Величина средней ошибки выборки рассчитанной при повторном отборе

Работа по теме: ВЫБОРОЧНОЕ НАБЛЮДЕНИЕ. Глава: 2. Оценка результатов выборочного наблюдения. ВУЗ: ОГАУ.

2.1. Средняя и предельная ошибки выборки. Построение доверительных границ для средней и доли

Средняя ошибка
выборки
показывает, насколько отклоняется в
среднем параметр выборочной
совокупности

от соответствующего параметра генеральной.
Если рассчитать среднюю из ошибок всех
возможных выборок определенного вида
заданного объема (n),
извлеченных из одной и той же генеральной
совокупности
,
то получим их обобщающую характеристику

среднюю
ошибку выборки

().

В
теории выборочного наблюдения

выведены формулы для определения ,
которые индивидуальны для разных
способов отбора (повторного и
бесповторного), типов используемых
выборок и видов оцениваемых статистических
показателей
.

Например, если
применяется повторная собственно
случайная выборка, то 
определяется как:


при
оценивании среднего значения признака;


если
признак альтернативный, и оценивается
доля.

При бесповторном
собственно случайном отборе в формулы
вносится поправка


для
среднего значения признака;


для
доли.

Вероятность
получения именно такой величины ошибки
всегда равна 0,683. На практике же
предпочитают получать данные с большей
вероятностью, но это приводит к возрастанию
величины ошибки выборки.

Предельная
ошибка выборки
()
равна t-кратному
числу средних ошибок выборки (в теории
выборки принято коэффициент t
называть
коэффициентом доверия):

  t
.

Если ошибку выборки
увеличить в два раза (t

2), то получим гораздо большую вероятность
того, что она не превысит определенного
предела (в нашем случае 
двойной средней ошибки) 
0,954. Если взять t

3, то доверительная вероятность составит
0,997 
практически достоверность.

Уровень предельной
ошибки выборки зависит от следующих
факторов:

 степени вариации
единиц генеральной совокупности;

 объема выборки;

 выбранных схем
отбора (бесповторный отбор дает меньшую
величину ошибки);

 уровня
доверительной вероятности.

Если объем выборки
больше 30, то значение t
определяется по таблице нормального
распределения, если меньше 
по таблице распределения Стьюдента
(Приложение
1
).

Приведем некоторые
значения коэффициента доверия из таблицы
нормального распределения.

Доверительный
интервал для среднего значения признака
и для доли в генеральной
совокупности

устанавливается следующим образом:

Итак, определение
границ генеральной средней и доли
состоит из следующих этапов:

 нахождение в
выборке среднего значения признака
(или доли);

 определение 
в соответствии с выбранной схемой отбора
и вида выборки;

 задание
доверительной вероятности Р
и определение коэффициента доверия t
по
соответствующей таблице;

 вычисление
предельной ошибки выборки ;

 построение
доверительного интервала для средней
(или доли).

Ошибки выборки
при различных видах отбора

1. Собственно
случайная и механическая выборка.
Средняя
ошибка собственно случайной и механической
выборки находятся по формулам,
представленным в табл. 11.1.

Таблица 1

Формулы для
расчета средней ошибки
собственно
случайной и механической выборки (
)

где
2

дисперсия
признака в выборочной совокупности.

Пример 2. Для
изучения уровня фондоотдачи было
проведено выборочное обследование 90
предприятий из 225 методом случайной
повторной выборки, в результате которого
получены данные, представленные в
таблице.

В рассматриваемом
примере имеем 40%-ную выборку (90 : 225 
0,4, или 40%). Определим ее предельную ошибку
и границы для среднего значения признака
в генеральной совокупности по шагам
алгоритма:

1. По результатам
выборочного обследования рассчитаем
среднее значение и дисперсию в выборочной
совокупности:

Выборочная средняя

Выборочная
дисперсия изучаемого признака

2. Определяем
среднюю ошибку повторной случайной
выборки

3. Зададим
вероятность, на уровне которой будем
говорить о величине предельной ошибки
выборки. Чаще всего она принимается
равной 0,999; 0,997; 0,954.

Для наших данных
определим предельную ошибку выборки,
например, с вероятностью 0,954. По таблице
значений вероятности функции нормального
распределения (см. выдержку из нее,
приведенную в Приложении 1) находим
величину коэффициента доверия t,
соответствующего вероятности 0,954. При
вероятности 0,954 коэффициент t
равен 2.

4. Предельная
ошибка выборки с вероятностью 0,954 равна

5. Найдем доверительные
границы для среднего значения уровня
фондоотдачи в генеральной совокупности

Таким образом, в
954 случаях из 1000 среднее значение
фондоотдачи будет не выше 1,88 руб. и не
ниже 1,74 руб.

Выше была
использована повторная схема случайного
отбора. Посмотрим, изменятся ли результаты
обследования, если предположить, что
отбор осуществлялся по схеме бесповторного
отбора. В этом случае расчет средней
ошибки проводится по формуле

Тогда при вероятности
равной 0,954 величина предельной ошибки
выборки составит:

Доверительные
границы для среднего значения признака
при бесповторном случайном отборе будут
иметь следующие значения:

Сравнив результаты
двух схем отбора, можно сделать вывод
о том, что применение бесповторной
случайной выборки дает более точные
результаты по сравнению с применением
повторного отбора при одной и той же
доверительной вероятности. При этом,
чем больше объем выборки, тем существеннее
сужаются границы значений средней при
переходе от одной схемы отбора к другой.

По данным примера
определим, в каких границах находится
доля предприятий с уровнем фондоотдачи,
не превышающим значения 2,0 руб., в
генеральной совокупности:

1) рассчитаем
выборочную долю.

Количество
предприятий в выборке с уровнем
фондоотдачи, не превышающим значения
2,0 руб., составляет 60 единиц. Тогда

m

60, n

90, w

m/n

60 : 90 
0,667;

2) рассчитаем
дисперсию доли в выборочной совокупности

w2

w(1

w)

0,667(1 
0,667) 
0,222;

3) средняя ошибка
выборки при использовании повторной
схемы отбора составит

Если предположить,
что была использована бесповторная
схема отбора, то средняя ошибка выборки
с учетом поправки на конечность
совокупности составит

4) зададим
доверительную вероятность и определим
предельную ошибку выборки.

