions:
***** Plugin catchall_boolean (24.7 confidence) suggests ******************
If you want to allow httpd to can network connect
Then you must tell SELinux about this by enabling the 'httpd_can_network_connect' boolean.
Do
setsebool -P httpd_can_network_connect 1
This has been mentioned further above but now I have a bit more context and an explanation as to what it does. I run the command, and I’m in business. Furthermore, my SELinux is still set to enforcing, meaning my machine is more secure.
There are many other suggestions logged out, if you’re blocked it might be worth logging out/checking out /var/log/audit/audit.log.