При значении
вероятности Р

0,997 по таблице нормального распределения
получаем значение для коэффициента
доверия t

3 (см. выдержку из нее, приведенную в
Приложении 1):

5) установим границы
для генеральной доли с вероятностью
0,997:

Таким образом, с
вероятностью 0,997 можно утверждать, что
в генеральной совокупности доля
предприятий с уровнем фондоотдачи, не
превышающим значения 2,0 руб., не меньше,
чем 54,7%, и не больше 78,7%.

2. Типическая
выборка.
При
типической выборке генеральная
совокупность объектов разбита на k
групп, тогда

N1

N2

… 
Ni

… 
Nk

N.

Объем извлекаемых
из каждой типической группы единиц
зависит от принятого способа отбора;
их общее количество образует необходимый
объем выборки

n1

n2

… 
ni

… 
nk

n.

Существуют
следующие два способа организации
отбора внутри типической группы:
пропорциональной объему типических
групп и пропорциональной степени
колеблемости значений признака у единиц
наблюдения в группах. Рассмотрим первый
из них, как наиболее часто используемый.

Отбор, пропорциональный
объему типических групп, предполагает,
что в каждой из них будет отобрано
следующее число единиц совокупности:

где ni

количество извлекаемых единиц для
выборки из i
типической группы;

n

общий объем выборки;

Ni

количество единиц генеральной
совокупности, составивших i
типическую группу;

N

общее количество единиц генеральной
совокупности.

Отбор единиц
внутри групп происходит в виде случайной
или механической выборки.

Формулы для
оценивания средней ошибки выборки для
среднего и доли представлены в табл.
11.2.

Таблица 2

Формулы для
расчета средней ошибки выборки (
)
при использовании типического отбора,
пропорционального объему типических
групп

Здесь


средняя из групповых дисперсий типических
групп
.

Пример 3. В
одном из московских вузов проведено
выборочное обследование студентов с
целью определения показателя средней
посещаемости вузовской библиотеки
одним студентом за семестр. Для этого
была использована 5%-ная бесповторная
типическая выборка, типические группы
которой соответствуют номеру курса.
При отборе, пропорциональном объему
типических групп, получены следующие
данные:

Число студентов,
которое необходимо обследовать на
каждом курсе, рассчитаем следующим
образом:

 общий объем
выборочной совокупности:

 количество
единиц, отобранных из каждой типической
группы:

аналогично для
других групп:

п2

31 (чел.);

п3

29 (чел.);

п4

18 (чел.);

п5

17 (чел.).

Проведем необходимые
расчеты.

1. Выборочная
средняя, исходя из значений средних
типических групп, составит:

2. Средняя из
внутригрупповых дисперсий

3. Средняя ошибка
выборки:

С вероятностью
0,954 находим предельную ошибку выборки:

4. Доверительные
границы для среднего значения признака
в генеральной совокупности:

Таким образом, с
вероятностью 0,954 можно утверждать, что
один студент за семестр посещает
вузовскую библиотеку в среднем от семи
до девяти раз.

3.
Малая выборка.
В
связи с небольшим объемом выборочной
совокупности

те формулы для определения ошибок
выборки,
которые использовались нами ранее при
«больших» выборках, становятся
неподходящими и требуют корректировки.

Среднюю ошибку
малой выборки

определяют по формуле

Предельная
ошибка малой выборки
:

Распределение
значений выборочных средних всегда
имеет нормальный закон распределения
(или приближается к нему) при п

100, независимо от характера распределения
генеральной
совокупности
.
Однако в случае малых выборок действует
иной закон распределения 
распределение Стьюдента.
В этом случае коэффициент доверия
находится по таблице t-распределения
Стьюдента в зависимости от величины
доверительной вероятности Р
и объема выборки п.
В Приложении
1

приводится фрагмент таблицы t-распределения
Стьюдента, представленной в виде
зависимости доверительной вероятности
от объема выборки и коэффициента доверия
t.

Пример 4.
Предположим,
что выборочное обследование восьми
студентов академии показало, что на
подготовку к контрольной работе по
статистике они затратили следующее
количество часов: 8,5; 8,0; 7,8; 9,0; 7,2; 6,2; 8,4;
6,6.

Оценим выборочные
средние затраты времени и построим
доверительный интервал для среднего
значения признака в генеральной
совокупности, приняв доверительную
вероятность равной 0,95.

1. Среднее значение
признака в выборке равно

2. Значение среднего
квадратического отклонения составляет

3. Средняя ошибка
выборки:

4. Значение
коэффициента доверия t

2,365 для п

8 и Р

0,95 (Приложение 1).

5. Предельная
ошибка выборки:

6. Доверительный
интервал для среднего значения признака
в генеральной совокупности:

То есть с вероятностью
0,95 можно утверждать, что затраты времени
студента на подготовку к контрольной
работе находятся в пределах от 6,9 до 8,5
ч.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

1. Индексируемой величиной в индексе физического объема производства продукции является … .
цена единицы продукции
количество продукции
себестоимость продукции
товарооборот продукции

2. Если цена товара «А» в текущем периоде составляла 30 руб., а в базисном – 25 руб., то индивидуальный индекс цены будет равен … .
5
0,5
1,2
0,83

3. К общим индексам относятся: … .
агрегатный индекс цены продукции мебельной фабрики
индекс товарооборота одноименного товара
средний индекс из индивидуальных
индекс физического объема для каждого вида реализованной продукции
индекс переменного состава

4. Индекс – это относительный показатель, который характеризует изменение исследуемого явления … .
во времени
в пространстве
в сравнении с некоторым эталоном
в системе координат

5. Между индексами переменного состава, фиксированного состава и структурных сдвигов существует следующая взаимосвязь — … .
индекс переменного состава равен сумме индексов фиксированного состава и структурных сдвигов
индекс структурных сдвигов равен разнице между индексами переменного и фиксированного состава
индекс переменного состава равен произведению индексов фиксированного состава и структурных сдвигов
индекс фиксированного состава равен произведению индексов переменного состава и структурных сдвигов

6. Если дисперсию выборочной совокупности уменьшить в 4 раза, то ошибка выборки … .
уменьшится в 4 раза
увеличится в 4 раза
не изменится
уменьшится в 2 раза
увеличится в 2 раза

7. Можно гарантировать, что величина отклонения генеральной средней от выборочной не превысит однократной средней ошибки выборки при значении доверительного коэффициента равном … .
0,954
1
2
3

8. Чтобы уменьшить ошибку выборки, рассчитанную в условиях механического отбора, необходимо … .
уменьшить численность выборочной совокупности
увеличить численность выборочной совокупности
применить повторный метод отбора
применить безповторный метод отбора

9. Величина средней ошибки выборки, рассчитанной при бесповторном отборе … ошибки выборки, рассчитанной при повторном отборе
больше
равна
меньше

10. Выборочное наблюдение целесообразно применить для исследования явлений: … .
пассажиропоток в метрополитене
инвентаризация на складе
годовой отчет финансовой деятельности предприятия
оценка качества продуктовых товаров
перепись художественной литературы в библиотеке

11. Правило сложения дисперсий состоит в том, что … .
общая дисперсия равна сумме внутригрупповых дисперсий
межгрупповая дисперсия равна сумме внутригрупповых дисперсий
общая дисперсия равна сумме межгрупповой дисперсии и средней из внутригрупповых дисперсий
общая дисперсия равна сумме межгрупповых дисперсий

12. Изменение значений признака у единиц совокупности в пространстве или во времени называется … .
величиной
результатом
вариацией
разностью
коэффициентом

13. Коэффициент вариации представляет собой … .
процентное отношение среднего квадратического отклонения к средней арифметической
корень квадратный из отношения дисперсии к количеству единиц совокупности
процентное отношение дисперсии к средней арифметической
отношение среднего линейного отклонения к дисперсии

14. Среднее линейное отклонение представляет собой … .
сумму отклонений индивидуальных значений варьирующего признака от его средней величины
отношение размаха вариации к средней величине
среднюю величину из отклонений вариант признака от его среднего значения
среднюю арифметическую из абсолютных значений отклонений вариант признака от его средней

15. Среднее квадратическое отклонение рассчитывается как … .
корень квадратный из дисперсии
средняя квадратическая из квадратов отклонений вариант признака от его среднего значения
корень второй степени из среднего линейного отклонения
отношение дисперсии к средней величине варьирующего признака

16. Проверка качества выпускаемых ниток по охвату единиц совокупности является наблюдением … .
единовременным
анкетным
сплошным
выборочным
основного массива
монографическим

17. По времени регистрации фактов различают следующие виды наблюдения: … .
непрерывное
периодическое
сплошное
выборочное
текущее
монографическое
единовременное

18. Сущность статистического наблюдения заключается … .
в сборе данных о массовых социально-экономических процессах и явлениях
в сводке и группировке исходных данных
в обработке статистических данных
в систематизации, анализе и обобщении статистических данных

19. Статистическое наблюдение проводится по заранее составленному плану, который рассматривает следующие вопросы: … .
организационные
познавательно-информационные
прогностические
аналитические
программно-методологические

20. По охвату единиц совокупности различают следующие виды наблюдения: … .
периодическое
монографическое
непрерывное
сплошное
выборочное
текущее

21. Произведение относительных показателей планового задания и выполнения плана равно … .
относительному показателю динамики
относительному показателю координации
относительному показателю структуры
относительному показателю интенсивности
относительному показателю сравнения

22. В целях перспективного планирования деятельности предприятия, а также для сравнения реально достигнутых результатов с ранее намеченными, используются относительные величины: … .
сравнения
планового задания
динамики
координации
выполнения плана
интенсивности

23. Относительными величинами называются статистические показатели, определяемые как … .
абсолютный размер в различии между абсолютными показателями, изменяющимися во времени или в пространстве
суммарная величина какого-либо признака всей совокупности или ее части
степень насыщенности конкретной совокупности элементами какого-то признака другой совокупности
отношение сравниваемой абсолютной величины к базисной величине

24. Показатели, выражающие размер, объем, стоимость, уровень социально-экономического явления, являются величинами … .
математическими
абсолютными
средними
относительными

25. Относительный показатель координации представляет собой … .
отношение части совокупности к суммарному уровню совокупности в целом
отношение уровня исследуемого процесса за отчетный период времени к уровню этого же процесса в базисном периоде времени
отношение одной части совокупности к другой части этой же совокупности, принятой за базу сравнения
отношение разноименных, но взаимосвязанных между собой величин, характеризующих степень развития изучаемого явления в присущей ему среде
отношение одноименных величин, характеризующих одно и тоже явление на разных территориях или объектах

26. Степень тесноты корреляционной связи можно измерить с помощью: … .
коэффициента корреляции
коэффициента вариации
корреляционного отношения
коэффициента регрессии
коэффициента асимметрии

27. Метод статистического анализа зависимости случайной величины у от переменных
корреляционным анализом
регрессионным анализом
статистическим анализом
аналитическим анализом

28. Основными формами проявления взаимосвязей явлений и процессов являются связи: … .
прямые
линейные
нелинейные
функциональные
корреляционные

29. Для изучения статистических взаимосвязей применяются следующие методы анализа: … .
регрессионный
факторный
корреляционный
аналитический

30. Если коэффициент корреляции равен единице, то между двумя величинами связь … .
отсутствует
прямая
обратная
функциональная

31. По характеру вариаций статистические признаки подразделяются на: … .
количественные
первичные
альтернативные
дискретные
вторичные
непрерывные
вторичные

32. Единица совокупности – это … .
первичный элемент статистической совокупности, являющийся носителем ее основных признаков
минимальное значение признака статистической совокупности
источник информации об объекте
количественная оценка свойства изучаемого объекта или явления
составной элемент объекта статистического наблюдения, который является носителем признаков, подлежащих регистрации

33. К основным свойствам статистического наблюдения относятся:
массовость
достоверность
индивидуальность
однородность
систематичность
непрерывность
случайность

34. Официальная дата образования государственной статистики в России … .
1740 г.
1802 г.
1812 г.
1917 г.

35. Статистический признак – это … .
первичный элемент статистической совокупности
количественная сторона единицы совокупности
качественное свойство единицы совокупности
численное значение статистического показателя

36. По функциональному назначению различают следующие группировки: … .
аналитические
комбинационные
функциональные
типологические
структурные
типовые
атрибутивные

37. Сущность статистической сводки заключается в … .
обработке первичных материалов наблюдения в целях получения итоговых характеристик изучаемой совокупности
сборе данных о массовых социально-экономических процессах и явлениях
расчленении общей совокупности единиц на однородные группы
установлении взаимосвязи между отдельными признаками изучаемого явления

38. Основными составляющими статистической таблицы являются: … .
заголовок
столбец
подлежащее
строка
сказуемое
графа

39. Сущность статистической группировки заключается в … .
обработке первичных материалов наблюдения в целях получения итоговых характеристик изучаемой совокупности
сборе данных о массовых социально-экономических процессах и явлениях
расчленении общей совокупности единиц на однородные группы
объединении отдельных единиц совокупности в группы по какому-либо признаку

40. Элементами ряда распределения являются … .
уровень ряда
варианта
интервал
подлежащее
частота
частость
сказуемое

41. Цепные показатели ряда динамики рассчитываются при сравнении … .
каждого уровня ряда с одним и тем же уровнем, принятым за базу сравнения
каждого последующего уровня ряда с предыдущим
последнего уровня ряда с предыдущими уровнями
первого уровня ряда с каждым последующим рядом

42. Ряды динамики отображают … .
хронологическую последовательность показателей в совокупности
числовую последовательность показателей
структуру совокупности по какому-либо признаку
суммарный итог значений показателей совокупности за определенный промежуток времени

43. Значение коэффициента роста не может быть … .
величиной отрицательной
величиной положительной
равным единице
равным нулю
больше единицы
меньше единицы

44. Основными особенностями рядов динамики являются: … .
равномерность
однонаправленность
симметричность
сопоставимость
непрерывность

45. Показатель, характеризующий величину изменения уровня ряда за определенный промежуток времени называется … .
темпом роста
коэффициентом роста
абсолютным приростом
средним приростом
темпом прироста

46. Если частоты всех значений признака однородной совокупности разделить на постоянное число «А», то средняя арифметическая … .
уменьшится на число А
уменьшится в А раз
увеличится на число А
увеличится в А раз
не изменится
предсказать изменение средней невозможно

47. В зависимости от вида исходных данных, средняя степенная величина может быть следующих видов: … .
математическая
арифметическая
алгебраическая
тригонометрическая
геометрическая
гармоническая
кубическая
динамическая

48. Если все индивидуальные значения признака однородной совокупности умножить на постоянное число «А», то средняя арифметическая:
уменьшится на число А
уменьшится в А раз
увеличится на число А
увеличится в А раз
не изменится
предсказать изменение средней невозможно

49. Если осредняемый показатель представлен логической формулой в виде соотношения, в котором известен знаменатель, а числитель неизвестен, но может быть рассчитан как произведение первичных признаков, то для определения средней величины данного показателя применяется формула средней … .
арифметической
квадратической
геометрической
гармонической
кубической

50. Для расчета средней величины применяется формула средней взвешенной, если статистические данные … .
сгруппированы
представлены ранжированным рядом
представлены любой однородной совокупностью
представлены вариационным рядом

11.2. Оценка результатов выборочного наблюдения

11.2.1. Средняя и предельная ошибки выборки. Построение доверительных границ для средней и доли

Средняя ошибка выборки показывает, насколько отклоняется в среднем параметр выборочной совокупности от соответствующего параметра генеральной. Если рассчитать среднюю из ошибок всех возможных выборок определенного вида заданного объема (n), извлеченных из одной и той же генеральной совокупности, то получим их обобщающую характеристику — среднюю ошибку выборки ( mu ).

В теории выборочного наблюдения выведены формулы для определения  mu , которые индивидуальны для разных способов отбора (повторного и бесповторного), типов используемых выборок и видов оцениваемых статистических показателей.

Например, если применяется повторная собственно случайная выборка, то  mu определяется как:

— при оценивании среднего значения признака;

— если признак альтернативный, и оценивается доля.

При бесповторном собственно случайном отборе в формулы вносится поправка (1 — n/N):

— для среднего значения признака;

— для доли.

Вероятность получения именно такой величины ошибки всегда равна 0,683. На практике же предпочитают получать данные с большей вероятностью, но это приводит к возрастанию величины ошибки выборки.

Предельная ошибка выборки (Delta) равна t-кратному числу средних ошибок выборки (в теории выборки принято коэффициент t называть коэффициентом доверия):

Delta =t mu.

Если ошибку выборки увеличить в два раза (t = 2), то получим гораздо большую вероятность того, что она не превысит определенного предела (в нашем случае — двойной средней ошибки) — 0,954. Если взять t = 3, то доверительная вероятность составит 0,997 — практически достоверность.

Уровень предельной ошибки выборки зависит от следующих факторов:

  • степени вариации единиц генеральной совокупности;
  • объема выборки;
  • выбранных схем отбора (бесповторный отбор дает меньшую величину ошибки);
  • уровня доверительной вероятности.

Если объем выборки больше 30, то значение t определяется по таблице нормального распределения, если меньше — по таблице распределения Стьюдента.

Приведем некоторые значения коэффициента доверия из таблицы нормального распределения.

Таблица
11.2.

Значение доверительной вероятности P 0,683 0,954 0,997
Значение коэффициента доверия t 1,0 2,0 3,0

Доверительный интервал для среднего значения признака и для доли в генеральной совокупности устанавливается следующим образом:

Итак, определение границ генеральной средней и доли состоит из следующих этапов:

Ошибки выборки при различных видах отбора

  1. Собственно случайная и механическая выборка. Средняя ошибка собственно случайной и механической выборки находятся по формулам, представленным в табл. 11.3.

Таблица
11.3.
Формулы для расчета средней ошибки собственно случайной и механической выборки ( mu )

где sigma^{2} — дисперсия признака в выборочной совокупности.

Пример 11.2. Для изучения уровня фондоотдачи было проведено выборочное обследование 90 предприятий из 225 методом случайной повторной выборки, в результате которого получены данные, представленные в таблице.

Таблица
11.4.

Уровень фондоотдачи, руб. До 1,4 1,4-1,6 1,6-1,8 1,8-2,0 2,0-2,2 2,2 и выше Итого
Количество предприятий 13 15 17 15 16 14 90

В рассматриваемом примере имеем 40%-ную выборку (90 : 225 = 0,4, или 40%). Определим ее предельную ошибку и границы для среднего значения признака в генеральной совокупности по шагам алгоритма:

  1. По результатам выборочного обследования рассчитаем среднее значение и дисперсию в выборочной совокупности:

Таблица
11.5.

Результаты наблюдения Расчетные значения
уровень фондоотдачи, руб., xi количество предприятий, fi середина интервала, xixb4 xixb4fi xixb42fi
До 1,4 13 1,3 16,9 21,97
1,4-1,6 15 1,5 22,5 33,75
1,6-1,8 17 1,7 28,9 49,13
1,8-2,0 15 1,9 28,5 54,15
2,0-2,2 16 2,1 33,6 70,56
2,2 и выше 14 2,3 32,2 74,06
Итого 90 162,6 303,62

Выборочная средняя

Выборочная дисперсия изучаемого признака

  1. Определяем среднюю ошибку повторной случайной выборки

  2. Зададим вероятность, на уровне которой будем говорить о величине предельной ошибки выборки. Чаще всего она принимается равной 0,999; 0,997; 0,954.

Для наших данных определим предельную ошибку выборки, например, с вероятностью 0,954. По таблице значений вероятности функции нормального распределения (см. выдержку из нее, приведенную в Приложении 1) находим величину коэффициента доверия t, соответствующего вероятности 0,954. При вероятности 0,954 коэффициент t равен 2.

  1. Предельная ошибка выборки с вероятностью 0,954 равна

    delta_{x}= tmu_{x}= 2*0.035 = 0.07

  2. Найдем доверительные границы для среднего значения уровня фондоотдачи в генеральной совокупности

Таким образом, в 954 случаях из 1000 среднее значение фондоотдачи будет не выше 1,88 руб. и не ниже 1,74 руб.

Выше была использована повторная схема случайного отбора. Посмотрим, изменятся ли результаты обследования, если предположить, что отбор осуществлялся по схеме бесповторного отбора. В этом случае расчет средней ошибки проводится по формуле

Тогда при вероятности равной 0,954 величина предельной ошибки выборки составит:

delta_{x}= tmu_{x}= 2*0.027 = 0.054

Доверительные границы для среднего значения признака при бесповторном случайном отборе будут иметь следующие значения:

Сравнив результаты двух схем отбора, можно сделать вывод о том, что применение бесповторной случайной выборки дает более точные результаты по сравнению с применением повторного отбора при одной и той же доверительной вероятности. При этом, чем больше объем выборки, тем существеннее сужаются границы значений средней при переходе от одной схемы отбора к другой.

По данным примера определим, в каких границах находится доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., в генеральной совокупности:

  1. рассчитаем выборочную долю.

Количество предприятий в выборке с уровнем фондоотдачи, не превышающим значения 2,0 руб., составляет 60 единиц. Тогда

m = 60, n = 90, w = m/n = 60 : 90 = 0,667;

  1. рассчитаем дисперсию доли в выборочной совокупности

sigma_{w}^{2}= w(1 - w) = 0,667(1 - 0,667) = 0,222;

  1. средняя ошибка выборки при использовании повторной схемы отбора составит

Если предположить, что была использована бесповторная схема отбора, то средняя ошибка выборки с учетом поправки на конечность совокупности составит

  1. зададим доверительную вероятность и определим предельную ошибку выборки.

При значении вероятности Р = 0,997 по таблице нормального распределения получаем значение для коэффициента доверия t = 3 (см. выдержку из нее, приведенную в Приложении 1):

delta_{x}= tmu_{x}= 3*0.04 = 0.12

  1. установим границы для генеральной доли с вероятностью 0,997:

Таким образом, с вероятностью 0,997 можно утверждать, что в генеральной совокупности доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., не меньше, чем 54,7%, и не больше 78,7%.

  1. Типическая выборка. При типической выборке генеральная совокупность объектов разбита на k групп, тогда

N1 + N2 + … + Ni + … + Nk = N.

Объем извлекаемых из каждой типической группы единиц зависит от принятого способа отбора; их общее количество образует необходимый объем выборки

n1 + n2 + … + ni + … + nk = n.

Существуют следующие два способа организации отбора внутри типической группы: пропорциональной объему типических групп и пропорциональной степени колеблемости значений признака у единиц наблюдения в группах. Рассмотрим первый из них, как наиболее часто используемый.

Отбор, пропорциональный объему типических групп, предполагает, что в каждой из них будет отобрано следующее число единиц совокупности:

n = ni · Ni/N

где ni — количество извлекаемых единиц для выборки из i-й типической группы;

n — общий объем выборки;

Ni — количество единиц генеральной совокупности, составивших i-ю типическую группу;

N — общее количество единиц генеральной совокупности.

Отбор единиц внутри групп происходит в виде случайной или механической выборки.

Формулы для оценивания средней ошибки выборки для среднего и доли представлены в табл. 11.6.

Таблица
11.6.
Формулы для расчета средней ошибки выборки (mu) при использовании типического отбора, пропорционального объему типических групп

Здесь sigma^{2} — средняя из групповых дисперсий типических групп.

Пример 11.3. В одном из московских вузов проведено выборочное обследование студентов с целью определения показателя средней посещаемости вузовской библиотеки одним студентом за семестр. Для этого была использована 5%-ная бесповторная типическая выборка, типические группы которой соответствуют номеру курса. При отборе, пропорциональном объему типических групп, получены следующие данные:

Таблица
11.7.

Номер курса Всего студентов, чел., Ni Обследовано в результате выборочного наблюдения, чел., ni Среднее число посещений библиотеки одним студентом за семестр, xi Внутригрупповая выборочная дисперсия, sigma_{i}^{2}
1 650 33 11 6
2 610 31 8 15
3 580 29 5 18
4 360 18 6 24
5 350 17 10 12
Итого 2 550 128 8

Число студентов, которое необходимо обследовать на каждом курсе, рассчитаем следующим образом:

  • общий объем выборочной совокупности:

    n = 2550/130*5 =128 (чел.);

  • количество единиц, отобранных из каждой типической группы:

аналогично для других групп:

n2 = 31 (чел.);

n3 = 29 (чел.);

n4 = 18 (чел.);

n5 = 17 (чел.).

Проведем необходимые расчеты.

  1. Выборочная средняя, исходя из значений средних типических групп, составит:

  2. Средняя из внутригрупповых дисперсий

  3. Средняя ошибка выборки:

    С вероятностью 0,954 находим предельную ошибку выборки:

    delta_{x} = tmu_{x} = 2*0.334 = 0.667

  4. Доверительные границы для среднего значения признака в генеральной совокупности:

Таким образом, с вероятностью 0,954 можно утверждать, что один студент за семестр посещает вузовскую библиотеку в среднем от семи до девяти раз.

  1. Малая выборка. В связи с небольшим объемом выборочной совокупности те формулы для определения ошибок выборки, которые использовались нами ранее при «больших» выборках, становятся неподходящими и требуют корректировки.

Среднюю ошибку малой выборки определяют по формуле

Предельная ошибка малой выборки:

delta_{MB}= tmu_{MB}

Распределение значений выборочных средних всегда имеет нормальный закон распределения (или приближается к нему) при п > 100, независимо от характера распределения генеральной совокупности. Однако в случае малых выборок действует иной закон распределения — распределение Стьюдента. В этом случае коэффициент доверия находится по таблице t-распределения Стьюдента в зависимости от величины доверительной вероятности Р и объема выборки п. В Приложении 1 приводится фрагмент таблицы t-распределения Стьюдента, представленной в виде зависимости доверительной вероятности от объема выборки и коэффициента доверия t.

Пример 11.4. Предположим, что выборочное обследование восьми студентов академии показало, что на подготовку к контрольной работе по статистике они затратили следующее количество часов: 8,5; 8,0; 7,8; 9,0; 7,2; 6,2; 8,4; 6,6.

Оценим выборочные средние затраты времени и построим доверительный интервал для среднего значения признака в генеральной совокупности, приняв доверительную вероятность равной 0,95.

  1. Среднее значение признака в выборке равно

  2. Значение среднего квадратического отклонения составляет

  3. Средняя ошибка выборки:

  4. Значение коэффициента доверия t = 2,365 для п = 8 и Р = 0,95 .
  5. Предельная ошибка выборки:

    delta_{MB}= tmu_{MB}=2,365*0,344 = 0,81356 ~ 0,81 (ч)

  6. Доверительный интервал для среднего значения признака в генеральной совокупности:

То есть с вероятностью 0,95 можно утверждать, что затраты времени студента на подготовку к контрольной работе находятся в пределах от 6,9 до 8,5 ч.

11.2.2. Определение численности выборочной совокупности

Перед непосредственным проведением выборочного наблюдения всегда решается вопрос, сколько единиц исследуемой совокупности необходимо отобрать для обследования. Формулы для определения численности выборки выводят из формул предельных ошибок выборки в соответствии со следующими исходными положениями (табл. 11.7):

  1. вид предполагаемой выборки;
  2. способ отбора (повторный или бесповторный);
  3. выбор оцениваемого параметра (среднего значения признака или доли).

Кроме того, следует заранее определиться со значением доверительной вероятности, устраивающей потребителя информации, и с размером допустимой предельной ошибки выборки.

Таблица
11.8.
Формулы для определения численности выборочной совокупности

Примечание: при использовании приведенных в таблице формул рекомендуется получаемую численность выборки округлять в большую сторону для обеспечения некоторого запаса в точности.

Пример 11.5. Рассчитаем, сколько из 507 промышленных предприятий следует проверить налоговой инспекции, чтобы с вероятностью 0,997 определить долю предприятий с нарушениями в уплате налогов. По данным прошлого аналогичного обследования величина среднего квадратического отклонения составила 0,15; размер ошибки выборки предполагается получить не выше, чем 0,05.

При использовании повторного случайного отбора следует проверить

При бесповторном случайном отборе потребуется проверить

Как видим, использование бесповторного отбора позволяет проводить обследование гораздо меньшего числа объектов.

Пример 11.6. Планируется провести обследование заработной платы на предприятиях отрасли методом случайного бесповторного отбора. Какова должна быть численность выборочной совокупности, если на момент обследования в отрасли число занятых составляло 100 000 чел.? Предельная ошибка выборки не должна превышать 100 руб. с вероятностью 0,954. По результатам предыдущих обследований заработной платы в отрасли известно, что среднее квадратическое отклонение составляет 500 руб.

Следовательно, для решения поставленной задачи необходимо включить в выборку не менее 100 человек.

Средние ошибки повторной и бесповторной выборки

Средняя ошибка выборки

Средняя ошибка выборки представляет из себя такое расхождение между средними выборочной и генеральной совокупностями, которое не превышает ±б (дельта).

На основании теоремы Чебышева П. Л. величина средней ошибки при случайном повторном отборе в контрольных работах по статистике рассчитывается по формуле (для среднего количественного признака):

Средняя ошибка выборки

где числитель — дисперсия признака х в выборочной совокупности;
n — численность выборочной совокупности.

Для альтернативного признака формула средней ошибки выборки для доли по теореме Я. Бернулли рассчитывается по формуле:

формула средней ошибки для альтернативного признака

где р(1- р) — дисперсия доли признака в генеральной совокупности;
n — объем выборки.

Вследствие, того что дисперсия признака в генеральной совокупности точно не известна, на практике используют значение дисперсии, которое рассчитано для выборочной совокупности на основании закона больших чисел. Согласно данному закону выборочная совокупность при большом объеме выборки достаточно точно воспроизводит характеристики генеральной совокупности.

Поэтому расчетные формулы средней ошибки при случайном повторном отборе будут выглядеть таким образом:

1. Для среднего количественного признака:

средняя ошибка при случайном повторном отборе

где S^2 — дисперсия признака х в выборочной совокупности;
n — объем выборки.

2. Для доли (альтернативного признака):

средняя ошибка при случайном повторном отборе для альтернативного признака

где w (1 — w) — дисперсия доли изучаемого признака в выборочной совокупности.

В теории вероятностей было показано, что генеральная дисперсия выражается через выборочную согласно формуле:

генеральная дисперсия

В случаях малой выборки, когда её объем меньше 30, необходимо учитывать коэффициент n/(n-1). Тогда среднюю ошибку малой выборки рассчитывают по формуле:

средняя ошибка малой выборки

Так как в процессе бесповторной выборки сокращается численность единиц генеральной совокупности, то в представленных выше формулах расчета средних ошибок выборки нужно подкоренное выражение умножить на 1- (n/N).

Расчетные формулы для такого вида выборки будут выглядеть так:

1. Для средней количественного признака:

средняя ошибка безповторной выборки

где N — объем генеральной совокупности; n — объем выборки.

2. Для доли (альтернативного признака):

средняя ошибка безповторной выборки для альтернативного признака

где 1- (n/N) — доля единиц генеральной совокупности, не попавших в выборку.

Поскольку n всегда меньше N, то дополнительный множитель 1 — (n/N) всегда будет меньше единицы. Это означает, что средняя ошибка при бесповторном отборе всегда будет меньше, чем при повторном. Когда доля единиц генеральной совокупности, которые не попали в выборку, существенная, то величина 1 — (n/N) близка к единице и тогда расчет средней ошибки производится по общей формуле.

Средняя ошибка зависит от следующих факторов:

1. При выполнении принципа случайного отбора средняя ошибка выборки определяется во-первых объемом выборки: чем больше численность, тем меньше величины средней ошибки выборки. Генеральная совокупность характеризуется точнее тогда, когда больше единиц данной совокупности охватывает выборочное наблюдение

2. Средняя ошибка также зависит от степени варьирования признака. Степень варьирования характеризуется дисперсией. Чем меньше вариация признака (дисперсия), тем меньше средняя ошибка выборки. При нулевой дисперсии (признак не варьируется) средняя ошибка выборки равна нулю, таким образом, любая единица генеральной совокупности будет характеризовать всю совокупность по этому признаку.

Источник: Балинова B.C. Статистика в вопросах и ответах: Учеб. пособие. — М.: ТК. Велби, Изд-во Проспект, 2004. — 344 с.

  1. Помощь студентам

  2. Онлайн тесты

  3. Статистика


  4. Статистика. Тесты для самопроверки. Раздел I. Общая теория статистики

  • Обновление

    Обновлено: 05.05.2021

  • Просмотры

    1 860

50 вопросов

Выполним любые типы работ

  • Дипломные работы
  • Курсовые работы
  • Рефераты
  • Контрольные работы
  • Отчет по практике
  • Эссе
Узнай бесплатно стоимость работы

Популярные тесты по статистике

icon

Статистика

Статистика. Тесты для самопроверки. Раздел I. Общая теория статистики

Календарь

17.08.2021

Просмотры

1 861

Количество

50

icon

Статистика

Социально-экономическая статистика. Тест для самопроверки

Календарь

17.08.2021

Просмотры

1 518

Количество

57

icon

Статистика

Статистика. Тесты для самопроверки. Раздел II. Социально-экономическая статистика

Календарь

17.08.2021

Просмотры

1 507

Количество

35

icon

Статистика

Тест входного контроля по дисциплине «Статистика»

Календарь

17.08.2021

Просмотры

1 411

Количество

10

icon

Статистика

Тест промежуточного контроля по дисциплине «Статистика»

Календарь

17.08.2021

Просмотры

1 391

Количество

32

icon

Статистика

Правовая статистика. Тест для самопроверки

Календарь

17.08.2021

Просмотры

1 070

Количество

15

Мы поможем сдать на отлично и без пересдач

  • Контрольная работа

    от 1 дня
    /

    от 100 руб

  • Курсовая работа

    от 5 дней
    /

    от 1800 руб

  • Дипломная работа

    от 7 дней
    /

    от 7950 руб

  • Реферат

    от 1 дня
    /

    от 700 руб

  • Онлайн-помощь

    от 1 дня
    /

    от 300 руб

Нужна помощь с тестами?

Оставляй заявку — и мы пройдем все тесты за тебя!

Повторный и бесповторный отбор.
Ошибка выборки

Краткая теория


На основании выборочных данных дается оценка статистических
показателей по всей (генеральной) совокупности. Подобное возможно, если выборка
основывается на принципах случайности отбора и репрезентативности
(представительности) выборочных данных. Каждая единица генеральной совокупности
должна иметь равную возможность (вероятность) попасть в выборку.

При формировании выборочной совокупности используются следующие
способы отбора: а) собственно-случайный отбор; б) механическая выборка; в)
типический (районированный) отбор; г) многоступенчатая (комбинированная)
выборка; д) моментно-выборочное наблюдение.

Выборка может осуществляться по схеме повторного и бесповторного
отбора.

В первом случае единицы совокупности, попавшие в выборку, снова
возвращаются в генеральную, а во втором случае – единицы совокупности, попавшие
в выборку, в генеральную совокупность уже не возвращаются.

Выборка может осуществляться отдельными единицами или сериями
(гнездами).

Собственно-случайная выборка

Отбор в этом случае производится либо по жребию, либо по таблицам
случайных чисел.

На основании приемов классической выборки решаются следующие
задачи:

а) определяются границы среднего значения показателя по генеральной
совокупности;

б) определяются границы доли признака по генеральной совокупности.

Предельная ошибка средней при собственно-случайном отборе
исчисляется по формулам:

а) при повторном отборе:

б) при бесповторном отборе:

где

 – численность выборочной совокупности;

 – численность генеральной совокупности;

 – дисперсия признака;

 – критерий кратности ошибки: при

;
при

;
при

.

Значения

 
определяются

по таблице функции Лапласа.

Границы (пределы) среднего значения признака по генеральной
совокупности определяются следующим неравенством:

где

 – среднее значение признака по выборочной
совокупности.

Предельная ошибка доли при собственно-случайном отборе определяется
по формулам:

а) при повторном отборе:

при бесповторном отборе:

где

 – доля единиц совокупности с заданным
значением признака в обзей численности выборки,

 – дисперсия доли признака.

Границы (пределы) доли признака по всей (генеральной) совокупности
определяются неравенством:

где

 – доля признака по генеральной совокупности.

Типическая (районированная) выборка

Особенность этого вида
выборки заключается в том, что предварительно генеральная совокупность по
признаку типизации разбивается на частные группы (типы, районы), а затем в
пределах этих групп производится выборка.

Предельная ошибка средней
при типическом бесповторном отборе определяется по формуле:

где

 – средняя из внутригрупповых дисперсий

 по каждой типичной группе.

При пропорциональном отборе из групп генеральной совокупности
средняя из внутригрупповых дисперсий определяется по формуле:

где

 – численности единиц совокупности групп по выборке.

Границы (пределы) средней по генеральной совокупности на основании
данных типической выборки определяются по тому же неравенству, что при
собственно-случайной выборке. Только предварительно необходимо вычислить общую
выборочную среднюю

 из частных выборочных средних

.
Для случая пропорционального отбора это определяется по формуле:

При непропорциональном отборе средняя из  внутригрупповых дисперсий вычисляется по
формуле:

где

 – численность единиц групп по генеральной
совокупности.

Общая выборочная средняя в этом случае определяется по формуле:

Предельная ошибка доли
признака при типическом бесповторном отборе определяется формулой:

Средняя дисперсия доли
признака из групповых дисперсий доли

 при
типической пропорциональной выборке вычисляется по формуле:

Средняя доля признака по
выборке из показателей групповых долей рассчитывается формуле:

Средняя дисперсия доли при
непропорциональном типическом отборе определяется следующим образом:

а средняя доля признака:

Формулы ошибок выборки при типическом повторном отборе будут те же,
то и для случая бесповторного отбора. Отличие заключается только в том, что в
них будет отсутствовать по корнем сомножитель

.

Серийная выборка

Серийная ошибка выборки
может применяться в двух вариантах:

а) объем серий различный

б) все серии имеют
одинаковое число единиц (равновеликие серии).

Наиболее распространенной
в практике статистических исследований является серийная выборка с
равновеликими сериями. Генеральная совокупность делится на одинаковые по объему
группы-серии

 и
производится отбор не единиц совокупности, а серий

. Группы (серии) для обследования отбирают в
случайном порядке или путем механической выборки как повторным, так и
бесповторными способами. Внутри каждой отобранной серии осуществляется сплошное
наблюдение. Предельные ошибки выборки

 при
серийном отборе исчисляются по формулам:

а) при повторном отборе

б) при бесповторном отборе

где

 – число
серий в генеральной совокупности;

 – число
отобранных серий;

 – межсерийная дисперсия, исчисляемая для случая равновеликих
серий по формуле:

где

 –
среднее значение признака в каждой из отобранных серий;

 – межсерийная
средняя, исчисляемая для случая равновеликих серий по формуле:

Определение численности выборочной совокупности

При проектировании
выборочного наблюдения важно наряду с организационными вопросами решить одну из
основных постановочных задач: какова должна быть необходимая численность
выборки с тем, чтобы с заданной степенью точности (вероятности) заранее
установленная ошибка выборки не была бы превзойдена.

Примеры решения задач


Задача 1

На основании результатов проведенного на заводе 5%
выборочного наблюдения (отбор случайный, бесповторный) получен следующий ряд
распределения рабочих по заработной плате:

Группы рабочих по размеру заработной платы, тыс.р. до 200 200-240 240-280 280-320 320 и выше Итого
Число рабочих 33 35 47 45 40 200

На основании приведенных данных определите:

1) с вероятностью 0,954 (t=2) возможные пределы, в которых
ожидается средняя заработная плата рабочего в целом по заводу (по генеральной
совокупности);

2) с вероятностью 0,997 (t=3) предельную ошибку и границы доли
рабочих с заработной платой от 320 тыс.руб. и выше.

Решение

Если не находите примера, аналогичного вашему, если сами не успеваете выполнить работу, если впереди экзамен по предмету и нужна помощь — свяжитесь со мной:

ВКонтакте
WhatsApp
Telegram

Я буду работать с вами, над вашей проблемой, пока она не решится.

Вычислим среднюю з/п: Для этого просуммируем произведения середин
интервалов и соответствующих частот, и полученную сумму разделим на сумму
частот.

2) Выборочная дисперсия:

Найдем доверительный интервал для средней. Предельная ошибка выборочной
средней считается по формуле:

где

 —

аргумент функции Лапласа.  

Искомые возможные пределы, в которых ожидается средняя заработная плата
рабочего в целом по заводу:

Найдем доверительный интервал для выборочной доли. Предельная ошибка
выборочной доли считается по формуле:

Доля рабочих с з/п от 320 тыс.р.:

 

Искомые границы доли рабочих с заработной платой от 320 тыс.руб. и выше:


Задача 2

В
городе 23560 семей. В порядке механической выборки предполагается определить
количество семей в городе с числом детей трое и более. Какова должна быть
численность выборки, чтобы с вероятностью 0,954 ошибка выборки не превышала
0,02 человека. На основе предыдущих обследований известно, что дисперсия равна
0,3.

Решение

Численность
выборки можно найти по формуле:

В нашем случае:

Вывод к задаче

Таким образом численность
выборки должна составить 2661 чел.


Задача 3

С
целью определения средней месячной заработной платы персонала фирмы было
проведено 25%-ное выборочное обследование с отбором
единиц пропорционально численности типических групп. Для отбора сотрудников
внутри каждого филиала использовался механический отбор. Результаты
обследования представлены в следующей таблице:

Номер филиала Средняя месячная
заработная плата, руб.
Среднее квадратическое отклонение, руб. Число
сотрудников, чел.
1 870 40 30
2 1040 160 80
3 1260 190 140
4 1530 215 190

С
вероятностью 0,954 определите пределы средней месячной заработной платы всех
сотрудников гостиниц.

Решение

Предельная
ошибка выборочной средней:

Средняя
из внутригрупповых дисперсий:

Получаем:

Средняя
месячная заработная плата по всей совокупности филиалов:

Искомые
пределы средней месячной заработной платы:

Вывод к задаче

Таким
образом с вероятностью 0,954 средняя месячная заработная плата всех сотрудников
гостиниц находится в пределах от 1294,3 руб. до 1325,7 руб.

Like this post? Please share to your friends:
  • Величина средней ошибки выборки рассчитанной при бесповторном отборе ошибки выборки рассчитанной
  • Величина предельной ошибки выборки определяется
  • Величина ошибки квантования
  • Величина допустимой ошибки выборки зависит от
  • Величайшие ошибки человечества